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Abstract 

In this paper, we address a semi-infinite interfacial crack problem in an anisotropic 

magnetoelectroelastic (MEE) bimaterial system subjected to a magnetoelectromechanical asymmetric 

load on the crack surface. First, the symmetric and skew-symmetric weight functions are derived for a 

two-dimensional (2-D) deformation problem. Using these weight functions and extending the Betti 

formula to MEE materials, the integral identities are further obtained and the present crack problem is 

formulated in terms of singular integral equations, which establish the relationship between the applied 

external load and the generalized displacement jump across the crack faces. The illustrative examples 

in relation to Mode III, and Mode I and Mode II problems show that the method developed in this study 

avoids the use of Green’s function and is very convenient for the fracture analysis of MEE solids, in 

which a multi-field coupled effect is observed. 
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1. Introduction 

Weight functions were defined by Bueckner (1970, 1987, 1989) as the singular non-trivial 

solutions of the homogeneous traction-free problem, and were fundamental in the determination of 

stress intensity factors for asymptotic representations near cracks. The theory of weight functions has 

also been employed to solve interfacial crack problems in elastic bimaterials (Gao, 1991; Gao, 1992; 

Ma and Chen, 2004), where the symmetric opening loads were applied on the crack faces. However, 

for the in-plane deformation of interfacial cracks problem, skew-symmetric loads with forces of the 

same magnitude and opposite directions produce non-zero stress intensity factors, and for the Mode III 

problem there is also a non-vanishing skew-symmetric component of the weight functions. Moreover, 

in most situations, the loads are not symmetric; therefore, an investigation of the influence of skew-

symmetric loads on fracture analysis is necessary. With these considerations, skew-symmetric weight 

functions were introduced by Piccolroaz et al. (2009) to perform a fracture analysis on the interfacial 

crack problem in isotropic elastic bimaterials (Piccolroaz et al., 2010; Piccolroaz and Mishuris, 2013; 

Vellender et al., 2013) and anisotropic elastic bimaterials (Morini et al., 2012; Morini et al., 2013). The 

weight function method has also been extended by Pryce et al. (2013) to analyze dynamic steady-state 

propagation of interfacial problems under arbitrary loading. In the past couple of decades, more and 

more attention has been paid to magnetoelectroelastic (MEE) materials, which exhibit the coupled 

effect within magnetic, electric and elastic fields, and many achievements have been made to the 

interface crack problems of MEE materials (Gao and Noda, 2004; Li and Kardomateas, 2007; Zhao et 

al., 2008; Herrmann et al., 2010; Zhu et al., 2010; Feng et al., 2009; Feng et al., 2012; Ma et al., 2015a). 

Although many achievements regarding weight functions have been made in relation to elastic 
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interfacial cracks, to our best knowledge, the symmetric and skew-symmetric weight functions for an 

anisotropic MEE bimaterial system have not been reported for the plane strain case, nor even for the 

Mode III deformation. 

On the other hand, the method of singular integral equations is often employed to investigate 

fracture problems, and the generalized displacement and stress field defined by singular integral 

formulations is derived based on Green’s function in many circumstances (Zhu and Qin, 2007a; Zhu 

and Qin, 2007b; Zhao et al., 2007b; Li et al., 2011; Zhao et al., 2013; Zhang and Wang, 2014). 

Although Green’s functions for various two-dimensional (2-D) and three-dimensional (3-D) problems 

have been obtained (Liu et al., 2001; Pan, 2002; Wang and Shen, 2002; Jiang and Pan, 2004; Ding et 

al., 2005; Hou et al., 2005; Hou et al., 2009; Jiang et al., 2007; Rojas-Diaz et al., 2008; Ma and Lee, 

2009; Xiong et al., 2010; Buroni, and Saez, 2010; Zhao et al., 2007a; Zhao et al., 2015), their 

application in the determination of displacement and stress on the crack surface usually implies 

challenging numerical integral calculations, and the convergence of these integrals should be carefully 

identified, especially in the case of anisotropic MEE materials with multi-field coupled effects. 

Additionally, the singular integral formulations based on Green’s functions can only be used to analyze 

problems relating to symmetric loads on the crack surface, and are not applicable to cases involving 

asymmetric loads.  

For these aforementioned considerations, in this study we firstly derive general expressions for the 

symmetric and skew-symmetric weight functions of a 2-D interfacial crack problem in an anisotropic 

MEE bimaterial system. Then, referring to Morini et al. (2013) and using these weight functions 

together with Betti’s reciprocal theorem, we further develop an alternative method for deriving integral 

identities for MEE bimaterials, which describe the relationship between the applied 

magnetoelectromechanical load and the generalized displacement jump across crack faces. For the 2-D 

problem, the obtained identities are composed of Cauchy type singular operators and algebraic terms, 
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with the latter ceasing to exist for homogeneous MEE materials. The approach proposed in this paper 

avoids the use of Green’s function and provides a powerful tool with which to solve the interfacial 

crack problems of MEE bimaterials.  

2. Symmetric and skew-symmetric weight functions for anisotropic MEE bimaterials 

In this section, we will derive the general expressions for symmetric and skew-symmetric weight 

functions in relation to the present semi-infinite interfacial crack under generalized traction-free 

conditions. As shown in Fig. 1a, a semi-infinite plane crack is situated at the interface of two dissimilar 

anisotropic MEE materials and the origin of the coordinate system is at the crack tip. In this paper, we 

consider the 2-D deformation, in which both the generalized displacement vector 

{ }T
1 2 3, , , ,u u u ϕ φ=u  and the generalized traction vector 

{ } { }T T
1 2 3 4 5 31 32 33 3 3, , , , , , , ,t t t t t D Bσ σ σ= =t  are only dependent on variables 1x  and 3x , where 

( 1,2,3)iu i = , φ  and ϕ  are elastic displacements, electric and magnetic potentials, respectively, and 3iσ , 

and 3D  and 3B  are mechanical stresses, electric displacement and magnetic induction, respectively. In 

addition, the interfacial crack is assumed to be magnetoelectrically impermeable. Therefore, the 

boundary conditions at the interface can be written as  

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
1 1 1 1 1 1,0 ,0 0, ,0 ,0 , 0x x x x x x= − = = >u u u t t , (1) 

( ) ( ) ( ) ( )1 2
1 1 1,0 ,0 0, 0x x x= = <t t ,   (2) 

where the superscripts “(1)” and “(2)” refer to Materials 1 and 2, respectively.  In the following 

sections, for simplicity, we will use ( )1xt  instead of ( )1,0xt  to denote the generalized traction at the 

material interface. 
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In the present problem, the asymmetric loads are imposed on the crack faces, which are assumed to 

be self-balanced and vanish at infinity (Morini et al., 2012). The applied magnetoelectromechanical 

load can be defined by generalized traction acting on the crack faces, and is expressed as 

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

T

1 1 1 2 1 3 1 4 1 5 1

T

31 1 32 1 33 1 3 1 3 1 1

, , , ,

,0 , ,0 , ,0 , ,0 , ,0 , 0,

x q x q x q x q x q x

x x x D x B x xσ σ σ

± ± ± ± ± ±

± ± ± ± ±

=

= <

q
 (3) 

where ( )1jq x±  are the prescribed load functions, and the superscripts “+” and “-” stand for the upper 

and lower crack faces, respectively. In the absence of body forces, electric charges and electric currents, 

the symmetric and skew-symmetric components of the magnetoelectromechanical load are written as 

 ( ) ( ) ( ){ } [ ]( ) ( ) ( )1 1 1 1 1 1
1 ,
2

x x x x x x+ − + −= + = −q q q q q q . (4) 

Obviously, the arbitrary load boundary condition can be defined with the help of Eq. (4) since all the 

applied load combinations can be decomposed into the superposition of the symmetric and skew-

symmetric parts. 

