Accepted Manuscript

The first fossil Perilestidae (Odonata: Zygoptera) from mid-Cretaceous Burmese amber

Daran Zheng, Bo Wang, Edmund A. Jarzembowski, Su-Chin Chang, André Nel

PII: S0195-6671(16)30092-1

DOI: 10.1016/j.cretres.2016.05.002

Reference: YCRES 3400

- To appear in: Cretaceous Research
- Received Date: 25 March 2016

Revised Date: 5 May 2016

Accepted Date: 8 May 2016

Please cite this article as: Zheng, D., Wang, B., Jarzembowski, E.A., Chang, S.-C., Nel, A., The first fossil Perilestidae (Odonata: Zygoptera) from mid-Cretaceous Burmese amber, *Cretaceous Research* (2016), doi: 10.1016/j.cretres.2016.05.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	The first fossil Perilestidae (Odonata: Zygoptera) from mid-Cretaceous Burmese
2	amber
3	
4	Daran Zheng ^{a, b, *} , Bo Wang ^{a, c} , Edmund A. Jarzembowski ^{a, d} , Su-Chin Chang ^{b, *} ,
5	André Nel ^e
6	
7	^a State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of
8	Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road,
9	Nanjing 210008, China
10	^b Department of Earth Sciences, The University of Hong Kong, Hong Kong Special
11	Administrative Region, China
12	^c Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology,
13	Chinese Academy of Sciences, 1, Beichen West Road, Beijing 100101, China
14	^d Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK
15	^e Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN,
16	UPMC, EPHE, Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue
17	Cuvier, CP 50, Entomologie, F-75005, Paris, France (anel@mnhn.fr)
18	
19	* Corresponding author. Department of Earth Sciences, The University of Hong Kong,
20	Hong Kong Special Administrative Region, China.
21	E-mail address: dranzheng@gmail.com (D. Zheng), suchin@hku.hk (SC. Chang).
22	

23 A B S T R A C T

24	Palaeoperilestes electronicus gen. et sp. nov. is the first perilestid damselfly
25	described from mid-Cretaceous Burmese amber. This new damselfly can be attributed
26	to the family Perilestidae by the midfork being distal of the subnodus and the base of
27	IR2 quite near to the base of RP2, both features found in the extant genera Perilestes
28	and Perissolestes. Palaeoperilestes electronicus gen. et sp. nov. has a strongly
29	zigzagged IR1, however, differing from Perilestes and Perissolestes which have a
30	straight IR1. The discovery not only adds to the diversity of damselflies in Burmese
31	amber, but also puts the origin of Perilestidae back to at least the mid-Cretaceous.
32	
33	Key words: Perilestidae, Zygoptera, Odonata, Cenomanian, Cretaceous, Burmese
34	amber
35	
36	1. Introduction
37	The Perilestidae Kennedy, 1920 is a family of small damselflies, often called
38	shortwings or twigtails, characterized by short wings (20-25 mm) and very long,

slender and colour-banded abdomens (40–56 mm) (Williamson and Williamson 1924;

40 Haber and Wagner, 2014). The adults often perch on plant stems or dead twigs near

41 streams and frequent the understory and glades within dense forest, thus making them

- 42 easily overlooked in the field. Perilestidae now consists of two Neotropical genera:
- 43 Perilestes Hagen in Selys-Longchamps, 1862 and Perissolestes Kennedy, 1941, with
- the former consisting of eight species while the later comprises 11 species (Dijkstra et

