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Abstract

In asset allocation problem, the distribution of the assets is usually assumed
to be known in order to identify the optimal portfolio. In practice, we need
to estimate their distribution. The estimations are not necessarily accurate
and it is known as the uncertainty problem. Many researches show that
most people are uncertainty aversion and this affects their investment strat-
egy. In this article, we consider risk and information uncertainty under a
common asset allocation framework. The effects of risk premium and covari-
ance uncertainty are demonstrated by the worst scenario in a set of measures
generated by a relative entropy constraint. The nature of the uncertainty
and its impacts on the asset allocation are discussed.

Keywords: Uncertainty modelling, Uncertainty measure, Asset allocation,
Mean-variance approach, Relative entropy.

1. Introduction

Mean-variance approach introduced by Markowitz (1952) inspires numer-
ous studies in the asset allocation problem. The key idea of mean-variance
approach is to consider the optimal portfolio selection as a balance between
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reward and risk, where they are quantified using expected value and variance
(standard deviation) of the portfolio return. This seminal idea attracts a lot
of attention and it becomes the foundation of many researches in this area.
It plays an important role in the development of some important concepts in
finance, such as efficient frontier (Merton, 1972) and the capital asset pricing
model (Sharpe, 1964). Researchers investigate and modify the basic mean-
variance model and try to obtain more practical results on asset allocation.
For example, Li et al. (1998) minimizes the probability of a significant loss
and studies the asset allocation problem in a multi-period model. The multi-
period framework is also applied on a mean-variance formulation in Li and
Ng (2000). Bertsimas et al. (2004) uses a conditional expected loss to replace
variance for portfolio optimization. In these researches, the distribution of
the assets are assumed to be known by the investors with a full certainty.

Involving uncertainty is another direction of study in asset allocation
problem. In the real market, the exact distributions of the risky assets are
normally unknown. We can only estimate the distribution of the assets by
the historical data and personal experience. The estimation is not necessar-
ily accurate and it is known as the uncertainty (or ambiguity) of the assets’
distribution. The famous Ellsberg paradox suggests that people are uncer-
tainty averse. There are many researches about risk. It is interesting and
important to know more about the nature of uncertainty and understand
its effects on decision making. Various models are suggested to analyse the
effect of uncertainty. Different researchers have different focuses on their
uncertainty model. Quiggin (1982), Schmeidler (1989), Tversky and Kahne-
man (1992) use a non-additive probability setting to model the uncertainty
aversion character. One key feature of these models is that the result is
consistent with stochastic dominance and so they have great contributions
to the development of behavioral finance. Some researches pay more atten-
tion to the mathematical and statistical nature of parameter uncertainty.
Yaari (1987) constructs a dual theory to demonstrate uncertainty aversion
of agents. DeMiguel and Nogales (2009) replaces mean and variance with
more robust reward and risk measures to increase the consistency of the
mathematical results. Bodnar et al. (2013) considers statistical errors on
the parameters. Stochastic models can also be introduced for the uncertain
parameters. Gennotte (1986) identifies the optimal investment strategy with
a stochastic model on covariance matrix. Klibanoff et al. (2005) uses the
idea of utility function to demonstrate uncertainty aversion. Huang and Ying
(2013) applies the concept of fuzzy logic to model asset return.
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Another way to model uncertainty is to consider a set of parameters
(which represents different scenarios or distributions) rather than a point
estimation of the parameters. It is sometimes known as the robust opti-
mization. Bertsimas et al. (2007) provides more details and mathematical
setting of this approach. As the actual parameters are unknown, by using
a set of parameters, a more robust result can be obtained. This idea is
commonly used in engineering, operations research, financial economics and
many other subjects. There are different ways to generate a set of param-
eters. Tütüncü and Koenig (2004), Epstein and Schneider (2008) consider
intervals which are likely to include the actual parameters. Gregory et al.
(2011) further introduces a boundary for the number of uncertainty param-
eters. Hansen and Sargent (2001), Lim and Shanthikumar (2007) use the
concept of relative entropy to generate the set of parameters. Schtellà and
Recchia (2013) proposes more methods for generating a range of parameters.

There are various statistical methods to estimate the value of unknown
parameters. The true value of the parameters is expected to be around
the estimator. When a set of probability measures is used to model uncer-
tainty, it should be consistent with the statistical results and not too far
away from the estimation. Relative entropy measures the difference between
distributions (or probability measures). Hence, it can reasonably be used to
generate an uncertainty set of parameters. It is done by setting a constraint
on the deviation between the best estimated measure and uncertainty mea-
sures. The worst scenario in the uncertainty set is then chosen to illustrate
the uncertainty aversion of the investors. Relative entropy has been used
in various optimization problems, including asset allocation. Hansen and
Sargent (2001) uses relative entropy to model uncertainty and obtains the
deterministic optimal investment strategy. Calafiore (2007) considers a dis-
crete number of scenarios and studies the computational algorithm of solving
the problem. Yuen and Yang (2012) replaces variance by expected loss to
measure investment risk and identify the relationship between risk and un-
certainty. Existing researches mainly focus on the uncertainty of risk premia
and its impacts on the investment strategy. Here, we introduce a model on
the uncertainty of the interaction between the returns of different assets in
order to study its mathematical and financial properties in asset allocation
problem.