Referring to Suo (1990) and Suo et al. (1992), the present crack problem can be reduced to a 

Riemann-Hilbert problem and the corresponding details are presented in Appendix A. According to the 

Plemelj formula, the solution of the Riemann-Hilbert problem Eq. (A.12) ( )zh  can be expressed as  

( ) ( )1 d
2 i

z
z

η
η

π η
+∞

−∞
=

−∫
t

h .  (5) 

Introducing the following Fourier transform 

( ) ( ){ } ( ) ( ) ( ){ } ( )1 1

1

i i1
1 1 1 1 1

1? ?e d , e d
2

x x
xx x x x xξ ξ

ξρ ξ ρ ρ ρ ρ ξ ρ ξ
π

+∞ +∞ −−

−∞ −∞
= = = =∫ ∫F F ,  (6) 

and applying the Fourier transform to Eq. (5) as 3 0x ±= , one can get (Morini et al., 2012) 

( ) ( ) ( ) ( ) ( ) ( ) ( )1i? ˆ,0 e d , Rx H Hξξ ξ ξ η η ξ ξ ξ
+∞ +± ±

−∞
= = ± ± = ± ∈∫h h t t , (7) 
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where H is the Heaviside function and ( ) ( )ˆ ξ+t  is the transform of the generalized traction ( ) ( )ξ+t  at the 

material interface, namely  

( ) ( ) ( ) ( ){ } ( ) ( ) 1i
1 1 10

ˆ e dxx x xξ
ξξ

∞+ + += = ∫t t tF ,   (8) 

where ( ) ( )1x+t with the superscript “ ( )+ ”, different from ( )1xt , denotes the generalized traction on the 

positive semi-axis 1 0x > . In what follows, the function with the superscripts “ ( )+ ” and “ ( )− ” means 

that the support of this function is restricted to the positive semi-axis and negative semi-axis, 

respectively. In deriving Eq. (7), the following relation is used (Morini et al., 2012) 

( )

( ) ( )
1i i0

i
1

1

e d 2 ie
i0

x

x H
x

ξ
ξηπ ξ

η

±
+∞

−∞
= ±

− ±∫  .  (9) 

The Fourier transforms of the functions ( )zg  and ( )zg  in Eq. (A.6) at the interface can be written 

as  

( ) ( ) ( ) ( ) ( )1 1ˆ ˆˆ , RHξ ξ ξ ξ ξ+− + −= = − ∈g B h B t ,  (10) 

( ) ( ) ( ) ( ) ( )1 1ˆˆ ˆ , RHξ ξ ξ ξ ξ+− − −= − = ∈g B h B t .  (11) 

Taking the Fourier transforms to Eq. (A.6), we have  

( ) ( ) ( )ˆˆˆi ,0 , Rξ ξ ξ ξ ξ±− = + ∈u Af Af .  (12) 

From Eq. (12), the Fourier transform of the generalized displacement on the boundary of the upper 

half-plane can be found as (Morini et al., 2012) 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )1 11 ˆˆ ,0 , RH Hξ ξ ξ ξ ξ
ξ

++ = − − ∈u Y Y t , (13) 

where  1i −=Y AB  is a Hermitian matrix.  

Rewriting the Heaviside function in the following form 
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( ) ( ){ }1 1 sign
2

H ξ ξ± = ± ,  (14) 

one gets 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 11 1 ˆˆ ,0 , R
2 2

ξ ξ ξ
ξ ξ

++   = − − + ∈ 
  

u Y Y Y Y t . (15) 

Similarly, the Fourier transform of the generalized displacement on the boundary of the lower half-

plane can be given as 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 2 21 1 ˆˆ ,0 , R
2 2

ξ ξ ξ
ξ ξ

+−   = − + + ∈ 
  

u Y Y Y Y t . (16) 

For elasticity, the weight functions are defined as a non-trivial singular solution of the 

homogeneous traction free problem (Bueckner, 1987). By extending this concept to the MEE case, the 

weight functions related to MEE materials can be similarly obtained. Following the theory proposed by 

Wills and Movchan (1995), herein we introduce { }T
1 2 3 4 5, , , ,U U U U U=U  as the weight function in a 

different domain with respect to the physically generalized displacement, where the crack is located on 

the positive semi-axis 1 0x > , as shown in Fig. 1b. Therefore, the symmetric and skew-symmetric 

weight functions are, respectively, presented as (Piccolroaz et al., 2013) 

 [ ]( ) ( ) ( )1 1 1,0 ,0x x x+ −= −U U U ,  (17) 

( ) ( ) ( ){ }1 1 1
1 ,0 ,0
2

x x x+ −= +U U U .  (18) 

Corresponding to the singular solution U , the generalized traction vector { }T
1 2 3 4 5, , , ,= Σ Σ Σ Σ ΣΣ , 

where ( 1,2,3)i i =Σ  correspond to mechanical components whereas 4Σ  and 5Σ  correspond to electric 

and magnetic components, respectively,  is also introduced with the following boundary conditions 
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( )1 1,0 0, 0x x= >Σ ,  (19) 

( ) ( )(1) (2)
1 1 1,0 ,0 , 0x x x= <Σ Σ .  (20) 

It is remarked that U  is discontinuous and Σ  is equal to zero for 1 0x > , whilst u  is discontinuous and 

t  is equal to zero for 1 0x < .  

Correspondingly, the Fourier transform of the generalized singular displacement U  on the 

boundary can be readily obtained from Eqs. (15) and (16) by replacing  u  and t  with U  and Σ , 

respectively, and presented in the following form  

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 11 1? ,0 , R
2 2

ξ ξ ξ
ξ ξ

−+   = − − + ∈ 
  

U Y Y Y Y Σ , (21) 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2 2 2 21 1? ,0 , R
2 2

ξ ξ ξ
ξ ξ

−−   = − + + ∈ 
  

U Y Y Y Y Σ . (22) 

According to Eqs. (17) and (18), the symmetric and skew-symmetric weight functions are obtained, 

respectively, by taking the jump and average of Eqs. (21) and (22)  

( )
( ) ( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( )1 2 1 21? isign Im Re , Rξ ξ ξ ξ

ξ
+ −  = − − + ∈ U Y Y Y Y Σ , (23) 

( ) ( ) ( ) ( )( ) ( ) ( )( ){ } ( ) ( )1 2 1 21? isign Im Re , R
2

ξ ξ ξ ξ
ξ

−= + − − ∈U Y Y Y Y Σ . (24) 

Introducing the following bimaterial matrices 

( ) ( ) ( ) ( )1 2 1 2,= + = −H Y Y L Y Y ,  (25) 

Eqs. (23) and (24) can be rewritten in the following compact form 

( )
( ) ( ) ( ) ( ){ } ( ) ( )1? Re isign Im , Rξ ξ ξ ξ

ξ
+ −  = − − ∈ U H H Σ , (26) 

( ) ( ) ( ) ( ){ } ( ) ( )1? Re isign Im , R
2

ξ ξ ξ ξ
ξ

−= − − ∈U L L Σ . (27) 
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It is remarked that the symmetric and skew-symmetric weight function matrices derived for the general 

anisotropic MEE bimaterials are formally similar to those for isotropic and anisotropic elastic 

bimaterials (Piccolroaz et al., 2009; Piccolroaz et al., 2007; Morini et al., 2012; Morini et al., 2013). 