45	al., 2011, 2014; Schorr and Paulson, 2015; Machado, 2015). The African endemic
46	genus Nubiolestes Fraser, 1944 was previously attributed to this family (Bechly, 1996;
47	Neiss and Neusa, 2010); however, it is the sister genus of the Perilestidae sensu stricto
48	in the phylogenetic analysis of Dijkstra et al. (2014). In the present paper, a new
49	damselfly, Palaeoperilestes electronicus gen. et sp. nov., is described from the
50	mid-Cretaceous Burmese amber. This is the first fossil representative of the extant
51	family Perilestidae. The new discovery increases our knowledge about these unique
52	damselflies.
53	
54	2. Material and methods
55	The specimen described herein was collected from the Hukawng Valley of
56	Kachin Province, Myanmar (locality in Kania et al., 2015: fig. 1). The age of Burmese
57	amber is radiometrically dated at 98.79 ± 0.62 Ma (earliest Cenomanian; Cohen et al.,
58	2013) based on U–Pb zircon dating of the volcanoclastic matrix (Shi et al., 2012).
59	The amber containing the damselfly is yellow and transparent. The damselfly is
60	preserved together with a big horsefly. The damselfly wings are close to the amber
61	surface and are slightly curved towards the horsefly. This makes it difficult for further
62	polishing and obtaining clear photomicrographs. Photomicrographs were taken using
63	a Zeiss Stereo Discovery V16 microscope system and Zen software. In most instances,
64	incident and transmitted light were used simultaneously. All images are digitally
65	stacked photomicrographic composites of approximately 40 individual focal planes
66	obtained using the free software Combine ZP for a better illustration of the 3D

67	structures. The line drawings were prepared from photographs using image-editing
68	software (CorelDraw X7 and Adobe Photoshop CS6). The specimen is housed in the
69	Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences
70	(NIGPAS). All taxonomic acts established in the present work have been registered in
71	ZooBank (see below), together with the electronic publication LSID:
72	urn:lsid:zoobank.org:pub:28289195-14CB-4434-92CD-6D6F5865ABBF.
73	The nomenclature of the odonatan wing venation used in this paper is based on
74	the interpretations of Riek (1976) and Riek and Kukalová-Peck (1984), as modified
75	by Nel et al. (1993) and Bechly (1996). The higher classification of fossil and extant
76	Odonatoptera, as well as family and generic characters followed in the present work,
77	are based on the phylogenetic system proposed by Bechly (1996) and Dijkstra et al.
78	(2014) for the phylogeny of extant Zygoptera. Wing abbreviations are as follows:
79	CuA, cubitus anterior; IR, intercalary radial veins; MA, median anterior; MP, median
80	posterior; N, nodus; Pt, pterostigma; RA, radius anterior; RP, radius posterior; Sn,
81	subnodal crossvein. All measurements are given in mm.
82	
83	3. Systematic palaeontology
84	Order: Odonata Fabricius, 1793
85	Suborder: Zygoptera Selys-Longchamps, 1854
86	Family: Perilestidae Kennedy, 1920
87	Type genus. Perilestes Hagen in Selys-Longchamps, 1862

88 New genus. *Palaeoperilestes* gen. nov.

89	(urn:lsid:zoobank.org:act:08EA6631-83A4-4EBA-8BEC-A6932257A86B)
90	Type species. Palaeoperilestes electronicus sp. nov.
91	<i>Etymology</i> . Named from the Greek word $\pi\alpha\lambda\alpha\iota\delta\varsigma$ for 'old' and the type genus
92	Perilestes. Gender unknown.
93	Diagnosis. Wing characters: hindwing midfork (base of RP3/4) shifted distal of N;
94	IR1 strongly zigzagged and shortened, originating basal of Pt base; IR2 distinctly
95	shortened, arising on base of RP2 in forewing but one cell basal of that in hindwing;
96	IR2 two cells distal of midfork in hindwing; hindwing MP long and reaching posterior
97	wing margin slightly distal of base of IR1; CuA short and ending on posterior wing
98	margin near base of IR2; postnodal and postsubnodal crossveins somewhat aligned;
99	all intercalary veins (except IR1 and IR2) suppressed; longitudinal veins RA, IR1,
100	RP1, IR2, and RP2 strongly converging to wing apex; Pt one cell long and well
101	braced.
102	
103	Palaeoperilestes electronicus sp. nov.

