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Expanding genotype/phenotype of

neuromuscular diseases by comprehensive

target capture/ NGS

ABSTRACT

Objective: To establish and evaluate the effectiveness of a comprehensive next-generation
sequencing (NGS) approach to simultaneously analyze all genes known to be responsible for
the most clinically and genetically heterogeneous neuromuscular diseases (NMDs) involving spi-
nal motoneurons, neuromuscular junctions, nerves, and muscles.

Methods: All coding exons and at least 20 bp of flanking intronic sequences of 236 genes causing
NMDs were enriched by using SeqCap EZ solution-based capture and enrichment method fol-
lowed by massively parallel sequencing on lllumina HiSeq2000.

Results: The target gene capture/deep sequencing provides an average coverage of ~1,000X per
nucleotide. Thirty-five unrelated NMD families (38 patients) with clinical and/or muscle pathologic
diagnoses but without identified causative genetic defects were analyzed. Deleterious mutations
were found in 29 families (83%). Definitive causative mutations were identified in 21 families
(60%) and likely diagnoses were established in 8 families (23%). Six families were left without
diagnosis due to uncertainty in phenotype/genotype correlation and/or unidentified causative
genes. Using this comprehensive panel, we not only identified mutations in expected genes but
also expanded phenotype/genotype among different subcategories of NMDs.

Conclusions: Target gene capture/deep sequencing approach can greatly improve the genetic
diagnosis of NMDs. This study demonstrated the power of NGS in confirming and expanding clin-
ical phenotypes/genotypes of the extremely heterogeneous NMDs. Confirmed molecular diagno-
ses of NMDs can assist in genetic counseling and carrier detection as well as guide therapeutic
options for treatable disorders. Neurol Genet 2015;1:e14; doi: 10.1212/NXG.0000000000000015

GLOSSARY

AD = autosomal dominant; AR = autosomal recessive; BCM = Baylor College of Medicine; CACTD = carnitine acylcarnitine
translocase deficiency; CCD = central core disease; CM = congenital myopathy; CMD = congenital muscular dystrophy;
CMT = Charcot-Marie-Tooth disease; CMyS = congenital myasthenic syndrome; CNM = centronuclear myopathy; EDMD =
Emery-Dreifuss muscular dystrophy; HSAN = hereditary sensory and autonomic neuropathy; LGMD = limb-girdle muscular
dystrophy; MH = malignant hyperthermia; MM = metabolic myopathy; MTS = myotonic syndrome; NGS = next-generation
sequencing; NM = nemaline myopathy; NMD = neuromuscular disease; PFIS = paralytic floppy infant syndrome; SMARD1 =
spinal muscular atrophy with respiratory distress type 1; VUS = variants of unknown significance.

Neuromuscular diseases (NMDs) are genetically and clinically heterogeneous. To date, more
than 360 genes have been reported to cause NMDs.! As a group, the combined NMD prev-
alence is greater than 1 in 3,000.

The majority of NMDs are inherited, degenerative, and rare.>* An early definitive molecular
diagnosis is crucial for genetic counseling, family planning, prognosis, therapeutic strategies, and
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long-term care plans.”” The recent develop-
ment of next-generation sequencing (NGS)
has accelerated the discovery of novel NMD

8! including the

phenotypes and genotypes,
identification of mutations in 5 large NMD
genes (77N, NEB, SYNEI, RYRI, and
DMD"*#12) (table e-1 at Neurology.org/ng).
With the ever-increasing number of causative
genes and clinical heterogeneity, a comprehen-
sive molecular approach with the feasibility
to add newly discovered genes for analysis
in a cost- and time-effective manner is
needed'l,4,7,12—16

A recent study using PCR enrichment and
NGS approach to analyze 12 genes known
to cause congenital muscular dystrophy
(CMD) on 26 samples with known muta-
tions'” reported that 49 exons (15%) had
insufficient coverage (<20X)."” Among 15
known variants, 6 (40%) were not detected.
Similar studies on congenital myasthenic
syndrome (CMyS),"® Charcot-Marie-Tooth
disease (CMT)," Duchenne/Becker muscular
dystrophy,*® and metabolic myopathy (MM)*"-**
have demonstrated the clinical utility of NGS in
specific disease categories. Nevertheless, these are
small-scale studies focusing on subcategories of
NMDs. Here, we describe a comprehensive
target gene capture/NGS approach, analyzing
236 genes.

METHODS Standard protocol approvals, registrations,
and patient consents. This study was conducted according to
the Institutional Review Board—approved protocols of both
Kaohsiung Medical University Hospital, Taiwan, and Baylor
College of Medicine (BCM), Houston, TX. A signed informed

consent was obtained for each participant.