In this article, we study the asset allocation problem with uncertainty us-
ing the mean-variance approach. We apply the multivariate normal distribu-
tion to model the returns of the assets. People are assumed to be uncertainty
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averse. They are conservative when they make a decision in an uncertain sit-
uation. Relative entropy is used to generate a set of probability measures
which demonstrates the uncertainty of the parameters. The set is found to
have some nice mathematical properties which are important in modelling
covariance uncertainty. Different measures in the set refer to different sce-
narios in the market. The worst scenario is used to study the uncertainty
aversion characteristic of the agents. Through this model construction, we
can obtain the properties of the worst scenario and the corresponding op-
timal investment strategy. In the following, we focus on expected return
uncertainty in Section 2 and covariance uncertainty in Section 3. In Section
4, we present more mathematical details of the model and consider the two
sources of uncertainty together. In Section 5, numerical examples are used
to illustrate the ideas of our model. More characteristics of the model are
also discussed.

2. Model Formulation and Uncertainty on Risk Premia

We assume that there are n risky assets in the market. Their returns
follow multivariate normal distribution. Let rf be the risk-free rate, µ and
V be the risk premium and the covariance matrix of the risky assets’ returns
under the physical probability measure P , respectively. Here, P represents
the best estimated market environment. Hence, µ and V are the best esti-
mations towards the parameters of returns of these assets by the investors
using all available information, including historical data, news, their knowl-
edge and etc. Under mean-variance approach, they are linked to the reward
and the risk of investment. We also assume that there are no redundant risky
assets in the market. Hence, V is symmetric and positive definite. For square
matrices M and N with the same dimension, we write M � N (M � N), if,
M −N is positive definite (semi-definite). We have V � 0.

It is possible for the estimated parameters, µ and V , to have large differ-
ences with the actual parameters (uncertainty). That means, the expected
investment performance and the inter-relationship of these assets are different
from our estimation. The optimal portfolio induced by these two parameters
can be inappropriate. Apart from considering the risk of the assets’ return,
we also need to study the effects of uncertainty of the model parameters.
The investors might consider a range of scenarios based on their estimations
to identify the potential loss if the market deviates from their prediction. In
our model, Q denotes the set of uncertainty measures representing these sce-

4



narios. It illustrates the effects of uncertainty in the decision making process.
Let p(x) and q(x) be the probability density functions of the risky assets’ re-
turns under measures P and Q ∈ Q, respectively. If there is no uncertainty
on the parameters, measure P is used directly to study the problem.

We can now construct the set Q using the idea that the measures in Q
should not greatly deviate from P . Relative entropy is used to measure the
deviation between two probability measures. We assume that the relative
entropy of all measures in the uncertainty set Q with respect to P is not
greater than a positive constant K. That is,

KL(Q,P ) :=

∫
q(x) ln

q(x)

p(x)
dx ≤ K, ∀Q ∈ Q. (1)

The parameter K depends on the investors’ confidence on the available in-
formation and their opinions on the market when they make an investment
decision. It is greater when they are more conservative in investing these risky
assets. The uncertainty set needs not be large enough to cover all possible
(extreme) scenarios that the investors can imagine. However, it can cover
the adverse scenarios that the investors think important when they make the
decision. In scenario Q ∈ Q, the risk premium and the return covariance of
the risky assets change and they are denoted by µ̂ and V̂ , respectively. For a
square matrix M , let tr(M), |M | and M ′ be the trace, the determinant and
the transpose of M , respectively. We can find the explicit form of KL(Q,P )
with the following equation,

KL(Q,P ) =
1

2

[
ln |V | − ln |V̂ |+ tr(V −1V̂ )− n+ (µ− µ̂)′V −1(µ− µ̂)

]
. (2)

We now apply the uncertainty model on our asset allocation problem.
The investors realize that the distribution of the return of the assets can be
different from their expectation due to various reasons (estimation errors,
distribution changing over time and etc.). Due to their uncertainty aversion,
they are more conservative in the real market compared with a market with
no uncertainty. The worst scenario in the set of measures is chosen in our
analysis. It can illustrate the uncertainty aversion behaviour of the investors.
Let U be the set of parameters (µ̂, V̂ ) under the measure Q ∈ Q. In this
section, we assume that V is fixed in the set U and use Uµ to denote the
corresponding feasible set of parameters. Using the mean-variance approach,
if rp is the required risk premium of the portfolio in the worst scenario which
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is non-negative, u is the composition of the portfolio, the asset allocation
problem can be formulated as

min
u∈Rn

u′V u (3)

such that u′µ̂ ≥ rp for all (µ̂, V ) ∈ Uµ and KL(Q,P ) ≤ K.

As V is fixed, µ̂ is the only source of uncertainty. The relative entropy
function can be simplified as

KL(Q,P ) =
1

2

[
(µ− µ̂)′V −1(µ− µ̂)

]
.

Applying the theory of multi-objective optimization, the original constrained
optimization problem can be modified and it becomes

max
u

min
µ̂

u′µ̂− λu′V u+
γ

2
(µ− µ̂)′V −1(µ− µ̂). (4)

where λ, γ > 0. The relative entropy function is convex and differentiable
with respect to the model parameters. Karush-Kuhn-Tucker conditions are
satisfied and the Lagrangian (4) has the same solution as the original prob-
lem. For more details of the convex optimization and the Lagrangian ap-
proach, we can refer to Boyd and Vandenberghe (2004). Let

f1(u, µ̂) := u′µ̂− λu′V u+
γ

2
(µ− µ̂)′V −1(µ− µ̂).