(urn:lsid:zoobank.org:act:15000F2A-E86C-451F-8857-45BA86B873F6) 104

Figs. 1-5 105

106

Etymology. Named after the Greek word electron for 'amber'. 107

Holotype. NIGP163955. The distal two third of two wings, probably a forewing and a 108

hindwing because of their respective positions; deposited in the Nanjing Institute of 109

Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China. 110

111	Locality and Horizon.	Hukawng	Valley,	Kachin	Province,	Myanmar;	lowermost
-----	-----------------------	---------	---------	--------	-----------	----------	-----------

- 112 Cenomanian, Upper Cretaceous.
- 113 *Diagnosis*. As for genus.
- 114 Description. Forewing incomplete (Figs 2A, 3A). Preserved wing length 6.81 mm,
- maximum width 2.36 mm, length from base of RP2 to Pt 3.8 mm, from Pt to wing
- apex 1.87 mm. Five postnodal crossveins and six postsubnodal crossveins present
- distal of N and basal of Pt, with two basal rows aligned but three distal rows not
- aligned. Three postnodal and postsubnodal crossveins present distal of Pt, not aligned.
- 119 IR2 slightly zigzagged, arising from RP2 and slightly distal of base of RP2, lying 0.25
- 120 mm distally. IR1 strongly zigzagged, three cells and 2.45 mm distal of base of RP2,
- and two cells basal of Pt base. RP1 with a slight angle below Pt brace. MA distally
- 122 zigzagged and long. CuA ending on posterior wing margin just below base of IR2. Pt

123 one cell long (Fig. 4), 0.6 mm long and 0.35 mm wide, well braced; star- or

124 pyramid-like microstructures distributed on Pt suface; Pt brace in same orientation to

base of Pt. All intercalary veins (except IR1 and IR2) suppressed. Longitudinal veins

126 RA, IR1, RP1, IR2, and RP2 strongly converging to wing apex.

127 Hindwing incomplete (Figs 2B–C, 3B), resembling forewing except for

following differences. Preserved wing length 9.01 mm, maximum width 2.37 mm,

length from base of RP3/4 to base of RP2 2.7 mm, from base of RP2 to Pt 3.32 mm,

- 130 from Pt to wing apex 1.57 mm. Seven postnodal crossveins and eight postsubnodal
- 131 crossveins present before Pt, somewhat aligned. Five postnodal crossveins and five
- 132 postsubnodal crossveins present distal of Pt, non-aligned. Midfork present distal of N.

133	Base of IR2 two cells and 1.99 mm distal of midfork. Base of RP2 one cell distal of
134	base of IR2, lying 0.7 mm distally. IR1 strongly zigzagged, two cells and 1.38 mm
135	distal of base of RP2, and two cells basal of Pt base. MA long, basally straight but
136	strongly zigzagged distally, ending on posterior wing margin slightly basal of Pt brace.
137	MP long, basally straight but slightly zigzagged distally, ending on posterior wing
138	margin slightly distal of base of IR1. CuA ending on posterior wing margin slightly
139	basal of base of IR2.
140	Three fragmentary legs preserved (Fig. 5), paired long spines present on tibia and
141	tarsi; tibia armed with about seven or eight pairs of spines; tarsi three segmented with
142	third tarsomere length equal to first two tarsomeres, and armed with about five or six
143	pairs of spines; apical claws symmetrical.
144	
145	4. Discussion
146	The absence of the wing bases makes the attribution of this damselfly rather

difficult. However, Palaeoperilestes has a star like microstructures distributed on the 147 surface of the pterostigma (Fig. 4), a derived type for the superfamily Lestoidea 148 Calvert, 1901 (Bechly, 2016), indicating the strong relationship between 149 Palaeoperilestes and Lestoidea. Besides, Palaeoperilestes has the base of IR2 shifted 150 several cells distal of the midfork. This unique character is only shared by a few 151 zygopteran taxa, i.e., Chorismagrionidae Tillyard and Fraser, 1938, Perilestidae 152 Tillyard and Fraser, 1938, Nubiolestinae Bechly, 1996 and the "megapodagrionid" 153 genus Arrhenocnemis Lieftinck, 1933 (according to Bechly, 2016). 154