Patients and DNA samples. Patients were clinically evaluated
in Taiwan, and DNA samples were analyzed at BCM. DNA sam-
ples from 35 unrelated families (38 patients) with clinical diagnoses
of NMD who underwent electrophysiologic examination and
muscle imaging and/or muscle biopsies were analyzed. Patients
with a proven common genetic diagnosis of spinal muscular atro-
phy, Duchenne muscular dystrophy, myotonic dystrophy types
1 and 2, CMT type 1A, or facioscapulohumeral muscular dystro-
phy were not included in the study. The initial diagnoses included
congenital myopathy (CM) (23 patients), CMD (5), limb-girdle
muscular dystrophy (LGMD)* (4), CMT (3), MM (2), and
myotonic syndrome (MTYS) and ion channel muscle disease (1).
DNA was extracted from peripheral blood using a Puregene DNA
extraction kit according to manufacturer’s instructions (Gentra

Systems Inc., Minneapolis, MN).

Design of capture probes and target gene enrichment. The
capture probe library contained 236 genes, most of which were

selected from the 2012 version of the gene table of monogenic

Neurology: Genetics

NMDs.* We categorized NMDs and their causative genes into
10 groups, including MM, CMD, CM, other myopathies, motor
neuron disease, CMyS, arthrogryposis multiplex congenita, MTS
and ion channel muscle diseases, CMT, and other muscular dystro-
phies as listed in table 1. Mitochondrial genes were not included.
A custom NimbleGen in-solution DNA capture library was
designed to capture all 4,815 coding exons and at least 20 bp
flanking intron regions of the 236 NMD-related genes. The
NM accession numbers of the genes are listed in table e-1. The
coding regions were enriched according to manufacturer’s in-
structions (Roche NimbleGen Inc., Madison, WI) and sequenc-
ing was performed on HiSeq2000, as previously described."**

Sequence alignment and analytical pipeline for variant
calling. Conversion of raw sequencing data, demultiplexing,
sequence alignment, data filtering, and analyses using CASAVA
v1.7, NextGENe software were performed as previously
described.?"*> Multiple in silico analytical tools, such as
SpliceSiteFinder-like, MaxEntScan, NNSPLICE, and GeneSplicer,
were used to predict the effects of splice site variants (Alamut, htep://
www.interactive-biosoftware.com). SIFT?* and PolyPhen-2?" were
used to predict the pathogenicity of novel missense variants. The
pathogenicity of the variants was categorized according to published
databases, such as Human Gene Mutation Database (http://www.
biobase-international.com/product/hgmd), PubMed (http://www.
ncbi.nlm.nih.gov/pubmed), and American College of Medical
Genetics guidelines.” The analytical flowchart is depicted in
figure e-1. All mutations and novel variants identified by NGS
were confirmed independently by Sanger sequencing.*"*> Family
members, if available, were also tested to evaluate the mode of

inheritance, discase segregation, and clinical correlation.

Detection of deletions using sequence read coverage data
from NGS. We used a newly developed analytical method to
detect exonic deletions using the same set of NGS data by com-
paring the normalized coverage depth of each individual exon of
the test sample with the mean coverage depth of the same exon

from a group of 20 reference samples.*’

RESULTS Characteristics of target gene capture and
sequence depth. More than 99.4% (4,787/4,815) of
the target sequences were enriched in an unbiased
fashion, with a minimal coverage of 20X and a mean
coverage depth of 1,136X per base (figure 1). An
average of 28 exons per sample was consistently insuf-
ficiently sequenced (<20X) due to the high GC
content, sequence homologies in the genome, short
tandem repeats, or secondary structural difficulties
(table e-2).

Clinical history. A total of 35 unrelated affected fami-
lies (38 patients) with clinical diagnosis of NMD were
studied. Among them, 3 families had 2 affected fam-
ily members (patients 4/6, 19/20, and 25/26). The
male to female patient ratio was about 1 to 1. The
majority of patients (27/38, 71%) presented with par-
alytic floppy infant syndrome (PFIS). The clinical and
pathologic features are summarized in table 2.

Identification of mutations. Figure e-1 illustrates the
analytical algorithm for the identification of disease-
causing variants. The approximate number of
variants in each step of analysis is included. DNA
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[ Table 1 Ten categories of neuromuscular diseases

Name of panel

Metabolic myopathies

Congenital muscular dystrophy

Congenital myopathy

Other myopathies

Motor neuron disease

Congenital myasthenia syndrome
Arthrogryposis multiplex congenita
Myotonic syndromes and ion channel

muscle diseases

Charcot-Marie-Tooth diseases and
peroxisomal disorders

Other muscular dystrophy

Total

No. Genes

39 genes ABHD5, ACADM, ACADS, ACADVL, AGL, ALDOA, CPT1A, CPT1B, CPT1C, CPT2, ENO3, ETFA, ETFB,
ETFDH, G6PC, GAA, GBE1, GYG1, GYS1, HADH, HADHA, HADHB, LDHA, LPIN1, PFKM, PGAM2, PGK1,
PGM1, PHKA1, PHKA2, PHKB, PHKG2, PNPLA2, PRKAG2, PYGM, PYGL, SLC22A5, SLC25A20, SLC37A4

18 genes CHKB, COL6A1, COL6A2, COL6A3, DNM2, FHL1, FKRP, FKTN, GTDC2, ISPD, ITGA7, LAMA2, LARGE,
POMT1, POMT2, POMGNT1, SEPN1, TCAP