Differentiate f1(u, µ̂) with respect to u and µ̂ and obtain

∂f1(u, µ̂)

∂u′
= µ̂− 2λV u,

∂f1(u, µ̂)

∂µ̂
= u′ − γ(µ− µ̂)′V −1.

The optimal investment strategy u∗ and the worst scenario premium µ∗ are

u∗ =
1

2λ
V −1µ∗, µ∗ =

2λγ

1 + 2λγ
µ.

Next, we find λ and γ and solve the problem. Let Q̃ be the risk neutral
measure, K̃ be the relative entropy of Q̃ with respect to P . We have K̃ :=
KL(Q̃, P ) = 1

2
µ′V −1µ. We solve the problem in two cases, K < K̃ and

K ≥ K̃.
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(i) If K < K̃, with the constraints, we obtain

λ =
1

rp

(√
K̃ −

√
K
)2
, γ =

rp

2
√
K(
√
K̃ −

√
K)

.

and

u∗ =
rp

2
√
K̃(
√
K̃ −

√
K)

V −1µ, µ∗ =

√
K̃ −

√
K√

K̃
µ. (5)

(ii) If K ≥ K̃, this indicates Q̃ ∈ Q. The risk premium derived from
the risky assets can be non-positive in the worst scenario. The optimal
strategy u∗ must be 0 in order to minimize the variance of portfolio and
the corresponding worst scenario measure is Q̃. We can also study the
problem by removing the uncertainty constraint. The problem becomes

max
u

min
µ̂

u′µ̂− λu′V u.

Let f2(u, µ̂) := u′µ̂− λu′V u. Differentiate f2(u, µ̂) with respect to u,

∂f2(u, µ̂)

∂u′
= µ̂− 2λV u ⇒ u∗ =

1

2λ
V −1µ̂,

therefore,

f2(u
∗, µ̂) =

1

4λ
µ̂′V −1µ̂ ⇒ µ∗ = 0 ⇒ Q∗ = Q̃.

The risk premium rp is 0 or otherwise there is no solution.

The investors make their investment decision according to the worst scenario
in a set of measures. If, in the worst scenario, the risky assets give a worse
result than the risk-free asset, the investors avoid buying or short selling any
of these risky assets and just invest in the risk-free asset. This is what we
observe in the real market. Many people do not invest in risky securities
but put all their money in a saving account because they realize the assets’
return uncertainty. They might understand the concept of risk premium or
the idea of higher risk higher expected return. However, they still choose not
to invest in risky assets. They are very conservative. Under this model, we
can say that they consider a set of measures which includes the risk neutral
one (that is, K ≥ K̃).
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For a non-trivial case where K < K̃, the risk premium of the portfolio
under measure P is

u∗′µ =
rp
√
K̃√

K̃ −
√
K

= 2
√
KK̃γ,

and the variance of the portfolio return under measure P is

u∗′V u∗ =
r2p

4K̃(
√
K̃ −

√
K)2

µ′V −1µ =
r2p

2(
√
K̃ −

√
K)2

=
rp
2λ
.

3. Uncertainty on Covariances

In the previous section, we study the effect of uncertainty on the expected
return (or, risky premium) of the assets. The result is intuitive and the worst
scenario risk premia are a proportional reduction of the best estimated risk
premia. Here, we shall study the effect of uncertainty on the covariance
matrix V and identify its form in the worst scenario. The effect and the
interaction of risk premium and covariance uncertainties will be discussed in
the next section.

Assume that µ is fixed under the set of uncertainty measures. We use
UV to denote the corresponding set of parameters. If rp is the required risk
premium in the worst scenario, the asset allocation problem is now

min
u∈Rn

max
(µ,V̂ )∈UV

u′V̂ u (6)

such that u′µ ≥ rp and KL(Q,P ) ≤ K.

Since µ is fixed,

KL(Q,P ) =
1

2

[
ln |V | − ln |V̂ |+ tr(V −1V̂ )− n

]
.

Again, we modify the problem and it becomes

max
u

min
V̂

u′µ− λu′V̂ u+
γ

2

(
− ln |V̂ |+ tr(V −1V̂ )

)
. (7)

for some λ, γ > 0. Let

f3(u, V̂ ) := u′µ− λu′V̂ u+
γ

2

(
− ln |V̂ |+ tr(V −1V̂ )

)
.
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Differentiate f3(u, V̂ ) with respect to u and V̂ , we obtain

∂f3(u, V̂ )

∂u′
= µ− 2λV̂ u,

∂f3(u, V̂ )

∂V̂ ′
= −λuu′ + γ

2
(V −1 − V̂ −1).

Therefore

u∗ =
1

2λ
V ∗−1µ and u∗u∗′ =

γ

2λ
(V −1 − V ∗−1)

⇒ V ∗−1µµ′V ∗−1 = 2λγ(V −1 − V ∗−1).

