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We establish the ultimate limits to the compression of sequences of identically prepared qubits. The
limits are determined by Holevo’s information quantity and are attained through use of the optimal
universal cloning machine, which finds here a novel application to quantum Shannon theory.
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Introduction.—A fundamental feature distinguishing
quantum states from classical probability distributions is
the freedom in the choice of basis, which can be used to
encode information even when the spectrum of the state is
fixed. States with fixed spectrum can be used, for instance,
as indicators of spatial directions [1,2], probes for fre-
quency estimation [3,4], or even pieces of cryptocurrency
[5]. Because of Holevo’s bound [6], the basis information
cannot be extracted from a single quantum particle, but
becomes accessible when multiple copies of the same
quantum state are available. Suppose that a sender wants
to transmit to a receiver the information contained in a
sequence of n identically prepared particles. In this sce-
nario, an important question is how to minimize the amount
of quantum bits (qubits) used in the transmission, subject
to the requirement that the initial n-particle state can be
approximately rebuilt at the receiver’s end.
The compression of identically prepared states has been

theoretically studied [7] and experimentally implemented
[8] in the pure state case. For mixed states, two of us
proposed a protocol [9] that compresses states with fixed
spectrum and variable basis. The protocol encodes n
identically prepared qubits into a memory of 3=2 log n
qubits, which is proven to be the smallest memory size
when the decoder is bound by the conservation of the total
angular momentum. Whether lifting the angular momen-
tum constraint allows for further compression has remained
an open problem so far. Moreover, little is known in
the case where no prior information is available on the
spectrum. Finding the optimal compression protocol for
general quantum states is important for applications (where
the spectrum may be unknown) and for the foundations of
quantum theory, because it provides a characterization
of the different information content of quantum states and
classical probability distributions.
In this Letter we identify the optimal compression proto-

cols for sequences of identically prepared qubits. We first
consider states with known spectrum, devising a compres-
sion protocol that stores a sequence ofn qubits into amemory

of logn qubits, the ultimate limit set by Holevo’s χ quantity
[6]. The memory reduction from 3=2 logn to logn qubits is
accomplished through a novel application of the optimal
universal cloning machine [10–12], here used to modulate
the values of the total angular momentum. On average,
the modulation is of size

ffiffiffi
n

p
and its logarithm is exactly the

amount of memory saved by our protocol, compared to
the optimal protocol with angular momentum preserving
decoder [9]. We then address a new compression scenario
where no prior information about the state is given. For this
scenario, called full-model compression, we devise a proto-
col that uses a hybrid memory of log n qubits and 1=2 logn
classical bits. The protocol is optimal; in fact, no further
compression can be achieved even if the hybrid memory is
replaced by a fully quantum memory. The main result of the
Letter is summarized by the following theorem:
Theorem 1. A sequence of n identically prepared qubit

states can be optimally compressed into logn qubits if the
spectrum is known and into log n qubits plus 1=2 log n
classical bits if the spectrum is unknown.
Comparing the two protocols, we identify log n qubits

as the amount of information contained in the choice of
basis and 1=2 log n bits as the information contained in
the spectrum. This interpretation is consistent with the fact
that 1=2 logn is the number of bits needed to faithfully
compress n independent samples of a classical probability
distribution over the binary set f0; 1g [13].
Compression protocol for known spectrum.—Consider

the compression of n qubits, independently prepared in
the state ρg ¼ gρg†, where ρ ¼ pj0ih0j þ ð1 − pÞj1ih1j is a
fixed density matrix and g ∈ SUð2Þ is a variable unitary
matrix implementing a change of basis. Without loss
of generality, we assume p ≥ 1=2 (the case p < 1=2 is
automatically accounted for by the change of basis). Using
the Schur-Weyl duality [14], the state of the n qubits can be
written in the block diagonal form

ρ⊗n
g ¼ ⨁

n=2

J¼0

qJ

�
ρg;J ⊗

ImJ

mJ

�
; ð1Þ
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where the equality holds up to a global unitary trans-
formation, known as the Schur transform and efficiently
implementable on a quantum computer [15]. In Eq. (1), J is
the quantum number of the total angular momentum [16],
qJ is a probability distribution, ρg;J is a density matrix with
support in an irreducible space RJ, and ImJ

is the identity
matrix on an mJ-dimensional multiplicity space MJ [14].
The state ρg;J can be expressed in the Gibbs form [17]

ρg;J ¼
e−βHg;J

Tr½e−βHg;J � ; β ¼ 2tanh−1ð2p − 1Þ;

