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Abstract

We study the optimal financing and dividend distribution problem with
restricted dividend rates in a diffusion type surplus model where the drift
and volatility coefficients are general functions of the level of surplus and the
external environment regime. The environment regime is modeled by a Markov
process. Both capital injections and dividend payments incur expenses. The
objective is to maximize the expectation of the total discounted dividends minus
the total cost of capital injections. We prove that it is optimal to inject capitals
only when the surplus tends to fall below zero and to pay out dividends at the
maximal rate when the surplus is at or above the threshold dependent on the

environment regime.
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1. Introduction

The optimal dividend strategy problem has gained extensive attention. In the diffusion setting, many
works concerning dividend optimization use the Brownian motion model for the underlying cashflow
process. [1] extends the basic model by assuming that the drift coefficient is a linear function of the
level of cashflow and [2] uses the mean-reverting model and solves the optimization problem. [6] considers
the optimization problem under the model where the drift coefficient is proportional to the level of cashflow

and the diffusion coefficient is proportional to the square root of the cashflow level. [13], [11], [18] and
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some references therein address the optimization problems for the general diffusion model where the drift

and diffusion coefficients are general functions of the cashflow level.

An interesting and different direction of extension is to include the impact of the changing external
environments/conditions (for example, macroeconomic conditions and weather conditions) into modeling
of the cashflows. A continuous time Markov chain can be used to model the state of the external
environment condition, of which the use is supported by observation in financial markets. The optimal
dividend problem with regular control for Markov-modulated risk processes has been investigated under
a verity of assumptions. [14] solves the dividend optimization problem for a Markov-modulated Brownian
motion model with both the drift and diffusion coefficients modulated by a two-state Markov Chain. [17]

solves the problem for the Brownian motion model modulated by a multiple state Markov chain.

The optimality results in all the above works imply that distributing dividends according to the optimal
strategy leads almost surely to ruin. [3] proposes to include capital injections (financing) to prevent the
surplus becomes negative and therefore prevent ruin. Under the Brownian motion, [10] investigates the
optimal dividend and financing problem, and [5] studies the problem with risk exposure control through
control of reinsurance rate. The optimality problem with control in both capital injections and dividend
distribution in a Cramér-Lundberg model is addressed in [12]. [16] solves the problem for dual model with

transaction costs.

The purpose of this paper is to investigate optimal financing and dividend distribution problem with
restricted dividend rates in a general diffusion model with regime switching. Under the model, the
drift and volatility coefficients are general functions of the level of surplus and the external environment
regime, which is modeled by a Markov process. Similar to the “reflection problem”, the company can
control the financing /capital injections process (a deposit process) and the dividend distribution process
(a “withdrawal” process). Both capital injections and dividend payments will incur transaction costs.
Sufficient capital injections must be made to keep the controlled surplus process nonnegative and the
dividend payment rate is capped. This paper can be considered as an extension of the existing works on
the dividend optimization problem with restricted dividend rates for the diffusion models with or without
regime switching. The model considered is more general as it assumes that 1. the drift and volatility
are general functions of the cashflows; and 2. the model risk parameters (including drift, volatility and

discount rates) are dependent on the external environment regime.

The rest of the paper is organized as follows. We formulate the optimization problem in Section 2.
An auxiliary problem is introduced and solved in Section 3. Section 4 presents the optimality results. A

conclusion is provided in Section 5. Proofs are relegated to Appendix.
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2. Problem formulation

Consider a probability space (2, F,P). Let {Wy;t > 0} and {&;t > 0} be respectively a standard
Brownian motion and a Markov chain with the finite state space S and the transition intensity matrix
Q = (¢ij)ijes. The two stochastic processes {W;;t > 0} and {&;t > 0} are independent. We use
{Fi;t > 0} to denote the minimal complete o-field generated by the stochastic process {(Ws,&:);t > 0}.
Let X; denote the surplus at time ¢ of a firm in absence of financing and dividend distribution. Assume
that X is Fo measurable and that X; follows the dynamics, dX; = pu(X;—, & )dt + o(Xi—, &— )dW; for
t > 0, where the functions u(-,j) and o(-,j) are Lipschitz continuous, differentiable and grow at most
linearly on [0, 00) with (0, u) > 0. Furthermore, the function p(-, j) is concave and the function o(-, j) is
positive and non-vanishing.

The firm must have nonnegative assets in order to continue its business. If necessary, the firm needs
to raise money from the market. For each dollar of money raised, it includes ¢ dollars of transaction cost
and hence leads to an increase of 1 — ¢ dollars in the surplus through capital injection. Let C; denote

the cumulative amount of capital injections up to time ¢. Then the total cost for capital injections up to

Cy

time ¢ is -

-. The company can distribute part of its assets to the shareholders as dividends. For each
dollar of dividends received by the shareholders, there will be d dollars of cost incurred to them. Let Dy

denote the cumulative amount of dividends paid out by the company up to time ¢. Then the total amount

Dy
14-d-

of dividends received by the shareholders up to time ¢ is We consider the case where the dividend
distribution rate is restricted. Let the random variable [, denote the dividend payment rate at time s with
the restriction 0 < Iy < [ where [(> 0) is constant. Then D; = fot lyds. Both C; and D; are controlled by
the company’s decision makers. Define m = {(Cy, D;);t > 0}. We call 7 a control strategy.