3. The Betti formula for MEE materials  

Applying general asymmetric load to the crack faces, the generalized traction acting on the 

material interface can be written as  

( ) ( ) ( ) ( ) ( ) ( )0 1 1 1 0 1 1 1,0 , ,0x x x x x x+ + − −= + = +t q t t q t . (28) 

According to Willis and Movchan (1995), Morini et al. (2013) and Piccolroaz and Mishuris (2013), 

the coefficients in the asymptotic representations of the generalized stress field near the crack tip can be 

obtained by the application of the Betti formula to the MEE field and to weight functions. In the 

present study, the corresponding relations for the upper and lower MEE half-planes are given as 

(Morini et al., 2012)  

( ) ( ) ( ) ( ){ }T T
1 1 0 1 1 1 1 1 3,0 ,0 ,0 ,0 d 0, 0x x x x x x x x

+∞ + + + + +

−∞
′ ′− − − = =∫ U Ωt Σ Ωu ,  (29) 

( ) ( ) ( ) ( ){ }T T
1 1 0 1 1 1 1 1 3,0 ,0 ,0 ,0 d 0, 0x x x x x x x x

+∞ − − − − −

−∞
′ ′− − − = =∫ U Ωt Σ Ωu ,  (30) 

where 1x′  denotes a shift of the weight functions within the ( )1 2,x x  plane and Ω  is the rotation matrix 

(Piccolroaz et al., 2007) 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

− 
 − 
 =
 
 
 
 

Ω .  (31) 

Subtracting Eq. (30) from Eq. (29) and using Eq. (28), we have 
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( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )}

T T T
1 1 1 1 1 1 1 1 1

T T T
1 1 1 1 1 1 1 1 1 1 3

,0 ,0 ,0

,0 ,0 ,0 ,0 ,0 d 0,? .

x x x x x x x x x

x x x x x x x x x x x

+∞ + + − − +

−∞

− + + − −

′ ′ ′− − − + −

′ ′ ′− − − − − − = =

∫ U Ωq U Ωq U Ωt

U Ωt Σ Ωu Σ Ωu
  

(32) 

Using Eqs. (17) and (18) as well as the boundary conditions in Eqs. (1), (2), (19) and (20), one deduces 

(Morini et al., 2013) 

[ ] ( ) ( ) ( ) ( ) [ ]( ) ( ){ }
[ ] ( ) ( ) ( ) [ ]( ){ }

T T
1 1 1 1 1 1 1

T T
1 1 1 1 1 1 1 3

d

d ,? ,

x x x x x x x

x x x x x x x x

+∞ −+

−∞

+∞

−∞

′ ′− − −

′ ′= − − + − =

∫

∫

U Ωt Σ Ω u

U Ω q U Ω q
 (33) 

where [ ]( ) ( )1x−u  is the generalized displacement jump across the interface for 1 0x < .  

Using the convolution with respect to 1x , the aforementioned integral identity, i.e. Eq. (33), can be 

equivalently rewritten as (Arfken and Weber, 2005) 

[ ]( ) ( ) ( ) [ ]( ) [ ]( ) ( ) [ ]T T TT −+∗ − ∗ = − ∗ − ∗Ω U t ΩΣ u Ω U q Ω U q  , (34) 

where the symbol “ ∗ ” stands for the convolution. Eq. (34) presents the relationships between the 

weight functions, the applied generalized load, generalized traction at the interface and the 

displacement jump across the crack faces. It is useful for the determination of the generalized stress 

intensity factors. 

4. Integral identities 

Herein we will derive the integral formulation of a semi-infinite interfacial crack problem based on 

the results presented in the previous sections. We consider the 2-D problem of monoclinic MEE 

bimaterials with the special material constants in Eq. (A.1). The symmetry plane of this particular class 

of anisotropic MEE materials coincides with 2 0x = . In this situation, ( )2 2 0 1,3, 4,5i iY Y i= = =  holds 

true, where  ijY  is the element of bimaterial matrix Y , and the in-plane and out-of-plane deformations 
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are uncoupled (Ting, 1995; Li and Kardomateas, 2007), which will be investigated seperately in the 

following sections.  

4.1 Out-of-plane deformation: Mode III problem 

As shown in Appendix A, for out-of-plane deformation, only mechanical stresses 23σ  and 12σ  are 

involved in the constitutive equations. In this case, the traction and the displacement derivatives for 

both upper and lower half-planes become (Suo, 1990) 

( ) ( ) ( ) ( )2 1 3 23 1 3 22 2 2 22 2 2, ,t x x x x B g z B g zσ= = + ,  (35) 

( ) ( ) ( )2,1 1 3 22 2 2 22 2 2,u x x A g z A g z= + ,  (36) 

where 2 1 2 3z x xµ= + .  

According to Eqs. (26) and (27), the Fourier transform of symmetric and skew-symmetric weight 

functions for an out-of-plane deformation between two dissimilar monoclinic MEE materials are  

( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( )22 22 22

2 2 2 2 2
22

? ? ?Σ , Σ
2 2

H L LU U U
H

ξ ξ ξ ξ ξ
ξ ξ

+ +− −   = − = − =    , (37) 

and the corresponding Betti formula reduces to 

[ ] ( ) [ ]( ) [ ] [ ]2 2 2 2 2 2 2 2U t u U q U q−+∗ − Σ ∗ = − ∗ − ∗ .  (38) 

Applying the Fourier transform with respect to 1x  to the above identity, we obtain  

( ) ( ) ( ) [ ]( ) ( )
[ ]2 2 2 2 2 2 2 2

? ?ˆˆ ? ?U t u U q U q
+ +−+ −   − Σ = − −    . (39) 

Multiplying both sides of Eq. (39) by 
( ) 1

2Û
−+     

 leads to 

( ) [ ]( ) [ ]2 2 2 2
ˆ ? ?t N u q M q−+ − = − − ,  (40) 

where  
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( ) ( ) ( )
1 1

22
2 2 2 2

22 22

? ? ˆ,
2
LM U U N U
H H

ξ− −+ + −      = = = Σ = −         
.       (41) 

If further applying the inverse Fourier transform to Eq. (40), two distinct relationships 

corresponding to the two cases, 1 0x <  and 1 0x > , are derived 

( ) [ ]( ) [ ]( )( )1 1

1 1
2 1 0 2 0 2 1? , 0x xq x M q N u x−− −

< <+ = <F F ,         (42) 

( ) ( ) [ ]( )( )1

1
2 1 0 2 1ˆ , 0xt x N u x−+ −

>= >F .           (43) 

It is worth mentioning that the term ( )
2̂t

+  cancels from Eq. (42) because ( )2 1 0t x =  for 1 0x < , while 

[ ]2q̂  and 2q̂  cancel from Eq. (43) because [ ]2q  and 2q  vanish for 1 0x > . The inverse Fourier 

transform of the function [ ]( )
2ûξ −  can be expressed as (Piccolroaz and Mishuris, 2013) 

[ ]( )( ) [ ]( ) [ ]( )

1

2 21
2

1 1 1

1 1 1ˆ dx

u u
u

x x x
ξ η

π π η η

− −
+∞−−

−∞

∂ ∂
= ∗ =

∂ − ∂∫F .       (44) 

Then we can define the singular operator S  and the orthogonal projectors ( )± + −= =P P P I  acting on 

the real axis (Morini et al., 2013) 

( ) ( )
1

1 1

1 1 dx
x x

χ η
ϖ χ χ η

π π η
+∞

−∞
= = ∗ =

−∫S ,           (45) 

( )1 1, 0,
0, otherwise.

x xχ
χ±

± ≥= 


P              (46) 

The operator S  is a singular operator of Cauchy type, and it transforms any function χ  satisfying the 

Hölder condition into a new function χS  which also satisfies this condition (Mushkelishvili, 1946). 

The properties of the operator S  in several functional planes have been described by Prössdorf (1974) 

in detail. 

The integral identities (42) and (43) for a Mode III interfacial crack between two dissimilar 
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monoclinic MEE materials can be further expressed as 

( ) [ ]( ) ( ) [ ]( )
222

2 1 2 1 1
22 22 1

1 , 0
2

s uLq x q x x
H H x

−∂
+ = − <

∂
S ,        (47) 

( ) ( ) ( ) [ ]( )
2

2 1 1
22 1

1 , 0c u
t x x

H x

−
+ ∂

= − >
∂

S ,           (48) 

where ( )s
− −=S P SP  is a singular integral operator, and ( )c

+ −=S P SP  is a compact integral operator 

(Gakhov and Cherski, 1978; Krein, 1958; Gohberg and Krein, 1958). These two operators have a 

similar form, but they are different in essence, since ( )sS : ( ) ( )R R− −ϒ → ϒ , while ( )cS : 

( ) ( )R R− +ϒ → ϒ , where ( )R±ϒ   is some functional plane of functions defined on R±  (Morini et al., 

2013). 