21 genes (2) ACTA1,BIN1, CCDC78, CFL2, CNTN1, DNM2, KBTBD13, MTM1, MTMR14, MYBPC3, MYF6, MYH2, MYH7,
NEB, RYR1, SEPN1, TNNT1, TPM2, TRIM3, TTN, TPM3

16 genes (3) ACVR1, BAG3, CAV3, CRYAB, DES, FHL1, FLNC, GDF8, ISCU, LAMP2, LDB3, PABPN1, PLEC1, SEPN1,
TTID, TTN

37 genes ALS2, ANG, AR, ATP7A, ATXN2, BSCL2, CHMP2B, DCTN1, DYNC1H1, ERBB3, FIG4, FUS, GARS, GLE1,
HSPB1, HSPB3, HSPBS8, IGHMBP2, MYBPC1, NEFH, OPTN, PFN1, PIP5K1C, PLEKHG5, PRPH, REEP1,
SETX, SIGMAR1, SMN1, SOD1, TARDBP, TRPV4, UBA1, UBQLN2, VAPB, VCP, VRK1

14 genes (1) AGRN, CHAT, CHRNA1, CHRNB1, CHRND, CHRNE, COLQ, DOK7, GFPT1, LAMB2, MUSK, PLEC1, RAPSN,
SCN4A

21 genes (6) CHRNA1, CHRND, CHRNG, DHCR24, DOK7, ERCC2, ERCC6, FBN2, HRAS, LMNA, MYBPC1, MYH3, MYHS,
RAPSN, RIPK4, TPM2, TNNI2, TNNT3, VIPAR, VPS33B, ZMPSTE24

20 genes (2) ATP2A1, CACNA1A, CACNA1S, CAV3, CLCN1, DMPK, HSPG2, KCNA1, KCNE1, KCNE2, KCNH2, KCNJ5,
KCNJ11, KCNJ18, KCNQ1, LIFR, SCN4A, SCN4B, SCN5A, ZNF9/CNBP

58 genes (8) AARS, ARHGEF10, ATL1, CTDP1, DNM2, DNMT1, DYNC1H1, EGR2, FGD4, FIG4, GAN, GARS, GDAP1,

28 genes (14)

236 genes

GJB1, HOXD10, HSPB1, HSPBS, IKBKAP, KIF1A, KIF1B, LITAF, LMNA, LRSAM1, MED25, MFN2, MPZ,
MTMR2, NDRG1, NEFL, NGFB, PEX1, PEX2, PEX3, PEX5, PEX6, PEX7, PEX10, PEX11B, PEX12, PEX13,
PEX14, PEX16, PEX19, PEX26, PMP22, PRPS1, PRX, RAB7, SBF2, SEPT9, SH3TC2, SLC12A6, SPTLC1,
SPTLC2, TFG, TRPV4, WNK1, YARS

ANO5, CAPN3, CAV3, DAG1, DES, DMD, DNAJBG6, DYSF, EMD, FHL1, FKRP, FKTN, LMNA, MYH7, PLEC1,
POMGNT1, POMT1, POMT2, SGCA, SGCB, SGCD, SGCG, SYNE1, SYNE2, TCAP, TRIM32, TTID, TTN

272 genes (36)

A total of 236 genes responsible for the neuromuscular disorders are listed as 10 categories of diseases.
Repeated genes are shown in boldface type, and the number of repeated genes is in parentheses.

sequence variants were considered deleterious if they
led to a translational frameshift, exon skipping, or
stop codon or if they were previously reported in
affected patients. Table 2 summarizes initial clinical
diagnoses, muscle pathology findings, mutations

Figure 1

Number of exons

1200+

1000+

800

600+

400-

200+

Coverage depth of 4,815 coding exons of the neuromuscular disease

panel

Average coverage of an exon

identified, and final diagnoses. Among 35 families,
21 families (60%) had definitive diagnoses with
deleterious mutations in the expected causative
genes that were confirmed in family members.
Likely diagnoses were identified in an additional 8
families (23%) that had novel genotype/phenotype
findings requiring functional, clinical, and/or
genetic confirmation. Six families were without a
specific diagnosis due to inconsistent genotype/
phenotype correlation based on current knowledge.
Similar to the proportion of clinical diagnoses,
mutations in genes causing CM were most
common. However, this observation is biased due
to the prevalence of pediatric patients in our cohort.
About half of the disorders are inherited in an
autosomal recessive (AR) mode, with 2 X-linked
recessive cases. Autosomal dominant (AD) disorders

account for about 20%.