We know that V̂ � 0 for all feasible V̂ ∈ UV . In fact, we can show that V̂ � 0
for all V̂ ∈ UV and it will be discussed in Section 4. For a positive definite
matrix V , there exists a unique square root matrix M such that M � 0 and
MM = V . Denote the square root matrix of V by V 1/2. Similarly, we have
V −1/2V −1/2 = V −1. Let I be the identity matrix. By the symmetry property
of covariance matrices,

V ∗V −1V ∗ − V ∗ =
1

2λγ
µµ′

(V ∗ − 1

2
V )V −1(V ∗ − 1

2
V ) =

1

2λγ
µµ′ +

1

4
V

V ∗ − 1

2
V = V 1/2

[
V −1/2

(
1

2λγ
µµ′ +

1

4
V

)
V −1/2

]1/2
V 1/2

V ∗ =
1

2
V + V 1/2

(
1

4
I +

1

2λγ
V −1/2µµ′V −1/2

)1/2
V 1/2

=
1

2
V 1/2

[
I +

(
I +

2

λγ
V −1/2µµ′V −1/2

)1/2]
V 1/2.

As µµ′ � 0, all the above square root matrices exist. Also, V −1/2µµ′V −1/2 is
symmetric, by Eigen-decomposition, we have

V −1/2µµ′V −1/2 = GDG′.

D is a diagonal matrix with the eigenvalues of V −1/2µµ′V −1/2 as its principal
diagonal entries. G is an orthogonal matrix with the corresponding eigen-
vectors as its columns. Without loss of generality, we take the first diagonal
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entry of D as µ′V −1µ (the others are zero) and the first column of G is
V −1/2µ/

√
µ′V −1µ. That is,

D =

 2K̃
0

. . .

 and G =

 V −1/2µ√
2K̃

...
...

 .

We have (
I +

2

λγ
V −1/2µµ′V −1/2

)1/2
= G

(
I +

2

λγ
D

)1/2
G′.

Therefore,

V ∗ =
1

2
V 1/2

[
I +G

(
I +

2

λγ
D

)1/2
G′

]
V 1/2

= V 1/2G

[
1

2

(
I +

(
I +

2

λγ
D

)1/2)]
G′V 1/2

ln |V ∗| = ln

∣∣∣∣∣V 1/2G

[
1

2

(
I +

(
I +

2

λγ
D

)1/2)]
G′V 1/2

∣∣∣∣∣
= ln |V |+ ln

∣∣∣∣∣12
(
I +

(
I +

2

λγ
D

)1/2)∣∣∣∣∣
= ln |V |+ ln

1

2
+

(
1

4
+
K̃

λγ

)1/2 .

Moreover, by the cyclic property of trace,

tr(V −1V ∗) = tr(V −1/2V −1/2V ∗) = tr(V −1/2V ∗V −1/2)

= tr

[
G

[
1

2

(
I +

(
I +

2

λγ
D

)1/2)]
G′

]

=
1

2
tr

(
I +

(
I +

2

λγ
D

)1/2)

= n− 1

2
+

(
1

4
+
K̃

λγ

)1/2
.
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The relative entropy of Q∗ with respect to P is

1

2

− ln

1

2
+

(
1

4
+
K̃

λγ

)1/2− 1

2
+

(
1

4
+
K̃

λγ

)1/2 .
Inferred from the form of the relative entropy, define θ := 1

2
+
(

1
4

+ K̃
λγ

)1/2
and g1(θ) := 1

2
(θ − 1 − ln θ) for θ ≥ 1. We can check that g1 is a strictly

increasing function of θ for θ > 1 and so g−11 exists. Using the uncertainty
constraint, we can find θ,

g1(θ) = K ⇒ θ =
1

2
+

(
1

4
+
K̃

λγ

)1/2
= g−11 (K). (8)

We find θ as a function of K, and it can be used to find the other unknowns
in the problem. With the expected return constraint,

u∗′µ =
1

2λ
µ′V ∗−1µ = rp.

λ is given by,

λ =
µ′V ∗−1µ

2rp

=
1

2rp
µ′V −1/2G

[
1

2

(
I +

(
I +

2

λγ
D

)1/2)]−1
G′V −1/2µ

=
1

2rp
µ′V −1/2G


1
2

+
(

1
4

+ K̃
λγ

)1/2
1

. . .


−1

G′V −1/2µ

=
1

2rp

√µ′V −1µ
0
0

′
 θ−1

1
. . .


 √

µ′V −1µ
0
0


=

K̃

θrp
.
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Using equation (8), we have

K̃

λγ
=

(
θ − 1

2

)2

− 1

4
, λγ =

K̃(
θ − 1

2

)2 − 1
4

. (9)

Then, we can obtain γ,

γ =
K̃

λ
((
θ − 1

2

)2 − 1
4

) =
θrp(

θ − 1
2

)2 − 1
4

.

Similarly, we can find V ∗ using the characteristic of G,

V ∗ = V 1/2G

[
1

2

(
I +

(
I +

2

λγ
D

)1/2)]
G′V 1/2

= V 1/2G

 θ
1

. . .

G′V 1/2

= V +
θ − 1

2K̃
µµ′. (10)

The optimal strategy u∗ is

u∗ =
1

2λ
V ∗−1µ

=
θrp

2K̃
V −1/2

(
I +

θ−1 − 1

2K̃
V −1/2µµ′V −1/2

)
V −1/2µ

=
θrp

2K̃

(
V −1µ+

θ−1 − 1

2K̃
V −1µ(µ′V −1µ)

)
=

rp

2K̃
V −1µ. (11)

Risk premium uncertainty achieves its maximum effect when the uncer-
tainty parameter equals K̃. Due to the use of optimal investment strategy
and the presence of the risk-free asset, the minimum possible risk premium is
zero. For the covariance uncertainty, its effect increases with the uncertainty
parameters without limit.
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The effect of covariance uncertainty can be illustrated by calculating the
variance of the return of the optimal portfolio. If the target risk premium
under measure Q∗ is rp, under measure P , the variance is

u∗′V u∗ =
r2p

4K̃2
µ′V −1µ =

r2p

2K̃
,

while the worst scenario variance is

u∗′V ∗u∗ =
r2p

4K̃2
µ′V −1(V +

θ − 1

2K̃
µµ′)V −1µ =

θr2p

2K̃
.

