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This series of two papers aim to improve the rotation-free (RF) triangle model previously developed 

by the authors and apply it for drape/cloth simulations. To avoid a previously un-observed drawback, 

the membrane strain obtained from the three-node displacement interpolation is replaced by the one 

obtained from the six-node interpolation. Dynamic simulations are made possible by explicit time 

integration. Instead of using dense structural meshes, the quality of draped patterns is improved by 

introducing a global adaptive remeshing. The works in this paper provide important and necessary 

techniques for practical applications of the RF triangle in the drape simulation. In part II, other 

techniques including collision handling and garment construction are further discussed and some 

practical applications of garments on still and moving human body model would be presented. 
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1. Introduction 

The drape/cloth simulation can be an efficient tool to meet new challenges of the apparel 

industry such as the development of electronic markets, customization and reduction in 

lead times [Zulch et al., 2011]. It can also enhance the reality of the animated movies 

[Choi and Ko, 2005]. Nevertheless, practical applications of physical-based simulations 

are still very limited [Smith Micro Software Inc, 2012]. 

Physical-based computational models in the drape/cloth simulation can broadly be 

divided into skeletal and non-skeletal models. Mass-spring models (or also called as 

particle models), e.g., [Breen et al., 1994; Provot, 1995; Chen et al., 2001; Zhang and 

Yuen, 2001; Sze and Liu, 2005; Villard and Boeouchaki, 2005; Ji et al., 2006], are the 

most popularly used skeletal models. In these models, the deformation energy of the 

fabrics, including tensile, bending, trellising or even yarn repelling energies, is derived 

from various springs connecting the particles. The critical shortcoming of skeletal models 

is that they are stringent on the particle distribution which leads to the laborious treatment 

for oblique and curved boundaries [Chen et al., 2001; Sze and Liu, 2005; Villard and 
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Boeouchaki, 2005]. The most commonly used non-skeletal models in the drape/cloth 

simulation are the shell finite element models, see [Gan et al., 1995; Kang and Yu, 1995; 

Eischen et al., 1996; Tan et al., 1999; Gong et al., 2001], among others. However, the 

applications of shell finite element models in the drape/cloth simulation are not as 

successful as in structural analyses, and most previous attempts are rather restricted to 

problems with shallow folds/wrinkles. A possible reason is that nodes of shell element 

models carry not only translational but also rotational dofs which often require special 

treatment for the finite rotation analysis. Solid-shell element model which possesses no 

rotational dofs has also been applied to the drape simulation [Sze and Liu, 2007]. 

Unfortunately, a spurious zero energy mode in which the lower and upper faces of the 

element interpenetrate each other is encountered as a result of the employed assumed 

natural shear and transverse strain schemes for locking alleviation. When the free 

hanging length of the fabric is long, the solution often fails to converge. 

The rotation-free (RF) element is a family of thin plate/shell elements in which there 

are only 3 translational dofs per director and rotational dofs are not employed. Compared 

with the degenerated- and solid-shell elements, RF models possess the following 

advantages: their stiffness matrices are better conditioned, they converge more readily in 

nonlinear analyses and the related contact treatment is also simpler [Benson et al., 2011; 

Flores and Onate, 2011]. Although they may not be as accurate as the degenerated- and 

solid-shell elements under unstructured meshes [Gardsback and Tibert, 2007], they 

appear to be good candidates for large displacement analyses of very thin plate/shell 

problems and drape/cloth simulations [Flores and Onate, 2011; Zhou and Sze, 2012]. 

There are quite a number of RF models in the literature. They include the RF models 

based on interpolation [Phaal and Calladine, 1992a; Liu and Sze, 2009], hinge-angle 

[Phaal and Calladine, 1992b; Guo et al., 2002; Sabourin and Brunet, 2006], subdivision 

of surface [Cirak and Ortiz, 2001], the concept of the finite volume method [Onate and 

Zarate, 2000; Flores and Onate, 2005, 2011] and meshfree method [Sze et al., 2004; Cui 

et al., 2011]. Recently, the authors have developed a RF triangle and applied it to the 

drape simulation [Zhou and Sze, 2012]. Compared with other exiting RF models, it is 

very simple but its accuracy remains competitive. As CST based on the three-node 

displacement interpolation is employed to take the membrane energy into account, the RF 

triangle will be referred to as RFT3 hereafter. Using a corotational approach, the 

tangential bending stiffness matrix of the triangle can be approximated by a constant 

matrix which greatly simplifies the geometrical nonlinear analyses. However, [Zhou and 

Sze, 2012] is restricted to static drape simulation whilst drape/cloth simulation is at the 

crossroad of many technologies [Volino and Cordier, 2004] related to computer graphics, 

textile engineering, computational mechanics, etc. 

