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Abstract

We study the optimal financing and dividend distribution problem with

restricted dividend rates in a diffusion type surplus model where the drift

and volatility coefficients are general functions of the level of surplus and the

external environment regime. The environment regime is modeled by a Markov

process. Both capital injections and dividend payments incur expenses. The

objective is to maximize the expectation of the total discounted dividends minus

the total cost of capital injections. We prove that it is optimal to inject capitals

only when the surplus tends to fall below zero and to pay out dividends at the

maximal rate when the surplus is at or above the threshold dependent on the

environment regime.
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1. Introduction

The optimal dividend strategy problem has gained extensive attention. In the diffusion setting, many

works concerning dividend optimization use the Brownian motion model for the underlying cashflow

process. [1] extends the basic model by assuming that the drift coefficient is a linear function of the

level of cashflow and [2] uses the mean-reverting model and solves the optimization problem. [6] considers

the optimization problem under the model where the drift coefficient is proportional to the level of cashflow

and the diffusion coefficient is proportional to the square root of the cashflow level. [13], [11], [18] and
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some references therein address the optimization problems for the general diffusion model where the drift

and diffusion coefficients are general functions of the cashflow level.

An interesting and different direction of extension is to include the impact of the changing external

environments/conditions (for example, macroeconomic conditions and weather conditions) into modeling

of the cashflows. A continuous time Markov chain can be used to model the state of the external

environment condition, of which the use is supported by observation in financial markets. The optimal

dividend problem with regular control for Markov-modulated risk processes has been investigated under

a verity of assumptions. [14] solves the dividend optimization problem for a Markov-modulated Brownian

motion model with both the drift and diffusion coefficients modulated by a two-state Markov Chain. [17]

solves the problem for the Brownian motion model modulated by a multiple state Markov chain.

The optimality results in all the above works imply that distributing dividends according to the optimal

strategy leads almost surely to ruin. [3] proposes to include capital injections (financing) to prevent the

surplus becomes negative and therefore prevent ruin. Under the Brownian motion, [10] investigates the

optimal dividend and financing problem, and [5] studies the problem with risk exposure control through

control of reinsurance rate. The optimality problem with control in both capital injections and dividend

distribution in a Cramér-Lundberg model is addressed in [12]. [16] solves the problem for dual model with

transaction costs.

The purpose of this paper is to investigate optimal financing and dividend distribution problem with

restricted dividend rates in a general diffusion model with regime switching. Under the model, the

drift and volatility coefficients are general functions of the level of surplus and the external environment

regime, which is modeled by a Markov process. Similar to the “reflection problem”, the company can

control the financing /capital injections process (a deposit process) and the dividend distribution process

(a “withdrawal” process). Both capital injections and dividend payments will incur transaction costs.

Sufficient capital injections must be made to keep the controlled surplus process nonnegative and the

dividend payment rate is capped. This paper can be considered as an extension of the existing works on

the dividend optimization problem with restricted dividend rates for the diffusion models with or without

regime switching. The model considered is more general as it assumes that 1. the drift and volatility

are general functions of the cashflows; and 2. the model risk parameters (including drift, volatility and

discount rates) are dependent on the external environment regime.

The rest of the paper is organized as follows. We formulate the optimization problem in Section 2.

An auxiliary problem is introduced and solved in Section 3. Section 4 presents the optimality results. A

conclusion is provided in Section 5. Proofs are relegated to Appendix.



Optimal financing and dividend for a regime-switching general diffusion 3

2. Problem formulation

Consider a probability space (Ω,F ,P). Let {Wt; t ≥ 0} and {ξt; t ≥ 0} be respectively a standard

Brownian motion and a Markov chain with the finite state space S and the transition intensity matrix

Q = (qij)i,j∈S . The two stochastic processes {Wt; t ≥ 0} and {ξt; t ≥ 0} are independent. We use

{Ft; t ≥ 0} to denote the minimal complete σ-field generated by the stochastic process {(Wt, ξt); t ≥ 0}.

Let Xt denote the surplus at time t of a firm in absence of financing and dividend distribution. Assume

that X0 is F0 measurable and that Xt follows the dynamics, dXt = µ(Xt−, ξt−)dt + σ(Xt−, ξs−)dWt for

t ≥ 0, where the functions µ(·, j) and σ(·, j) are Lipschitz continuous, differentiable and grow at most

linearly on [0,∞) with µ(0, u) ≥ 0. Furthermore, the function µ(·, j) is concave and the function σ(·, j) is

positive and non-vanishing.

The firm must have nonnegative assets in order to continue its business. If necessary, the firm needs

to raise money from the market. For each dollar of money raised, it includes c dollars of transaction cost

and hence leads to an increase of 1 − c dollars in the surplus through capital injection. Let Ct denote

the cumulative amount of capital injections up to time t. Then the total cost for capital injections up to

time t is Ct

1−c . The company can distribute part of its assets to the shareholders as dividends. For each

dollar of dividends received by the shareholders, there will be d dollars of cost incurred to them. Let Dt

denote the cumulative amount of dividends paid out by the company up to time t. Then the total amount

of dividends received by the shareholders up to time t is Dt

1+d . We consider the case where the dividend

distribution rate is restricted. Let the random variable ls denote the dividend payment rate at time s with

the restriction 0 ≤ ls ≤ l̄ where l̄(> 0) is constant. Then Dt =
∫ t

0
lsds. Both Ct and Dt are controlled by

the company’s decision makers. Define π = {(Ct, Dt); t ≥ 0}. We call π a control strategy.

Taking financing and dividend distribution into consideration, the dynamics of the (controlled) surplus

process with the strategy π becomes

dXπ
t = (µ(Xπ

t−, ξt−)− lt)dt+ σ(Xπ
t−, ξt−)dWt + dCt, t ≥ 0. (2.1)

Define P(x,i) ( · ) = P ( · |X0 = x, ξ0 = i) , E(x,i) [ · ] = E [ · |X0 = x, ξ0 = i] , Pi ( · ) = P ( · |ξ0 = i) , and

Ei [ · ] = E [ · |ξ0 = i] . The performance of a control strategy π is measured by its return function defined

as follows:

Rπ(x, i) = E(x,i)

[∫ ∞

0

e−Λt
lt

1 + d
dt−

∫ ∞

0

e−Λt
1

1− c
dCt

]
, x ≥ 0, i ∈ S, (2.2)

where Λt =
∫ t

0
δξsds with δξs representing the force of discount at time s. Assume δi > 0, i ∈ S.

A strategy π = {(Ct, Dt); t ≥ 0} is said to be admissible if (i) both {Ct; t ≥ 0} and {Dt; t ≥ 0} are

nonnegative, increasing, càdlàg, and {Ft; t ≥ 0}-adapted processes, (ii) there exists an {Ft; t ≥ 0}-adapted
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process {lt; t ≥ 0} with lt ∈ [0, l̄] such that Dt =
∫ t

0
lsds and (iii) Xπ

t ≥ 0 for all t > 0. We use Π to denote

the class of admissible strategies.

