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Abstract—Secondary spectrum auctions have been suggested
as a strategically robust mechanism for distributing idle spectrum
to competing secondary users. However, previous work on such
auction design have assumed a static auction setting, thus failing
to fully exploit the inherently time-varying nature of spectrum
demand and utilization. In this paper, we address this issue from
the perspective of the primary user who wishes to maximize the
auction revenue. We present an online auction framework that
dynamically accepts bids and allocates spectrum. We prove rigor-
ously that our online auction framework is truthful in the multiple
dimensions of bid values, as well as bid timing parameters. To
protect against unbounded loss of revenue due to latter bids, we
introduce controlled preemption into our mechanism. We prove
that preemption, coupled with the technique of inflating bids
artificially, leads to an online auction that guarantees a 1

5 -fraction
of the optimal revenue as obtained by an offline adversary.
Since the previous guarantee holds only for the optimal channel
allocation, we further provide a greedy channel allocation scheme
which provides scalability. We prove that the greedy scheme
also obtains a constant competitive revenue guarantee, where the
constant depends on the parameter of the conflict graph.

I. INTRODUCTION

In recent years, government agencies have turned to the
use of large-scale auctions when allocating newly available
spectrum [1]. The winners of these auctions are known as
primary users, and often hold exclusive spectrum usage rights
for long time periods. The drawback of this static allocation
model is that smaller entities end up starving for spectrum
[1]–[3]. Significant variations in the primary users’ spectrum
utilization in both space and time [4] has motivated the creation
of a secondary spectrum market [5].

In the dynamic spectrum access model, the primary user
divides the available spectrum into fixed size chunks, or
channels, to be leased to secondary users for a short period of
time [2], [3], [6]. Auctions are a natural, revenue-generating
mechanism to consider in this setting. Auctions adhere to well
defined notions of fairness and economic feasibility, and have
been shown to be an effective mechanism for coordinating
secondary spectrum access [2], [3], [6]–[8]. More importantly,
auctions are theoretically robust to strategic manipulation by
bidders, and can be designed to guarantee truthful bidding
behavior. Such auctions are said to be strategyproof [9], [10].

In contrast to traditional auctions, secondary spectrum
auctions are unique in that they have distinct spatial and
temporal characteristics. Spectrum offers the opportunity for
spatial reuse. Multiple, secondary users can be sold the same
range of spectrum as long as they do not interfere. Since spec-
trum demand by secondary users is likely to fluctuate in time,

an online auction is more desirable than an offline auction.
Offline auctions compute inflexible, fixed period allocations,
thereby failing to fully exploit the opportunity afforded by
the time-varying nature of spectrum demand. In contrast, an
online auction allocates spectrum on demand, which improves
the efficiency of spectrum usage [6], [11], while leading to
potentially higher revenue for the primary user.

An online secondary spectrum auction presents a number
of key design challenges. The auction needs to efficiently
compute a feasible, interference-free channel allocation, max-
imize the revenue generated, and simultaneously remain strat-
egyproof. In the online setting, achieving the strategyproof
property requires new techniques. The direct application of
known strategyproof mechanisms, like the Vickrey-Clarke-
Groves (VCG) [9], is insufficient to ensure truthful bidding.
The reason for this is that, in contrast to traditional, static
auctions, the temporal aspect of online auctions presents the
secondary user with an additional dimension for strategic
manipulation. In particular, bidders may choose to not only
manipulate their valuations, but also the timing of their bids
if doing so improves their utility. Therefore, online auctions
need to be strategyproof in both valuations as well as in the
timing of the bids.

Another design challenge is presented by the need for
online auctions to make allocation decisions in real-time,
without access to the set of bids that could arrive in the future.
If the decision to allocate a channel is irrevocable, then no
online auction can guarantee a constant fraction of the optimal
revenue, as compared to an offline adversary with knowledge
of future bids. The solution to this lies in preemption [6],
[12]. Preemption allows the auction to place an upper bound
on the loss of revenue due to allocation decisions that are, in
hindsight, suboptimal.

In this paper, we address the above challenges and design
an online auction framework for secondary spectrum access
that maximizes revenue while remaining strategyproof in both
valuations and timing of the bids. Our auction framework
runs in real-time, and caters to time-varying demands by
allowing secondary users to request for spectrum at any
time. Our framework uses preemption to judiciously select
winning bidders, which yields a mechanism with a constant
approximation revenue guarantee. Our framework is flexible,
and can be used in conjunction with the algorithm that com-
putes the optimal channel allocation scheme, or even one that
only finds an approximately optimal allocation through greedy
assignment. In both cases, the mechanism is tailored to ensure
strategyproofness. When the optimal allocation algorithm is
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used, we show that our online framework recovers a 1
5 -fraction

of the optimal revenue, and that this bound is tight. The VCG
mechanism is not strategyproof when applied directly. Instead,
we show that the VCG payment must be computed for every
bidder in each timeslot for which the bid is valid. We show that
choosing the minimum payment from this schedule is sufficient
to ensure bidders have no incentive to delay their bids.