155	Arrhenocnemis was reassigned to Megapodagrionidae by Lieftinck, (1971);
156	however, it was later attributed to the Paltycnemididae: Calicnemiinae (see Gassmann,
157	2005; Orr and Kalkman, 2010). Arrhenocnemis consists of three species, viz., A.
158	sinuatipennis Lieftinck, 1933, A. amphidactylis Lieftinck, 1949, and A. parvibullis
159	Orr and Kalkman, 2010, all from New Guinea. <i>Palaeoperilestes</i> resembles
160	Arrhenocnemis in having the base of RP2 one cell distal of the base of IR2, and the
161	base of IR1 being three cells distal of the base of RP2. However, any affinity of
162	Palaeoperilestes with Arrhenocnemis can be excluded by the presence of crenulated
163	distal wing margins, the midfork being aligned with Sn, and a non-zigzagged IR1 in
164	Arrhenocnemis.
165	Chorismagrionidae comprise the relict species Chorismagrion risi Morton, 1914
166	(Fig. 6), only recorded in Australia. Fraser (1957) considered the Chorismagrionidae
167	as 'an annectent between the families Perilestidae and Chlorolestidae', but Dijkstra et
168	al. (2014) placed Chorismagrion in the Synlestidae. The open discoidal cell in
169	Chorismagrion cannot indicate affinities between these two groups, since this
170	character has evolved several times within Zygoptera and Epiproctophora (Bechly,
171	2016). The absence of wing base characters makes it more difficult to distinguish
172	Palaeoperilestes from Chorismagrion. The new specimen shares with Chorismagrion
173	a strongly zigzagged IR1. However, Chorismagrion has a midfork aligned with Sn,
174	the base of IR2 more cells basal of the base of RP1, the base of IR1 nearer to the base
175	of RP2 than to the base of Pt, and Pt covering two cells, obviously differing from the
176	new specimen.

177	Nubiolestinae Bechly, 1996 comprises the relict genus Nubiolestes (type species:
178	Nubiolestes diotima (Schmidt, 1943, Fig. 6), recorded in tropical Africa and restricted
179	to Cameroon (Dijkstra and Vick, 2004). Palaeoperilestes resembles Nubiolestes in the
180	base of IR2 being near to the base of RP2 and the base of IR1being basal of Pt. The
181	differences of Palaeoperilestes from Nubiolestes are: the midfork is distal of the
182	subnodus instead of being aligned as in Nubiolestes, IR1 is quite zigzagged instead of
183	being straight, and the base of IR2 is two cells distal of the midfork instead of six cells
184	(Schmidt, 1943; Fraser, 1944).
185	Palaeoperilestes has IR2 distinctly shortened, arising on RP2 in the forewing and
186	one cell basal of base of RP2 in the hindwing. These structures resemble the situation
187	in the extant family Perilestidae. Palaeoperilestes shares with Perilestes and
188	Perissolestes (Fig. 6) the midfork distal of the subnodus, the base of IR2 quite near to
189	the base of RP2, but differs from them in having a quite zigzagged IR1 (straight IR1
190	in Perilestes and Perissolestes).
191	In conclusion, Palaeoperilestes electronicus cannot be attributed to any known
192	genus. However, Palaeoperilestes resembles Perilestes and Perissolestes more than
193	any of the other genera discussed above. Thus we suggest a new genus provisionally
194	attributed to the family Perilestidae (Fig. 6).
195	It should be noted that the family Austroperilestidae Petrulevičius and Nel, 2005
196	(Austroperilestes hunco Petrulevičius and Nel, 2005), described from the Lower
197	Eocene of Argentina, was considered to be related to Perilestidae (Petrulevičius and
198	Nel, 2005). However, A. hunco can be easily differentiated from P. electronicus by the

199	presence of a 'lestine' oblique vein, IR2 being opposite the subnodus, RP3/4 being
200	basal of the nodus, a long pterostigma and a very dense wing venation.
201	
202	5. Conclusions
203	The first fossil representative of the extant family Perilestidae, Palaeoperilestes
204	electronicus gen. et sp. nov., is described from mid-Cretaceous Burmese amber. The
205	new discovery adds to the diversity of damselflies in the mid-Cretaceous amber.
206	Gondwana was considered to be the ancestral area of the Lestoidea (van Tol et al.,
207	2009), and the recent Perilestidae only occurs in the Neotropical region. The new
208	discovery puts the appearance of perilestid damselfly back to at least the
209	mid-Cretaceous in India.