Hg;J ¼ Ug;J

�XJ
m¼−J

−mjJ;mihJ;mj
�
U†

g;J; ð2Þ

where fjJ;migJm¼−J are the eigenstates of the z component
of the angular momentum operator and Ug;J is the unitary
matrix representing the change of basis g in the irreducible
space RJ.
We now show how to optimally compress the states ρ⊗n

g .
In general, a compression protocol consists of two com-
ponents: the encoder, which stores the input state into a
memory, and the decoder, which attempts to reconstruct the
input state from the state of the memory. The encoder and
the decoder are both represented by completely positive
trace preserving linear maps (also known as quantum
channels) [18]. Therefore, a quantum compression protocol
is specified by a couple ðE;DÞ, consisting of the encoding
and the decoding channel, respectively. The performance of
the protocol is determined by the tradeoff between two
quantities: the memory size, quantified by the dimension
denc of the memory’s Hilbert space, and the compression
error, measured by the worst-case trace distance between
the initial state and the state recovered from the memory

ϵ ¼ max
g∈SUð2Þ

1

2
∥D∘Eðρ⊗n

g Þ − ρ⊗n
g ∥

1
; ð3Þ

with ∥A∥1 ≔ Tr
ffiffiffiffiffiffiffiffiffi
A†A

p
. The key issue is to minimize the

memory size, while guaranteeing that the compression
error vanishes in the large n limit.
The optimal protocol is based on two ingredients: The

first is the concentration of the probability distribution qJ in
Eq. (1). Explicitly, the probability is given by [9]

qJ ¼
2J þ 1

2J0

�
B

�
n
2
þ J þ 1

�
− B

�
n
2
− J

��
ð4Þ

where BðkÞ is the binomial distribution with nþ 1 trials
and probability p and J0 ≔ ðp − 1=2Þðnþ 1Þ is close to
the average value hJi ¼ P

JJqJ. From the above expres-
sion it is clear that the values of J with jJ − J0j ≫

ffiffiffi
n

p
have

exponentially small probability in the large n limit. As a
result, the performance of a compression protocol depends
only on its action on the subspaces RJ ⊗ MJ that satisfy
the condition jJ − J0j ¼ Oð ffiffiffi

n
p Þ.

The second ingredient of our compression protocol
is a remarkable property of the optimal universal cloning
machine (UCM) [11,12]. Mathematically, the UCM is
described by a map transforming (operators supported in)
the symmetric subspace of 2J qubits into (operators
supported in) the symmetric subspace of 2K qubits.
Here we allow J to be larger than K, in which case the
“cloning” process just consists in getting rid of 2ðJ − KÞ
qubits. With this convention, the cloning channel is

CJ→KðρÞ ¼
8<
:

�
2Jþ1
2Kþ1

�
PKðρ ⊗ PK−JÞPK J ≤ K

Tr2ðJ−KÞ½ρ� J > K
ð5Þ

where Px is the projector on the symmetric subspace
of 2x qubits and Trx denotes the partial trace over the first
x qubits. The key to our compression protocol is to regard
the Gibbs states in Eq. (2) as states on the symmetric
subspace of 2J qubits and to observe that UCM has the
following property [19]:
Lemma 1. Universal cloning as a Gibbs state adapter.

The universal cloning channel CJ→K transforms the Gibbs
state ρg;J into the Gibbs state ρg;K with error

∥CJ→Kðρg;JÞ − ρg;K∥1 ≤ δ1−s þOðδÞ; ð6Þ

where s > 0 is an arbitrary constant and δ ≔ jJ − Kj=J.
This result establishes a bridge between the cloning

of pure states and the compression of mixed states.
Leveraging on Lemma 1 and on the concentration of the
probability distribution fqJg, we devise the following
protocol: (i). Encoder. Perform the Schur transform. Then,
measure the quantum number J with the nondemolition
measurement that preserves the quantum information in
each subspace RJ ⊗ MJ. Discard the multiplicity register
and apply the cloning channel CJ→J0 to the remaining
state ρg;J. Store the output state CJ→J0ðρg;JÞ into a quantum
memory of dimension denc ¼ 2J0 þ 1. (ii). Decoder. Pick
a value K at random with probability qK and apply the
cloning channel CJ0→K to the quantum memory. Append a
multiplicity register in the maximally mixed state ImK

=mK .
Finally, perform the inverse of the Schur transform.
The protocol, illustrated in Fig. 1, is mathematically

described by the channels

EðρÞ ¼
Xn=2
J¼0

CJ→J0 ½TrMJ
ðΠJρΠJÞ�;