For better understanding of this point, Eqs. (47) and (48) are rewritten in the extended form 

( ) [ ]( ) [ ]( )
0 222

2 1 2 1 1
22 22 1

1 1 d , 0
2

uLq x q x x
H H x

η
π η η

−

−∞

∂
+ = − <

− ∂∫ ,      (49) 

( ) ( ) [ ]( )
0 2

2 1 1
22 1

1 1 d , 0
u

t x x
H x

η
π η η

−
+

−∞

∂
= − >

− ∂∫ .         (50) 

The integral in Eq. (49) is a Cauchy-type singular integral with a moving singularity, whereas the 

integral in Eq. (50) has a fixed point singularity (Duduchava, 1976; Duduchava, 1979). 

For a homogeneous monoclinic MEE material, the integral identities (47) and (48) will be 

simplified, since 22 0L =  holds true, which results in no influence on the generalized skew-symmetric 

load 2q . In summary, the integral identities for Mode III interfacial cracks in monoclinic MEE 

bimaterials are presented as Eqs. (47) and (48). Eq. (47) shows an invertible singular integral relation 

among the applied mechanical loads 2q  and  [ ]2q , and the corresponding displacement jump across 
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the crack faces [ ]( )
2u − , whereas Eq. (48) is an additional relation which makes the definition of the 

behavior of [ ]( )
2u −  possible. Considering that the operator ( )cS  is compact and not invertible, the 

determination of [ ]( )
2u −  by inversion of Eq. (47) is necessary to evaluate the traction ahead of the crack 

tip. More details on the theory of the singular integral equation can be found in Mushkelishvili (1946) 

and for convenience the inversion of the singular operator ( )sS  in some specific cases is presented in 

Appendix B (Piccolroaz and Mishuris, 2013). 

4.2 In-plane deformation: Mode I and II problems 

Since in-plane deformations are independent of out-of-plane deformations, only the physical 

quantities and the elements of material matrices corresponding to the in-plane case will be retained; 

those related to the out-of-plane case will not be involved in this section. Herein new variables will be 

introduced to distinguish them from those in Section 2; for example, { }T
1 3, , ,u u φ ϕ=u  and 

{ }T
31 33 3 3, , ,D Bσ σ=t  where the tildes denote the corresponding generalized displacement and 

traction vectors for the in-plane problem. Taking account of the fact that, for plane strain problems in 

monoclinic MEE bimaterials, Mode I and Mode II are coupled, four linearly independent singular 

solutions { }T

1 3 4 5, , ,i i i i iU U U U=U  and tractions { }T

1 3 4 5, , ,i i i i i= Σ Σ Σ ΣΣ  where 1,3,4,5i =  are introduced to 

define a complete basis of the singular solutions plane (Piccolroaz et al., 2009). Therefore, in this case 

symmetric and skew-symmetric weight functions   U  and U , and the associated traction Σ  are 

represented by 4 4×  tensors which have the following structures (Morini et al., 2013) 

1 3 4 5
1 1 1 1
1 3 4 5
3 3 3 3
1 3 4 5
4 4 4 4
1 3 4 5
5 5 5 5

U U U U
U U U U
U U U U
U U U U

 
 
 =  
  
 

U , 

1 3 4 5
1 1 1 1
1 3 4 5
3 3 3 3
1 3 4 5
4 4 4 4
1 3 4 5
5 5 5 5

 Σ Σ Σ Σ
 

Σ Σ Σ Σ =  Σ Σ Σ Σ
  Σ Σ Σ Σ 

Σ .         (51) 
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Correspondingly, the rotation matrix degenerates to 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 
 
 =
 
 
 

Ω .              (52) 

In this situation, the Fourier transforms of the symmetric and skew-symmetric weight functions are 

expressed as  

( )
( ) ( ) ( ) ( ){ } ( ) ( )1? Re i sign Im , Rξ ξ ξ ξ

ξ

+
−  = − − ∈  

U H H Σ    ,       (53) 

( ) ( ) ( ) ( ){ } ( ) ( )1? Re i sign Im , R
2

ξ ξ ξ ξ
ξ

−= − − ∈U L L Σ    ,       (54) 

where H  and L  are 4 4×  matrices reduced from H  and L , respectively, by deleting their second 

rows and columns. 

Applying the Fourier transform to Eq. (34), we have 

( )
( ) ( )( ) ( ) ( )T T TT? ?ˆ ?ˆ , Rξ

+ +−+ −         − = − − ∈               
U Ωt Σ Ω u U Ω q U Ω q         .    (55) 

Multiplying both sides by 
( ) T

1 ˆ
−+

−       
Ω U  , the following identity is obtained 

( ) ( )ˆ ?ˆ −+   − = − −   t N u q M q   ,            (56) 

where  

( ) ( )
( )( )

T TT T
1 1? ?,

− −+ +
−− −      = =            

M Ω U U Ω N Ω U Σ Ω       ,       (57) 

which can be further written as  

( ) ( ){ }i sign , i signξ ξ ξ= + = +M Φ Ψ N Θ Ξ .         (58) 
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The numerical calculation shows that Φ , Ψ , Θ  and Ξ  have the following structures 

11 13 14 15 11 13 14 15

31 33 34 35 31 33 34 35

41 43 44 45 41 43 44 45

51 53 54 55 51 53 54 55

,

Φ Φ Φ Φ Ψ Ψ Ψ Ψ
Φ Φ Φ Φ Ψ Ψ Ψ Ψ
Φ Φ Φ Φ Ψ Ψ Ψ Ψ
Φ Φ Φ Φ Ψ Ψ Ψ Ψ

   
   
   = =
   
   
   

Φ Ψ , (59) 

11 13 14 15 13 14 15

13 33 34 35 13 34 35

14 34 44 45 14 34 45

15 35 45 55 15 35 45

0
0

,
0

0

Θ Θ Θ Θ Ξ Ξ Ξ
Θ Θ Θ Θ −Ξ Ξ Ξ
Θ Θ Θ Θ −Ξ −Ξ Ξ
Θ Θ Θ Θ −Ξ −Ξ −Ξ

   
   
   = =
   
   
   

Θ Ξ , (60) 

where all the elements of the matrices above are real; Θ  and Ξ  are, respectively, symmetric and 

asymmetric matrices. For the transversely isotropic MEE bimaterials, Φ , Ψ , Θ  and Ξ  become  

11 13 14 15

33 34 35 31

43 44 45 41

53 54 55 51

0 0 0 0
0 0 0 0

,
0 0 0 0
0 0 0 0

Φ Ψ Ψ Ψ
Φ Φ Φ Ψ
Φ Φ Φ Ψ
Φ Φ Φ Ψ

   
   
   = =
   
   
   

Φ Ψ , (61) 

11 13 14 15

33 34 35 13

34 44 45 14

35 45 55 15

0 0 0 0
0 0 0 0

,
0 0 0 0
0 0 0 0

Θ Ξ Ξ Ξ
Θ Θ Θ −Ξ
Θ Θ Θ −Ξ
Θ Θ Θ −Ξ

   
   
   = =
   
   
   

Θ Ξ . (62) 

Furthermore, for a homogeneous monoclinic and transversely isotropic MEE material, =Φ 0  and 

=Ξ 0  always hold true, and the corresponding material constant matrices Ψ  and Θ  take the same 

form as those in Eqs. (59) and (60), and Eqs. (61) and (62), respectively. 

Applying the inverse Fourier transform to Eq. (56), for two cases 1 0x <  and 1 0x > , one gets 

( ) ( ) ( )

1 1

1 1
1 0 0 1

ˆ ˆ , 0x xx x
−

− −
< <

    + = <     
q M q N u  F F ,         (63) 

( ) ( ) ( ) ( )

1 1

1 1
1 0 0 1

ˆ ˆ , 0x xx x
−+ − −

> >
    + = >     

t M q N u  F F .         (64) 
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Similar to the case of out-of-plane deformation illustrated in the previous section, the term ( )ˆ +t  in 

Eq. (56) cancels from Eq. (63) because ( )1 0x =t  for the present magnetoelectrically impermeable 

crack as 1 0x < , while q̂  cancels from Eq. (64) because ( )1xq  vanish as 1 0x > . 