210

211 Acknowledgements

This research was supported by the National Basic Research Program of China 212 (2012CB821900), National Natural Science Foundation of China (41572010, 213 J1210006), Youth Innovation Promotion Association of Chinese Academy of Sciences 214 (No. 2011224), the Chinese Academy of Sciences President's International Fellowship 215 Initiative (2011T2Z04), Open projects of Key Laboratory of Economic Stratigraphy 216 and Palaeogeography, Chinese Academy of Science (Grant no. 2016KF05), and the 217 HKU Seed Funding Program for Basic Research (Grant no. 201210159058). We offer 218 our sincere gratitude to Dr. Eduardo Koutsoukos for editing, and two anonymous 219 reviewers for the very useful comments on the earlier version of the manuscript. 220

221	
222	References
223	Bechly, G., 1996. Morphologische Untersuchungen am Flügelgeäder der rezenten
224	Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter
225	besonderer Berücksichtigung der Phylogenetischen Systematik und des
226	Grundplanes der Odonata. Petalura, 2: 1–402.
227	Bechly, G., 2016. Phylogenetic systematics of Odonata. Homepage on the Internet at:
228	https://dl.dropboxusercontent.com/u/13756162/Website/odonata/system.htm
229	(accessed 5 May 2016).
230	Calvert, P. P., 1901. Odonata. In: Biologia Centrali Americana: Insecta Neuroptera. R.
231	H. Porter, London, pp. 17–72.
232	Cohen, K. M., Finney, S. C., Gibbard, P. L., Fan, J., 2013. The ICS international
233	chronostratigraphic chart. Episodes, 36: 199–204.
234	Dijkstra, KD. B., Vick, G. S., 2004. Critical species of Odonata in western Africa. In:
235	Clausnitzer, V. & Jodicke, R., (Eds.). Guardians of the watershed. Global status
236	of dragonflies: critical species, threat and conservation. International Journal of
237	Odonatology, 7: 229–238.
238	Dijkstra, KD. B., Boudot, JP., Clausnitzer, V., Kipping, J., Kisakye, J. J., Ogbogu, S.
239	S., Samraoui, B., Samways, M. J., Schütte, K., Simaika, J. P., Suhling, F.,
240	Tchibozo, S., 2011. Dragonflies and damselflies of Africa (Odonata): history,
241	diversity, distribution, and conservation. In: Darwall, W. R. T., Smith, K. G.,
242	Allen, D. J., Holland, R. A., Harrison, I. J. & Brooks, E. G. E. (Eds.). The

243	Diversity of life in African Freshwaters: under water, under threat. An analysis of
244	the status and distribution of freshwater species throughout mainland Africa.
245	IUCN, pp. 128–177.
246	Dijkstra, KD. B., Kalkman, V. J., Dow, R. A., Stokvis, F. R., van Tol, J., 2014.
247	Redefining the damselfly families: a comprehensive molecular phylogeny of
248	Zygoptera (Odonata). Systematic Entomology, 39: 68–96.
249	Fabricius, J. C., 1793. Entomologia systematica emendata et aucta, secundum classes,
250	ordines, genera, species, adjectis synonymis, locis, observationibus,
251	descriptionibus. C.G. Proft, Hafniae (= Copenhagen), 3: 1–487 and 1–349.
252	Fraser, F. C., 1944. The significance of vestigial oblique veins in the evolution of
253	intercalated veins in the odonate wing, with the description of a new genus.
254	Proceedings of the Royal Entomological Society, London, (B), 13 (5-6): 58-67.
255	Fraser, F. C. 1957. A reclassification of the order Odonata, based on some new
256	interpretations of the venation of the dragonfly wing. Royal Zoological Society
257	of New South Wales, Sydney, 12: 1–133.
258	Fraser, F. C., 1960. The Odonata of Australia, Tasmania, and New Zealand. A
259	handbook of the dragonflies of Australasia with keys for the identification of all
260	species, Royal Zoological Society of New South Wales, Sydney, 1–61.
261	Fabricius, J. C., 1793. Entomologia systematica emendata et aucta, secundum classes,
262	ordines, genera, species, adjectis synonymis, locis, observationibus,
263	descriptionibus. C.G. Proft, Hafniae (= Copenhagen), 3: 1–487 and 1–349.
264	Gassmann, D., 2005. The phylogeny of Southeast Asian and Indo-Pacific