In this series of two papers, RFT3 would be improved and integrated with other 

technologies. The ultimate goal is to simulate cloth on still and moving human body 

model. For the present paper, RFT3 is reviewed and the scheme for the explicit dynamic 

analysis is presented in Section 2. In Section 3, the membrane strain in RFT3 obtained 

from the three-node interpolation is replaced by the one obtained from the six-node 

interpolation so as to avoid a drawback which sometimes leads to non-physical sharp 
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folds, see Fig. 1, for instance. The same practice was also employed by Flores & Onãte 

[2005] for, however, improving the accuracy of their RF model. In Section 4, some drape 

examples are presented. Section 5 introduces an adaptive remeshing scheme which 

enables finer details of folds/wrinkles be resolved with a relatively smaller number of 

nodes. Further numerical examples follow in Section 6. 

2. Review of the rotation-free triangle 

In this section, RFT3 previously formulated for static problems [Zhou and Sze, 2012] is 

briefly reviewed and the explicit time integration scheme to be employed is discussed. 

2.1.  Linear bending formulation  

The RF triangle can consider problem domains with initial curvatures. As cloth is mostly 

made of flat fabrics, the review here will be restricted to problem domains which are 

initially flat. Consider the six-node coplanar element patch 1-2-3-4-5-6. The local inplane 

coordinates are (x,y). The displacement transverse to the x-y-plane can be expressed as: 
2 2

1 2 3 4 5 6/ 2 / 2 / 2w c c x c y c x c y c xy                                     (1) 

The interpolation requirement leads to: 
2 2

1 1 1 1 1 1 1 1 1

2 2

6 6 6 6 6 6 6 6 6

1 / 2 / 2 / 2

1 / 2 / 2 / 2

w x y x y x y c c

w x y x y x y c c

      
      

       
      
      

C               (2) 

where (xi, yi) are the (x, y) coordinates of the i-th node and C is self-defined. Under the 

small displacement assumption, the curvature can be derived as: 

 

          
(a) (b) 

Fig. 1. (a) Top and (b) isometric views of a 50×50 cm fabric on a Ø20 cm pedestal predicted by the previous 

RF triangle using 371 nodes [Zhou and Sze, 2012]. 
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in which L is the lower half of C-1.  With the constant curvature obtained from the last 

equation taken to be the curvature of the RF triangle 4-5-6, the elastic bending energy 

stored in the triangle is: 
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D L D L                        (4) 

in which A is the area of the triangle and where 𝐃𝑏 = [𝐷𝑖𝑗
𝑏 ] is the bending rigidity matrix. 

Based on the bending energy, the linear static plate bending problem can be solved by 

minimizing the total potential.  

2.2.  Geometrical nonlinear bending formulation 

The corotational approach has been employed to extend the bending formulation to the 

large displacement, large rotation but small strain analyses [Zhou and Sze, 2012]. With 

reference to Fig. 2, the initial configuration 1-2-3-4-5-6 undergoes displacement U and 

assumes the deformed configuration 1’-2’-3’-4’-5’-6’. Meanwhile, a fictitious rigid body 

displacement UC can be defined such that it brings 1-2-3-4-5-6 to the corotational 

configuration 1C-2C-3C-4C-5’-6C such that 5’, 6C and 6’ are collinear whilst 4C -5’-6C and 

4’-5’-6’ are coplanar. The corotational frame (x,y,z) is defined with the corotational 

configuration lies on the x-y plane and the origin taken rather arbitrary at node 5’. With n 

denoting the unit vector along z, the transverse displacement w along the z-axis from the 

corotational to the deformed configuration is: 