Since the channel assignment problem is equivalent to the
NP-Hard problem of graph coloring [13], we further design
an efficient greedy channel allocation scheme. We show that
this algorithm too, is constant competitive with respect to
the optimal revenue. Our algorithm also reduces unnecessary
preemptions compared to the naive greedy algorithm. Since the
allocation computed is suboptimal, using the VCG mechanism
to compute payments does not guarantee truthful bidding [14].
Hence, we tailor a payment scheme based on the idea of
threshold bids to recover the strategyproof property.

This paper is organized as follows. Section II discusses re-
lated work. We then introduce our system model in Section III.
We present our auction framework in Section IV, and analyze
the performance of this framework for the optimal and greedy
channel allocation schemes in Sections V and VI respectively.
Section VII summarizes our work.

II. RELATED WORK

In economic theory, auctions are commonly used for allo-
cating scarce resources amongst competing users. Auctions are
especially attractive since they are provably robust to strategic
bidding behavior [15], [16]. The best known strategyproof
auction is the Vickrey-Clarke-Groves (VCG) mechanism [9].
In this paper, we employ the VCG payment scheme as a
component to ensure our online auction framework is truthful
when computing the optimal spectrum allocation.

There are a number of drawbacks to using the VCG
auction scheme. First, VCG auctions in general have poor
revenue generating properties [9]. Second, VCG is not truthful
when used in conjunction with suboptimal solutions [14]. This
presents a problem, since computing the optimal, interference-
free allocation is NP-Hard [13]. For an online auction to be
truly scalable, approximation algorithms that run in polynomial
time must be used instead. In this paper, we solve both these
problems by leveraging the seminal work of Myerson [17].
Myerson’s work not only provides the foundation for revenue-
generating auctions, but also gives a mathematical characteri-
zation for all truthful mechanisms. We use this characterization
to build a greedy, approximately optimal channel allocation
scheme that remains truthful without resorting to the VCG
mechanism.

Several recent studies have looked at employing auctions
for dynamic secondary spectrum access [2], [3], [6], [7],
[11], [18]. In particular, the work of Zhou et al. [3] showed
how to design truthful auctions for maximizing social welfare
while exploiting the potential for spatial reuse of channels. In
contrast, Jia et al. [2] and Gopinathan and Li [7] focus on max-
imizing revenue instead. All of the previously mentioned work
focus on the offline setting. In contrast, we focus on the online
setting in this paper for dynamic, real-time spectrum allocation.
Within this setting, Xu et al. study spectrum admission in
the case where bid arrivals are assumed to follow a Poisson

distribution [11]. However, they do not consider the possibility
of preemption and the reuse of spectrum in the time domain.
In contrast, Deek et al. [6] propose an online auction which
allows preemption, and is strategyproof in the time domain.
Both these auctions focus on maximizing social welfare, which
in general does not guarantee good revenue. In contrast, our
online auction framework is explicitly focused on revenue
generation in a truthful manner, and we provide theoretical
bounds on the amount of revenue obtained as compared to the
optimal, offline algorithm.

III. PRELIMINARIES

A. System Model

Let M = {1, 2, . . . ,M} denote the set of secondary
users. As is customary in auction theory, we will occasionally
refer to secondary users as agents. Each secondary user i
is assumed to be equipped with a cognitive radio that is
capable of operating on different spectrum frequencies, or
channels. Let r(i) be the transmission radius of i’s radio,
such that Rmin ≤ r(i) ≤ Rmax, where Rmin and Rmax

are the minimum and maximum possible transmission radius.
In practice, secondary users are fairly homogeneous, so that
Rmax
Rmin

= ∆ ≥ 1 is a small constant. Secondary users i, j ∈ M
are said to interfere, if they simultaneously transmit on the
same frequency and the spatial distance d(i, j) between
them is less than the sum of their transmission radius, i.e.,
d(i, j) ≤ r(i) + r(j). The conflict graph G = (M, E), is used
to model these interference constraints. We will denote using
Ni the set of neighbors of i in G.

Time in the system is divided into slots of equal length. In
practice, the optimal length of the timeslot is a function of how
the primary user’s utilization and the demand by secondary
users vary in time. The primary user divides the available
spectrum into a set of K channels, K. Each channel k ∈ K
is assumed to be homogeneous. Demand for these channels is
assumed to be dynamic and time-dependent. Each secondary
user requires the use of any one of these K channels for T
continuous timeslots, and is willing to pay for it.

For user i, let vi be the valuation of i, which measures in
monetary units the maximum amount that i is willing to pay
for the exclusive use of the same channel for T continuous
timeslots. While it is possible to relax this assumption, we
will focus on the technically more challenging setting when i’s
demand is binary – agents have a value only for receiving the
same channel for T continuous timeslots, and being assigned
different channels for this period, or holding the channel for
less than T timeslots, is assumed to have no value. Valuations
are considered private information, known only to i and
unknown to the primary user.