The integral identities for plane strain problems in monoclinic MEE bimaterials, i.e. Eqs. (63) and 

(64), can be further rewritten as (Morini et al., 2013) 

( ) ( ) [ ] ( ) [ ]( )

1 1
1

= , 0s sx x
x

−∂
+ <

∂
u

q M q N


  ,           (65) 

( ) ( ) ( ) [ ] ( ) [ ]( )

1 1
1

= , 0c cx x
x

−
+ ∂

+ >
∂
u

t M q N


  ,          (66) 

where matrix operators ( )sM  and ( )sN : ( ) ( )R R− −ϒ → ϒ , as well as ( )cM  and ( )cN : ( ) ( )R R− +ϒ → ϒ , 

are defined as 

( ) ( )s s= +M Φ ΨS , ( ) ( )s s= −N Θ ΞS , ( ) ( )c c=M ΨS , ( ) ( )c c=N ΘS .       (67) 

Eqs. (65) and (66), as well as the definition of operators in Eq. (67), formulate the system of integral 

identities for Mode I and Mode II problems in MEE monoclinic bimaterials. Moreover, the integral 

identities in relation to monoclinic piezoelectric bimaterials can be readily obtained from Eqs. (65) and 

(66) by neglecting the piezomagnetic phase. Additionally, if we neglect both the piezoelectric and 

piezomagnetic phases, the identities for the monoclinic elastic bimaterials can also be acquired, which 

formally agree with the results given by Morini et al. (2013). 

As previously mentioned, for a homogeneous transversely isotropic MEE material, =Φ 0  and 

=Ξ 0 , therefore, Eq. (65) is reduced to the following equation 

( ) ( ) [ ] ( ) [ ]( )

1 1
1

= , 0s sx x
x

−∂
+ <

∂
u

q Ψ q Θ


 S S ,          (68) 

where Ψ  and Θ  refer to the forms in Eqs. (61) and (62), respectively. It is remarked that Eq. (65) is 
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composed of four coupled singular integral equations, and they are still coupled for a homogeneous 

transversely isotropic MEE material according to Eq. (68). This is different from the corresponding 

results by Morini et al. (2013) in relation to a homogeneous elastic material, which may be owing to the 

special properties of MEE materials. The solution of Eq. (68) requires the inversion of the singular 

operator ( )sS , which has been performed and  discussed by Piccolroaz and Mishuris (2013).  

5. Illustrative examples: point loads applied on the crack faces 

In this section, we will present illustrative examples of the application of the integral identities to 

the analysis of interfacial cracks in anisotropic MEE bimaterials. Out-of-plane deformation (Fig. 2) and 

the plane strain problem (Fig. 3) of interfacial cracks in monoclinic MEE bimaterials under the 

magnetoelectromechanical point load applied on the crack faces are investigated via the proposed 

integral formulation. The expressions for generalized displacement jump across crack faces and 

generalized traction ahead of the crack tip subjected to symmetric and skew-symmetric loads are 

derived.  

5.1 Mode III problem under symmetric loads 

As shown in Appendix A, for out-of-plane deformation, the traction is only dependent on 

mechanical displacements and is independent of the electric and magnetic potentials. Therefore, herein 

we consider an interfacial crack under two symmetric point loads which are applied on the crack faces 

and oriented in the x2-axis, as shown in Fig. 2a 

( ) ( ) [ ]( )2 1 1 2 1, 0q x x a q xτδ= − + = ,           (69) 

where δ  is the Dirac delta function and a denotes the distance between the crack tip and the load 

position.  

Using Eq. (47) and solving the inversion of the operator ( )sS , we arrive at (Muskhelishvili, 1946; 
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Rice, 1968; Piccolroaz and Mishuris, 2013) 

[ ]( ) ( )02 22 22

1 1 1 1 1

1d
u aH H a
x x x x x a

δ ητ τη η
π η π

−

−∞

∂ +
= − = − −

∂ − +∫ .       (70) 

Considering that the displacement jump vanishes at the crack tip and at infinity, the integration of 

Eq. (70) can be expressed as  

[ ]( ) 122 1
2 1 1

2 tanh , 0H xu x a x
a

τ
π

−= − − < < ,          (71) 

[ ]( ) 122
2 1 1

1

2 tanh ,H au x x a
x

τ
π

−= − <− .           (72) 

Substituting Eq. (70) into Eq. (50), the explicit expression for the traction ahead of the crack tip is 

determined as 

( ) ( ) [ ]( )
0 2

2 1
22 1 1 1

1 1 1d
u at x

H x x x a
τη

π η η π

−
+

−∞

∂
= − =

− ∂ +∫ .        (73) 

Eq. (73) is very convenient for the evaluation of the stress intensity factor, which is defined and 

obtained as  

( ) ( )
1

1 2 10

2lim 2III x
K x t x

a
π τ

π
+

→
= = .            (74) 

It is worth mentioning that the expressions for the traction ahead of the crack tip and stress intensity 

factor, i.e. Eqs. (73) and (74), agree with the results by Piccolroaz and Mishuris (2013) and Morini et al. 

(2013) for isotropic and anisotropic elastic bimaterials, respectively. Additionally, the expressions for 

displacement jump, i.e. Eqs. (71) and (72), are also formally similar to the results in the aforementioned 

two papers, except that 22H  is determined from the material constants of MEE solids.  This is easy to 

understand since the constitutive equations of monoclinic elastic and MEE materials are formally 

identical for out-of-plane deformation (See Eq. (A.5)).  
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5.2 Mode III problem under skew-symmetric point loads 

As shown in Fig. 2b, we now consider an interfacial crack subjected to two skew-symmetrical 

point loads on the crack faces and oriented in the x2-axis  

( ) [ ]( ) ( )2 1 2 1 10, 2q x q x x aτδ= = − + ,           (75) 

and a denotes the distance between the crack tip and the load position. 

Applying the inverse operator ( )( ) 1s −
S  to Eq. (47), we obtain 

[ ]( ) ( )02 22 22

1 1 1 1 1

1d
u aL L a
x x x x x a

δ η τητ η
π η π

−

−∞

∂ +
= − = − −

∂ − +∫ .       (76) 

By integrating Eq. (76), the displacement jump is derived as 

[ ]( ) 122 1
2 1 1

2 tanh , 0L xu x a x
a

τ
π

−= − − < < ,          (77) 

[ ]( ) 122
2 1 1

1

2 tanh ,L au x x a
x

τ
π

−= − <− .           (78) 

Inserting Eq. (76) into Eq. (50) leads to the traction ahead of the crack tip 

( ) ( ) 22
2 1

22 1 1

1L at x
H x x a

τ
π

+ =
+

.             (79) 

Correspondingly, the stress intensity factor can be obtained as 

( ) ( )
1

22
1 2 10

22

2lim 2III x

LK x t x
H a

τπ
π

+

→
= = .           (80) 

Analogously, Eqs. (77)-(80) are formally consistent with the results obtained by Piccolroaz and 

Mishuris (2013) and Morini et al. (2013) for isotropic and anisotropic elastic bimaterials, respectively, 

and the only difference is that the parameters 22H  and  22L  are calculated from the anisotropic MEE 

bimaterials.  

javascript:showjdsw('showlj_1','lj_1')
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From Subsections 5.1 and 5.2, we can observe that the explicit expressions for the displacement 

jump, i.e. Eqs. (71), (72), (77) and (78), and for the traction ahead of the tip, i.e. Eqs. (73) and (79), can 

be readily acquired only by inversion of the operator ( )sS  and by a simple integration procedure. This 

example shows that the integral identities obtained in Section 4 are fairly convenient for solving the 

out-of-plane deformation of interface crack problems in anisotropic MEE bimaterials.  

5.3 Mode I and II problems under magnetoelectromechanical symmetric point loads 

In this section, we address the crack problem under the plane strain condition. As shown in Fig. 3a, 

the generalized loads are assumed to be two magnetoelectromechanical symmetrical point loads 

applied on the faces, which are defined as  

( ) ( ) [ ]( )1 1 1, 0x x a xδ= − + =q F q ,           (81) 

where { }T
0 0 0 0, , ,D Bτ σ=F  with 0τ  oriented in the x1-axis and 0σ , 0D  and 0B in the x3-axis; a denotes 

the distance between the crack tip and the load position. 