Molecular diagnoses of NMDs. Confirmation of NMD
diagnosis: Identification of deleterious mutations in genes
responsible for the observed clinical phenotype and muscle
pathology. The diagnoses of 13 families have been con-
firmed by this capture/sequencing approach (R1 in
table 2). Patient 2 had presented with MM due
to PFIS and hyperammonemia since birth. His
muscle pathology was consistent with lipid storage
myopathy (figure 2A). He was homozygous for the
c.199-10T>G Asian common splice mutation in

Neurology: Genetics 3
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Patient
Dx AR (14)
2

11

12

sol1euss) :ABojoINaN

16

17

18

21

25

26

32

33

51

Summary of clinical and molecular diagnosis of patients with neuromuscular diseases

Age at
onset

NB

NB

3-4y

NB

NB

10y

NB

Infancy

NB

NB

20y

NB

18y

Current
age, y

1.5 (exp)

18.5

10.9

16.2

24.7

17.8

9.1 (exp)

17.8

22.5

19.0

318

2.7

355

Sex

M

Clinical

Dx

MM

C™M

CM

CMD

CMD

MC

CMT

C™M

CM

CM

CM

CM

LGMD

Pathologic

Dx

LSM

CCD

MMCD

DG-CMD

MN-CMD

NSF

NC

MMCD

CNM

CNM

MCNI

ESMC

LGMD2B

Gene symbol Inheritance

SLC25A20
SLC25A20
RYR1
RYR1
SEPN1

SEPN1
POMT1

POMT1
LAMA2
LAMA2
CLCN1
CLCN1
IGHMBP2
IGHMBP2
SEPN1

SEPN1
RYR1
RYR1
RYR1
RYR1
TCAP
TCAP
RYR1
RYR1
DYSF
DYSF
SGCA
SGCA

Mat
Pat
NA
NA
Mat

Pat

Mat

Pat
Mat
Pat
Mat
Pat
Pat
Mat

Mat

Pat
NIP
Pat
NIP
Pat
Pat
Mat
Pat
Mat

NA, cons

NA
NA

Mutation

c.199-10T>G®
c.199-10T>G*
¢.11164T>C(p.Y3722H)°
¢.14584A>G(p.K4862E)°
¢.1096G>T(p.E366%)*F

¢.1209dup(p.K404Qfs*32)*>

¢.793C>T(p.R265%)

¢.1859G>C(p.R620P)°

¢.2945dup(p.5982Rfs*16)>°

¢.8654T>C(p.L2885P)°
¢.301G>T(p.D101Y)
¢.1205C>T(p.A402V)?
c.711+1G>C?
c.2356del(p.A786Pfs*45)
¢.802C>T(p.R268C)*

c.1574T>G(p.M525R)P
c.9658A>G(p.T3220A)°
exon39 het del*?
¢.9658A>G(p.T3220A)
exon39 het del*?
¢.26_33dup(p.E12Rfs*20)?
¢.26_33dup(p.E12Rfs*20)*
¢.7795C>T(p.Q2599%)2P
¢.11737A>G(p.N3913D)°
exon 5 del

exon 5 del
¢.662G>A(p.R221H)*
€.320C>T(p.A107V)

Gene name

Carnitine acylcarnitine translocase

Ryanodine receptor 1

Selenoprotein N1

Protein 0-mannosyltransferase 1

Laminin, a-2

Chloride channel 1, muscle

Immunoglobulin mu-binding protein 2

Selenoprotein N1

Ryanodine receptor 1

Ryanodine receptor 1

Titin-cap

Ryanodine receptor 1

Dysferlin

Sarcoglycan, a

Genetic Dx

CACTD

CCD, RYR1-related

MMCD, SEPN1-
related

MDDGB1

MDC1A

MCAR

SMARD1

MMCD, SEPN1-
related

CNM, RYR1-related

CNM, RYR1-related

LGMD2G

CM, RYR1-related

LGMD2B

LGMD2D

Final Dx

CACTD

CCD, RYR1-related

MMCD, SEPN1-
related

CMD, POMT1-
related

MDC1A

MCAR

SMARD1

MMCD, SEPN1-
related

CNM, RYR1-related

CNM, RYR1-related

LGMD2G

CM, RYR1-related

LGMD2B

LGMD2D

Category

R1

R1

R1

R2

R1

R2

R3

R1

R1

R3

R2

R1

Continued
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[ Table 2

Patient

52
M516

Dx X-R (1)
27

Dx AD (6)
1

19
20
29

46

M495
Likely Dx (8)

7

24

30

Continued

Age at
onset

13y

NB

NB

NB

NB

7y

Sy

15y

NB

3 mo

NB

Infancy

NB

NB

Current
age, y

37.4

10.0

25.5

0.5 (exp)
34.9
9.1

221

23
5.0

11.6

128

21.8

6.3

Sex

Clinical
Dx

LGMD

CM

C™M

CM

C™M

CMT

CMT
MM

C™M
CM

C™M

CM

CM

CM

Pathologic
Dx

LGMD

NM

MTM

NSF

NM

NC

NC
VM

CCD
NM

MCM

MCM

MTM

CNM

Gene symbol Inheritance

CAPN3 Sister
CAPN3 Mat/sister
RYR1 Pat
RYR1 Mat
MTM1 De novo
SPTLC2 (AD) Pat
RYR1 (AD)  Mat
ACTA1 NA
MFN2 S/B
MFN2 Mat
CACNA1S Mat
RYR1 De novo
ACTA1 De novo
SYNE1 (AD/ Mat
AR)

SYNE1 (AD/ Pat

AR)

CLCN1 (AD/ Mat
AR)

TTN (AD/AR) Mat
RYR1 (AD)  Pat
TTN (AD/AR)  Pat

TTN (AD/AR) Mat
DMPK (AD)  Mat
TTN (AD/AR) Mat
SYNE1 (AD/ NIM
AR)

TTN (AD/AR) Mat

Mutation
c.1621C>T(p.R541W)*
¢.2305C>T(p.R769W)?
¢.1675dup(p.I559Nfs*11)>P

¢.3800C>G(p.P1267R)?