We will use the binary variable xk
i (t) to indicate that i

is assigned the channel k in timeslot t. The vector xi(t)
represents the channel assignment for i at time t. A channel
allocation for the entire system, described by the vector x(t)
is said to be feasible or interference-free, if no two agents
interfere during timeslot t.

B. Auction Format

In our model, secondary users arrive and depart the system
dynamically, depending on when they require spectrum, and



when they are granted access by the primary user. Without loss
of generality, we assume arrival and departure events happen at
the boundary of timeslots. At the beginning of every timeslot,
zero or more users may submit a bid requesting spectrum from
the primary user. The bid of user i, θi, takes the form

θi = (vi, ai, di). (1)

Here, ai is the time when user i realizes its need for spectrum,
and di is the deadline by which this demand must be satisfied.
Without loss of generality, let ai ≤ di, and ai + T − 1 ≤ di.
We adopt the convention in auction theory and assume that for
each i ∈ M, vi is drawn independently and at random from
the cumulative probability distribution Fi, where

Fi(v
′) = Prob(vi ≤ v′).

As previously stated, the true value of the bid θi is private
known only to i. However, the prior distribution of bids, F =
F1×F2×. . .×FM is public information known to the primary
user. For example, the distribution F could have been learned
via market research, or inferred from the prior bidding behavior
of secondary users [9], [15].

Mathematically, an auction can be viewed as a function,
A, that maps the set of submitted bids to a tuple consisting
of (i) a channel allocation x, and (ii) a payment vector p.
The goal of the primary user is to compute x and p such that
the sum of the latter is maximized while ensuring the former
is interference free. The nature of secondary users that arrive
and depart the system at various points in time contributes
greatly to the difficulty of this problem. It is not possible
for the auctioneer to compute x and p in advance. Instead,
the auctioneer must recompute the auction at every timeslot,
incorporating new information about secondary users and their
bids, while taking into consideration the channel assignment
already in place. Doing so in an optimal fashion requires an
online auction algorithm, which is what we will provide in this
paper.

When measuring the performance of our auction, we will
use the offline adversary [19] as our benchmark. Such an ad-
versary is assumed to have perfect knowledge of the sequence
of future bid arrivals, and is therefore able to schedule the
allocation optimally. The revenue approximation guarantees
therefore hold for a worse case setting. Despite this, we will
show that our auctions are within a constant factor of the
optimal, even for such worse case setting.

C. Strategyproof Auction Design

Let pi(θi,θ−i) be the payment charged to an agent who is
allocated a channel when bidding θi while all other agents bid
θ−i = {θ1, . . . , θi−1, θi+1, . . . θM}. The utility of the agent,
ui(θi), can be stated as

ui(θi,θ−i) =

⎧

⎪

⎨

⎪

⎩

vi − pi(θi), if i is assigned a channel

for T continuous timeslots

0 otherwise

. (2)

Agents are selfish and rational, and strategically may
choose to misreport or manipulate their bid if doing so allows
them to improve their utility [9], [15]. In our setting, an agent

can lie not only about their valuation vi, but may also choose
to misreport the value di, or delay submitting her bid (i.e. lie
about ai). Let θ′i = (v′i, a

′
i, d

′
i) be the bid submitted by i (not

necessarily truthfully). Similar to previous work in the area
of online auctions [6], [11], [12], [20], we assume no early
arrivals and no late departures. That is, a′i ≥ ai and d′i ≤ di.

It is imperative that the auctioneer (the primary user in
our setting), obtains bids truthfully so the goal of maximizing
revenue can be achieved. An auction is said to be dominant
strategy truthful, or strategyproof, if for any agent i, for
all θ′i ̸= θi, and for any θ−i, it is always the case that
ui(θi,θ−i) ≥ ui(θ′i,θ−i). The following characterization of
strategyproof mechanisms by Myerson will provide the foun-
dation for our approach.

Lemma 1. [Myerson, 1981] Let xi(bi) be the allocation
function used for bidder i with bid bi. A mechanism is
strategyproof if and only if, for any fixed set of bids by all
other agents not including i, the following conditions hold:

• xi(bi) is monotonically non-decreasing in bi

• Bidder i bidding bi is charged a payment computed
as

bixi(bi)−

∫ bi

0
xi(b)db. (3)

Lemma 1 states that in order to ensure a mechanism is
truthful, one must use an allocation rule that is monotonic.
Intuitively, this means that bidding higher should never harm
the bidder’s chances of winning the auction. Furthermore, in
the special case when the allocation function is deterministic,
it can be easily verified that the second condition in Lemma 1
requires that a winning bidder is charged the minimum bid
that guarantees being allocated in the auction. Based on these
observations, Lemma 1 provides a general purpose recipe
for designing truthful auctions:- Design an approximation
algorithm that is monotone in the input values, and ensure
that each bidder is charged the minimum bid that guarantees
allocation. We will term every mechanism that fits this bill as a
monotone mechanism. In our setting, a bid spans the multiple
dimensions of both valuation as well as time. Keeping this in
mind, we design the online auction framework to be monotone
in both of these domains.