For the 2-D interfacial crack problem in MEE bimaterials, Modes I and II are usually coupled and 

generalized stresses show oscillating behaviors near the crack tip owing to the oscillating index ε  in 

Eq. (A.16), defined by the generalized Dundurs parameter β  in Eq. (A.17) (Li and Kardomateas, 

2007). For simplicity, following Morini et al. (2013), we also assume β  to be zero, which implies that 

both the oscillating index ε  and oscillation at the crack tip vanish, and that ( )Im 0=H  and 0=Ξ  hold 

true. In this particular case, Eq. (65) for 1 0x <  become 

( ) ( )( )[ ] ( ) [ ]( )

1 1
1

= , 0s sx x
x

−∂
+ + <

∂
u

q Φ Ψ q ΘS S .         (82) 

Applying the inverse operator ( )( ) 1s −
S  to Eq. (82) and using some algebraic manipulations, the 
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following equation is obtained (Morini, et al., 2013) 

[ ]( )
1

1 1 1

1 1= a
x x x aπ

−
−∂

−
∂ +
u

Θ F .            (83) 

Then, after integration, for 1 0a x− < <  we have 

[ ]( ) ( ) 1 1 1
1 1

2 tanh , 0xx a x
aπ

− − −= − − − < <u Θ F ,         (84) 

and for 1x a< −  

[ ]( ) ( ) 1 1
1 1

1

2 tanh ,ax x a
xπ

− − −= − − < −u Θ F .          (85) 

The generalized traction components ahead of the crack tip can be determined from Eq. (66) 

(Morini et al., 2013) 

( ) ( )1
1 1

1ax
x x aπ

+ =
+

Ft .             (86) 

The generalized stress intensity factors are then defined and obtained as 

 { } ( ) ( )
1

T
1 10

2lim 2II I D B x
K K K K x x

a
π

π
+

→
= = =K t F .        (87) 

For the 2-D plane strain problem subjected to the magnetoelectromechanical symmetric point loads, we 

can observe that the expressions for the generalized traction ahead of the crack tip and stress intensity 

factors, i.e. Eqs. (86) and (87), are formally analogous to those by Piccolroaz and Mishuris (2013) and 

Morini et al. (2013) for isotropic and anisotropic elastic bimaterials, respectively. Additionally, even 

the oscillating parameter β  is assumed to be zero, and the generalized displacement jump across crack 

faces, i.e. Eqs. (84) and (85), are dependent on both mechanical load and magnetoelectric load, which 

implies that an arbitrary non-zero load will have an effect on all the components of the generalized 

displacement jump. A similar phenomenon is also observed in Morini et al. (2013). 
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In the particular case of transversely isotropic MEE bimaterials, the expressions for generalized 

displacement jump across crack faces have the same form as Eqs. (84) and (85), and the corresponding 

constant matrix Θ  has the structure of Eq. (62). Additionally, if we further assume that the length of 

the contact zone is zero, the oscillating index 0ε = , and the left crack tip approaches −∞ , the 

corresponding field intensity factors obtained by Herrmann et al. (2010) and Feng et al. (2011) have the 

same form as Eq. (87), which demonstrates that the integral identities proposed in the present work are 

correct and effective. 

Herein some numerical results are presented to reveal the variation of the crack opening 

displacement and generalized tractions along the material interface for Mode I and II problems under 

different symmetric loads. A semi-infinite interface crack between two transversely isotropic CoFe2O4-

BaTiO3 composites poled in x3 direction is considered. Material properties of the MEE materials as 

volume percentage (or volume fraction Vf) of BaTiO3-CoFe2O4 are listed in Table 1 (Sih and Song, 

2003). After a series of normalized treatment for these material constants (Ma et al., 2015b), the 

matrices Φ , Ψ , Θ  and Ξ  are found as 

2

1.2056 0 0 0 0 0.1267 0.0064 0.0002
0 0.1912 0.4200 0.0335 0.1046 0 0 0

10 ,
0 1.9336 20.5944 0.0713 1.2169 0 0 0
0 0.2513 0.2592 18.7063 0.2045 0 0 0

−

− −   
   − −   = =
   − −
   

−   

Φ Ψ , 

3

0.1535 0 0 0 0 5.8756 6.6908 1.2321
0 0.1480 0.4129 0.1375 5.8756 0 0 0

, 10
0 0.4129 21.2841 0.2523 6.6908 0 0 0
0 0.1375 0.2523 70.9149 1.2321 0 0 0

−
−

− −   
   − − − −   = =
   −
   

−   

Θ Ξ . 

In this example, 0 0τ =  and 0σ  is always applied. The electric and magnetic loads are define by 

0 0DD dλ= , 0 0BB bλ= , respectively, where ( ) ( )1 1
0 0 33 11d e cσ= , ( ) ( )1 1

0 0 33 11b h cσ= ; the superscript “(1)” 

corresponds to Material 1. Since we have assumed that 0ε = , the displacement jump [ ]1u  and stress 
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13σ  will not be given herein. Figs. 4 and 5 show the variation of normalized generalized crack opening 

displacement along crack surface including displacement jump [ ] ( )1
3 0 222uπ σ −−Θ , electric potential 

jump [ ] 1
0 332dπ φ −Θ  and magnetic potential jump [ ] 1

0 442bπ ϕ −Θ , as well as the normalized generalized 

tractions ahead of the crack tip including stress 33 0aπσ σ , electric displacement 3 0a D dπ and 

magnetic induction 3 0a B bπ  with respect to 1x a  under different symmetric loads, where 

( )1 1 , , 2,3, 4ii i i i− −Θ = =Θ , 1
22
−Θ  is negative whereas 1

33
−Θ  and 1

33
−Θ  are positive. Fig. 4 demonstrates that 

an increase in symmetric electric load leads to an increase in displacement jump whereas the influence 

of symmetric magnetic load on the displacement jump is small. Additionally, increasing symmetric 

electric and magnetic loads cause significant variation of electric and magnetic potential jumps, 

respectively. All these phenomena are consistent with those in Ma et al. (2013) and Ma et al. (2015b). 

In Fig.4b, it can be seen that when a symmetric electric load is applied, the magnitude of electric 

potential jump decreases. Therefore, if many pairs of symmetric point electric loads with the same 

magnitude are uniformly applied on the crack faces, which can be regarded as a distributed load, the 

electric potential jump will become negative and its magnitude will further increase as the distributed 

symmetric electric load increases. This fully agrees with the observation in Ma et al. (2015b). Similar 

conclusion can also be extended to the magnetic potential jump in Fig.4c. Fig.5 shows the variation of 

the generalized tractions ahead of the crack tip, and as expected, all of them decrease rapidly with the 

increase of 1x a . 

5.4 Mode I and II problems under magnetoelectromechanical skew-symmetric point loads 

As shown in Fig. 3b, two magnetoelectromechanical skew-symmetric point loads are imposed on 

crack faces, at a distance a from the crack tip and  

( ) [ ]( ) ( )1 1 10, 2x x x aδ= = − +q q F            (88) 
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where { }T
0 0 0 0, , ,D Bτ σ=F  with 0τ  oriented in the x1-axis and the other three components in the 

x3-axis. 