Since {Ct; t ≥ 0} is right continuous and increasing, we have the following decomposition: Ct = C̃t +

Ct − Ct−, where {C̃t; t ≥ 0} represents the continuous part of {Ct; t ≥ 0}.

For convenience, we use X, Xπ, ξ and (Xπ, ξ) to denote the stochastic processes {Xt; t ≥ 0}, {Xπ
t ; t ≥

0}, {ξt; t ≥ 0} and {(Xπ
t , ξt); t ≥ 0}, respectively. Note that for any admissible strategy π, the stochastic

process Xπ is right-continuous and adapted to the filtration {Ft; t ≥ 0}.

The objective of this paper is to study the maximal return function (value function):

V (x, i) = sup
π∈Π

Rπ(x, i), (2.3)

and to identify the associated optimal admissible strategy, if any. Following the standard argument in

stochastic control theory [4], we can show that the value function fulfils the following dynamic programming

principle: V (x, i) = supπ∈Π E(x,i)

[ ∫ τ

0
lte

−Λt

1+d dt−
∫ τ

0
e−Λt

1−c dCt + e−ΛτV (Xπ
τ , ξ

π
τ )
]
for any stopping time τ .

3. An auxiliary optimization problem

Motivated by [8], which introduces an auxiliary problem where the objective functional is modified in a

way such that only the “returns” over the time period from the beginning up to the first regime switching

are included plus a terminal value at the moment of the first regime switching, we start with a similar

auxiliary problem first. The optimality results of this problem will play an essential role in solving the

original optimization problem.

Throughout the paper, we define δ = minj∈S δj , qi = −qii, and σ1 = inf{t > 0 : ξt ̸= ξ0}. Here, σ1 is

the first transition time of the Markov process ξ. For any function g : R+×S → R+, we use g′(·) and g′′(·)

to denote the first order and second order derivatives, respectively, with respect to the first argument. We

start with introducing two special classes of functions.

Definition 3.1. (i) Let C denote the class of functions g : R+ × S → R such that for each j ∈ S,

g(·, j) is nondecreasing and g(·, j) ≤ l̄
δ(1+d) . (ii) Let D denote the class of functions g ∈ C such that for

each j ∈ S, g(·, j) is concave and g(x,j)−g(y,j)
x−y ≤ 1

1−c for 0 ≤ x < y. (iii) Define the distance || · || by

||f − g|| = maxx≥0,i∈S |f(x, i)− g(x, i)| for f, g ∈ D.

Lemma 3.1. The metric space (D, || · ||) is complete.
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Define a modified return function and the associated optimal return function by

Rf,π(x, i) =E(x,i)

[ ∫ σ1

0

lte
−Λt

1 + d
dt−

∫ σ1

0

e−Λt

1− c
dCt + e−Λσ1 f(Xπ

σ1
, ξσ1)

]
, x ≥ 0, i ∈ S, (3.4)

Vf (x, i) = sup
π∈Π

Rf,π(x, i), x ≥ 0, i ∈ S. (3.5)

Lemma 3.2. For any f ∈ C, V, Vf ∈ C .

Notice that the un-controlled process (X, ξ) is a Markov process. For any f ∈ C and any i ∈ S, the following

Hamilton-Jacobi-Bellman (HJB) equation for the modified value function Vf (·, i) can be obtained by using

standard arguments in stochastic control: for x ≥ 0

max
{
maxl∈[0,l̄]

(
σ2(x,i)

2
V ′′
f (x, i) + µ(x, i)V ′

f (x, i)− δiVf (x, i) + l
(

1
1+d

− V ′
f (x, i)

))
, V ′

f (x, i)− 1
1−c

}
= 0.

Now we define a special class of admissible strategies, which has been shown in the literature to contain

the optimal strategy for the original optimization problem if there is 1 regime only. Since the return

function of the modified optimization includes the dividends and capital injections in the first regime only,

this problem can be considered as a problem to maximize the returns up to an independent exponential

time for a risk model with 1 regime. It is worth studying the special class of strategies mentioned above

to see whether the optimal strategy of the modified problem falls into this class as well.

Definition 3.2. For any b ≥ 0, define the strategy π0,b = {(C0,b
t , D0,b

t ); t ≥ 0} in the way such that the

company pays dividends at the maximal rate l̄ when the surplus equals or exceeds b, pays no dividends

when the surplus is below b and the company injects capital to maintain the surplus at level 0 whenever

the surplus tends to go below 0 without capital injections.

We now investigate whether a strategy π0,b with an appropriate value for b is optimal or not for the

modified optimization problem. We start with studying the associated return functions. For convenience,

we write X0,b = Xπ0,b

throughout the rest of the paper.

Remark 3.1. (i) It is not hard to see that π0,b is admissible and that both π0,b and X0,b are Markov

processes. (ii) For any function f ∈ C and any i ∈ S, by applying the comparison theorem used to prove

the non-decreasing property of V (·, i) and Vf (·, i) in Lemma 3.2 we can show that the function Rf,π0,b(·, i)

is non-decreasing on [0,∞) as well.

For any f ∈ C, i ∈ S and b ≥ 0, define the operator Af,i,b by

Af,i,b g(x) =
σ2(x, i)

2
g′′(x) + (µ(x, i)− l̄)g′(x)− (δi + qi)g(x) +

l̄

1 + d
+
∑
j ̸=i

qijf(x, j) = 0. (3.6)

The following conditions will be required for the main theorems.
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Condition 1: The functions µ(·, i) and σ(·, i) are the ones such that for any given function f ∈ D and

any given i ∈ S, the ordinary differential equation Af,i,b g(x) = 0 with any finite initial value at x = 0 has

a bounded solution over (0,∞).

A sufficient condition for Condition 1 to hold is that both the functions µ(·, i) and σ(·, i) are bounded

on [0,∞) (see Theorem 5.4.2 in [9]). However, this is far away from necessary. For example, when µ(·, i)

is a linear function with positive slope and σ(·, i) is a constant Condition 1 also holds (see section 4.4 of

[18]).

Condition 2: µ′(x, i) ≤ δi for all x ≥ 0 and i ∈ S.

Define for any function f ∈ C and i ∈ S,

Af,i =
l̄/(1 + d) +

∑
j ̸=i qijf(∞, j)

qi + δi
. (3.7)

Lemma 3.3. Suppose Condition 1 holds. For any function f ∈ D , any i ∈ S, (i) the function Rf,π0,b(·, i)

for any b ≥ 0, is a continuously differentiable solution on [0,∞) to the equations

σ2(x, i)

2
g′′(x) + µ(x, i)g′(x)− (δi + qi)g(x) +

∑
j ̸=i

qijf(x, j) = 0, 0 < x < b, (3.8)

σ2(x, i)

2
g′′(x) + (µ(x, i)− l̄)g′(x)− (δi + qi)g(x) +

∑
j ̸=i

qijf(x, j) = − l̄

1 + d
, x > b, (3.9)

g′(0+) =
1

1− c
, lim

x→∞
g(x) < ∞, (3.10)

and is twice continuously differentiable on (0, b) ∪ (b,∞); (ii) the function hf,i(b) := R′
f,π0,b(b, i) is

continuous with respect to b for 0 < b < ∞.