D. Maximizing Revenue

An auction that maximizes revenue or profit for the auc-
tioneer is also known as an optimal auction in economic theory.
The problem of designing optimal auctions was first studied
by Myerson [17]. Myerson introduced the notion of a virtual
valuation, φi(vi) of bidder i, where

φi(vi) = vi −
1− Fi(vi)

fi(vi)
. (4)

Here, fi = dFi
dv is the probability density function of Fi.

Myerson’s seminal work proved the following theorem.

Theorem 1. [Myerson, 1981] Given the valuation distribution
F = F1 × F2 × . . .× FM , and truthful bids {v1, v2, . . . , vM}
such that vi is drawn independently and at random from Fi



for all i ∈ M, the expected revenue of any mechanism, for
allocation of goods x = {x1, x2, . . . , xM} is given by

R =
∑

i∈M

φi(vi)xi. (5)

That is, in order to maximize revenue, (5) must be max-
imized. This is a rather powerful result, since it means that
within the large space of all possible revenue maximizing
mechanisms, we can restrict our focus on truthful mechanisms
that optimize (5). We have already seen that any truthful mech-
anism requires an allocation function that is monotone. This
therefore imposes an additional condition on F. In particular,
we require Fi to be regular for all agents i, in that φi(vi) is
monotone non-decreasing in vi. This is in fact a rather mild
assumption, since most natural distributions of interest (e.g.,
uniform, exponential, Gaussian, etc.) are regular. Furthermore,
there are readily available techniques for dealing with non-
regular distributions [17].

IV. A STRATEGYPROOF REVENUE-MAXIMIZING ONLINE

AUCTION FRAMEWORK

In this section, we will design a general purpose strate-
gyproof online auction framework with the goal of maximizing
revenue. The framework solicits bids at the beginning of each
timeslot, and executes a monotone channel allocation and
payment mechanism A. Sections V and VI will describe two
possible choices for mechanism A, one that computes the
optimal channel allocation, and another based on a greedy
heuristic. While the framework puts into effect the allocation
computed by A at every timeslot, the payment computed for
the allocation is not used immediately. Instead, it records
these payments for each timeslot in a payment schedule. We
will show that by charging bidders the minimum payment
computed in the schedule as the final price, the framework
is strategyproof in time. The framework allows for the pre-
emption of assigned channels in order to guarantee a constant
approximation to the optimal revenue. We therefore begin by
introducing the idea of inflating bids over time, which allows
us to control the amount of preemption that takes place.

A. Preemption and Bid Inflation

An allocation decision made during a timeslot could have
a severe impact on the revenue generated, especially if these
decisions are irrevocable. Motivated by this, we allow pre-
emption in our online auction framework. Since preemption
can potentially be unfair to secondary users, our auction does
not charge payment to bidders who do not receive the same
channel for T continuous timeslots.

It is also crucial that we do not end up preempting
unnecessarily. Intuitively, an agent that has completed T − 1
timeslots should be harder to preempt than one who has only
been assigned for a single timeslot so far. This naturally
leads to the idea of artificially inflating bids, in proportion
to the number of timeslots the bidder has continuously held
the channel. In particular, if at time t, bidder i has held the
channel k for τi < T continuous timeslots, then our online
auction sets the virtual valuation φi as

φi(vi, τi) = (1 + δ)
τi
T

(

vi −
1− Fi(vi)

fi(vi)

)

, (6)

Algorithm 1: The online auction framework executed for
every timeslot t

Input: Conflict graph G, bid pool Θ, set of channels K,
monotone allocation and payment mechanism A,
previous channel assignment x(t− 1), current timeslot
t

Output: Channel assignment x(t), payment schedule s(t)
1 foreach θi ∈ Θ do
2 if xi(t− 1) > 0 then
3 τi := τi + 1
4 if τi = T then
5 Require i to release channel
6 Θ := Θ \ {θi}
7 else
8 τi := 0
9 Let M′ be the set of agents with bids in Θ

10 Let G′ be the subgraph induced by M′

11 foreach θi ∈ Θ do

12 φi := (1 + δ)
τi
T

(

vi −
1−Fi(vi)
fi(vi)

)

13 Run A on G′ using the set of bids {φi}i∈M′ , the previous
channel allocation x(t− 1), and the length of channel leases
so far {τi}i∈M′

14 Let x(t) be the channel allocation, and p(t) be the
corresponding payment returned by A

15 foreach i ∈ M do
16 if i ∈ M′ then
17 si(t) := pi(t)
18 else
19 si(t) := ∞
20 Return (x(t), s(t))

where δ > 0 is a parameter that can be adjusted by the auc-
tioneer. Observe that bids are now inflated by an exponential
function with respect to the ratio of the number of continuous
timeslots a user has been allocated to the total demand T . This
idea was first introduced by Hajiaghayi et al. [12]. Intuitively,
this allows us to ensure that the cost of a continuous sequence
of preemptions ends up being a telescoping sum. Later, we will
be more precise with this intuition, and show that bid inflation
using (6) with δ = 1 is sufficient to guarantee constant fraction
of the optimal revenue with respect to the offline adversary.