Similar to the previous subsection, we also set β  as zero. Applying the inverse operator ( )( ) 1s −
S  to 

Eq. (65) for 1 0x < , we obtain 

[ ]( )

( )1
1

1 1 1

12 a x a
x x x a

δ
π

−
−  ∂  = − − + ∂ +  

u ΦΘ Ψ F .         (89) 

Then integrating Eq. (89), one gets 

[ ]( ) ( ) 1 1 1
1 1

4 tanh , 0xx a x
aπ

− − −= − − − < <u Θ ΦF ,         (90) 

[ ]( ) ( ) 1 1
1 1

1

22 tanh ,ax x a
xπ

− − − 
= − − − < −  

 

Φu Θ Ψ F .        (91) 

The generalized traction ahead of the crack tip becomes 

( ) ( )1
1 1

1ax
x x aπ

+ =
+

ΦFt .              (92) 

Eqs. (90) and (91) show that the generalized displacement jump across crack faces is related to all 

components of the magnetoelectromechanical skew-symmetric loads, which agrees with the results of 

the case of symmetric loads in Section 5.3. Moreover, Eq. (92) reveals that generalized traction ahead 

of the crack tip is also dependent on all components of the applied generalized load. A similar 

phenomenon is observed in Morini et al. (2013) for anisotropic elastic bimaterials.  

The corresponding generalized stress intensity factors can then be evaluated as 

{ } ( ) ( )
1

T
1 10

2lim 2II I D B x
K K K K x x

a
π

π
+

→
= = =K t ΦF .       (93) 

In the particular case of transversely isotropic MEE bimaterials under magnetoelectromechanical skew-
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symmetric loads, the corresponding generalized traction and intensity factors take the same form as 

Eqs. (92) and (93), and the constant matrix Φ  has the structure of Eq. (61).  

The numerical results corresponding to this subsection under skew-symmetric loads are presented 

in Figs. 6 and 7. The material combination and load parameters which define the magnitude of applied 

load are same as those in Subsection 5.3. The skew-symmetric shear load 0τ  is set as zero and 0D , 0B , 

0d  and 0b  have the same form as the previous subsection. The results shown in Fig.6 reveal that under 

skew-symmetric loads, increasing electric and magnetic loads, respectively, lead to a moderate increase 

and a slight increase in the magnitude of displacement jump. Similar to Figs. 4 and 5, electric and 

magnetic potential jumps as well as the electric displacement and magnetic induction in Figs.6 and 7 

are sensitive to electric and magnetic loads, respectively, for the case of skew-symmetric loads. Fig.7a 

indicates that compared with skew-symmetric magnetic load, electric load has a larger effect on the 

stress ahead of the crack tip. Moreover, in Fig.7, the magnitude of generalized tractions also decreases 

rapidly as 1x a  increases, which agrees with the results in relation to the case of symmetric loads. 

In this section, we present illustrative examples regarding the magnetoelectromechanical 

symmetric and skew-symmetric loads. As previously mentioned, since an arbitrary load combination, 

which is self-balanced, can be expressed by the superposition of symmetric and skew-symmetric parts, 

the generalized stress intensity factors can be readily obtained from the superposition of the 

corresponding stress intensity factors related to symmetric and skew-symmetric loads. The examples in 

this section show that the generalized displacement jump across crack faces and the generalized 

traction ahead of the tip can be derived without using Green’s functions, which requires challenging 

calculations. For this reason, the singular integral formulation proposed in this study may provide a 

very suitable technique for the fracture analysis of 2-D interfacial crack problems in anisotropic MEE 

bimaterials.  
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6. Conclusions 

In this paper, we first derive the symmetric and skew-symmetric weight functions for a semi-

infinite interfacial crack in anisotropic MEE bimaterials under 2-D deformation condition. By 

extending the application of the Betti formula to the MEE field and to the aforementioned weight 

functions, the integral identities, which describe the relationship between the applied 

magnetoelectromechanical load and the generalized displacement jump across crack faces, are further 

obtained for both out-of-plane and in-plane deformation problems in anisotropic MEE bimaterials. 

Detailed derivations of the identities have been conducted for monoclinic MEE bimaterials, which are 

the most general class of anisotropic MEE media allowing decoupling between in-plane and out-of-

plane deformations (Li and Kardomateas, 2007). The validality of the present integral formulation is 

demonstrated by its application to the Mode III problem and the plain strain crack problem subjected to 

symmetric and skew-symmetric magnetoelectromechanical loads, in which the expressions for the 

generalized displacement jump across crack faces and generalized traction ahead of the tip are 

presented and the corresponding numerical results are also provided. It is shown that the derived 

integral identities provide a very powerful tool for solving interfacial crack problems in the MEE 

bimaterial, which is a multi-field coupled system, within the framework of linear fracture mechanics. 

Another advantage of the method proposed in the present work is that it avoids the use of Green’s 

function, which can lead to challenging numerical calculations. Additionally, from a mathematical 

point of view, the integral identities herein also have their own value since, to the authors’ best 

knowledge, they are not available in the existing literature related to MEE bimaterials. 
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 Appendix A 

The complex variable representation for stress and displacement field in anisotropic elastic 

materials was firstly proposed by Stroh (1962) and further extended to anisotropic MEE materials by 

Gao et al. (2003) and Li and Kardomateas (2007). By referring their work, the 

magnetoelectromechanical field in anisotropic MEE materials subjected to 2-D deformations is 

reported in this appendix.  

For monoclinic MEE materials with a symmetry plane at 2 0x =  in the absence of body force, 

electric charge and electric current, the following conditions regarding the material constants in 

contracted notation should be satisfied in order to decouple out-of-plane and in-plane deformations (Li 

and Kardomateas, 2007) 

  14 16 34 36 54 56 0c c c c c c= = = = = = , 14 16 34 36 0e e e e= = = = , 14 16 34 36 0h h h h= = = = , (A.1) 

where ijc , ije  and ijh  are the elastic, piezoelectric and piezomagnetic constants, respectively. In this 

case, the explicit form of the constitutive equations for the plane strain problem, i.e. 2,2 0u = , ,2 0ϕ =  

and ,2 0φ = ,  can be written as  

11 11 13 15 1,1 11 31 11 31
,1 ,1
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, (A.2) 
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2,3 3,212 46 66

44 4623 1,2 2,1

u uc c
c c u u

σ
σ

+      =     +     
,  (A.5) 

where ijσ , iD  and iB  are the components of mechanical stress, electric displacement and magnetic 

induction, respectively; iu , ϕ  and φ  are the mechanical displacement,  electric potential and magnetic 

potential, respectively. ijd , ijα and ijµ  are the electromagnetic constants, dielectric permittivities and 

magnetic permeabilities, respectively. It is remarked that Eqs. (A.2)-(A.4) are related to in-plane 

deformation whereas Eq. (A.5) is related to out-of-plane deformation. It is interesting that Eq. (A.5) is 

identical to that in relation to monoclinic elastic materials. 

For 2-D problems, the generalized displacement vector  { }T
1 2 3, , , ,u u u φ ϕ=u   and generalized 

stress vector { }T
31 32 33 3 3, , , ,D Bσ σ σ=t  depend only on 1x  and 3x , and the general solution takes the 

form (Stroh, 1962; Gao et al., 2003) 

( ) ( ),1 z z= +u Ag Ag ,  (A.6) 

( ) ( )z z= +t Bg Bg ,  (A.7) 

where ( ) ( ) ( ) ( ) ( ) ( ){ }T
1 1 2 2 3 3 4 4 5 5, , , ,z z z z z z=g g g g g g  is an arbitrary analytic vector 

function; ( )1 3 1, 2, ,5j jz x p x j= + =  and { }T
1 2 3 4 5, , , ,=A a a a a a , where jp   and 

{ }T

1 2 3 4 5, , , ,j j j j j ja a a a a=a  are, respectively, an eigenvalue and an eigenvector of the system (Stroh, 

1962) 

( ){ }T 2 0j j jp p+ + + =Q R R T a ,  (A.8) 

where the 5 5×  matrices Q, R and T for the aforementioned monoclinic MEE materials are defined as 
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   (A.9) 

The 5 5×  matrix B can be found by the formulas 

Τ= +B R A TAP ,  (A.10) 

where { }1 2 3 4 5diag , , , ,p p p p p=P .  