The increase in variance due to covariance uncertainty is (θ − 1)r2p/(2K̃).

4. Uncertainty on Risk Premia, Covariances and Further Analysis

We have discussed the effects of risk premium uncertainty and covariance
uncertainty separately and recognize their differences in their corresponding
worst scenarios. They will be studied under the same framework in this
section. Consider

min
u∈Rn

max
(µ̂,V̂ )∈U

u′V̂ u (12)

such that u′µ̂ ≥ rp and KL(Q,P ) ≤ K,

where

KL(Q,P ) =
1

2

[
ln |V | − ln |V̂ |+ tr(V −1V̂ )− n+ (µ− µ̂)′V −1(µ− µ̂)

]
.

In fact, if we want to ensure that there exists a unique solution of these
problems, we have to show that the uncertainty set U is convex. Covariance
matrix V under measure P is positive definite. However, V̂ under measure
Q ∈ Q might have a determinant equal to zero. We know V̂ � 0, which
must be true for covariance matrix. Notice that KL(Q,P ) → +∞ when
|V̂ | → 0. By defining KL(Q,P ) = +∞ when |V̂ | = 0, V̂ � 0 if (µ̂, V̂ ) ∈ U
for a bounded K. |V̂ | > ε for some positive ε and V̂ −1 exists.
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For (µ1, V1), (µ2, V2) ∈ U , we want to see whether ((µ1+µ2)/2, (V1+V2)/2)
is in U . By Cauchy-Schwartz,

(
µ1 + µ2

2
− µ)′V −1(

µ1 + µ2

2
− µ)

=
1

4

[
(µ1 − µ)′V −1(µ1 − µ) + (µ2 − µ)′V −1(µ2 − µ) + 2(µ1 − µ)′V −1(µ2 − µ)

]
≤ 1

4

[
(µ1 − µ)′V −1(µ1 − µ) + (µ2 − µ)′V −1(µ2 − µ)

+2
[
(µ1 − µ)′V −1(µ1 − µ) · (µ2 − µ)′V −1(µ2 − µ)

]1/2]
≤ 1

2

[
(µ1 − µ)′V −1(µ1 − µ) + (µ2 − µ)′V −1(µ2 − µ)

]
.

For the variance part on the relative entropy, by Lawson and Lim (2001),

1

2
(V1 + V2) � V

1/2
1

(
V
−1/2
1 V2V

−1/2
1

)1/2
V

1/2
1 .

By Theorem 7.8 of Zhang (2011),∣∣∣∣12(V1 + V2)

∣∣∣∣ ≥ ∣∣∣V1(V −1/21 V2V
−1/2
1

)1/2
V

1/2
1

∣∣∣
= |V1|

∣∣∣V −1/21

∣∣∣1/2 |V2|1/2 ∣∣∣V −1/21

∣∣∣1/2
= |V1|1/2 |V2|1/2 > 0

⇒ ln

∣∣∣∣12(V1 + V2)

∣∣∣∣ ≥ 1

2

(
ln |V1|+ ln |V2|

)
.

For α ∈ (0, 1),

V1, V2 � 0 ⇒ αV1 + (1− α)V2 � 0.

Therefore, KL is a convex function of (µ̂, V̂ ) and U is a convex set. The
same result can be applied in the previous two sections.

Using Lagrangian method, the problem becomes

max
u

min
(µ̂,V̂ )

u′µ̂− λu′V̂ u+
γ

2

(
(µ− µ̂)′V −1(µ− µ̂)− ln |V̂ |+ tr(V −1V̂ )

)
(13)

14



for some λ, γ > 0. Let

f4(u, µ̂, V̂ ) := u′µ̂− λu′V̂ u+
γ

2

(
(µ− µ̂)′V −1(µ− µ̂)− ln |V̂ |+ tr(V −1V̂ )

)
.

Differentiate f4(u, µ̂, V̂ ) with respect to u, µ̂ and V̂ ,

f4(u, µ̂, V̂ )

∂u′
= µ̂− 2λV̂ u,

f4(u, µ̂, V̂ )

∂µ̂
= u′ − γ(µ− µ̂)′V −1, (14)

f4(u, µ̂, V̂ )

∂V̂ ′
= −λuu′ + γ

2
(V −1 − V̂ −1). (15)

Using equation (14),

u∗ =
1

2λ
V ∗−1µ∗ = γV −1(µ− µ∗)

V ∗−1µ∗ = 2λγV −1(µ− µ∗).

Together with equation (15), we have

γ

2
(V −1 − V ∗−1) = λγ2V −1(µ− µ∗)(µ− µ∗)′V −1

V ∗−1 = V −1 − 2λγV −1(µ− µ∗)(µ− µ∗)′V −1

V ∗−1µ∗ = V −1µ∗ − 2λγV −1(µ− µ∗)(µ− µ∗)′V −1µ∗

⇒ 2λγV −1(µ− µ∗) = V −1µ∗ − 2λγV −1(µ− µ∗)(µ− µ∗)′V −1µ∗.