B. The Online Auction Framework

Algorithm 1 describe our online auction framework in
detail. The algorithm is executed at the beginning of each
timeslot t. At this time, zero or more bids may be received
by the primary user, which are then added into a bid pool, Θ.
An element Θi ∈ Θ of the bid pool is a tuple (θi, τi), where
θi is the bid submitted by bidder i, and τi is the number of
continuous timeslots for which i has held a channel at time t.
Initially, τi = 0. The element Θi is removed from the pool only
when τi = T ; that is, the user has been allocated a channel for
T continuous timeslots. Also, Θi will be removed if the bid
has expired; i.e., at time t = di−T . A secondary user who has
previously been assigned a channel may be preempted before
her lease expires. If a user is preempted at time t, then the
bid is returned to the pool if it is still valid; i.e., t < di − T ,
otherwise, the bid is rejected.

At the beginning of every timeslot, bids in the bid pool are
used as input to the channel allocation and payment mechanism
A. This algorithm is used to compute the channel allocation,



i j k l

φi = 6 φl = 4

xi(t− 1) = 1 xl(t− 1) = 1

φk = 10φj = 8

Fig. 1. The optimal assignment at time t must preempt agent l

as well as the payment pi(t), which is specific to timeslot t.
This computed payment is not charged to agents immediately.
Instead, we use it to update the payment schedule s. Let si(t)
be the computed payment for user i at timeslot t, then the final
price charged to a winning user is computed as

min
ai≤t≤di−T+1

si(t). (7)

Thus, a winning user will always be charged the minimum
price over the period during which the user’s bid was valid.

Our auction framework leaves some flexibility for the
primary user to choose the allocation and payment mechanism
A. We require only that A is monotone in the sense of
Lemma 1. The performance and truthfulness of the auction
framework is closely tied to the choice of A. In the sequel,
we analyze the performance of Algorithm 1 for when we use
the optimal channel allocation mechanism, and for when we
use a greedy channel allocation mechanism.

V. THE OPTIMAL MECHANISM

A. The Optimal Channel Allocation with Preemption

Since our goal is to compute the optimal channel allo-
cation, it is worth pausing for a moment to consider what
exactly constitutes an optimal allocation given that channels
can be preempted. Ideally, we would like to choose a channel
assignment x(t) at time t that maximizes

∑

i∈M′

φi(vi, τi)xi(t),

where M′ is the set of agents with currently valid bids. From
Theorem 1, we know that any truthful mechanism that does
so also maximizes the expected payment, and hence revenue.
However, assigning different channels to a user in consecutive
timeslots counts as preemption in our model. Therefore, the
optimal allocation maximizes the total value of the bidders
assigned a channel, while minimizing the cost of preemption.

As an example, consider the network shown in Figure 1. In
this network, there are only two channels, and bids during the
current timeslot t are shown next to each user. The secondary
users i and l were previously assigned channel 1, while users
j and k submit new bids at time t. When computing the new
allocation, it is preferable to preempt l instead of i to minimize
the preemption cost. The optimal allocation is therefore

xi(t) = 1 xj(t) = 2 xk(t) = 1 xl(t) = 2.

The optimal allocation at time t can be computed with an
integer linear program. The program is a function of the bids
of the users in the system, suitably inflated according to (6)
for users that already had a channel assigned at time t− 1.

Maximize
∑

i∈M

φi(vi, τ
k
i )x

k
i (t) (8)

Algorithm 2: The optimal allocation algorithm with a
VCG payment scheme.

Input: Induced conflict graph G′, set of bids {φi}i∈M′ ,
previous channel allocation x(t− 1), continuous
timeslots without preemption {τi}i∈M′

Output: Channel allocation x(t), payment vector p(t)
1 Compute optimal channel allocation x
2 foreach i ∈ M′ do
3 Compute optimal channel allocation according to (8) z on

M′ \ {i}

4 p′i :=
∑

j ̸=i∈M′

φjzi(t)−
∑

j ̸=i∈M′

φjxj(t)

5 pi(t) := φ−1
i

(

p′i
(1+δ)τi/T

)

6 Return (x(t),p(t))

Subject To:

∑

k∈setK xk
i (t) ≤ 1 ∀i ∈ M

∑

j∈setNi
xk
j (t) + xk

i ≤ 1 ∀k ∈ K, ∀i ∈ M

xk
i ∈ {0, 1} ∀i ∈ M, ∀k ∈ K

The first constraint ensures that an agent is not assigned
more than one channel at a time. The second constraint ensures
that the assignment is interference free – agents that spatially
interfere should not be assigned the same channel. Once a
channel assignment is computed with the integer program in
(8), we can compute a strategyproof payment mechanism by
employing the VCG scheme.