Taking financing and dividend distribution into consideration, the dynamics of the (controlled) surplus

process with the strategy m becomes

dX7 = (WX, &) —L)dt+ o(X[, & )dWy +dCy, t > 0. (2.1)
Define P(z,z)( : ) :P( : |X0:.’E,£0:i), E('E,z)[] :E[ |X0:£E750:i], PZ( : ) :P( : |£0:Z)» and
E;[-]=E][- |6 =1]. The performance of a control strategy 7 is measured by its return function defined
as follows:
R:(z,i) = Eg, /ooe_A‘ i dt—/ooe_A*#dCt r>0ieS8 (2.2)
Ly (z,7) 0 1+d o 1—_¢ ; =Y )

where A; = fot d¢,ds with d¢, representing the force of discount at time s. Assume 6; > 0,7 € S.
A strategy m = {(C¢, Dy);t > 0} is said to be admissible if (i) both {Cy;t > 0} and {Ds;t > 0} are

nonnegative, increasing, cadlag, and {F;;t > 0}-adapted processes, (ii) there exists an {F;;t > 0}-adapted
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process {l;;t > 0} with I, € [0,]] such that D; = fot lsds and (iii) X7 > 0 for all ¢ > 0. We use II to denote
the class of admissible strategies.

Since {C};t > 0} is right continuous and increasing, we have the following decomposition: C; = Cy +
Cy — Cy_, where {Cy;t > 0} represents the continuous part of {Cy;t > 0}.

For convenience, we use X, X7, £ and (X7, £) to denote the stochastic processes {X;;t > 0}, {X[;t >

0}, {&;t > 0} and {(X7,&:);t > 0}, respectively. Note that for any admissible strategy m, the stochastic
process X is right-continuous and adapted to the filtration {F;;¢ > 0}.

The objective of this paper is to study the maximal return function (value function):

V(z,i) = sup Rr(x,1), (2.3)
mell

and to identify the associated optimal admissible strategy, if any. Following the standard argument in
stochastic control theory [4], we can show that the value function fulfils the following dynamic programming

T lte_At

principle: V(z,i) = sup, e E(z,i) [ 0 g dt— OT %dct +e MV (XT, EZ)} for any stopping time 7.

3. An auxiliary optimization problem

Motivated by [8], which introduces an auxiliary problem where the objective functional is modified in a
way such that only the “returns” over the time period from the beginning up to the first regime switching
are included plus a terminal value at the moment of the first regime switching, we start with a similar
auxiliary problem first. The optimality results of this problem will play an essential role in solving the
original optimization problem.

Throughout the paper, we define § = minjesd;, ¢; = —¢i, and o1 = inf{t > 0: & # & }. Here, o7 is
the first transition time of the Markov process €. For any function g : Rt x S — R™, we use ¢'(-) and g”(+)

to denote the first order and second order derivatives, respectively, with respect to the first argument. We

start with introducing two special classes of functions.

Definition 3.1. (i) Let C denote the class of functions g : RT x & — R such that for each j € S,

g(+,7) is nondecreasing and g(-,j) < ﬁ;@' (ii) Let D denote the class of functions g € C such that for

each j € S, g(-,7) is concave and %ﬁ;(y’j) < 7= for 0 < @ < y. (iii) Define the distance || - || by

lf = gll = maxa>o0.ies [ f (2, i) — g(x,1)| for f,g €D.

Lemma 3.1. The metric space (D, || - ||) is complete.
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Define a modified return function and the associated optimal return function by

Ryn(2,i) =B /gl he dt—/al M et pxr e ez 0ies, (34
[\ b)) —=L(z4) 0 1+d 0 1—¢ t 10501 ) | =Y ) .
Vi(x,i) =sup Ry r(x,i), > 0,i € S. (3.5)

well

Lemma 3.2. Forany f€C, V,Vy€C .

Notice that the un-controlled process (X, £) is a Markov process. For any f € C and any ¢ € S, the following
Hamilton-Jacobi-Bellman (HJB) equation for the modified value function V¢ (-,¢) can be obtained by using
standard arguments in stochastic control: for x > 0

o2 (z,i . . . . . .
max { max;c o) ( (2 )Vf"(x, 1) + u(z, z)Vf'(:c, i) — 0 Vy(z,i) +1 (ﬁ — Vf'(a:,z))) ,Vf(z,z) — i =0.

Now we define a special class of admissible strategies, which has been shown in the literature to contain
the optimal strategy for the original optimization problem if there is 1 regime only. Since the return
function of the modified optimization includes the dividends and capital injections in the first regime only,
this problem can be considered as a problem to maximize the returns up to an independent exponential
time for a risk model with 1 regime. It is worth studying the special class of strategies mentioned above

to see whether the optimal strategy of the modified problem falls into this class as well.

Definition 3.2. For any b > 0, define the strategy 7% = {(C2?, DY*);¢ > 0} in the way such that the
company pays dividends at the maximal rate [ when the surplus equals or exceeds b, pays no dividends
when the surplus is below b and the company injects capital to maintain the surplus at level 0 whenever

the surplus tends to go below 0 without capital injections.

We now investigate whether a strategy 7% with an appropriate value for b is optimal or not for the
modified optimization problem. We start with studying the associated return functions. For convenience,

we write X0t = X7 throughout the rest of the paper.

Remark 3.1. (i) It is not hard to see that 7** is admissible and that both 7%* and X% are Markov
processes. (ii) For any function f € C and any i € S, by applying the comparison theorem used to prove
the non-decreasing property of V(-,i) and V¢(-,4) in Lemma 3.2 we can show that the function R o (-, 1)

is non-decreasing on [0, 00) as well.

For any f € C,i €S and b > 0, define the operator Ay, by

Ug(x,i) " N _ (5. ) L
59 (@) + (p(z,9) = g'(z) = (0 + gi)g(z) +

Afib g(x) = 1+d

+Y aiif(x,§)=0.  (3.6)
J#i

The following conditions will be required for the main theorems.
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Condition 1: The functions pu(-,¢) and o(+,%) are the ones such that for any given function f € D and
any given ¢ € S, the ordinary differential equation Ay, g(x) = 0 with any finite initial value at © = 0 has
a bounded solution over (0, c0).