Therefore,

2λγ(µ− µ∗) = µ∗ − 2λγ(µ− µ∗)(µ− µ∗)′V −1µ∗

µ∗ =
2λγ(1 + (µ− µ∗)′V −1µ∗)

2λγ(1 + (µ− µ∗)′V −1µ∗) + 1
µ := ζµ,

for ζ ∈ (0, 1). So,

(µ− µ∗)′V −1µ∗ = ζ(1− ζ)µ′V −1µ = 2ζ(1− ζ)K̃.

With the definition of ζ,

2λγ
(
1 + (µ− µ∗)′V −1µ∗

)
=

(
2λγ(1 + (µ− µ∗)′V −1µ∗) + 1

)
ζ

ζ = 2λγ
(
1 + (µ− µ∗)′V −1µ∗

)
(1− ζ)

= 2λγ
(
1 + 2ζ(1− ζ)K̃

)
(1− ζ)

λγ =
ζ

2
(
1 + 2ζ(1− ζ)K̃

)
(1− ζ)

. (16)
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Now, we can obtain an equation for ζ,

4λγK̃ζ3 − 8λγK̃ζ2 + (4λγK̃ − 2λγ − 1)ζ + 2λγ = 0.

Let g2(x;λ, γ) := 4λγK̃x3 − 8λγK̃x2 + (4λγK̃ − 2λγ − 1)x+ 2λγ. We know
that λγ > 0, g2(0) = 2λγ > 0, and g2(1) = −1 < 0. Thus, for this cubic
equation, exactly one root is greater than 1 and exactly one root is smaller
than 0. There exists a unique solution for g2(ζ) = 0 where ζ ∈ (0, 1). Now,
we try to find λ and γ in terms of ζ. We find the worst scenario covariance
matrix,

V ∗−1 = V −1 − 2λγV −1(µ− µ∗)(µ− µ∗)′V −1

= V −1/2
(
I − 2λγV −1/2(µ− µ∗)(µ− µ∗)′V −1/2

)
V −1/2

= V −1/2
(
I − 2λγ(1− ζ)2V −1/2µµ′V −1/2

)
V −1/2

= V −1/2G

 1− 4λγ(1− ζ)2K̃
1

. . .

G′V −1/2

V ∗ = V 1/2G


(
1− 4λγ(1− ζ)2K̃

)−1
1

. . .

G′V 1/2.

Using equation (16), we know

4λγ(1− ζ)2K̃ =
2ζ(1− ζ)K̃

1 + 2ζ(1− ζ)K̃
,

1− 4λγ(1− ζ)2K̃ =
(
1 + 2ζ(1− ζ)K̃

)−1
.

For the uncertainty constraint, we have

ln |V | − ln |V ∗| = − ln
(
1 + 2ζ(1− ζ)K̃

)
,

tr
(
V −1V ∗

)
= tr

(
V −1/2V ∗V −1/2

)
= n+ 2ζ(1− ζ)K̃,

(µ− µ∗)′V −1(µ− µ∗) = 2(1− ζ)2K̃.

Hence,

1

2

[
− ln

(
1 + 2ζ(1− ζ)K̃

)
+ 2ζ(1− ζ) + 2(1− ζ)2K̃

]
= K

−1

2
ln
(
1 + 2ζ(1− ζ)K̃

)
+ (1− ζ)K̃ = K.
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Let g3(ζ) := −1
2

ln
(
1 + 2ζ(1− ζ)K̃

)
+ (1− ζ)K̃ for ζ ∈ [0, 1]. g3(0) = K̃ and

g3(1) = 0. Furthermore,

dg3(ζ)

dζ
=

−(2− 4ζ)K̃

2
(
1 + 2ζ(1− ζ)K̃

) − K̃
=
−2(1− ζ)(1 + ζK̃)

1 + 2ζ(1− ζ)K̃
K̃ < 0, ζ ∈ (0, 1).

Therefore, g−13 (K) exists for K ∈ [0, K̃] and ζ = g−13 (K).
We recognize that the problem can be solved in two cases as in Section 2.

For K ≥ K̃, the risk neutral probability is within the set of uncertainty
measure. Therefore, the best strategy is to make no risky investment as the
worst expected return of these risky assets is no better than the risk-free
asset. The worst scenario measure is the risk neutral measure.

We now focus on the non-trivial case when K < K̃. When K = 0, it is a
model with no uncertainty. Then, µ∗ = µ, V ∗ = V and ζ = 1 = g−13 (0). For
other positive K, we can find ζ using the function g−13 and

V ∗ = V 1/2G

 1 + 2ζ(1− ζ)K̃
1

. . .

G′V 1/2

= V + ζ(1− ζ)µµ′, (17)

V ∗−1 =
(
V + ζ(1− ζ)µµ′

)−1
= V −1 + V −1µµ′V −1

(
1 + 2ζ(1− ζ)K̃

)−1 − 1

2K̃
. (18)

With the risk premium constraint, we have

λ =
ζ2K̃

rp
(
1 + 2ζ(1− ζ)K̃

) ,
γ =

rp

2ζ(1− ζ)K̃
,

u∗ =
rp

2ζK̃
V −1µ. (19)

For the optimal portfolio, the risk premium is u∗′µ = rp/ζ under measure P .