B. The VCG Payment Scheme

Given a set of bids {φi}i∈M′ , the VCG mechanism chooses
a channel allocation x∗ that is optimal, and for each bidder i,
computes a payment p′i given as

p′i =
∑

j ̸=i∈M′

φjz
∗
i −

∑

j ̸=i∈M′

φjx
∗
j , (9)

where z∗ is the optimal channel allocation obtained by setting
φi = 0 in the integer program in (8). See for example Nisan
and Ronen [10] for more details on the VCG mechanism. Since
the above payment is computed using the artificially inflated
virtual valuations instead of the true values, the actual payment
needs to be (i) scaled with respect to the inflation, and (ii)
mapped back from virtual valuation space, as follows

pi = φ−1
i

(

p′i
(1 + δ)τi/T

)

. (10)

where φ−1
i is the inverse virtual valuation function of i.

C. The Optimal Mechanism and Analysis

Algorithm 2 shows our mechanism in its entirety. The
algorithm computes the optimal channel allocation that maxi-
mizes the valuations of bidders that are assigned a channel,
while minimizing the cost of preemption. It then uses the
VCG scheme to compute the payments specifically for timeslot
t, which will be used to update the payment schedule s in
Algorithm 1. In the following we show that Algorithm 1 is
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φjφl φk

φi
π

πOPT

t1 t2 t3

Fig. 2. Worst case preemption sequence used in proof for Theorem 3.

strategyproof when Algorithm 2 is used as the input monotone
mechanism A.

Theorem 2. The online auction framework of Algorithm 1,
together with Algorithm 2, and the pricing scheme of (7), is
strategyproof.

Proof: We need to show that the resulting mechanism is
truthful for each bidder i in two dimensions:- the valuation
vi, as well as the temporal parameters ai and di. This is
achieved by showing that the allocation rule is monotone, and
that the final price charged is the minimum payment required.
Let θi and θ′i be i’s submitted bid when bidding truthfully and
lying, respectively. We begin by showing that the allocation
is monotone. If i bids truthfully and loses, either i is never
assigned a channel, or is preempted one or more times between
ai and di. This means that i can never win by submitting a bid
v′i < vi. So we must have vi = v′i. Furthermore, observe that
the allocation decision is always independent of di. Therefore,
we must have d′i = di, since departing earlier can only harm
i’s chances of being allocated for T timeslots.

Now assume that she submits her bid at time a′i > ai,
and ends up being allocated T continuous timeslots. If i was
never allocated a channel at time ai ≤ t < a′i when bidding
truthfully, we end up getting the same sequence of allocations
as before, hence i will not be assigned a channel, which is a
contradiction. On the other hand, if i was assigned a channel at
time ai ≤ t < a′i in the truthful case, then there is now possibly
a new sequence of allocations starting from a′i. However,
between a′i and d′i = di, i is preempted for the first time at
some timeslot t′ when bidding truthfully. Since delaying i’s bid
can only lower her virtual valuation for subsequent timeslots,
i will once again be preempted at time t′. Therefore, there is
no incentive to set a′i < t′. Since we can recursively apply
the previous argument starting from a′i ≥ t′, there is never an
incentive for i to delay her bid.

Finally, observe that, by definition of the VCG scheme, the
payment computed for each timeslot is the minimum payment
required to be allocated a channel during that timeslot. Further-
more, the payments are independent from previous allocations,
and the final price charged to every winning agent i in (7) is the
minimum price chosen from all the valid timeslots. Therefore,
misreporting a′i > ai or d′i < di can only lead to an increase
in the final price charged to i. We conclude that this auction
mechanism is strategyproof.

The auction framework we have described in this section
obtains a constant fraction of the optimal revenue even in the
worse case, which is the focus of the next theorem. The crux of
the following result is due to Hajiaghayi et al. [12]. We restate
their proof in the context of an online spectrum auctions next.

Theorem 3. [Hajiaghayi et al., 2005] The online auction
framework of Algorithm 1 guarantees at least a 1

5 -fraction of
the optimal revenue as computed by the offline adversary.

Proof: Without loss of generality, we can assume that the
offline adversary is able to schedule perfectly, and hence no
bids are preempted. On the other hand, bids in Algorithm 1
may be preempted. For every bid φj that was preempted at
time t, it must be the case that there was another bid φi that
was assigned j’s channel instead, and furthermore, it must
be the case that φi ≥ (1 + δ)τjφj . The bid φj in turn may
have preempted some other bid φk, and hence there may be
a sequence of preemptions. Now pick one such sequence, call
it π, and assume that π begins at timeslot t1. Let φi be the
last bid in π, which by definition does not get preempted,
and let t2 be the first of the T timeslots for which φi is
assigned a channel. Between time t1 and t2 + T , there could
be a sequence of non-preempted channel allocations by the
optimal algorithm. Let us call this sequence πOPT . Both
sequences are shown in Figure 2. Let φk be the final bid
in this sequence, and let t3 be the time when this allocation
takes place. Clearly, t3 ≤ t2 + T − 1. Furthermore, by the
monotonicity of the allocation chosen by Algorithm 2, we
must have φk ≤ (1 + δ)(T−1)/Tφi. Let φl be next highest
bid in πOPT , then φl ≤ (1+ δ)−1/T since φk and φl must be
scheduled at least T timeslots apart. Proceeding in this fashion,
we can construct the cost of the sequence of bids in πOPT as

C = (1 + δ)
T−1

T φi + (1 + δ)
−1

T φi + (1 + δ)
1−T
T φi . . .