¢.679G>A(p.V227M)?

¢.1292G>A(p.G431D)P
€.7692G>C(p.K2564N)P
¢.413T>Clp.1138T)?
¢.281G>A(p.R94Q)?
c.281G>A(p.R94Q)?
¢.4639C>T(p.R1547W)°

¢.14581C>T(p.R4861C)°
¢.802T>Clp.F268L)°
¢.16388A>C(p.E5463A)°
¢.1859C>T(p.S620F)
¢.1723C>T(p.P575S)

¢.57388C>T(p.R19130C)

€.2203C>T(p.H735Y)°

¢.84995A>G(p.N28332S)
¢.7156 G>A(p.G2386S)°
¢.625 G>T(p.D209Y)°
c.47680A>C(p.K15894Q)°
c.1399A>T(p.K467+)*P

¢.55265A>T(p.D18422V)°

Gene name

Calpain 3

Ryanodine receptor 1

Myotubularin

SPT, long-chain base subunit 2
Ryanodine receptor 1

Muscle actin a1

Mitofusin 2

Mitofusin 2

Calcium channel, voltage-dependent,
L type, «1S

Ryanodine receptor 1

Muscle actin a1

Spectrin repeat-containing nuclear
envelope protein 1

Chloride channel 1, muscle

Titin

Ryanodine receptor 1

Titin
Titin
Dystrophia myotonica protein kinase
Titin

Spectrin repeat-containing nuclear
envelope protein 1

Genetic Dx

LGMD2A

NM, RYR1-related

MTM, X-linked

HSAN1C
MHS1
NEM3
CMT2A2
CMT2A2

HOKPP1, with
MHS5

CCD, RYR1-related
NEM3

EDMD4

MHS1

DM1

EDMD4

Final Dx

LGMD2A

NM, RYR1-related

MTM, X-linked

Category
R1

R2

R1

HSAN1C with MHS1 R3

NEM3
CMT2A2
CMT2A2

R1

R1

HOKPP1, with MHS5 R3

CCD, RYR1-related

NEM3

Susp EDMD4

Susp CM, RYR1-
related

Susp DM1

Susp EDMD4

R1
R1

R4

R4

R4

R4

Continued



)}

sol1euss) :ABojoINaN

[ Table 2 Continued ]
Age at Current Clinical Pathologic
Patient onset age, y Sex Dx Dx Gene symbol Inheritance Mutation Gene name Genetic Dx Final Dx Category

36 3y 7.8 M CM 2BA TTN (AD/AR) Pat ¢c.5740G>A(p.A1914T) Titin Titinopathy Susp titinopathy R4
TTN (AD/AR) Mat ¢.71996A>G(p.N23999S)
NEB (AR) Pat c.12742-2A>G2P Nebulin NEM2, AR

48 NB 2.8 F CM NM NEB (AR) Pat ¢.18176A>G(p.N6059S)® Nebulin NEM2, AR Susp NEM2 R4
NEB (AR) Pat ¢.7062_7063del(p.

K2354Nfs*2)*>

TTN (AD/AR) Mat c.99298A>C(p.S33100R)®  Titin
TTN (AD/AR)  Pat ¢.13811G>A(p.G4604E)
MYH7 (AD)  Confirmed c.1322C>T(p.T441M)P Myosin, heavy chain 7, cardiac muscle, g
MYH2 (AD)  Confirmed c.4258C>T(p.L1420F) Myosin, heavy chain 2, muscle, adult

54 53y 55.9 M LGMD  ESMC EMD (X-R) Mat c.445G>C(p.D149H) Emerin EDMD1 Susp EDMD1 R4
SYNE1 (AD/ Pat ¢.1507T>A(p.S503T)° Spectrin repeat-containing nuclear
AR) envelope protein 1
TTN (AD/AR) Pat ¢.80173C>T(p.R26725C) Titin
TTN (AD/AR)  Pat ¢.26206G>A(p.A8763T)

56 12y 27.6 M LGMD MD TTN (AD/AR) Pat c.92161+3A>T2P Titin Titinopathy Susp titinopathy R4
TTN (AD/AR) Mat c.6490G>A(p.A2164T)
TTN (AD/AR) Mat ¢.14987G>A(p.R4996Q)°