A sufficient condition for Condition 1 to hold is that both the functions p(-,¢) and o(-,7) are bounded
on [0,00) (see Theorem 5.4.2 in [9]). However, this is far away from necessary. For example, when pu(-,1)
is a linear function with positive slope and o(-,4) is a constant Condition 1 also holds (see section 4.4 of
[18]).

Condition 2: p/(z,i) < §; forallz >0and i € S.

Define for any function f € C and i € S,

U1 +d)+ 32,45 f (00, )
qi + 9;

A= . (3.7)

Lemma 3.3. Suppose Condition 1 holds. For any function f € D, anyi € S, (i) the function Ry ros(-,1)

for any b >0, is a continuously differentiable solution on [0,00) to the equations

o2(x,i
D) g1(w) + i)y () — (0 + a)a@) + Y0 fle. ) =0, 0 <z <, (3:8)
i
o%(x,i - !
T @)+ (o)~ Dl @)~ 6+ ado(@) + Y aisf @) = oy 2>, (39)
J#i
g (0+) = lim g(z) < oo, (3.10)

1—¢ z5c

and is twice continuously differentiable on (0,b) U (b,00); (ii) the function hy;(b) = R o.(b,i) is

continuous with respect to b for 0 < b < oco.

Throughout the paper, we use i—;g(x,i) and % g(x,1) to represent the derivatives of g from the left-

and right-hand side, respectively, with respect to z.

Corollary 3.1. Suppose Condition 1 holds. For any f € D, i € S and b > 0, (i) Ry ros(-,1) is
increasing, bounded, continuously differentiable on (0,00), and twice continuously differentiable on (0,b) U
, . - . . . + .

(b,00) with R}’Wo,b(o-i-,l) =, [%R},ﬂo,b(x7l)]w:b = limgp R;ﬁmo,b(x,z) and [%R}’Wo.b(x,z) =
limg R’f’ﬁoyb(az, i); and (i) if R},Wo,b(b, i) = ﬁld, then Ry o (x,1) is twice continuously differentiable with

respect to x at x = b.

We use R’

rr00(0,4) and R ., (0,1) to denote R _,,(0+,i) and R} ,(0+,7), respectively.
Lemma 3.4. Suppose Conditions 1 and 2 hold. For any fized f € D, i € § and b > 0, we have

¥ r00(0+,1) <0, and in the case b >0, R} ,,(04,4) <0 if R} _,,(b,4) < .

1—c
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Lemma 3.5. Suppose Conditions 1 and 2 hold. For any f € D and i € S, (i) R;ﬁyﬂo,o(x,i) < 0 for
x >0, and in the case b > 0, R} o,(z,i) < 0 forx >0 if R} o.(b,i) = 3 and (i) for b > 0, if

fm0b

R con(bii) > ﬁ, R (1) <0 forz €[0,b) and R} o, (b—,0) <0.

Let I{-} be the indicator function. Define for any fixed b > 0 and any fixed 7 € II,

7 =inf{t > 0: X > b}, (3.11)
o No1 A lg 4 T No1 A 1 e
W N — sup Ero. —As Y _ —As )
ro(@,8) = Sup Bz /0 © 1+d” /0 ¢ T4

e M Ry o (XT 6T < 01} + e M fXD 6 ) o <77} (3.12)

Theorem 3.1. Suppose Conditions 1 and 2 hold. For any f € D, any i € S and any b > 0, if
R con(b,i) > ﬁ, then R, o (1) > 14%1 for 0 <a <band Ry on(x,i) = Wyy(x,i) for x> 0.

We show in the following theorems that if b is chosen appropriately, the return function for the strategy

b

79 coincides with the optimal return function of the modified problem.

Theorem 3.2. Suppose that Conditions 1 and 2 hold. For any f € D and anyi € S, (i) ifR}mO,O (0+4,1) <
ﬁd, then Vi(x,i) = Ry roo(x,i) for x > 0; and (i) if for a fived b > 0, R}’Wo,b(bai) = ﬁ, then
Vi(z,i) = Ry pos(x,1) for x> 0.

Lemma 3.6. Suppose Conditions 1 and 2 hold, f € D andi € S. Let R}JOYO(O,Z') denote R}mo,o (0+4,14).
If R o,(b,i) > ?1d for all b >0, then Vi(x,i) = limy_,o0 Ry rob(,1) for x> 0.

Again we use R 0,0(0,%) to denote R’ o0(0+,1). Define for any f € D and i € S,

bl =00 if R} o, (b,1) > 115 for all b > 0, and b] = inf{b>0: R} ,,(b,i) < 73} otherwise.  (3.13)

fmorb
We show in the following that the strategy 7o s optimal for the modified problem.

Theorem 3.3. Suppose Conditions 1 and 2 hold. For any f € D and anyi € S, (i) 0 < blf < oo; and (ii)
Vi(z,i) =R (z,4) for x > 0.

f
fr®t

4. The optimality results

We use the obtained optimality results for the modified optimization problem to address the original
optimization problem. The starting point is to notice that the optimal return function of the original
optimization V;, when the fixed function f is chosen to be the value function of the original optimization,

coincides with the value function V.
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Theorem 4.1. If Conditions 1 and 2 hold, (i) V € D; (ii) bY < 0o and V(z,i) = R, o (x,14).