Throughout the paper, we use d−

dx g(x, i) and d+

dx g(x, i) to represent the derivatives of g from the left-

and right-hand side, respectively, with respect to x.

Corollary 3.1. Suppose Condition 1 holds. For any f ∈ D, i ∈ S and b ≥ 0, (i) Rf,π0,b(·, i) is

increasing, bounded, continuously differentiable on (0,∞), and twice continuously differentiable on (0, b)∪

(b,∞) with R′
f,π0,b(0+, i) = 1

1−c ,
[
d−

dxR
′
f,π0,b(x, i)

]
x=b

= limx↑b R
′′
f,π0,b(x, i) and

[
d+

dxR
′
f,π0,b(x, i)

]
x=b

=

limx↓b R
′′
f,π0,b(x, i); and (ii) if R′

f,π0,b(b, i) =
1

1+d , then Rf,π0,b(x, i) is twice continuously differentiable with

respect to x at x = b.

We use R′
f,π0,b(0, i) and R′′

f,π0,b(0, i) to denote R′
f,π0,b(0+, i) and R′′

f,π0,b(0+, i), respectively.

Lemma 3.4. Suppose Conditions 1 and 2 hold. For any fixed f ∈ D, i ∈ S and b ≥ 0, we have

R′′
f,π0,0(0+, i) ≤ 0, and in the case b > 0, R′′

f,π0,b(0+, i) ≤ 0 if R′
f,π0,b(b, i) ≤ 1

1−c .
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Lemma 3.5. Suppose Conditions 1 and 2 hold. For any f ∈ D and i ∈ S, (i) R′′
f,π0,0(x, i) ≤ 0 for

x ≥ 0, and in the case b > 0, R′′
f,π0,b(x, i) ≤ 0 for x ≥ 0 if R′

f,π0,b(b, i) = 1
1+d ; and (ii) for b > 0, if

R′
f,π0,b(b, i) >

1
1+d , R

′′
f,π0,b(x, i) ≤ 0 for x ∈ [0, b) and R′′

f,π0,b(b−, 0) ≤ 0.

Let I{·} be the indicator function. Define for any fixed b ≥ 0 and any fixed π ∈ Π,

τπb = inf{t ≥ 0 : Xπ
t ≥ b}, (3.11)

Wf,b(x, i) = sup
π∈Π

E(x,i)

[∫ τπ
b ∧σ1

0

e−Λs
ls

1 + d
ds−

∫ τπ
b ∧σ1

0

e−Λs
1

1− c
dCs

+ e
−Λτπ

b Rf,π0,b(Xπ
τπ
b
, ξ0)I{τπb < σ1}+ e−Λσ1 f(Xπ

σ1
, ξσ1)I{σ1 ≤ τπb }

]
. (3.12)

Theorem 3.1. Suppose Conditions 1 and 2 hold. For any f ∈ D, any i ∈ S and any b > 0, if

R′
f,π0,b(b, i) >

1
1+d , then R′

f,π0,b(x, i) >
1

1+d for 0 < x ≤ b and Rf,π0,b(x, i) = Wf,b(x, i) for x ≥ 0.

We show in the following theorems that if b is chosen appropriately, the return function for the strategy

π0,b coincides with the optimal return function of the modified problem.

Theorem 3.2. Suppose that Conditions 1 and 2 hold. For any f ∈ D and any i ∈ S, (i) if R′
f,π0,0(0+, i) ≤

1
1+d , then Vf (x, i) = Rf,π0,0(x, i) for x ≥ 0; and (ii) if for a fixed b > 0, R′

f,π0,b(b, i) = 1
1+d , then

Vf (x, i) = Rf,π0,b(x, i) for x ≥ 0.

Lemma 3.6. Suppose Conditions 1 and 2 hold, f ∈ D and i ∈ S. Let R′
f,π0,0(0, i) denote R′

f,π0,0(0+, i).

If R′
f,π0,b(b, i) >

1
1+d for all b ≥ 0, then Vf (x, i) = limb→∞ Rf,π0,b(x, i) for x ≥ 0.

Again we use R′
f,π0,0(0, i) to denote R′

f,π0,0(0+, i). Define for any f ∈ D and i ∈ S,

bfi = ∞ if R′
f,π0,b(b, i) >

1
1+d for all b ≥ 0, and bfi = inf{b ≥ 0 : R′

f,π0,b(b, i) ≤ 1
1+d} otherwise. (3.13)

We show in the following that the strategy π0,bfi is optimal for the modified problem.

Theorem 3.3. Suppose Conditions 1 and 2 hold. For any f ∈ D and any i ∈ S, (i) 0 ≤ bfi < ∞; and (ii)

Vf (x, i) = R
f,π0,b

f
i
(x, i) for x ≥ 0.

4. The optimality results

We use the obtained optimality results for the modified optimization problem to address the original

optimization problem. The starting point is to notice that the optimal return function of the original

optimization Vf , when the fixed function f is chosen to be the value function of the original optimization,

coincides with the value function V .
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Theorem 4.1. If Conditions 1 and 2 hold, (i) V ∈ D; (ii) bVi < ∞ and V (x, i) = R
V,π0,bV

i
(x, i).

Theorem 4.2. Define π∗ to be the strategy under which, the dividend pay-out rate at any time t is

l̄I{Xπ∗

t }, and the company injects capital to maintain the surplus at level 0 whenever the surplus tends to

go below 0 without capital injections. If Conditions 1 and 2 hold, then V (x, i) = V π∗
(x, i) i ∈ E and the

strategy π∗ is an optimal strategy.

5. Conclusion

We have addressed the optimal dividend and financing problem for a regime-switching general diffusion

model with restricted dividend rates. Our conclusion is that it is optimal to inject capitals only when

necessary and at a minimal amount sufficient for the business to continue, and to pay out dividends at the

maximal rate, l̄, when the surplus exceeds the threshold dependent on the environmental state. This result

is consistent with the findings for similar problems under simpler model configuration in the literature. For

example, the optimal strategy with restricted dividend rates is of threshold type for the Brownian motion

(see [15]), the general diffusion (see [18]), and the regime-switching Brownian motion (see [17]).