Abbreviations: 2BA = type 2 B fiber atrophy; AD = autosomal dominant; AR = autosomal recessive; CACTD = carnitine acylcarnitine translocase deficiency; CCD = central core disease; CM = congenital myopathy;
CMD = congenital muscular dystrophy; CMT = Charcot-Marie-Tooth disease; CMT2A2 = Charcot-Marie-Tooth disease, axonal, type 2A2; CNM = centronuclear myopathy; cons = consanguineous; DG =
dystroglycanopathy; DM1 = myotonic dystrophy type 1; Dx = diagnosis; EDMD = Emery-Dreifuss muscular dystrophy; EDMD4 = Emery-Dreifuss muscular dystrophy 4, autosomal dominant; ESMC = end-stage
myopathic change; exp = expired; HOKPP1 = hypokalemic periodic paralysis, type 1; HSAN1C = hereditary sensory and autonomic neuropathy, type 1C; LGMD = limb-girdle muscular dystrophy; LGMD2B =
dysferlinopathy; LGMD2G = limb-girdle muscular dystrophy type 2G; LGMD2J = limb-girdle muscular dystrophy type 2J; LSM = lipid storage myopathy; Mat = maternal; MC = myotonia congenita; MCAD =
myotonia congenita, autosomal dominant; MCAR = myotonia congenital, autosomal recessive; MCM = minimal change myopathy; MCNI = myopathic change with nuclear internalization; MD = muscular dystrophy;
MDC21A = muscular dystrophy, congenital merosin-deficient 1A; MDDGB1 = muscular dystrophy-dystroglycanopathy type B1; MHS1 = malignant hyperthermia susceptibility 1; MHS5 = malignant hyperthermia
susceptibility 5; MM = metabolic myopathy; MMCD = multiminicore disease; MN = merosin negative; MTM = myotubular myopathy; NA = not available; NB = newborn; NC = neuropathic change; NEM2 = nemaline
myopathy 2; NEM3 = nemaline myopathy 3; NIM = not in maternal; NIP = not in paternal; NM = nemaline myopathy; NSF = nonspecific finding; Pat = paternal; S/B = in son and brother; SMARD1 = spinal muscular
atrophy with respiratory distress 1; Susp = suspected (phenotype/genotype now, may need further study); X-R = X-linked recessive; VM = vacuolar myopathy.

2 Definitive mutation.

®Novel variants.



[ Figure 2 Muscle pathology of patients 2, 26, 11, 9, 32, and 48 ]

(A) Markedly increased lipid droplets in both number and size were observed in patient 2 with homozygous SLC25A20 mutations (oil red O). (B) Forty percent
myofibers with centralized nuclei were found in patient 26 with compound heterozygous RYR1 mutations (hematoxylin and eosin). (C) Multiminicore pattern
was observed in patient 11 with compound heterozygous SEPN1 mutations (nicotinamide adenine dinucleotide tetrazolium reductase). (D) Prominent
nemaline rods were seen in patient 9 with heterozygous ACTA1 mutations (modified Gomori trichrome). (E) Nonspecific myopathic change except for
internalized nuclei and mild fiber size variation was shown in patient 32 with compound heterozygous TCAP mutations (hematoxylin and eosin). (F) Similar
to patient 9, typical intracytoplasmic nemaline rods were present in patient 48 with compound heterozygous NEB mutations (modified Gomori trichrome).

SLC25A20,** which is responsible for carnitine acyl-
carnitine translocase deficiency (CACTD). Each of
his parents was a carrier. Patients 3 and 46 with cen-
tral core disease (CCD) had AR RYRI mutations and
an AD de novo RYRI mutation, respectively; patients
25 and 26 (siblings) with centronuclear myopathy
(CNM) also had AR RYR! mutations (figure 2B).
Patients 11 (figure 2C) and 21 with multiminicore
disease had mutations in SEPNI; 2 had nemaline
myopathy (NM) and heterozygous ACTAI muta-
tions (patients 9 [figure 2D] and M495). Patient 16
with merosin-negative CMD had mutations in
LAMA?2; patients 19 and 20, a mother and son with
CMT, had an AD mutation in MFN2; patient 51
with dysferlinopathy and LGMD2B, a consanguine-
ous product, had a homozygous deletion of exon 5 of
DYSEF, patient 52 and her affected sister with LGMD
had the same compound heterozygous mutations in
CAPN3; and patient 27 with myotubular myopathy
carried a de novo M7TM]I mutation (X-linked).

Avnbi fr,
A g or spectjic

le pathology findings clar-

ified by molecular diagnosis. Sometimes the pathology
findings from a muscle biopsy can be ambiguous
and/or not completely consistent with the known
phenotype caused by a specific disease gene. Mas-
sively parallel sequencing of a group of genes can
resolve the uncertainty. Four families belong to this

category (R2 in table 2). Patient 12 had reduced
a-dystroglycan undiagnosed CMD with end-stage
pathologic muscle changes. Compound heterozygous
mutations in a protein glycosylation gene (POMT1)
were identified and confirmed by parental studies.
Patient 17 had nonspecific muscle findings with a
clinical diagnosis of a myotonic disorder. He was
found to have mutations in a chloride ion channel
gene (CLCNI) and confirmed to have an AR myoto-
nia congenita. Patient 33, a 2.7-year-old girl, pre-
sented with a myopathic face, high-arched palate,
scoliosis, and swallowing and respiratory difficulties
since birth. Her muscle pathology revealed nondiag-
nostic end-stage myopathic changes, although clini-
cally she exhibited typical CM. NGS analysis revealed
compound heterozygous mutations in RYRI, which
confirmed the diagnosis of CM. Patient M516 had
muscle pathology findings suggestive of an atypical
NM and was found to have AR RYR! mutations:
one frameshift mutation and another missense muta-
tion predicted to be deleterious. Each parent is a car-
rier for one of the mutations. This patient adds to the
short list of NM cases caused by RYRI mutations.*