Theorem 4.2. Define ™ to be the strategy under which, the dividend pay-out rate at any time t is
ZI{ng* }, and the company injects capital to maintain the surplus at level 0 whenever the surplus tends to
go below 0 without capital injections. If Conditions 1 and 2 hold, then V(z,i) = V™ (x,i) i € FE and the

strategy 7" is an optimal strategy.

5. Conclusion

We have addressed the optimal dividend and financing problem for a regime-switching general diffusion
model with restricted dividend rates. Our conclusion is that it is optimal to inject capitals only when
necessary and at a minimal amount sufficient for the business to continue, and to pay out dividends at the
maximal rate, I, when the surplus exceeds the threshold dependent on the environmental state. This result
is consistent with the findings for similar problems under simpler model configuration in the literature. For
example, the optimal strategy with restricted dividend rates is of threshold type for the Brownian motion

(see [15]), the general diffusion (see [18]), and the regime-switching Brownian motion (see [17]).
Appendix A. Proofs for Sections 3 and 4
For any ¢ € § and b > 0, define the operator B by

TED i)+ i)y ,1) — Bigla ) (A-1)

B g(x,i) =

Proof of Lemma 3.1. Consider any convergent sequence {g,;n = 1,2,---} in D with limit g. It is
sufficient to show g € D. As for any fixed ¢ and n, g, (-, %) is nondecreasing and concave, so is the function
g(+,7). The inequality g(-,7) < ﬁ follows immediately by noticing g, (-,7) < ﬁ. It remains to show
that %_Z(yz) < ﬁ for 0 < x < y. We use proof by contradiction. Suppose that there exist xg, yo with
0 < x9 < yo and j such that %:Zgyo’j) > i Define ¢g := % (%:z{()ym) — ﬁ) Clearly, ¢y > 0.

As g, converges to g, we can find an N > 0 such that for all n > N, ||g, — g|| < €0(yo — o). Therefore,
lgn (40, 3) = 9(y0, 3)| < €0(yo —20) and |gn (w0, j) — g(x0, 7)| < €0(yo— o). As aresult, gn(yo,7) —gn(z0,7) >
9(y0,7) — €o(yo — x0) — (9(w0, J) + €o(yo — w0)) = 9(¥0,J) — 9(x0,J) — 2€0(yo — x0) = ¥3=2°. On the other

hand, we have W < 1 (due to g, € D), which is a contradiction.

Proof of Lemma 3.2. Noting that I, < [ and that o, is exponentially distributed with mean % and
Ag = ;8 for s < oy, the upper-bounds follow easily from (2.2), (2.3) and (3.5).
Fix x and y with y > z > 0. Let {X/;¢ > 0} and {X/;t > 0} denote the surplus processes in absence

of control with initial surplus = and y, respectively. We use #* = {(C¥, D7) : t > 0} with Dy = fot [%ds
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to denote any admissible control strategy for the process {X7;t > 0}. Noting that {C¥;¢ > 0} is right-
continuous and increasing, we have the following decomposition: C} = fg esds+) g o< (C5—CF). Define
C=0,¢G=inf{s>0:02—-C* >0 oré;#&_-}tand (41 ={8>( :C?—C? >0 or& #&-_}
for n =1,2,---. Note that & = &, for t € [Cn, (1) and hence, X" = (u(XE™ &) — IF + eF)dt +
o(XPT € )AWy and AXPT = (u(XPT &) — I + ef)dt + o (XY €, )AW; for t € (GuyCuia)in =
0,1,---. By noting Xg’”m =Xr=z<y=X{= XO’”I and applying the comparison theorem for solutions
of stochastic differential equations (see [7]), we can show that with probability one, X" < X™ for
t € [0,¢1). Further notice that any discontinuity of a surplus process is caused by a jump in the associated
process C* at the same time and hence, XZ’WJ = ngl,:rw +(CE -CE ) < Xng_rT +(CE —-CE ) = chl’”m with
probability one. As a result, by applying the comparison theorem on (¢;,(2) we can see Xf”rz < X;“TE
for t € ((1,¢2) with probability one. Repeating the same procedure, we can show that Xf’”$ < Xty’ﬂw
for t € (Cn,(pni1] with probability one. In conclusion, X©™ < XP™ for all t > 0 with probability one.
Therefore, 7% satisfies all the requirements for being an admissible strategy for the risk process X¥ and
hence, Ry r+(y,i) < Vi(y,i) and Rg=(y,i) < V(y,4). Using this and (3.4) we can show Ry r«(z,1) <
Ry 7= (y,1) < Vi(y,1). Similarly we can obtain R« (z,7) < V(y, ). By the arbitrariness of 7%, we conclude
that Vi(z,i) < Vi(y,i) and V(z,i) < V(y,i) for 0 <z < y.

Lemma A.1. For any f € C and i € S, suppose the function wy; : R x § — R with wy,(-,7) = f(-,7)
if j # 1, is bounded, continuously differentiable and piecewise twice continuously differentiable with respect
to the first argument on [0,00), and the function wy (-, 1) satisfies the ordinary differential equations (3.8)
and (3.9). Then, for any w € 11, there exists a positive sequence of stopping times {Tp;n =1,2,---} with

lim,, oo T = 00 such that

TnANT1 AL
. —A ™ —A ! ™
wf”i(xﬂ) = E(fvl) |:€ Tn/\(rlefﬂ(X‘rn/\al/\t?g‘l’nAUl/\t) + / lse swf,i(X‘rnAal/\Ug‘l’nAUl/\t)dS]
0

TnNo1 At _
- E(r,z) |: Z e_AS (wf,z(X;rv 557) - wf,i(X;r—a 557)) + / e_Asw}yi(X;r—7 fs)dcs:| .
0<s<TpAo1 At 0
T ANT1 AL AT 1
—A, / T T
_ E(f,l) |:‘/O e l('LUJc’,L-()(V877 557) — m)I{X87 Z b}d8:| . (A‘2)

Proof. The result follows by applying It6’s formula to e *mnrointwys (X7 0 & agiar). The full
detail of the proof can found on http://arxiv.org/abs/1506.08360.