= φi

(

(1 + δ)1−
1

T + (1 + δ)
−1

T + (1 + δ)
1

T −1 . . .
)

=
1

(1 + δ)1/T
φi

(

(1 + δ)1 + 1 + (1 + δ)−1(1 + δ)−2 . . .
)

≤ φi

(

(1 + δ)1 + 1 + (1 + δ)−1 + (1 + δ)−2 . . .
)

.

Agents that leave the auction may return to bid again. When
the number of users is large, the sequence above can go to
infinity. The revenue approximation guarantee is then given
by

φi + C

φi
= 1 + (1 + δ)1 + 1 + (1 + δ)−1 + (1 + δ)−2 . . .

Setting δ = 1 gives us

1 + 2 + 1 + (2)−1 + (2)−2 . . . ≤ 5,

which is the approximation ratio stated in the theorem.

Due to bid inflation, we are bounding the cost of preemp-
tion, and ensuring that preempting bids are always within a
O(1) factor of this cost. In fact, there is not much room for
improving Theorem 3. It can be verified that different choices
of δ offer only a fractional improvement. This bound is tight
when the sequence of preemptions goes to infinity.

VI. A GREEDY APPROACH TO CHANNEL ALLOCATION

Since computing the optimal channel assignment is NP-
Hard, the mechanism in Section V may be impractical for
large problem instances. For the auction to be a truly scalable
solution it is desirable to have an allocation mechanism that
runs in polynomial time.

A. The Greedy Allocation Scheme and Channel Ranking

Given that the conflict graph can be modeled as a bounded
disk graph, it is tempting to employ one of the many
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Fig. 3. Greedily allocating channels without considering the previous
allocation causes unnecessary preemption.

polynomial-time approximation schemes (PTAS) for comput-
ing the maximum weighted independent set (MWIS) as a basis
for the channel assignment algorithm. Unfortunately, both the
readily available PTAS algorithms known for this problem, by
Nierberg et al. [21] and Erlebach et al. [22], are not inherently
monotone.

The simplest approximation algorithm that is also mono-
tone is one based on the greedy approach. Consider the
following simple allocation mechanism: (i) sort bidders in
descending order, (ii) starting from the highest bidder, assign
an available channel, (iii) if no channels are available, reject
the bid and repeat from the previous step. This algorithm is
clearly monotone, since reducing the bid can never cause a
bidder to be considered for allocation earlier.

However, the allocation scheme described does not take
into account the previous channel assignment. This can clearly
cause unnecessary preemption. For an agent who has already
been allocated a channel, the greedy scheme should try to
assign the same channel, subject to availability. For agents
being allocated for the first time, it is possible to create a
ranking on the set of channels when considering them for
assignment. For each agent i, channels should be ranked in the
following order (from highest to lowest rank): (i) the channel
assigned in the previous timeslot, if there is one, (ii) channels
that have not been assigned to some agent j ∈ Ni, and (iii)
channels that have been assigned to some j ∈ Ni, ranked in
ascending order of their bids φj .

While this minimizes preemption, it still does not guarantee
a good assignment. In Figure 3, there are three channels
available, with the previous allocation shown as x(t − 1).
Assume that agents i, j and k only submit their bid starting at
time t. The naive scheme would first assign channels 1 and 2 to
agents i and j respectively, and then assign channel 3 to agent
k, thus preempting m. The value of this solution is the sum of
the assigned bids, which in this case is 30. We can improve
this solution (to a solution with value 33) if we had assigned
channel 1 to agent k instead thereby preempting the lowest
bidder n instead. It is tempting to consider an improvement
by first assigning channels, and then attempting to relabel them
so as to minimize the cost of preemption. Unfortunately, this
solution can fail to be monotonic, since the relabeling itself
is a function of the previous allocation. The greedy algorithm
has the advantage of being monotonic, and we will show that
it still allows us to achieve a constant fraction of the optimal
revenue.

B. Computing Truthful Payments Efficiently

As previously shown, the greedy algorithm leads to sub-
optimal channel allocations. This precludes the use of the
VCG payment scheme, since it is well known that VCG
is not truthful when used together with an approximately
optimal channel assignment [14]. Instead, we will tailor a
truthful payment scheme specifically for our greedy allocation
algorithm. Recall from Lemma 1, for any monotone algorithm,
the payment for the winning bidder must be the minimum bid
required to guarantee winning. One can in fact easily compute
this in the following way: For each bidder i who has been
allocated a channel, we set its bid φi = 0, keep all other bids
the same, and initialize Ki to be the set of available channels
to i. We then simulate the algorithm again, while updating Ki

when one of i’s neighbors is allocated. The first agent j that
is assigned a channel that empties Ki is i’s threshold agent.
Clearly, the threshold bid φj is the minimum bid required for
i to win, and hence i should be charged this bid.