Appendix A. Proofs for Sections 3 and 4

For any i ∈ S and b ≥ 0, define the operator B by

B g(x, i) =
σ2(x, i)

2
g′′(x, i) + µ(x, i)g′(x, i)− δig(x, i). (A-1)

Proof of Lemma 3.1. Consider any convergent sequence {gn;n = 1, 2, · · · } in D with limit g. It is

sufficient to show g ∈ D. As for any fixed i and n, gn(·, i) is nondecreasing and concave, so is the function

g(·, i). The inequality g(·, i) ≤ l̄
δ(1+d) follows immediately by noticing gn(·, i) ≤ l̄

δ(1+d) . It remains to show

that g(x,i)−g(y,i)
x−y ≤ 1

1−c for 0 ≤ x < y. We use proof by contradiction. Suppose that there exist x0, y0 with

0 ≤ x0 < y0 and j such that g(x0,j)−g(y0,j)
x0−y0

> 1
1−c . Define ϵ0 := 1

2

(
g(x0,j)−g(y0,j)

x0−y0
− 1

1−c

)
. Clearly, ϵ0 > 0.

As gn converges to g, we can find an N > 0 such that for all n ≥ N , ||gn − g|| ≤ ϵ0(y0 − x0). Therefore,

|gn(y0, j)−g(y0, j)| ≤ ϵ0(y0−x0) and |gn(x0, j)−g(x0, j)| ≤ ϵ0(y0−x0). As a result, gn(y0, j)−gn(x0, j) ≥

g(y0, j)− ϵ0(y0 − x0)− (g(x0, j) + ϵ0(y0 − x0)) = g(y0, j)− g(x0, j)− 2ϵ0(y0 − x0) =
y0−x0

1−c . On the other

hand, we have gn(y0,j)−gn(x0,j)
y0−x0

< 1
1−c (due to gn ∈ D), which is a contradiction.

Proof of Lemma 3.2. Noting that ls ≤ l̄ and that σ1 is exponentially distributed with mean 1
qi

and

Λs = δis for s ≤ σ1, the upper-bounds follow easily from (2.2), (2.3) and (3.5).

Fix x and y with y > x ≥ 0. Let {Xx
t ; t ≥ 0} and {Xy

t ; t ≥ 0} denote the surplus processes in absence

of control with initial surplus x and y, respectively. We use πx = {(Cx
t , D

x
t ) : t ≥ 0} with Dx

t =
∫ t

0
lxsds
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to denote any admissible control strategy for the process {Xx
t ; t ≥ 0}. Noting that {Cx

t ; t ≥ 0} is right-

continuous and increasing, we have the following decomposition: Cx
t =

∫ t

0
exsds+

∑
0<s≤t(C

x
s −Cx

s−). Define

ζ0 = 0, ζ1 = inf{s > 0 : Cx
s − Cx

s− > 0 or ξs ̸= ξs−} and ζn+1 = {s > ζn : Cx
s − Cx

s− > 0 or ξs ̸= ξs−}

for n = 1, 2, · · · . Note that ξt = ξζn for t ∈ [ζn, ζn+1) and hence, dXx,πx

t = (µ(Xx,πx

t− , ξζn) − lxt + ext )dt +

σ(Xx,πx

t− , ξζn)dWt and dXy,πx

t = (µ(Xy,πx

t− , ξζn) − lxt + ext )dt + σ(Xy,πx

t− , ξζn)dWt for t ∈ (ζn, ζn+1), n =

0, 1, · · · . By notingXx,πx

0 = Xx
0 = x < y = Xy

0 = Xy,πx

0 and applying the comparison theorem for solutions

of stochastic differential equations (see [7]), we can show that with probability one, Xx,πx

t ≤ Xy,πx

t for

t ∈ [0, ζ1). Further notice that any discontinuity of a surplus process is caused by a jump in the associated

process Cx at the same time and hence, Xx,πx

ζ1
= Xx,πx

ζ1− +(Cx
ζ1
−Cx

ζ1−) ≤ Xy,πx

ζ1− +(Cx
ζ1
−Cx

ζ1−) = Xy,πx

ζ1
with

probability one. As a result, by applying the comparison theorem on (ζ1, ζ2) we can see Xx,πx

t ≤ Xy,πx

t

for t ∈ (ζ1, ζ2) with probability one. Repeating the same procedure, we can show that Xx,πx

t ≤ Xy,πx

t

for t ∈ (ζn, ζn+1] with probability one. In conclusion, Xx,πx

t ≤ Xy,πx

t for all t ≥ 0 with probability one.

Therefore, πx satisfies all the requirements for being an admissible strategy for the risk process Xy and

hence, Rf,πx(y, i) ≤ Vf (y, i) and Rπx(y, i) ≤ V (y, i). Using this and (3.4) we can show Rf,πx(x, i) ≤

Rf,πx(y, i) ≤ Vf (y, i). Similarly we can obtain Rπx(x, i) ≤ V (y, i). By the arbitrariness of πx, we conclude

that Vf (x, i) ≤ Vf (y, i) and V (x, i) ≤ V (y, i) for 0 ≤ x < y.

Lemma A.1. For any f ∈ C and i ∈ S, suppose the function wf,i : R × S → R with wf,i(·, j) = f(·, j)

if j ̸= i, is bounded, continuously differentiable and piecewise twice continuously differentiable with respect

to the first argument on [0,∞), and the function wf,i(·, i) satisfies the ordinary differential equations (3.8)

and (3.9). Then, for any π ∈ Π, there exists a positive sequence of stopping times {τn;n = 1, 2, · · · } with

limn→∞ τn = ∞ such that

wf,i(x, i) = E(x,i)

[
e−Λτn∧σ1∧twf,i(X

π
τn∧σ1∧t, ξτn∧σ1∧t) +

∫ τn∧σ1∧t

0

lse
−Λsw′

f,i(X
π
τn∧σ1∧t, ξτn∧σ1∧t)ds

]
− E(x,i)

[ ∑
0<s≤τn∧σ1∧t

e−Λs
(
wf,i(X

π
s , ξs−)− wf,i(X

π
s−, ξs−)

)
+

∫ τn∧σ1∧t

0

e−Λsw′
f,i(X

π
s−, ξs−)dC̃s

]
.

− E(x,i)

[ ∫ τn∧σ1∧t

0

e−Λs l̄(w′
f,i(X

π
s−, ξs−)−

1

1 + d
)I{Xπ

s− ≥ b}ds
]
. (A-2)

Proof. The result follows by applying Itô’s formula to e−Λτn∧σ1∧twf,i(X
π
τn∧σ1∧t, ξτn∧σ1∧t). The full

detail of the proof can found on http://arxiv.org/abs/1506.08360.

Proof of Lemma 3.3. (i) The existence of a [0,∞)-continuously differentiable and [0, b) ∪ (b,∞)-twice

continuously differentiable bounded solution to (3.8), (3.9), and (3.10) can be proven by constructing a

general form of the solution from the sets of independent linear solutions to (3.8) and (3.9), respectively,

and then specifying the coefficients of the general form using the continuity and differentiability of the
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solution at b and letting the solution satisfying (3.10). Denote the solution by gb,i(x). It suffices to

show Rf,π0,b(x, i) = gb,i(x) for x ≥ 0. This can be done by defining wf,i by wf,i(x, j) = gb,i(x)

if j = i, and wf,i(x, j) = f(x, j) if j ̸= i, and then applying Lemma A.1 with π there being set

to π0,b and using the properties of the strategy π0,b. The full detail of the proof can be found on

http://arxiv.org/abs/1506.08360.