Variances of the return under measures P and Q∗ are
r2p

2ζ2K̃
and

r2p

(
1+2ζ(1−ζ)K̃

)
2ζ2K̃

,

respectively.
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From the result, when uncertainty increases, risk premia reduce. However,
we also notice that covariances are not strictly increasing with K. With a
small uncertainty, when K increases, covariance V ∗ increases. It achieves

the maximum when ζ = 1/2 and K = K1/2 := K̃
2
− 1

2
ln
(
1 + K̃

2

)
. When

K further increases, V ∗ reduces progressively. It equals V when K = K̃.
It is counter-intuitive and seems to be inconsistent with the meaning of the
worst scenario. The result shows that it is more “cost effective” to place
more attention on the risk premium uncertainty rather than the covariance
uncertainty when we have a high level of conservativeness.

5. Numerical Examples and Illustrations

We use a simple example to demonstrate the application of the model
and then discuss other implications of the results. Ten-year (Jun 2005 to
Jun 2015) monthly return data of 4 major indices (S&P 500, DAX, HSI and
FTSE 100) are used to illustrate our uncertainty approach. The present
numerical study is to give us some ideas on the empirical results that we can
obtain in practice. It is not a critical review of the validity of the mean-
variance model or a study of the security markets. The risk-free rate is taken
to be one-year treasury yield 0.28%. Let the covariance matrix and risk
premium vector of the 4 assets in an one-year period be

V =


0.018632 0.020056 0.020646 0.015213
0.020056 0.034507 0.027412 0.020652
0.020646 0.027412 0.048680 0.021663
0.015213 0.020652 0.021663 0.018791

 , µ =


6.1166%

10.9547%
9.0358%
4.0923%

 ,

respectively. We can find the relative entropy of the risk neutral measure

K̃ =
1

2
µ′V −1µ = 0.238888.

It is the maximum effective relative entropy for modelling risk premium un-
certainty. If the uncertainty of an investor on the assets is greater than K̃,
it is a trivial case and the investor makes no investment on the risky assets.
By using the result in Section 4, we notice that there is a one-to-one corre-
sponding relation between K and ζ when K ∈ [0, K̃). If we are given the
value of K, ζ can be obtained numerically using computer programme with
the inverse function we find in the last section. Here, we choose ζ equal to
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Figure 1: Minimum variance frontiers of the risky assets under different uncertainty levels

0, 0.25, 0.5, 0.75 and 1 to illustrate the effect of uncertainty on the minimum
variance frontier and the efficient frontier of the portfolios formed by the four
indices in the corresponding worst scenarios. Note that ζ = 0 might refer
to all cases that K ≥ K̃. We specify here that when we say ζ = 0 in this
section, it is referring to the case that K = K̃.

In Figure 1, we can see the four minimum variance frontiers under differ-
ent levels of uncertainty, from the top one for ζ = 1 (without uncertainty) to
the bottom one for ζ = 0.25. When ζ = 0, the expected returns of all the four
indices are equal to the risk-free rate in the worst scenario. Investor chooses
the minimum variance portfolio and it is represented by the small cross at
the lower left hand corner in the figure. The minimum variance frontiers are
flattened when the uncertainty increases.

Now, we concentrate on the efficient frontiers in Figure 2. The minimum
variance portfolios under different levels of uncertainty are joined together by
the dashed line. Their standard deviations only change slightly for different
K. For a given target expected return, the increase of the standard deviation
of the efficient portfolios is mainly due to the decrease of risk premia (and
the increase in leverage) rather than the change in covariances, especially
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Figure 2: Efficient frontiers of the risky assets under different uncertainty levels

when ζ is small and the efficient frontier is flat.
It is interesting to note that all the minimum variance frontiers meet when

the required expected return equals the risk-free rate. For these minimum
variance frontiers, we introduce an additional constraint that all the capital
should be invested into these risky assets. Let 1n be the n-dimensional
column vector (1, 1, . . . , 1)′. With different K ∈ [0, K̃), we have different
pairs of (µ̂, V̂ ). We can find the variance of these minimum variance portfolios
by

max
u

u′µ̂− α̂u′V̂ u− β̂u′1n,

for some α̂, β̂ > 0. If the portfolio has zero risk premium, we have constraints
u′µ̂ = 0 and u′1n = 1. Let f5(u) = u′µ̂ − α̂u′V̂ u − β̂u′1n. Differentiate f5
with respect to u, we use the constraints and obtain

α̂ = µ̂′V̂ −11n −
µ̂′V̂ −1µ̂

µ̂′V̂ −11n
1nV̂

−11n, β̂ =
µ̂′V̂ −1µ̂

µ̂′V̂ −11n
, u∗ =

1

α̂
V̂ −1

(
µ̂− β̂1n

)
.

We can calculate the variance of these zero-risk premium portfolios. As the
risk premia are reduced proportionally for all the risky assets in the worst
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scenario,

u∗′V̂ u∗ =
µ̂′V̂ −1µ̂

µ̂′V̂ −1µ̂ · 1′nV̂ −11n −
(
1′nV̂

−1µ̂
)2

=
µ′V̂ −1µ

µ′V̂ −1µ · 1′nV̂ −11n −
(
1′nV̂

−1µ
)2 .