DðρÞ ¼ ⨁
n=2

K¼0

qK

�
CJ0→KðρÞ ⊗

ImK

mK

�
; ð7Þ

where ΠJ is the projector on RJ ⊗ MJ and TrMJ
denotes

the partial trace over MJ.
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The above protocol requires a memory of logð2J0þ1Þ¼
lognþOð1Þ qubits. On the other hand, the error is
arbitrarily small for large n: this is because the states ρg;J
with jJ − J0j ≫

ffiffiffi
n

p
have negligible probability according

to Eq. (4), while the states ρg;J with jJ − J0j ¼ Oð ffiffiffi
n

p Þ can
be faithfully encoded in the state ρg;J0 , thanks to Lemma 1
(see [19] for more details).
Optimality of the protocol with known spectrum.—Our

protocol uses the minimum memory size compatible with
the requirement of vanishing error. The argument goes as
follows: For a generic ensemble E ¼ fρx; pxg, a measure
of the information content is provided by Holevo’s
information [6]

χðEÞ ¼ H

�X
x

pxρx

�
−
X
x

pxHðρxÞ ð8Þ

where HðρÞ ¼ −Tr½ρ log ρ� is the von Neumann entropy.
When the ensemble E is faithfully stored in a quantum
memory, the memory should be large enough to accom-
modate the Holevo information of E. Since a memory of
dimension denc can have at most a Holevo information of
log denc [6], one has the bound log denc ≥ χðEÞ. For ϵ > 0,
an approximate version of the bound is [21]

logdenc ≥ χðEÞ − 2ϵ log dE þ 2μðϵÞ; ð9Þ

where dE is the effective dimension, defined as the rank of
the average state ρE ≔

P
xpxρx, and μðϵÞ ≔ −ϵ ln ϵ.

Equation (9) sets a lower bound on the memory size,
valid for arbitrary ensembles. However, the bound may not
be tight. Notably, the bound is not tight for the ensembles
considered in our Letter. The reason is the dimension-
dependent term log dE, which can be arbitrarily large: in
our case, we have dE ¼ 2n for p ≠ 0, 1. To address this

problem, we use the notion of sufficient statistics [22].
An ensemble E0 ¼ fρ0x; pxg is called a sufficient statistics
for the ensemble E ¼ fρx; pxg if the states of E can be
encoded into states of E0 and decoded with zero error.
Since the encoding is reversible, the ensembles E and E0
have the same Holevo information, namely χðE0Þ ¼ χðEÞ.
Moreover, the number of qubits needed to encode the
original ensemble E up to error ϵ is equal to the number of
qubits needed to encode the ensemble E0, up to the same
error [19]. Using these facts, we can improve the bound (9),
obtaining

log denc ≥ χðEÞ − 2ϵ log dmin
E þ 2μðϵÞ; ð10Þ

where dmin
E is the minimum of dE0 over all ensemblesE0 that

are sufficient statistics for E. We call Eq. (10) the Holevo
bound for compression.
Let us apply the bound to the ensemble E ¼ fρ⊗n

g ; dgg,
where dg represents the uniform distribution over all
changes of basis. For this ensemble, explicit calculation
yields [19]

χðEÞ ¼ log nþOð1Þ: ð11Þ

A sufficient statistics for E is provided by the ensemble

E0 ¼ fρ0g; dgg with ρ0g ≔ ⨁
n=2

J¼0

qJρg;J, obtained by getting rid

of the multiplicity spaces in Eq. (1). The ensemble E0 has
effective dimension

dE0 ¼
Xn=2
J¼0

ð2J þ 1Þ ¼
�
n
2
þ 1

�
2

; ð12Þ

which has been proven to be the minimum over all
sufficient statistics [9,23]. Inserting Eqs. (11) and (12) into
Eq. (10) we obtain the bound

log denc ≥ ð1 − 4ϵÞ log n − 4ϵ − 2μðϵÞ þOð1Þ: ð13Þ

When ϵ is asymptotically small, the leading term is log n,
the number of qubits used by our protocol. Hence, we
conclude that the protocol is optimal and that the Holevo
bound for compression is tight for the ensemble E.
Compression protocol for arbitrary qubit states.—Let us

now turn to the full-model compression. A simple protocol
for compressing arbitrary states is to measure the magni-
tude of the total angular momentum, to store the outcome J
in a classical memory and the state ρg;J in a quantum
memory. Since J can take any value between 0 and n=2,
this protocol requires ⌈ logðn=2þ 1Þ⌉ classical bits.
Moreover, since ρg;J has support in a ð2J þ 1Þ-dimensional
space, the protocol requires ⌈ logðnþ 1Þ⌉ qubits in the
worst case scenario. At first sight, it seems difficult to do
any better: One cannot use less than logn qubits, because