(ii) Note by (3.4) that limx→∞ gb,i(x) = limx→∞ Rf,π0,b(x, i) = Af,i, where the second last equality follows

by noticing that given X0 = x, X0,b
s → ∞ as x → ∞ and hence C0,b

s → 0 as x → ∞, and the last

equality follows by noting that, given (X0, ξ0) = (x, i), σ1 is exponentially distributed with mean 1
qi
, and

using the definition of Af,i in (3.7). So the constants K1,K2,K3 and K4 are solutions to the equations

K1v1(b; i) + K2v2(b; i) + B1(b; i) = K3v3(b; i) + K4v4(b; i) + B2(b; i), K1v
′
1(b; i) + K2v

′
2(b; i) + B′

1(b; i) =

K3v
′
3(b; i) +K4v

′
4(b; i) +B′

2(b; i), K1v
′
1(0; i) +K2v

′
2(0; i) =

1
1−c and K3v3(∞) +K4v4(∞) +B2(∞) = Af,i.

Note that the coefficients of the above system of equations are either constants or continuous functions

of b. Hence, K1,K2,K3 and K4 are continuous functions of b, denoted by K1(b),K2(b),K3(b) and K4(b)

here. As a result, the function hf,i(b) = g′b,i(b) = K1(b)v
′
1(b) + K2(b)v

′
2(b) + B′

1(b; i) is continuous for

0 < b < ∞.

For any f ∈ C, i ∈ S and b ≥ 0, define the functions h and h̄ by

hf,i,b(x) = (δi + qi)Rf,π0,b(x, i)− µ(x, i)R′
f,π0,b(x, i)−

∑
j ̸=i

qijf(x, j)

− l̄

(
1

1 + d
−R′

f,π0,b(x, i)

)
I{x ≥ b}, (A-3)

h̄f,i,b(x) = (δi + qi)Rf,π0,b(x, i)− µ(x, i)R′
f,π0,b(x, i)−

∑
j ̸=i

qijf(x, j)

− l̄

(
1

1 + d
−R′

f,π0,b(x, i)

)
I{x > b}. (A-4)

Proof of Corollary 3.1. (i) is a result of Remark 3.1 and Lemma 3.3 (i). (ii) By (i) and Lemma

3.3(i) we have
[
d−

dxR
′
f,π0,b(x, i)

]
x=b

= limx↓b
2hf,i,b(b,i)

σ2(b,i) and
[
d+

dxR
′
f,π0,b(x, i)

]
x=b

= limx↓b
2hf,i,b(b,i)

σ2(b,i) . Noting

R′
f,π0,b(b, i) =

1
1+d , we obtain

[
d−

dxR
′
f,π0,b(x, i)

]
x=b

=
[
d+

dxR
′
f,π0,b(x, i)

]
x=b

.

For any sequence {yn}, define

kf,b(x, i; {yn}) = (δi + qi − µ′(x, i))R′
f,π0,b(x, i)−

∑
j ̸=i

qij lim
n→∞

f(yn, j)− f(x, j)

yn − x
. (A-5)

Proof of Lemma 3.4. Throughout the proof, we assume f ∈ D, i ∈ S and b ≥ 0, unless stated otherwise.

We use proof by contradiction. Suppose R′′
f,π0,b(0+, i) > 0.



Optimal financing and dividend for a regime-switching general diffusion 11

Since Rf,π0,0(·, i) is bounded, we can find a large enough x such that R′
f,π0,0(x, i) <

1
1−c = R′

f,π0,0(0+, i),

where the last equality is by Lemma 3.3 (i). Hence there exists an x > 0 such that R′′
f,π0,0(x, i) < 0. In the

case b > 0, notice that R′
f,π0,b(0+, i) = 1

1−c ≥ R′
f,π0,b(b, i). So for b > 0 there exists an x ∈ (0, b) such that

R′′
f,π0,b(x, i) ≤ 0. Define x1 = inf{x > 0 : R′′

f,π0,b(x, i) ≤ 0}. Then x1 > 0 in the case b = 0 and x1 ∈ (0, b)

in the case b > 0, and for b ≥ 0,

R′′
f,π0,b(x1, i) = 0, R′′

f,π0,b(x, i) > 0 for x ∈ [0, x1). (A-6)

As a result, for b ≥ 0,

R′
f,π0,b(x, i) > R′

f,π0,b(0+, i) =
1

1− c
for x ∈ (0, x1]. (A-7)

Write Rf,π0,b,i(x) = Rf,π0,b(x, i). It follows by Lemma 3.3 that for b ≥ 0, Af,i,bRf,π0,b,i(x) = 0 for x > 0.

Therefore, it follows by (A-6) and (A-3) that for b ≥ 0, hf,i,b(x) =
σ2(x,i)

2 R′′
f,π0,b(x, i) > 0 for 0 < x < x1

and hf,i,b(x1) =
σ2(x1,i)

2 R′′
f,π0,b(x1, i) = 0. Hence, we obtain that for b ≥ 0,

hf,i,b(x, i)− hf,i,b(x1, i)

x− x1
< 0, 0 < x < x1. (A-8)

Note that x1 > b in the case b = 0, and that x1 < b in the case b > 0. Therefore, we can find a non-negative

sequence {x1n} with b < x1n ≤ x1 in the case b = 0, x1n ≤ x1 < b in the case b > 0, and limn→∞ x1n = x1

such that limn→∞
f(x1n,j)−f(x1,j)

x1n−x1
exists. By replacing x in (A-8) by x1n and then letting n → ∞ on both

sides of (A-8) gives kf,b(x1, i; {x1n})− (µ(x1, i)− l̄I{b = 0})R′′
f,π0,b(x1, i) ≥ 0, which combined with (A-6)

implies
(∑

j ̸=i qij limn→∞
f(x1n,j)−f(x1,j)

x1n−x1
− qiR

′
f,π0,b(x1, i)

)
+ (µ′(x1, i)− δi)R

′
f,π0,b(x1, i) ≤ 0. It follows

by this inequality, R′
f,π0,b(x1, i) >

1
1−c (see (A-7)) and limn→∞

f(x1n,j)−f(x1,j)
x1n−x1

≤ 1
1−c (due to f ∈ D) that

(µ′(x1, i)− δi)R
′
f,π0,b(x1, i) > 0, which combined with (A-7) implies µ′(x1, i) − δi > 0. This contradicts

the assumption that µ′(x1, i) ≤ δi.