The worst case covariance matrix is of form V̂ −1 = V −1+ ĉV −1µµ′V −1, where
ĉ depends on K. Put it into the equation,

u∗′V̂ u∗ =
µ′V −1µ

(
1 + ĉµ′V −1µ

)(
1 + ĉµ′V −1µ

)(
µ′V −1µ · 1′nV −11n − (1′nV

−1µ)2
)

=
µ′V −1µ

µ′V −1µ · 1′nV −11n −
(
1′nV

−1µ
)2 ,

which is independent of ĉ and hence independent of K.
To obtain a more robust and practical result for a financial economic

model, we need to consider the effect of uncertainty on the model param-
eters. Tütüncü and Koenig (2004) introduces a simple way to model the
uncertainty of input parameters in an asset allocation problem. They con-
sider a range of parameters for both expected returns and covariances in a
mean-variance model. The idea is logical and inspiring. However, there are
still rooms for enhancement. In particular, this model cannot ensure that
the covariance matrices in the range are invertible. It is not easy to find
the optimal investment strategy unless there is no short-selling. A numerical
method, interior point algorithm, is suggested to solve the problem in the
general case. It is known that there might be infinitely many solutions. This
is the difficulty of using a range of parameters in considering an asset allo-
cation problem. One important advantage of our uncertainty model is that
it takes the determinant of the covariance matrix into consideration. There-
fore, it allows short selling but still has a unique explicit solution. Short
selling is a useful strategy for risk hedging. For example, pair trading is pop-
ular among hedging funds and many professional investors. We know that
many assets in the market are highly correlated and they can be used to
hedge the unwanted risk of each other. The uncertainty approach can help
those investors explore pair trading opportunities at the same time take care
of the effect of uncertainty in the market. The model is also mathemati-
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cally tractable. Therefore, we can understand the financial meaning of this
uncertainty model more easily and intuitively.

The model considers risk premium and covariance together with a single
parameter. Thus, we can study their joint effect and differences. Our goal is
to minimize the variance of the portfolio in the worst scenario for a target ex-
pected return. It is a saddle point problem and there exists a unique solution.
The worst scenario is defined to be the measure in which the optimal portfolio
has the greatest variance. Our analysis shows that the two sources of uncer-
tainty have different mechanisms to increase the variance of the portfolio’s
return. They are different in nature. Covariance uncertainty increases the
covariances among the assets, while, expected return uncertainty increases
the leverage of the portfolio.

We use the worst scenario to illustrate the effect of uncertainty. There
is another way to understand the meaning of worst scenario using Sharpe
ratio. Sharpe ratio is the ratio of risk premium to standard deviation of the
portfolio return. It measures the benefit of bearing investment risk and is
known to be the price of risk. We continue to use U to denote the feasible
set of parameters. In previous sections, it is obtained by a relative entropy
constraints. Here, we consider a more general case and do not use the concept
of relative entropy. We assume that U is convex, and independent of the
investment strategy of the investors. We apply the mean-variance approach
under the worst scenario to study the asset allocation problem in this new
set of parameters. We apply the Lagrangian method on the expected return
constraint. The problem becomes

min
(µ̂,V̂ )∈U

(
max
u∈Rn

u′µ̂− λu′V̂ u
)

such that u′µ̂ ≥ rp.

Given the parameter (µ̂, V̂ ), the optimal investment strategy is of this form,

û =
1

2λ
V̂ −1µ̂,

where λ is the Lagrangian multiplier. With the expected return constraint
under the worst scenario, we have

λ =
u∗′V ∗−1u∗

2rp
.
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Using the above results, the problem can be simplified

min
(µ̂,V̂ )∈U

rp µ̂
′V̂ −1µ̂

2 u∗′V ∗−1u∗
.

Hence, the worst scenario minimizes µ̂′V̂ −1µ̂. On the other hand, due to the
presence of the risk-free asset, the efficient frontier is a straight line. With the
optimal investment strategy û, we can find the Sharpe ratio of the efficient
portfolios,

û′µ̂√
û′V̂ û

=

√
µ̂′V̂ −1µ̂.

Therefore, the worst scenario also minimizes the slope of the efficient fron-
tier (the Sharpe ratio of these efficient assets). The result provides another
financial interpretation of the worst scenario. It is the probability measure
with the minimum reward on risk.

From the empirical analysis, we find that the effect of the expected return
uncertainty is more substantial compared with the covariance uncertainty
under the mean-variance framework. For a fixed required expected return
under the worst scenario, the leverage on risky assets has a significant effect
on the variance of the portfolio return. Modelling expected return uncer-
tainty (e.g. Yang and Siu (2001), Maenhout (2004)) is a popular research
topic because of its simplicity and relation with the Girsanov theorem. The
numerical results rationalize the existing researches which focus on expected
return uncertainty.

6. Conclusions

We have used the concept of relative entropy to model parameter un-
certainty and studied the asset allocation problem. Two sources of uncer-
tainty, risk premium uncertainty and covariance uncertainty, are studied in
the model. Their effects and interaction are identified by considering the
worst scenario. The explicit forms of the worst scenario and the optimal
investment strategy are obtained. We have shown that relative entropy can
ensure the invertibility of the covariance matrices in the set of parameters.
It is vital for modelling covariance uncertainty because it can ensure the ex-
istence of a unique solution. The solution can also be found in a simpler way
without using complicated numerical methods. In the world of uncertainty,
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people makes their investment decision with modified market parameters.
Risk premia are reduced proportionally. Covariances are adjusted according
to the risk premia. The influence of risk premium uncertainty is found to
be stronger than covariance uncertainty due to the leverage effect. The be-
haviour of minimum variance frontiers of different uncertainty levels and the
relationship between the worst scenario and Sharpe ratio are also discussed.
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