265 Calicnemiinae (Odonata:Platycnemididae). Bonner Zoologische Beiträge, 53

266 (2004): 37–80.

267 Haber, W., Wagner, D., 2014. Perilestidae: shortwings. Dragonflies and damselflies of

Ecuador (Odonata). Available on the Internet at:

http://bdei2.cs.umb.edu/~whaber/Odonata_of_Ecuador/index.html (accessed 16

270 March 2016).

- 271 Kania, I., Wang, B., Szwedo, J., 2015. *Dicranoptycha* Osten Sacken, 1860 (Diptera,
- 272 Limoniidae) from the earliest Upper Cretaceous Burmese amber. Cretaceous
- 273 Research, 52: 522–530.
- Kennedy, C. H., 1920. The phylogeny of the zygopterous dragonflies as based on the
 evidence of the penes. Ohio Journal of Science, 21: 19–29.
- 276 Kennedy, C. H., 1941. Perilestinae in Ecuador and Peru, revisional notes and
- 277 descriptions (Lestidae: Odonata). Annals of the Entomological Society of
- America, 34 (3): 658–688.
- Lieftinck, M. A., 1933. The dragonflies of New Guinea and neighbouring islands. Part
- 280 II. Descriptions of a new genus and species of Platycneminae (Agrionidae) and
- of new Libellulidae. Nova Guinea, 17: 1–66.
- Lieftinck, M. A., 1949. The dragonflies (Odonata) of New Guinea and neighbouring
- islands. Part VII. Results of the third Archbold expedition 1938–1939 and of the
- Le Roux expedition 1939 to the Netherlands, New Guinea (II. Zygoptera). Nova
- 285 Guinea (N.S.), 5: 1–271.
- Lieftinck, M. A., 1971. A catalogue of type specimens of Odonata preserved in the

Netherlands, with a supplementary list of the Odonata types described by Dutch
scientists deposited in foreign institutional collections. Tijdschrift voor
Entomologie, 114: 65–139.
Machado, A. B. M., 2015. Perilestes eustaquioi sp. nov. and new distributional
records of Perilestidae (Odonata) in Brazil. Zoologia, 32(5): 428–430.
Morton, K. J., 1914. A remarkable new genus and new species of Odonata, of the
legion Podagrion, Selys, from North Queensland. Transactions of the
Entomological Society of London, 62: 169–172.
Nel, A., Martinez-Delclòs, X., Paicheler, J. C., Henrotay, M., 1993. Les
'Anisozygoptera' fossiles. Phylogénie et classification (Odonata). Martinia Hors
Série, 3: 1–311.
Neiss, U. G., Neusa, H., 2010. The larva of Perilestes attenuatus Selys, 1886
(Odonata: Perilestidae) from Amazonas, Brazil. Zootaxa, 2614: 53–58.
Orr, A. G., Kalkman, V. J., 2010. Arrhenocnemis parvibullis sp. nov. (Odonata:
Platycnemididae), a new calicnemiine damselfly from Papua New Guinea, with a
description of the female of A. amphidactylis Lieftinck, 1949. Australian
Entomologist, 37 (4): 137–146.
Petrulevičius, J. F., Nel, A., 2005. Austroperilestidae, a new family of damselflies
from the earliest Eocene of Argentina (Insecta: Odonata). Phylogenetic
relationships within Odonata. Journal of Paleontology, 79 (4): 658-662.
Riek, E. F., 1976. A new collection of insects from the Upper Triassic of South Africa.
Annals of the Natal Museum, 22: 791–820.