Proof of Lemma 3.5. We consider any fixed f ∈ D and i ∈ S throughout the proof. We first show that

there exists a positive sequence {xn} with limn→∞ xn = ∞ such that for b ≥ 0,

R′′
f,π0,b(xn, i) ≤ 0. (A-9)

Suppose the contrary: for some M > 0, R′′
f,π0,b(x, i) > 0 for all x ≥ M . This implies R′

f,π0,b(x, i) >

R′
f,π0,b(M + 1, i) > R′

f,π0,b(M, i) ≥ 0 for x > M + 1, where the last inequality follows by the increasing

property of Rf,π0,b(·, i) (see Corollary 3.1(i)). As a result, Rf,π0,b(x, i) > Rf,π0,b(M + 1, i) + R′
f,π0,b(M +

1, i)(x−M −1) for x > M +1, which implies limx→∞ Rf,π0,b(x, i) = ∞. This contradicts the boundedness

of Rf,π0,b(·, i) (Corollary 3.1(i)).
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Write Rf,π0,b,i(x) = Rf,π0,b(x, i). By Lemma 3.3 it follows that

Af,i,bRf,π0,b,i(x) = 0 for x > 0. (A-10)

(i) By Lemma 3.3 and Corollary 3.1 we can see that Rf,π0,b,i(·) is twice continuously differentiable on

[0,∞) with the differentiability at 0 referring to the differentiability from the right-hand side. It follows

by noting R′
f,π0,b,i(b) = R′

f,π0,b(b, i) =
1

1+d ≤ 1
1−c for b > 0, and Lemma 3.4 that

R′′
f,π0,b,i(0+) ≤ 0 for b ≥ 0. (A-11)

We use proof by contradiction to prove the statement in (i). Suppose that the statement in (i) is not

true. Then there exists a b ≥ 0 and a y0 > 0 such that R′′
f,π0,b,i(y0) = R′′

f,π0,b(y0, i) > 0. Let {xn}

be the sequence defined as before. We can find a positive integer N such that xN > y0. By noting

R′′
f,π0,b,i(xN ) = R′′

f,π0,b(xN , i) ≤ 0 (due to (A-9)), (A-11) and the continuity of R′′
f,π0,b,i(·), we can find

y1, y2 with 0 ≤ y1 < y0 < y2 ≤ xN such that

R′′
f,π0,b(y1, i) = 0, R′′

f,π0,b(y2, i) = 0, and R′′
f,π0,b(x, i) > 0 for x ∈ (y1, y2). (A-12)

Hence,

R′
f,π0,b,i(y2) > R′

f,π0,b,i(y1). (A-13)

It follows by (A-10) and (A-3) that −σ2(x,i)
2 R′′

f,π0,b,i(x) = hf,b,i(x) for x > 0. Note that for x > 0,

I{x ≥ b} = I{x > b} in the case b = 0, and that in the case b > 0, 1
1+d − R′

f,π0,b(b, i) = 0 and hence,

l̄
(

1
1+d −R′

f,π0,b(x, i)
)
I{x ≥ b} = l̄

(
1

1+d −R′
f,π0,b(x, i)

)
I{x > b} for x > 0. Therefore, for x > 0,

σ2(x,i)
2 R′′

f,π0,b(x, i) = h̄f,i,b(x), which combined with (A-12) implies that for x ∈ (y1, y2),

h̄f,i,b(y1) =
σ2(y1, i)

2
R′′

f,π0,b(y1, i) = 0 <
σ2(x, i)

2
R′′

f,π0,b(x, i) = h̄f,i,b(x), (A-14)

h̄f,i,b(y2) =
σ2(y2, i)

2
R′′

f,π0,b(y2, i) = 0 <
σ2(x, i)

2
R′′

f,π0,b(x, i) = h̄f,i,b(x). (A-15)

Let {y1n} and {y2n} be two sequences with y1n ↓ y1 and y2n ↑ y2 as n → ∞ such that limn→∞
f(y1n,j)−f(y1,j)

y1n−y1

and limn→∞
f(y2n,j)−f(y2,j)

y2n−y2
exist for all j ∈ S. It follows by (A-14) and (A-15) that

h̄f,i,b(y1n)−h̄f,i,b(y1)
y1n−y1

>

0 >
h̄f,i,b(y2n)−h̄f,i,b(y2)

y2n−y2
. By letting n → ∞, we obtain

kf,b(y1, i; {y1n})− µ(y1, i)R
′′
f,π0,b(y1, i) + l̄R′′

f,π0,b(y1, i)I{y1 > b} ≥ 0

and kf,b(y2, i; {y2n})−µ(y2, i)R
′′
f,π0,b(y2, i)+l̄R′′

f,π0,b(y2, i)I{y2 > b} ≤ 0. Therefore, by notingR′′
f,π0,b(y1, i) =

0 = R′′
f,π0,b(y2, i) (see (A-12)) we have

kf,b(y1, i; {y1n}) ≥ 0 ≥ kf,b(y2, i; {y2n}). (A-16)
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On the other hand, note that 0 < δi + qi − µ′(y1, i) ≤ δi + qi − µ′(y2, i) (due to the concavity of µ(·, i)),

R′
f,π0,b(y1, i) < R′

f,π0,b(y2, i) (see (A-13)), limn→∞
f(y1n,j)−f(y1,j)

y1n−y1
≥ limn→∞

f(y2n,j)−f(y2,j)
y2n−y2

(due to the

concavity of f(·, j)). As a result, kf,b(y1, i; {y1n}) < kf,b(y2, i; {y2n}), which is a contradiction to (A-16).

(ii) We distinguish two cases: (a) R′′
f,π0,b(b+, i) > 0 and (b) R′′

f,π0,b(b+, i) ≤ 0.

(a) Suppose R′′
f,π0,b(b+, i) > 0. By (A-9) we can find N > 0 such that xN > b and R′′

f,π0,b(xN , i) ≤ 0.

Then by the continuity of the function R′′
f,π0,b(·, i) on (b,∞) (see Corollary 3.1(i)) we know that there

exists a y2 ∈ (b, xN ] such that R′′
f,π0,b(y2, i) = 0 and R′′

f,π0,b(x, i) > 0 for x ∈ (b, y2). We now proceed to

show that R′′
f,π0,b(b−, i) ≤ 0. Suppose the contrary, i.e., R′′

f,π0,b(b−, i) > 0. By noting R′′
f,π0,b(0+, i) ≤ 0

(see (A-11)), it follows that there exists a y1 ∈ (0, b) such that R′′
f,π0,b(y1, i) = 0 and R′′

f,π0,b(x, i) > 0 for

x ∈ (y1, b). In summary, (A-12) holds for x ∈ (y1, y2) − {b}. Repeating the argument right below (A-12)

in (i), we obtain a contradiction.