Proof of Lemma 8.5. (i) The existence of a [0, c0)-continuously differentiable and [0,b) U (b, co)-twice
continuously differentiable bounded solution to (3.8), (3.9), and (3.10) can be proven by constructing a
general form of the solution from the sets of independent linear solutions to (3.8) and (3.9), respectively,

and then specifying the coefficients of the general form using the continuity and differentiability of the
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solution at b and letting the solution satisfying (3.10). Denote the solution by gp;(z). It suffices to
show Ry ov(x,i) = gpi(z) for # > 0. This can be done by defining wy; by wyi(z,5) = gpi()
if j = 4, and wy,(x,j) = f(x,j) if j # i, and then applying Lemma A.1 with 7 there being set

0.5 The full detail of the proof can be found on

to 7% and using the properties of the strategy =
http://arxiv.org/abs/1506.08360.

(ii) Note by (3.4) that limy o0 gp,i(2) = limg_so0 Ry zos(2,7) = Ay i, where the second last equality follows
by noticing that given Xg = z, X% — oo as z — oo and hence C%® — 0 as 2 — oo, and the last
equality follows by noting that, given (Xo,&y) = («,), o1 is exponentially distributed with mean é, and
using the definition of A;; in (3.7). So the constants K7, Ko, K3 and Ky are solutions to the equations
Kivy(byi) + Kovg(byi) + By(byi) = Ksvs(b;i) + Kqva(b;i) + Bo(byi), Kivi(b;i) + Kovh(b;i) + Bi(b;i) =
K3v4(b; 1) + Kqvj(by i) + Bh(b; i), K101 (0;1) + Kavh(0;54) = 3(00) + K4v4(00) + Ba(00) = Ay ;.

Note that the coefficients of the above system of equations are either constants or continuous functions

of b. Hence, K1, K5, K3 and K, are continuous functions of b, denoted by K (b), K2(b), K3(b) and K4(b)
here. As a result, the function hy;(b) = g ;(b) = Ki(b)vy(b) + K2(b)vy(b) + Bi(b;4) is continuous for

0<b<oo.

For any f € C,i € S and b > 0, define the functions h and h by

hpin(@) = (6; + @) Rypon(@,1) — p(w, )R o (@,1) = Y ij f ()
J#i

7 ( : i ] R}Jo,b(m,i)> [z > b, (A-3)

hpin(x) = (0 + @) Ry pon(2,) — pla, i) R o (2,8) = Y qij f(2,5)

J#i
1 , .

-1 (1 d Rf)ﬂo,b(x,z)> I{x > b}. (A-4)
Proof of Corollary 3.1. (i) is a result of Remark 3.1 and Lemma 3.3 (i). (ii) By (i) and Lemma
3.3(i) we have (‘%R}”To’b(m’i)}x:b = limg thl(iz(b)l) and [ R’f o (2, @')L:b = limg 2hfv(ib(b)l) Noting

R}’Wﬂ,b(byi) = ﬁ, we obtain [%Rf,ﬂgyb(x,z)} T {%Rﬁﬂo,b(m,z) o

For any sequence {y,}, define
, fn,g) = f(2,5)

k(@i {ya}) = (G g = 0@ D) R o (1) = D gy lim =202 (A-5)

J#i

Proof of Lemma 3.4. Throughout the proof, we assume f € D, i € S and b > 0, unless stated otherwise.

We use proof by contradiction. Suppose Rf 0 (04,4) > 0.
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Since Ry zo.0(-, ) is bounded, we can find a large enough x such that R, o0 (z,i) < &+ = Ry 10.0(0+, 1),
where the last equality is by Lemma 3.3 (i). Hence there exists an > 0 such that }’.ﬂo,o (z,4) < 0. In the
case b > 0, notice that R, ,,(0+,4) = L > RY; 0.(b,1). So for b > 0 there exists an x € (0,b) such that

R’f’ ~os(x,7) <0. Define 1 = inf{z > 0: R’){ ~ob(x,7) <0}, Then 21 > 0 in the case b= 0 and x; € (0,b)

in the case b > 0, and for b > 0,
R} on(21,9) =0, R ,,(z,4) >0 for z € [0,21). (A-6)
As a result, for b > 0,

1
R/f77r0,b(xai) > R}Jo’b (O+,Z) = 17 fOI' T € (O,xl}. (A-?)

Write Ry rob ;(2) = Ry zo0(,1). It follows by Lemma 3.3 that for b > 0, ARy o0 ;(z) = 0 for x > 0.
Therefore, it follows by (A-6) and (A-3) that for b > 0, hy,;p(x) = %R;ﬁmorb(z,i) >0for0<z <z
and hy,p(x1) = @R’f/ cos(21,7) = 0. Hence, we obtain that for b > 0,

hyip(x,i) — hygp(wr,1)
Xr — T

<0, 0<z <. (A-8)

Note that x1 > b in the case b = 0, and that x; < b in the case b > 0. Therefore, we can find a non-negative

sequence {x1,} with b < 21, < 21 in the case b = 0, 21, < 21 < b in the case b > 0, and lim,,—, oo T1, = 21
f(@1n,4)—f(21,5)

ZTin —2T1

sides of (A-8) gives kf (1,4 {1, }) — (u(x1,7) — LI{b=0}) Sﬁﬂoyb(xl, i) > 0, which combined with (A-6)
implies (Z#i ¢ij imy, s o0 % — qiR}mowb(ajl,i)) + (@ (z1,0) — &) R’f’ﬂo)b(ml,i) < 0. It follows
(see (A-T)) and lim,, f@ind)=f@1g) < 7 (due to f € D) that

1—c T1p—T1

such that lim,,_, exists. By replacing = in (A-8) by x1, and then letting n — oo on both

by this inequality, R ., (z1,1) >
(W' (w1,4) = 0;) R Lo(w1,4) > 0, which combined with (A-7) implies '(x1,i) — 6; > 0. This contradicts
the assumption that p'(x1,4) < 6;.