309	Riek, E. F., Kukalová-Peck, J., 1984. A new interpretation of dragonfly wing venation		
310	based upon Early Carboniferous fossils from Argentina (Insecta: Odonatoidea)		
311	and basic character states in pterygote wings. Canadian Journal of Zoology, 62:		
312	1150–1166.		
313	Schmidt, E., 1942. Bermerkungen über Lestiden. 2. Eine neue Gattung und Art aus		
314	Kamerun (Eolestes diotima). Mitteilungen der Deutsche Entomologische		
315	Gesellschaft, 11: 102–111.		
316	Schorr, M., Paulson, D., 2015. World Odonata list. Available on the Internet at:		
317	http://www.pugetsound.edu/ (accessed 16 March 2016).		
318	Selys-longchamps, E. de, 1854. Monographie des Calopterygines. Mémoires de la		
319	Société royale des Sciences de Liége 9, xi + 291 pp.		
<u>320</u>	Selys-longchamps, E. de, 1862. Synopsis des agrionines. Troisième légion: Podagrion		
321	Bulletins de l'Académie Royale des Sciences, des Lettres et des Beaux-Arts de		
322	Belgique (2me série), 14: 5–44.		
323	Shi, G., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Wang, M., Lei, W., Li, Q.,		
324	Li, X., 2012. Age constraint on Burmese amber based on U-Pb dating of zircons.		
325	Cretaceous Research, 37: 155–163.		
326	Tillyard, R. J., Fraser, F. C., 1938–1940. A reclassification of the order Odonata.		
327	Australian Zoologist 9, 125–169, 195–221, and 359–390.		
328	van Tol, J., Reijnen, B. T., Thomassen, H. A., 2009. Phylogeny and biogeography of		
329	the Platystictidae (Odonata). In: van Tol, J., Phylogeny and biogeography of the		

Platystictidae (Odonata). PhD Thesis, Leiden University, Leiden, pp. 3–70.

- 331 Williamson, E. B., Williamson, J. H., 1924. The genus *Perilestes* (Odonata).
- 332 Miscellaneous Publications of the Museum of Zoology University of Michigan,

333 14: 1–39.

334

	T 10	
225	Highre	cantions
555	I ISUI C	captions

- Fig 1. Palaeoperilestes electronicus gen. et sp. nov., holotype, NIGP163955,
- 337 photomicrograph of specimen.
- **Fig 2.** *Palaeoperilestes electronicus* gen. et sp. nov., holotype, NIGP163955. A,
- photomicrograph of forewing; B, photomicrograph of mid hindwing; C,
- 340 photomicrograph of distal part of hindwing.
- 341 Fig 3. Palaeoperilestes electronicus gen. et sp. nov., holotype, NIGP163955, line
- 342 drawing showing wing venation.
- 343 Fig 4. Palaeoperilestes electronicus gen. et sp. nov., holotype, NIGP163955,
- 344 photomicrograph showing details of Pt.
- **Fig 5.** *Palaeoperilestes electronicus* gen. et sp. nov., holotype, NIGP163955,
- 346 photomicrograph showing leg details.
- 347 Fig 6. Putative position of *Palaeoperilestes* gen. nov. in phylogenetic tree of
- 348 Zygoptera. All line drawings are based on forewings except for *Palaeoperilestes* gen.
- nov. from a more complete hindwing (Cladogram based on Dijkstra et al. 2014, line
- drawing of *Chorismagrion risi* Morton, 1914 after Fraser, 1960; line drawing of
- 351 Nubiolestes diotima Schmidt, 1943 after Fraser, 1944; line drawings of Perilestes
- 352 gracillimus Kennedy, 1941 and Perissolestes remotus Williamson & Williamson,

353 1924 after Kennedy, 1941).

CER MAR

CER AN