Intercategory expansion of phenotype and genotype. Four
families had molecular diagnoses in genes belonging
to a subcategory that was not suspected in the original
clinical evaluation (R3 in table 2). Patient 18 was
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originally diagnosed as having infantile-onset unclas-
sified CMT. The identification of compound heter-
ozygous mutations in /GHMBP2 confirmed the
diagnosis of spinal muscular atrophy with respiratory
distress type 1 (SMARD1), mainly affecting motor
neurons rather than peripheral nerves. Patent 32, a
32-year-old man, had gait disturbance and mild lower
leg weakness with an elevated creatine kinase since he
was first evaluated at age 20. Muscle biopsy revealed
nuclear internalization without evidence of dystrophic
changes in 10% scattered fibers, favoring a diagnosis
of CNM (figure 2E). The identification of a homozy-
gous frameshift ¢.26_33dup (p.Glul2Argfs*20)
mutation in 7CAP confirmed the diagnosis of LGMD
type 2G. Patient 29, a 22-year-old man, was suspected
of having an MM due to periodic muscle weakness,
abnormal findings in his metabolic profile, and vacu-
olar myopathy in his muscle biopsy. An AD hetero-
zygous novel mutation inherited from his mother was
identified, c.4639C>T (p.Argl547Trp) in CAC-
NAIS, encoding a calcium channel protein, consistent
with hypokalemic periodic paralysis. AD CACNAIS
mutations have been found in Asian men with peri-
odic muscle weakness and risk for malignant hyper-
thermia (MH), but they exhibit lower penetrance in
women.”' Patent 1 showed a positive Gowers sign
and waddling gait when first evaluated at 4 years of
age; however, the EMG, nerve conduction velocity,
and muscle pathology were unremarkable at that time.
The finding of the AD SP7LC2 mutation ¢.1292G>A
(p.Gly431Asp), confirmed clinically and genetically in
his biological father, established the unexpected diag-
nosis of a neuropathy (hereditary sensory and auto-
nomic neuropathy [HSAN] type 1C).

Interesting cases with likely diagnosis and expansion of
phenotype/genotype. Eight families had novel pheno-
type/genotype diagnoses that require further func-
tional evidence of pathogenicity (R4 in table 2).
Patient 56 had a clinical and pathologic diagnosis of
LGMD. NGS revealed 3 77N variants: the
c92161+3A>T from the father was predicted to
abolish the normal splice site, while a novel
c.14987G>A (p.Arg4996Gln) variant in c¢is with
another variant, c.6490G>A (p.Ala2164Thr), were
both inherited from the mother. These 2 missense
variants were predicted to be deleterious by
PolyPhen-2 and SIFT. Mutations in 77N can cause
AR LGMD type 2]. The growing genetic complexity
and emerging phenotypic variability for recessive and
dominant TTN variants make the assignment of
definitive pathogenicity to many TTN variants diffi-
cult and delay our understanding of the pathogenic
mechanism of the largest protein known to date.’” In
addition to compound heterozygous 77N variants of
unknown significance (VUS), patients 36 and 48
each had a heterozygous truncating mutation (a splice
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site novel mutation ¢.12742-2A>G and a frameshift
mutation ¢.7062_7063del, respectively) in the NEB
gene (table 2).** Each patient inherited the deleteri-
ous /VEB allele from the father. Despite the absence of
the second mutant allele, muscle biopsy of patient 36
revealed only a nonspecific type 2B fiber atrophy,
while patient 48 did show an NM (figure 2F). Patient
54 was suspected of having Emery-Dreifuss muscular
dystrophy (EDMD) due to the X-linked EMD gene,
of which his mother was a carrier. His cardiac phe-
notype of complete right bundle branch block may be
due to an emerin mutation, but his clinical and path-
ologic features are not typical of EDMD. The positive
emerin staining in the muscle biopsy did not rule out
a pathogenic role of this emerin variant.>*

Defective genes and diagnostic yields. In our patient
cohort, CM was the most common diagnosis (23/38,
61%), followed by CMD and LGMD. Since parallel
analysis of all 236 NMD-related genes in a clinically
validated panel is a recent innovative approach
to testing, the majority of mutations/variants are
“novel.” Theoretically, all missense variants should
be classified as VUS until a functional defect can be
demonstrated. However, if a VUS is found in patients
with a consistent clinical phenotype, family pedigree,
and muscle biopsy findings and is predicted to be
deleterious, then it is classified as likely pathogenic.

AR disorders account for about half of the cases,
while AD cases account for about a quarter. Overall,
our NMD gene panel analysis provides a diagnostic
yield of 29/35 (83%), which is the highest reported
in complex NMD cases in the NGS era.