Proof of Lemma 3.5. We consider any fixed f € D and ¢ € § throughout the proof. We first show that

there exists a positive sequence {x,} with lim, . x, = 0o such that for b > 0,
’f”ﬂo,b(:cn,i) <0. (A-9)

Suppose the contrary: for some M > 0, R} ,,(x,i) > 0 for all z > M. This implies R} ,,(2,i) >

}mo,b(M +1,4) > R}mo,b(M,i) > 0 for x > M + 1, where the last inequality follows by the increasing
property of Ry ro.(-,4) (see Corollary 3.1(i)). As a result, Ry ro(x,i) > Ry on(M +1,0) + R o0 (M +
1,i)(x — M —1) for x > M + 1, which implies lim, o R¢ 0. (2,7) = oo. This contradicts the boundedness
of R¢ ros(+,1) (Corollary 3.1(i)).
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Write Ry o0 ;(x) = Rg ros(z,i). By Lemma 3.3 it follows that
Af,i7be77‘.0,b7i(l') =0 for x > 0. (A—lO)

(i) By Lemma 3.3 and Corollary 3.1 we can see that Ry ros () is twice continuously differentiable on

[0,00) with the differentiability at 0 referring to the differentiability from the right-hand side. It follows

by noting R'/f,ﬂ'o*b,i(b) = Rl)c'77r0,b(b7 Z) = 1+d 1
" on(04) <0 for b>0. (A-11)

We use proof by contradiction to prove the statement in (i). Suppose that the statement in (i) is not
true. Then there exists a b > 0 and a yo > 0 such that R ., (y0) = R} 0.(y0,9) > 0. Let {z,}
be the sequence defined as before. We can find a positive integer N such that zxy > yo. By noting
R os (@n) = RY ou(xn,i) <0 (due to (A-9)), (A-11) and the continuity of R} ., ,(-), we can find

Y1, Y2 with 0 <y < yo < y2 < xn such that
R}/’ﬂo,b(yl,i) =0, R;ﬁmo,b(yg,i) =0, and R’f”ﬂo,b(x,i) >0 for z € (y1,y2)- (A-12)
Hence,

R o i(y2) > R now i (41)- (A-13)

It follows by (A-10) and (A-3) that — (e, Z)R}’ x00,:(®) = hgpi(z) for x > 0. Note that for x > 0,
I{z > b} = I{x > b} in the case b = 0, and that in the case b > 0, 1+d — R} 04(b,7) = 0 and hence,

Z_(ﬁ - }.7ﬂ0,b(m,i)) H{z > b} = (ﬁ - }moyb(x,i)) I{x > b} for x > 0. Therefore, for z > 0,

(x d R} ou(2,i) = h¢.ip(x), which combined with (A-12) implies that for € (y1,y2),

- , o?(x,i -

sl = 28Ry =0« TE Ry i) =R, (A1)

- , o?(x,i -

rsolve) = VR e =0« TE Ry i) =) (a19)
Let {y1,} and {yan } be two sequences with y1,, | y1 and ya,, T y2 as n — oo such that lim,, oo W
and lim,, W exist for all j € S. Tt follows by (A-14) and (A-15) that hps. ”(y;;‘z Zlf HUCIIEN
0> Ef’i’b(y;:)_zg ib(y2) By letting n — 0o, we obtain

krp(yn, 5 {yin}) — p(yr, R o0 (y1,0) + lRf Lo (Y1, ) {yr > b} >0
and kb (Y2, % {y2n }) =1 (y2, )R} Lo (Y2, ) HIRY 04 (y2,1)[{y2 > b} < 0. Therefore, by noting RY ., (y1,i) =
0= R/ o.(y2,7) (see (A-12)) we have

kf b(yla 2 {yln}) k (y27 2 {an}) (A_16)
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On the other hand, note that 0 < &; + ¢; — p’(y1,7) < §; + ¢ — ' (y2,1) (due to the concavity of u(-,1)),
R},ﬂoyb(yl,z‘) < R}.mo,b(yg,i) (see (A-13)), lim, 0 W > lim, 00 % (due to the
concavity of f(-,7)). As aresult, k¢ p(y1, % {y1n}) < kfp(y2,%; {y2n}), which is a contradiction to (A-16).
(i) We distinguish two cases: (a) R} _o.,(b+,7) >0 and (b) R} o.(b+,i) <0.

(a) Suppose R o, (b+,7) > 0. By (A-9) we can find N > 0 such that xny > b and R} o, (zn,i) < 0.
Then by the continuity of the function RY ,,(-,i) on (b,00) (see Corollary 3.1(i)) we know that there
exists a y2 € (b, xn] such that RY o, (y2,7) =0 and RY ,,(z,7) >0 for z € (b,y2). We now proceed to
show that R7 ,,(b—,i) < 0. Suppose the contrary, i.e., R} o,(b—,i) > 0. By noting R} ,(0+,i) <0
(see (A-11)), it follows that there exists a yy € (0,b) such that R ,,(y1,4) =0 and R ,,(x,i) > 0 for
x € (y1,b). In summary, (A-12) holds for x € (y1,y2) — {b}. Repeating the argument right below (A-12)
in (i), we obtain a contradiction.