In fact, we will show an improved method for computing
the payments directly during the allocation phase. Let us
denote an agent i as being saturated if all channels have been
assigned to the set consisting of i and Ni. Now, observe that if
φ(j) is the threshold bid for agent i, then j will not be assigned
a channel. This means that whenever we are unable to assign
a channel to some agent j, then it means that j is a threshold
agent for another agent i that has already been assigned a
channel. Moreover, if j is a threshold agent for i, then j is
not only a neighbour of i, but it too must also saturated. Using
these observations, it is now possible to compute the payments
for agents during the allocation phase itself.

C. The Greedy Algorithm and Analysis

Algorithm 3 shows the greedy channel allocation scheme.
The function

rank(i,Ni,K,x(t),x(t− 1))

returns the first channel in the set of available channels, ranked
in the manner described earlier so as to reduce preemptions.
If no channels are available, it returns 0. The algorithm then
proceeds to assign channels in a greedy manner. Whenever it
finds that an agent i has been saturated, it computes a set of
candidate agents, C, for which i may be a threshold agent. It
chooses the agent k in this set with the minimum bids, and
then computes the payment for k based on φi.

Algorithm 3 is monotone by construction, and since the
payments for winning agents are the minimum required bid to
guarantee winning, the algorithm is clearly truthful. We state
the next theorem without proof, since the reasoning is similar
to the proof for Theorem 2, now that we have established that
strategyproofness of Algorithm 3.

Theorem 4. The online auction framework of Algorithm 1,
together with Algorithm 3, and the pricing scheme of (7), is
strategyproof.

The performance bound of the greedy mechanism relies on
the following geometric properties of disk graphs.

Lemma 2. For any node i, the size of the maximum
independent set consisting of nodes in N (i), is at most
⌊ 2π
arcsin( 1

2∆
+1)

⌋ − 1, where ∆ = Rmax
Rmin

.



Algorithm 3: The greedy channel allocation and payment
mechanism.

Input: Induced conflict graph G′, set of bids {φi}i∈M′ ,
previous channel allocation x(t− 1), continuous
timeslots without preemption {τi}i∈M′

Output: Channel allocation x(t), payment vector p(t)
1 foreach i ∈ M′ do
2 xi(t) := 0
3 pi := 0
4 done(i) := false
5 saturated(i) := false
6 Let B := {φ(i)}i∈M′

7 while B ̸= ∅ do
8 i := argmaxi{B}
9 B := B \ {i}

10 if saturated(i) = true then
11 T := {φj |j ∈ Ni ∧ done(j) = false ∧ xj(t) > 0}
12 foreach k ∈ T do
13 p′k := φi

14 pk(t) = φ−1
k

(

p′k
(1+δ)τk/T

)

15 done(k) := true
16 else
17 xi(t) := rank(i,Ni,K,x(t),x(t− 1))
18 foreach j ∈ Ni ∪ {i} do
19 if all K channels have been assigned to

{j} ∪Nj then
20 saturated(j) := true
21 Return (x(t),p(t))

This lemma can be derived by trying to fit as many agents
with transmission radius Rmin around an agent i with radius
Rmax, such that these agents do not interfere with one another,
but interfere with i. In a greedy assignment scheme, the
potential loss of of bids when allocating to i is therefore
bounded by the constant ⌊ 2π

arcsin( 1

2∆
+1)

⌋ − 1, since all these

neighbouring agents who could have been allocated instead
must have bids at most φi. This observation, together with
Theorem 3, leads to the following theorem.

Theorem 5. Let C = 5⌊ 2π
arcsin( 1

2∆
+1)

⌋ − 1. Then Algorithm 3

used together with the Algorithm 1 guarantees at least a 1
C -

fraction of the optimal revenue.

While the formal proof is omitted due to space constraints,
we note that the theorem follows directly from prior results.
In summary, the greedy scheme achieves a constant revenue
guarantee with respect to the optimal revenue of the offline ad-
versary. For large-scale online auctions, the greedy algorithm,
facilitated by our tailored truthful payment scheme, offers the
advantage of a solution that is both easy to implement and
fast.

VII. CONCLUSION

In this paper, we designed a revenue-maximizing online
auction framework for dynamic secondary spectrum access.
Our auction is provably strategyproof in two dimensions – the
valuations of the bidder, as well as the timing of the bids.
Since online allocations with irrevocable decisions can lead to
an arbitrary loss of revenue, we introduce preemption into our
system. Artificially inflating bids in the temporal dimension
allows us to control the amount of preemption that takes

place. We prove that this leads to a constant approximation
mechanism with respect to the optimal revenue obtained by
the offline adversary. This holds for both optimal channel
allocation, as well as our tailored, truthful greedy scheme.

There are a number of interesting directions for future
research. Our mechanism is only strategyproof when bidders
act individually, and we would like to extend this to hold
for the case of colluding bidders. We also only considered
the case of binary demand, and it will be interesting to relax
these assumptions when extending our framework. We intend
to explore these ideas in future work.
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