(b) Suppose R′′
f,π0,b(b+, i) ≤ 0. It follows by (A-10) and the assumption R′

f,π0,b(b, i) >
1

1+d that

R′′
f,π0,b(b−, i) = lim

x↑b

2hf,i,b(x, i)

σ2(x, i)
< lim

x↓b

2hf,i,b(x, i)

σ2(x, i)
= R′′

f,π0,b(b+, i) ≤ 0. (A-17)

We now show that R′′
f,π0,b(x, i) ≤ 0 for all x ∈ [0, b). Suppose the contrary. That is, there exists some

x ∈ [0, b) such that R′′
f,π0,b(x, i) > 0. Then by noting R′′

f,π0,b(0+, i) ≤ 0 (see (A-11)) and R′′
f,π0,b(b−, i) < 0

(see (A-17)), we can find y1 and y2 with 0 ≤ y1 < y2 < b such that R′′
f,π0,b(y1, i) = 0, R′′

f,π0,b(y2, i) = 0 and

R′′
f,π0,b(x, i) > 0 for x ∈ (y1, y2). Repeating again the argument right after (A-12) in (i), we can obtain a

contradiction.

From now on, define for any f ∈ C and i ∈ S, define the function wf,i : R× S → R by

wf,i(·, i) = Rf,π0,b(·, i) and wf,i(·, j) = f(·, j) if j ̸= i.

Proof of Theorem 3.1. Note that τπb = 0 given Xπ
0 ≥ b. Hence, it follows from the definition (3.12) that

Wf,b(x, i) = sup
π∈Π

E(x,i)

[
Rf,π0,b(Xπ

0 , ξ0)
]
= Rf,π0,b(x, i) for x ≥ b and b = 0. (A-18)

We consider the case b > 0. By Lemma 3.5 (ii) we know that R′′
f,π0,b(x, i) ≤ 0 for x ∈ [0, b), and

R′′
f,π0,b(b−, i) ≤ 0. Therefore, it follows by Corollary 3.1(i) that

1

1− c
= R′

f,π0,b(0+, i) ≥ R′
f,π0,b(x, i) ≥ R′

f,π0,b(b, i) >
1

1 + d
for 0 < x ≤ b. (A-19)

It follows by Corollary 3.1(i) and Lemma 3.3 we know that wi(·, j) satisfies the conditions in Lemma A.1.

Then by applying Lemma A.1 we know that for some positive sequence of stopping times {τn;n = 1, 2, · · · }

with limn→∞ τn = ∞, the equation (A-2) holds. By letting t in (A-2) be τπb ∧ t, noting that Xπ
s −Xπ

s− =

Cs − Cs− ≥ 0, and that given (X0, ξ0) = (x, i), Xπ
s− ∈ [0, b) and wi(X

π
s−, ξs−) = Rf,π0,b(Xπ

s−, i) for
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s ≤ σ1 ∧ τπb , that
∑

0<s≤τn∧σ1∧τπ
b ∧t e

−Λs
Xπ

s −Xπ
s−

1−c +
∫ τn∧σ1τ

π
b ∧∧t

0
e−Λs

1−c dC̃s =
∫ τn∧σ1τ

π
b ∧∧t

0
e−Λs

1−c dCs, and

using(A-19), we derive that for any π ∈ Π, t > 0 and 0 ≤ x ≤ b,

E(x,i)

[ ∫ τn∧σ1∧τπ
b ∧t

0

lse
−Λs

1 + d
ds−

∫ τn∧σ1∧τπ
b ∧t

0

e−Λs

1− c
dCs

+ e
−Λτn∧σ1∧τπ

b
∧twi(X

π
τn∧σ1∧τπ

b ∧t, ξτn∧σ1∧τπ
b ∧t)

]
≤ Rf,π0,b(x, i). (A-20)

Note that the functions Rf,π0,b(·, j) and f(·, j) j ∈ S are all bounded. Hence, the functions wi(·, j) j ∈ S

are also bounded. By letting τn → ∞ and t → ∞ on both sides of (A-20), using the monotone convergence

theorem and the dominated convergence theorem and noticing that due to ξs = ξ0 for 0 ≤ s < σ1 we have

E(x,i)

[
e
−Λτπ

b
∧σ1wf,i(X

π
τπ
b ∧σ1

, ξτπ
b ∧σ1)

]
= E(x,i)

[
e
−Λτπ

b Rf,π0,b(b, ξ0)I{τπb < σ1} + e−Λσ1 f(Xσ1 , ξσ1)I{σ1 ≤

τπb }
]
and that π is an arbitrary admissible strategy and (3.12), we can conclude

Wf,b(x, i) ≤ Rf,π0,b(x, i) for 0 ≤ x ≤ b. (A-21)

Note that {(X0,b
t , ξt); t ≥ 0} is a strong Markov process and that by the Markov property it follows that

Rf,π0,b(x, i) = E(x,i)

[ ∫ τπ0,b

b ∧σ1

0

l̄e−Λs

1 + d
I{X0,b

s ≥ b}ds−
∫ τπ0,b

b ∧σ1

0

e−Λs

1− c
dCs

+ e−δ(τπ0,b

b ∧σ1)Rf,π0,b(X0,b

τπ0,b

b ∧σ1

, ξ
τπ0,b

b ∧σ1
)

]
≤ Wf,b(x, i) for x ≥ 0, (A-22)

where the last inequality follows by noting π0,b ∈ Π and the definition (3.12). Combining (A-18), (A-21)

and (A-22) completes the proof.

Proof of Theorem 3.2. We first show that

R′
f,π0,b(x, i) ≤ R′

f,π0,b(b, i) =
1

1 + d
for x > b, b ≥ 0. (A-23)

By Lemma 3.5(i) it follows that R′′
f,π0,0(x, i) ≤ 0 for x ≥ 0. As a result, (A-23) holds for b = 0. Now

suppose b > 0. By Lemma 3.3 (i) we know that R′
f,π0,b(0+, i) = 1

1−c . Since R′
f,π0,b(b, i) =

1
1+d , it follows

by Corollary 3.1 (ii) that Rf,π0,b(·, i) is twice continuously differentiable on [0,∞) and by Lemma 3.5 (i)

that R′′
f,0,b(x, i) ≤ 0 for x ≥ 0. Hence, (A-23) holds for b > 0 as well, and

1

1− c
= R′

f,π0,b(0+, i) ≥ R′
f,π0,b(x, i) ≥ R′

f,π0,b(b, i) =
1

1 + d
for x ∈ [0, b]. (A-24)

It follows by using (A-23) and (A-24), and noting l̄ ≥ ls for s ≥ 0 we obtain that for b ≥ 0,

l̄I{Xπ
s ≥ b}

(
R′

f,π0,b(X
π
s−, i)−

1

1 + d

)
− lsR

′
f,π0,b(X

π
s−, i)

= (l̄ − ls)I{Xπ
s ≥ b}R′

f,π0,b(X
π
s−, i)−

l̄

1 + d
I{Xπ

s ≥ b} − lsI{Xπ
s < b}R′

f,π0,b(X
π
s−, i)