(b) Suppose R o, (b+,4) < 0. It follows by (A-10) and the assumption R’ ., (b,7) > ﬁd that

2hyip(@, .
pid(2,7) 1 on(b,i) 0. (A-17)

2h (1, 1)
"o (b=, i) = lim LT
g (b=) = i = <M= D

We now show that R}’ ~ob(®,7) < 0 for all x € [0,b). Suppose the contrary. That is, there exists some

€ [0,b) such that R} o, (x,7) > 0. Then by noting R ,,(0+,i) <0 (see (A-11)) and R7 ,,(b—,i) <0
(see (A-17)), we can find y; and yo with 0 < y; < ya < b such that R}',woﬁb(yl,i) =0, R/f/‘77.r0,b(y27i> =0 and
RY os(x,i) >0 for @ € (y1,y2). Repeating again the argument right after (A-12) in (i), we can obtain a

contradiction.

From now on, define for any f € C and ¢ € S, define the function wy; : R x & — R by
'LUf,z(,Z) = Rf,ﬂ'ovb('ﬂ;) and wf,z(vj) = f()j) lf] 7é i.

Proof of Theorem 3.1. Note that 777 = 0 given X > b. Hence, it follows from the definition (3.12) that

Wﬁb(x,i) = sup E(z,i) [Rfj,ro,b(Xar,ﬁo)] = Rfm.o,b(df,i) forx > band b=0. (A-18)
mell

We consider the case b > 0. By Lemma 3.5 (ii) we know that R} ,,(x,i) < 0 for z € [0,b), and
" os(b—,1) < 0. Therefore, it follows by Corollary 3.1(i) that

fmoe

1

1
1—¢ = R},T(O’b (O+,Z) Z R}7Fo,b($,i) 2 R/f,7r0=b(b’ Z) > — for 0 < S b. (A—lg)

1+d

It follows by Corollary 3.1(i) and Lemma 3.3 we know that w; (-, j) satisfies the conditions in Lemma A.1.
Then by applying Lemma A.1 we know that for some positive sequence of stopping times {7,,;n =1,2,---}
with lim,,_, 7, = 00, the equation (A-2) holds. By letting ¢ in (A-2) be 7] A t, noting that X7 — X7 =
Cs — Cs— > 0, and that given (Xo,&) = (x,4), X7 € [0,b) and w;(X] ,&—) = Ry rou(X] i) for
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X —-XT ANo1TE ANE = As T ANT1TE AAE o= As
T —Ag s— Tn 1Ty e n 1Ty e
s < o1 A7, that Zo<s§m/\glmgm e + f dC 0 —dC,, and

using(A-19), we derive that for any 7 € II, ¢ > 0 and 0 < z < b,

T ANT1IAT At l e—AS T ANO1AT, AL e—AS
E(m i) / ° ds — / dCS
! 0 ]. -+ d 0 ]. — C

+ e A‘rnA(TI ATE S Rﬁﬂ-o,b (I, Z) (A_20)

U
Mw; (X'rn,/\ol ATE AL Ernnon ATE At)

Note that the functions Ry o.0(-,j) and f(-,j) j € S are all bounded. Hence, the functions w;(-,j) j € S
are also bounded. By letting 7, — oo and ¢t — oo on both sides of (A-20), using the monotone convergence

theorem and the dominated convergence theorem and noticing that due to £s = &y for 0 < s < o1 we have

Es4) {B_AT“‘”wf,i(ngAal,ET;AUI)} = Bz, {6 ARy o (b, ) I{TE < a1} + e M1 f( Xy, 60 ) {00 <

77 }| and that 7 is an arbitrary admissible strategy and (3.12), we can conclude

Wyp(z,1) < Ry o (x,i) for 0 <z <b. (A-21)

Note that {(X} b ¢,);t > 0} is a strong Markov process and that by the Markov property it follows that

7',3"0Y Ao1 lefA 0 i T;D'b/\al 67A5 4
Ry on(z,1) = Eryp s X" > s — s
fmo (2,9 (,)[/O Tt } /0 —

£0.b
+ 70 AUl)Rf)ﬂ,o‘b (Xo;boyb/\ & 0 1):| < Wyp(x,i) for z >0, (A-22)
7 1T g ?

where the last inequality follows by noting 7% € II and the definition (3.12). Combining (A-18), (A-21)

and (A-22) completes the proof.
Proof of Theorem 3.2. We first show that

R}-’ﬂ,o,b(x7i) S R}’,ﬂ_o,b (b, Z) = H—% for x > b7 b Z 0 (A-23)

By Lemma 3.5(i) it follows that R oo(z,i) < 0 for z > 0. As a result, (A-23) holds for b = 0. Now

L. Since Ry on(bi) = it follows

suppose b > 0. By Lemma 3.3 (i) we know that R’fmo,b(OqL,i) =7 1+d,

by Corollary 3.1 (ii) that Ry ro.s(-,4) is twice continuously differentiable on [0,00) and by Lemma 3.5 (i)
that R, ,(z,4) <0 for x > 0. Hence, (A-23) holds for b > 0 as well, and

1 . , 1
1—c¢ Rf 70, b(0+ Z) > R;",WO,b(va) Z R},ﬂ'ovb(b, Z) = m for x € [07 b] (A_24)
It follows by using (A-23) and (A-24), and noting | > I, for s > 0 we obtain that for b > 0,
- . 1 )
lI{X;T Z b} < }77{.0,!;(X:_,Z) — :[—"—d) l Rfﬂ'o b( ﬂ‘_"L)
= (= 1){X] > bYR} 00 (XT_,0) - —I{X” > b} — 1, I{XT < b}R) on(XT_, i)