Introducing the following vector function 

( )
( ) ( )

( ) ( )
, Im 0,

, Im 0.

z z
z

z z

 ≥= 
− <

Bg
h

Bg
  (A.11) 

Then Eq. (A.7) leads to a non-homogeneous Riemann-Hilbert problem as 3 0x ±→  

( ) ( ) ( )1 1 1 1,0 ,0 , Rx x x x+ −− = ∈h h t .  (A.12) 

For a semi-infinite interfacial along the negative semi-axis 1 0x < , if the magnetoelectrically 

impermeable condition is adopted, ( )1 0x =t  for 1 0x < . Considering the continuity of the generalized 

stresses ahead of the interface crack, the following equations are obtained (Suo, 1990; Suo et al., 1992) 

( ) ( ) ( )1
1 1 1 1,0 ,0 , 0x x x x+ − −+ = >h H Hh t ,  (A.13) 

( ) ( )1
1 1 1,0 ,0 0, 0x x x+ − −+ = <h H Hh .  (A.14) 

Assuming the generalized stresses vanish at infinity, the solution of Eq. (A.14) can be written as 

( ) 1 2 iz z ε− +=h v , and v  is a solution of the following eigenvalue problem (Li and Kardomateas, 2007) 

2e πε=Hv Hv ,  (A.15) 



 38 

where ε  is the oscillating index. As previously mentioned, for the 2-D interfacial crack problem 

satisfying Eq. (A.1), the out-of-plane and in-plane deformations are undecoupled and, correspondingly, 

they have different singularities. Li and Kardomateas (2006) and Li and Kardomateas (2007) have 

shown that the out-of-plane problem exhibits the classical inverse square root singularity, i.e. 

( )1 2 0ε− = , whereas the in-plane problem possesses oscillating singularity defined by 1 2 iε− ± , and 

1 1ln
2 1

βε
π β

−
=

+
,  (A.16) 

where 

( )2
1 2 2 4 ,c c cβ = + −  ( )2

2 2 2 4 ,c c cβ = − −   (A.17) 

( )21 1
2 4

1 tr ,
4

c c− −= − =D W D W    .  (A.18) 

( ) ( ) ( )( )1 2Re Re= = +D H Y Y    , ( ) ( ) ( )( )1 2Im Im= = +W H Y Y    . (A.19) 

Additionally, for transversely isotropic MEE bimaterials, 1
4c −= D W   holds true and the corresponding 

singularity parameters become 11 2 iε− ±  and 1 2−  (Herrmann et al., 2010; Feng et al., 2011; Feng et 

al., 2012). Certainly, for practical MEE materials, 2 0c ≥ , 4 0c ≥  and ( )2
2 4c c≥  are satisfied (Li and 

Kardomateas, 2007). 
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Appendix B  

Referring to Piccolroaz and Mishuris (2013), the inversion of the 2-D singular operator ( )sS   in 

Section 4 is presented herein. The inversion formula for the singular integral equation 

( ) ( ) ( ) ( )0

1 1 1
1

1 d , 0sx x x
x
χ η

ϖ χ η
π η−∞

= <
−∫= S ,  (B.1) 

is strongly dependent on the properties of the known function ( )1xϖ . Assuming ( )1xϖ  has compact 

support 1b x c− ≤ ≤ − , where b  and c  are positive constants belonging to a Hölder class, the inversion 

formula can be written as (Muskhelishvili, 1946; Rice, 1968) 

( ) ( )( ) ( ) ( )1 0

1 1 1
1 1

1 d , 0sx x x
x x

χ ηηχ ϖ η
π η

−

−∞
= − <

−∫S = . (B.2) 

Using such assumptions 

( ) 0
1 1

1

, 0Kx x
x

χ −→
−

 ,  (B.3) 

( )
( )1 13/2

1

,Kx x
x

χ ∞ → −∞
−

 ,  (B.4) 

where 0K  is the so-called stress intensity factor; 0K  and K∞  are determined as 

( ) ( )
0 0

0
1 1d , dK K

ϖ η
η ϖ η η η

π πη ∞−∞ −∞
= − = −

−∫ ∫ .  (B.5) 

In cases where ( )1xϖ  extends over the whole negative semi-axis and has the following 

characteristic  

( )
( ) 0

0
1 1

1

, 0x x
x α

ϖϖ −→
−

 ,  (B.6) 
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( )
( )1 1

1

,x x
x α

ϖϖ
∞

∞ → −∞
−

 .  (B.7) 

If 0 1 2α <  and 3 2α∞ > , Eq. (B.2) still holds true and leads to the asymptotic Eqs. (B.3) and (B.4). In 

the case of 0 1 2α <  and 1 2 3 2α∞< < , Eq. (B.2) remains valid, and the function ( )1xϖ  in the limit of 

zero takes the same form as Eq. (B.3), whereas Eq. (B.4) at infinity becomes 

( ) ( )
( )1 1

1

sin
,x x

x α

πϖ πα
χ

∞

∞ ∞−
→ −∞

−
 .  (B.8) 
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Figure and Table captions 

Fig. 1. (a) Physical problem configuration and (b) weight function configuration for a semi-infinite 

interfacial crack in an anisotropic MEE bimaterial 

Fig. 2. Mode III problem of a semi-infinite interfacial crack under (a) symmetric loads and (b) skew-

symmetric loads  

Fig. 3. Mode I and II problems of a semi-infinite interfacial crack under (a) magnetoelectromechanical 

symmetric loads and (b) magnetoelectromechanical skew-symmetric loads  

Fig. 4. The normalized (a) displacement jump; (b) electric potential jump; (c) magnetic potential jump 

with respect to 1x a  under magnetoelectromechanical symmetric loads  

Fig. 5. The normalized (a) mechanical stress; (b) electric displacement; (c) magnetic induction ahead of 

the crack tip  with respect to 1x a  under magnetoelectromechanical symmetric loads  

Fig. 6. The normalized (a) displacement jump; (b) electric potential jump; (c) magnetic potential jump 

with respect to 1x a  under magnetoelectromechanical skew-symmetric loads  

Fig. 7. The normalized (a) mechanical stress; (b) electric displacement; (c) magnetic induction ahead of 

the crack tip  with respect to 1x a  under magnetoelectromechanical skew-symmetric loads  

Table 1 Material properties of CoFe2O4-BaTiO3 composites (Sih and Song, 2003)  
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Fig. 1. (a) Physical problem configuration and (b) weight function configuration for a semi-infinite 

interfacial crack in an anisotropic MEE bimaterial  
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Fig. 2. Mode III problem of a semi-infinite interfacial crack under (a) symmetric loads and (b) skew-

symmetric loads  
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Fig. 3. Mode I and II problems of a semi-infinite interfacial crack under (a) magnetoelectromechanical 

symmetric loads and (b) magnetoelectromechanical skew-symmetric loads  
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Fig. 4. The normalized (a) displacement jump; (b) electric potential jump; (c) magnetic potential jump 

with respect to 1x a  under magnetoelectromechanical symmetric loads  
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Fig. 5. The normalized (a) mechanical stress; (b) electric displacement; (c) magnetic induction ahead of 

the crack tip  with respect to 1x a  under magnetoelectromechanical symmetric loads  
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Fig. 6. The normalized (a) displacement jump; (b) electric potential jump; (c) magnetic potential jump 

with respect to 1x a  under magnetoelectromechanical skew-symmetric loads  
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Fig. 7. The normalized (a) mechanical stress; (b) electric displacement; (c) magnetic induction ahead of 

the crack tip  with respect to 1x a  under magnetoelectromechanical skew-symmetric loads  
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Table 1 Material properties of CoFe2O4-BaTiO3 composites (Sih and Song, 2003)  

(cij in 109 N/m2, eij in C/m2, αij in 10-10C/Vm, hij in N/Am, μij in 10-6Ns2/ C2). 

 

 c11 c13 c33 c44 e15 e31 e33 

Material 1 (Vf=0.3) 250.0 142.7 237.3 44.6 3.48 -1.32 5.58 

Material 2 (Vf=0.7) 202.0 105.0 194.2 43.7 8.12 -3.08 13.02 

 h15 h31 h33 α11 α33 μ11 μ33 

Material 1 (Vf=0.3) 385.0 406.2 489.8 34.2 38.5 414.5 112.9 

Material 2 (Vf=0.7) 174.1 165.0 209.9 78.6 88.5 180.5 54.1 

 

 