≤ l̄ − ls
1 + d

I{Xπ
s ≥ b} − l̄

1 + d
I{Xπ

s ≥ b} − ls
1 + d

I{Xπ
s < b} = − ls

1 + d
, (A-25)
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By (A-23) again we can obtain

R′
f,π0,b(x, i) ≤

1

1− c
for b ≥ 0 and x > b. (A-26)

Further, note that for b ≥ 0 and any t ≥ 0,

E(x,i)

[ ∫
0<s≤σ1∧t

e−ΛsR′
f,π0,b(X

π
s , ξs−)dC̃s +

∑
0<s≤σ1∧t

e−Λs
(
Rf,π0,b(Xπ

s , ξs−)−Rf,π0,b(Xπ
s−, ξs−)

) ]

≤ E(x,i)

[ ∫ σ1∧t

0

e−Λs

1− c
dC̃s +

∑
0<s≤σ1∧t

e−Λs

1− c
(Xπ

s −Xπ
s−)

]
= E(x,i)

[ ∑
0<s≤σ1∧t

e−Λs

1− c
dCs

]
, (A-27)

where the last inequality follows by (A-24), (A-26), dC̃s ≥ 0, Xπ
s − Xπ

s− = Cs − Cs− ≥ 0 and dCs =

dC̃s + Cs − Cs−.

It follows by Corollary 3.1(i) and Lemma 3.3 we know that the conditions in Lemma 3.3 are satisfied

by wi(·, j). By applying Lemma A.1 we know that for some positive sequence of stopping times {τn;n =

1, 2, · · · } with limn→∞ τn = ∞, the equation (A-2) holds for any π ∈ Π, any b, t > 0 and any n ∈ N. By

using (A-2), (A-25) and (A-27) (setting t = t ∧ τn) we arrive at Rf,π0,b(x, i) ≥ E(x,i)

[ ∫ σ1∧t∧τn
0

lse
−Λs

1+d ds−∑σ1∧t∧τn
0

e−Λs

1−c dCs+e−Λσ1∧t∧τnwf,i(X
π
σ1∧t∧τn , ξσ1∧t∧τn)

]
for b ≥ 0. By noting that the functionsRf,π0,b(·, i)

and f(·, j), j ∈ S are bounded and letting t → ∞ and then n → ∞ and then using the monotone

convergence theorem for the first two terms inside the expectation and the dominated convergence the-

orem for the last term, we obtain that for b ≥ 0, Rf,π0,b(x, i) ≥ E(x,i)

[ ∫ σ1

0
lse

−Λs

1+d ds −
∫ σ1

0
e−Λs

1−c dCs +

e−Λσ1wf,i(X
π
σ1
, ξσ1)

]
. By noting wf,i(X

π
σ1
, ξσ1) = f(Xπ

σ1
, ξσ1) given ξ0 = i, the arbitrariness of π and the

definition of Vf in (3.5) we conclude Rf,π0,b(x, i) ≥ Vf (x, i) for x ≥ 0. On the other hand, Rf,π0,b(x, i) ≤

Vf (x, i) for x ≥ 0 according to the definition (3.5). Consequently, Rf,π0,b(x, i) = Vf (x, i) for x ≥ 0.

Proof of Lemma 3.6. Recall that τπb is defined in (3.11). By Theorem 3.1 it follows that for any large

enough b and any x ≥ 0,

Rf,π0,b(x, i) = Wf,b(x, i) = sup
π∈Π

E(x,i)

[ ∫ σ1∧τπ
b

0

lse
−Λs

1 + d
ds−

∫ σ1∧τπ
b

0

e−Λs

1− c
dCs

+ e
−Λτπ

b Rf,π0,b(b, ξ0)I{τπb < σ1}+ e−Λσ1 f(Xπ
σ1
, ξσ1)I{σ1 ≤ τπb }

]
≥ sup

π∈Π
Ex

[∫ σ1∧τπ
b

0

lse
−Λs

1 + d
ds−

∫ σ1∧τπ
b

0

e−Λs

1− c
dCs + e−Λσ1 f(Xπ

σ1
, ξσ1)I{σ1 ≤ τπb }

]
.

Note limb→∞ τπb = ∞ and f is bounded. Then it follows by letting b → ∞ on both sides, and then using

the monotone convergence theorem twice and the dominated convergence that lim infb→∞ Rf,π0,b(x, i) ≥

supπ∈Π E(x,i)

[∫ σ1

0
lse

−Λs

1+d ds−
∫ σ1

0
e−Λs

1−c dCs + e−Λσ1 f(Xπ
σ1
, ξσ1)

]
= Vf (x, i) for x ≥ 0. This combined with

the fact Rf,π0,b(x, i) ≤ Vf (x, i) for x ≥ 0 completes the proof.
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Proof of Theorem 3.3. (i) bfi ≥ 0 is obvious by the definition. We just need to prove bfi < ∞. Suppose

the contrary. Then by (3.13) we have R′
f,π0,b(b, i) > 1

1+d for all b ≥ 0. Hence, it follows by Lemma 3.6

that Vf (x, i) = limb→∞ Rf,π0,b(x, i) for x ≥ 0. For any b ≥ 0, by Theorem 3.1 we know R′
f,π0,b(x, i) >

1
1+d

for x ∈ (0, b], which implies Rf,π0,b(x, i) > Rf,π0,b(0, i) + x
1+d for x ∈ (0, b]. Hence, for any x ≥ 0, we can

find a b > x such that Vf (x, i) ≥ Rf,π0,b(x, i) > Rf,π0,b(0, i) + x
1+d . Hence, limx→∞ Vf (x, i) = +∞, which

contradicts Vf (x, i) ≤ l̄
δ(1+d) for x ≥ 0 (see Lemma 3.2). (ii) is a result of (i) and Theorem 3.2.

Proof of Theorem 4.1. (i) Define an operator P by P(f)(x, i) = R
f,π0,b

f
i
(x, i). By applying the results

about R
f,π0,b

f
i
obtained in Section 3, we can show that P is non-decreasing and a contraction on the

complete space (D, || · ||). Using the monotonicity of P and the fixed point theory, we can show that

limn→∞ Pn(g2) ≥ V ≥ limn→∞ Pn(g2) = limn→∞ Pn(g2), where g1(x, i) = 0 and g2(x, i) = l
δ(1+d) . As

a result, V ∈ D. The full detail of the proof can be found on http://arxiv.org/abs/1506.08360. (ii) The

results follow by (i) and Theorem 3.3.

Proof of Theorem 4.2. Note bVi < ∞ for all i ∈ S. Define an operator Q by Q(f)(x, i) = R
f,π0,bV

i
(x, i).

We can show that Q is a contraction on (C, || · ||), and both V and Rπ∗ are fixed points in (C, || ·

||). By the fixed point theory, we conclude V = Rπ∗ . The full detail of the proof can be found on

http://arxiv.org/abs/1506.08360.
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