DISCUSSION To date, except when using whole-
exome sequencing and whole-genome sequencing for
novel gene discovery, most NGS studies have focused
on a specific NMD category, such as CMD,"”
CMyS,”®  CMT.,” glycogen
storage disease,” or CACTD.”* In this report, we
analyzed 236 genes responsible for 10 NMD
subcategories. Surprisingly, some patients were found

dystrophinopathy,”

to harbor mutations in genes responsible for disease
categories that were not initdally considered
(IGHMBP2, TCAP, SPTLC2, CACNAILS). This
observation confirms that clinical features, muscle
imaging, and muscle pathology may be suggestive of a
specific diagnosis but that the ultimate diagnosis relies
on the identification of mutations in the causative
gene(s). Furthermore, some patients are evaluated at a
very eatly or late stage of their disease, when the details
of their early clinical course may not be available and the
muscle pathology may provide limited information.
Under these circumstances, it is very difficult to focus
on a specific disease category for the analysis of a single
gene or a few genes. Thus, comprehensive NGS analysis
of all NMD-related genes provides a cost-effective way



to identify causative mutations. Evidence for this is
provided by patient 1. The mutation analysis not only
established the unexpected diagnosis of HSAN type 1C
but also underscored the importance of molecular
diagnosis through NGS.* Similarly, patient 18 was
originally diagnosed as having congenital neuropathy,
CMT type. The identification of mutations in
IGHMBP2 changed the final diagnosis to SMARD1
and further expanded the intercategory phenotype/
genotype.®*® The identfication of IGHMBP2
mutations facilitated the subsequent prenatal diagnosis
that resulted in a normal fetus.

Our comprehensive NGS approach achieves a
diagnostic yield of 83% for the highly genetically
and clinically complex NMDs. Our capture/NGS
approach has at least 2 unique advantages: (1) a com-
prehensive evaluation of 236 target genes to minimize
variations in the coverage depth of individual exons,
and (2) deep coverage depth at a mean of >1,000X
per base, leaving only ~0.6% of coding exons con-
taining insufficiently covered (<20X) sequences
requiring PCR/Sanger to complete. Thus, consistent
coverage of individual exons allows the detection of
deletions in >99% of targeted exons.?” This is dem-
onstrated by the identification of a single exon dele-
tion in patient 51 (figure not shown) and by patients

25 and 26 (siblings), in whom both NGS and Sanger
sequence analyses identified a heterozygous point
mutation (p.Thr3220Ala) in RYR! (figure 3A), while
copy number analysis using the same set of NGS data
detected a heterozygous single exon deletion (figure
3B). The deletion was confirmed by using PCR across
the deleted exon (figure 3C), showing the reduced size
of PCR product (figure 3D).

Sequence variations in RYRI and 77N are fre-
quent. This may be related to their relatively large size.
Patients with mutations in these 2 genes may exhibit
diverse clinical phenotypes and variable muscle pathol-
ogy. For example, in our patient cohort, both AR and
AD RYRI mutations were identified in muscle biop-
sies of patients with CCD (patient 3 AR and patient
46 AD), CNM (patient 26), CM with end-stage myo-
pathic change (patient 33), atypical NM (patient
M516), and nonspecific findings (patient 1). Patients
with RYRI mutations may also be predisposed to MH.
Thus, attention should be paid in anesthetic arrange-
ments to avoid iatrogenic morbidity.>”** Although
NM is one of the most common types of CM,'? we
found only 2 patients with AD inheritance (9 and
M495), both of whom had ACTAI mutations.

The TTN gene has not been extensively studied,
likely in part due to its size. Sequencing of this

[ Figure 3 Confirmation of single exon deletion and point mutation in RYR1 detected by next-generation sequencing ]
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(A) Sanger sequence for heterozygous c.9658A>G (p.T3220A). (B) Exon 39 heterozygous deletion was detected by copy number variation analysis. (C)
Designed primers for exon 39 deletion. Forward primer: F, reverse primer: R, the total length between the primers is 4.3 kb. (D) DNA gel for exon 39 deletion;
patients 25 and 26 have extra small fragments on the gel (~2.7 kb).
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gigantic gene (complementary DNA ~0.1 Mb) only
became practical with NGS technology. Therefore,
we have just begun to identify and understand its
genetic diseases and mechanisms of inheritance.
T'TN mutations have been identified in patients with
heterogeneous clinical phenotypes, including CM,
LGMD, and others, with highly variable muscle

1,8,11,3

biopsy findings. 240 In this study, we have dem-

onstrated the power of target gene capture followed
by NGS. This comprehensive approach confirms
clinical and pathologic diagnoses when the phenotype
is consistent with the causative gene. It also clarifies a
patient’s underlying genetic cause when a muscle
biopsy finding is ambiguous or does not comport
with the clinical phenotype. Since the number of
genes analyzed is large, it often identifies mutations
in genes that may not have been considered in the
clinical differential diagnosis, therefore expanding the
phenotype/genotype relationship. Although uld-
mately this comprehensive noninvasive approach is
much less expensive and more definitive for molecu-
lar diagnosis of the heterogeneous and complex
NMDs, muscle pathology and thorough clinical eval-
uation are still important in the final clinical pheno-
type/genotype correlation, particularly at the early
stage of expanding phenotype/genotype.
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