L= > b} — ;I{Xﬂ l P (A-25)
1+ = = s C1+d
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By (A-23) again we can obtain
1
R ou(x,1) < T for >0 and z > b. (A-26)
’ —c

Further, note that for b > 0 and any ¢ > 0,

E(Iyi) |:/ e_ASR}ﬂTO*b (X;:fsf)dés + E : e (Rfmo,b(X;T,fs,) - Rf,wovb(X§7§S)):|
0<s<ount 0<s<o1At
gt —A —A —A
e s - e s e s
< FE.; dC, XT—XT )| =FEq, ddy |, A-27
<Beo| [0 ¥ torexn)| =B X (A-27)

0<s<oiAt 0<s<oiAt

where the last inequality follows by (A-24), (A-26), dCy > 0, X7 — X7 = C, — C,_ > 0 and dC, =
dCy + Cy — Cs_.

It follows by Corollary 3.1(i) and Lemma 3.3 we know that the conditions in Lemma 3.3 are satisfied
by w;(+,7). By applying Lemma A.1 we know that for some positive sequence of stopping times {7,,;n =
1,2, } with lim,,_, o 7, = 00, the equation (A-2) holds for any 7 € II, any b,t > 0 and any n € N. By
using (A-2), (A-25) and (A-27) (setting t =t A 7,,) we arrive at Ry ro5(2,1) > Eg 4 [ OUNATn Lye™ " qo

0 14+d

glMAT" %dC’ﬁ-e*Af’lM“n Wi (X7 Atnr, > EorAtaTy )} for b > 0. By noting that the functions Ry 0.6 (-, %)

and f(-,j), j € S are bounded and letting ¢ — oo and then n — oo and then using the monotone
convergence theorem for the first two terms inside the expectation and the dominated convergence the-

—Ag

orem for the last term, we obtain that for b > 0, Ry ros(x,i) > E(w,i)[ o1 et g e 240, +

0 1+d —Jo 1-c
e An wa(X;rl,ﬁUl)]. By noting wy (X7 , &) = f(X7,,&s,) given & = i, the arbitrariness of m and the
definition of Vy in (3.5) we conclude Ry ros(x,i) > Vy(x,4) for > 0. On the other hand, Ry ros(z,) <
Vi (x,4) for x > 0 according to the definition (3.5). Consequently, Ry ro.x(x,i) = Vy(z,1) for x > 0.

Proof of Lemma 8.6. Recall that 77 is defined in (3.11). By Theorem 3.1 it follows that for any large

enough b and any = > 0,

OLNAT] l e—AS oINTy e_AS
Rf,vab(‘T7i) = Wf’b(‘r’i) - 7Srl€lIl')I E(I’Z) |:/0 i +d ds = /0 1- cdcs

+e M Ry ron(b, &) {1y < o1} + e Ao J(X7,, 60 ) {01 < rgf}]

> sup E /"1”5 ey /GIATJ T F(XT o) {or <777}
su s — e o o) {01 < T}
_well')l z o 1+d ) 11— o1 1 b

Note limy_,oc 7 = 00 and f is bounded. Then it follows by letting b — oo on both sides, and then using

the monotone convergence theorem twice and the dominated convergence that liminf, ., Rf’ﬂ-o,b(.’lf, i) >

o1 lse*As As

SUPert Bz, { o iy ds— 0‘71 c—dC, + e f(XT &0, )} = Vy(x,1) for £ > 0. This combined with

the fact Ry ro.0(x,1) < Vy(x,1) for x > 0 completes the proof.
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Proof of Theorem 3.3. (i) bf > 0 is obvious by the definition. We just need to prove bf < 00. Suppose

the contrary. Then by (3.13) we have Rf o (b, 1) > for all b > 0. Hence, it follows by Lemma 3.6

1+d

that Vy(z,4) = limycc Ry ro.s (2,) for 2 > 0. For any b > 0, by Theorem 3.1 we know R, (z,4) > m

for x € (0,0], which implies Ry o5 (x,7) > Ry r0.0(0,7) + Tiq forz € (0,b]. Hence, for any = > 0, we can

find a b > z such that Vf(x i) > Ry o (x,1) > Ry 00(0,4) + Hence, lim,_, o Vy(x,i) = +o00, which

1+d

contradicts Vy(z,) < for © > 0 (see Lemma 3.2). (ii) is a result of (i) and Theorem 3.2.

= 6(1+d)

Proof of Theorem 4.1. (i) Define an operator P by P(f)(z,?) = Rf ou! (z,4). By applying the results
about Rf o,/ Obtained in Section 3, we can show that P is non-decreasing and a contraction on the

)

complete space (D, || - ||). Using the monotonicity of P and the fixed point theory, we can show that

1
FCETIR As
a result, V € D. The full detail of the proof can be found on http://arxiv.org/abs/1506.08360. (ii) The
results follow by (i) and Theorem 3.3.

limy, 0o P(g2) > V' > limy 00 P™(92) = limy, 00 P™(g2), where g1(x,i) = 0 and go(z,i) =

Proof of Theorem 4.2. Note b)Y < oo for all i € S. Define an operator Q by Q(f)(z,i) = Rf oY (z,1).
We can show that Q is a contraction on (C,|| - ||), and both V and R,- are fixed points in (C,]|| -
[l). By the fixed point theory, we conclude V' = R «. The full detail of the proof can be found on

http://arxiv.org/abs/1506.08360.
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