FIG. 1. Optimal compression for known spectrum and com-
pletely unknown basis. The encoder collects information from
subspaces with different angular momenta and concentrates it
into a system with angular momentum J0. The decoder spreads
the information back, modulating the angular momentum by

ffiffiffi
n

p
units on average.
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the input state could consist of n copies of a random pure
state and no protocol can compress such a state in less than
log n qubits [9]. On the other hand, J can take n=2þ 1
values and it is not possible to encode this information in
less than logn bits. Despite these facts, we now show that
the amount of classical bits can be cut down by half with
asymptotically negligible error. The key idea is that the
decoder need not have full information about J: thanks to
Lemma 1, two states ρg;J and ρg;K with jJ − Kj ¼ Oð ffiffiffi

n
p Þ

are approximately interconvertible. Motivated by this fact,
we partition the values of J into disjoint intervals L1;…; Lt
of size Oð ffiffiffi

n
p Þ. Instead of encoding the measurement

outcome J, we compute the index i such that J ∈ Li and
store it in a classical memory. Since the index i can take
Oð ffiffiffi

n
p Þ values, the size of the memory is ð1=2Þ log n,

instead of logn. The details of the protocol are as follows:
(i) Encoder. Perform the Schur transform. Then, measure
the quantum number J with the nondemolition measure-
ment that preserves the quantum information in each
subspace RJ ⊗ MJ. Find the index iðJÞ such that
J ∈ LiðJÞ. Discard the multiplicity register and send the
remaining state ρg;J to the input of the quantum channel
CJ→fðJÞ, where fðJÞ is the median of the subset LiðJÞ. Store
the output state CJ→fðJÞðρg;JÞ in a quantum memory and the
index iðJÞ in a classical memory. (ii) Decoder. Read the
value of iðJÞ from the classical memory. For a given value
of iðJÞ, pick a random value K in the subset LiðJÞ and
apply the channel CfðKÞ→K to the quantum memory. Then,
append the multiplicity register in the maximally mixed
state ImK

=mK . Finally, perform the inverse of the Schur
transform.
The protocol is illustrated in Fig. 2. The explicit

expression of the channels E and D, as well as the proof
that the error vanishes in the large n limit can be found in
[19]. Here we emphasize a few points: First, it is convenient
to choose one interval—say, Lt—to contain only the value
J ¼ n=2. In this way, the protocol acts as the identity in
the symmetric subspace and pure states are compressed
without error. Second, random sampling in the decoder is
essential for achieving vanishing error. This fact is illus-
trated in Fig. 3, which shows that sampling yields a well-
behaved interpolation of the spectral distribution in Eq. (4),
while the lack of sampling leads to a poor approximation.
Third, comparing the full model compression with the
fixed-spectrum compression leads us to identify 1=2 log n
bits as the amount of memory needed to store the infor-
mation about the spectrum. This interpretation is consistent
with the fact that 1=2 log n bits is the size of the smallest
classical memory needed to faithfully store n samples of a
generic probability distribution over the set f0; 1g [13].
Optimality for the full-model compression.—The opti-

mality of the full-model protocol can be proven with the
same techniques used for fixed spectrum. In fact, an even
stronger result holds: replacing the hybrid memory with a

fully quantum memory does not improve the compression,
because 3=2 log n qubits is the minimum memory size
allowed by the Holevo bound for compression [19].
Conclusion.—In this Letter we showed how to compress

identically prepared qubits in the smallest possible
memory. The key technique is the use of universal cloning
to convert Gibbs states of different angular momentum.
Converting Gibbs states is a novel application of quantum
cloning [24–26] and may inspire further applications in the
resource theory of quantum thermodynamics, both in the
free [27] and in the size-restricted case [28]. Extending our
results, it is also interesting to investigate the relation
between cloning and compression for other families of
states, such as phase [29,30] and mirror-phase [31] covar-
iant states, and mixed states of arbitrary finite dimensional
systems [9]. The recent implementations of various

FIG. 2. Optimal full-model compression. The encoder disas-
sembles an arbitrary sequence of n identically prepared qubits
into a classical part (1=2 log n bits) and a quantum part (log n
qubits). The decoder recombines these two pieces of information,
approximately retrieving the initial state of the sequence.

0
4 8 12 16 20 24 28 32

J

FIG. 3. Spectral distributions of the output states with and
without sampling. A comparison of the spectral distributions of
the following states: the original state ρ⊗n

g (black, solid line), the
output state of the optimal protocol (red, dashed line), and the
output state of a protocol with the same encoder of the optimal
protocol and a decoder without sampling (blue, dashed line).
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quantum cloning machines [32–35] suggest that prototypes
of optimal compression may be experimentally demon-
strated in the near future.
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