( )T Cw  n U U                                                       (5) 

Since UC is a rigid body displacement, it is trivial that 

,C

pq U 0     for p, q = x, y.                                           (6) 

          

Fig. 2. An initially flat element patch. 1-2-3-4-5-6, 1C-2C-3C-4C-5’-6C, and 1’-2’-3’-4’-5’-6’ are the initial, 

corotational and deformed configurations, respectively. 
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From Eq.(5), Eq.(6) and the small-strain-small-curvature assumption, the curvature  

and the bending energy Eb for triangle 4-5-6 can be approximated as: 

, ( ), ,

, ( ), ,

2 , 2 ( ), 2 ,

T C T

xx xx xx xx

T C T

yy yy yy yy

T C T

xy xy xy xy

w

w

w







       
      

           
              

n U U n U

κ n U U n U

n U U n U

.                (7) 
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   (8) 

The small-strain-small-curvature assumption further allows one to write 

( )C T Cw  U U n nn U U .                                         (9) 

in which Eq.(5) has been invoked. From Eq.(6) and the fact that n does not vary with 

(x,y), differentiation of Eq.(9) leads to:  

, ,T

pq pqU nn U      for p, q = x, y.                                     (10) 

By substituting the last equation into Eq.(8), the bending energy is simplified as: 
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By interpolating U with respect to (x,y) in the same way as in Eqs.(1)-(3), 
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      (12) 

where L = [Lij] has been defined below Eq.(3); B and U1..6 are self-defined. Recalling that 

B is a constant matrix for each triangle, the internal bending force and tangential bending 

stiffness required for the nonlinear solution procedure are: 

1...6

1...6

( )
b

b T bE
A


 


f B D B U
U

 , 
1...6 1...6

( ) ( )
b

b T T bE
A

 
 
 

k B D B
U U

.       (13) 

The salient feature of the present RF triangle is that the bending energy and its 

derivatives are independent of UC and n. In particular, the tangential bending stiffness 

matrix is constant and does not require to be updated in the nonlinear solution procedure. 

It should be remarked that the “small-curvature” assumption requires the relative 

curvature defined as nodal spacing divided by the radius of curvature to be small only. In 

other words, large curvature can be considered by using a small nodal spacing.  

2.3.  Membrane formulation by three-node displacement interpolation 

The constant strain triangle (CST) based upon the total Lagrangian framework and three-

node displacement interpolation is adopted to take the membrane energy into account. In 

other words, the constant Green membrane strain is employed which can be expressed as: 
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For small strain, the membrane energy can be expressed as: 

2

m T mA
E  ε D ε                                                      (15) 

where 𝐃𝑚 = [𝐷𝑖𝑗
𝑚] is the membrane rigidity matrix. The internal membrane force vector 

and tangential membrane stiffness matrix of the element can be derived by differentiating 

the membrane energy once and twice with respect to the nodal displacement. Interested 

readers are referred to [Zhou and Sze, 2012] for the predictions of RFT3 in static shell 

and drape problems. 

2.4.  Explicit time integration for dynamic simulations  

To extend the RFT3 to dynamic simulations, the following equation of motion for a 

discretized system is first considered: 
damp  MD F F P                                                  (16) 

in which M, 𝐃̈, Fdamp, F and P are the mass matrix, acceleration vector, damping force 

vector, internal force vector and prescribed external force vector, respectively. Among 

them, F is assembled from the bending and membrane force vectors of RFT3; the 

damping force is often a function of the velocity 𝐃̇, i.e. 

( )damp dampF F D .                                                  (17) 

In the explicit time integration, the equation of motion at time tn is used to obtain the 

solution after tn, i.e. 

1( )damp

n n n n

  D M P F F or 
11 22

1 1
.[ , ,...]( )damp

n n n ndiag
M M

  D P F F     (18) 

The diagonal feature of M is attained by dividing the mass of each triangle into three and 

lumped at the three nodes. 𝐅𝑛
𝑑𝑎𝑚𝑝

 depends on 𝐃̇n which is not available. Following the 

asynchronous damping [Weimar, 2001], 𝐅𝑛
𝑑𝑎𝑚𝑝

 is approximated as: 

1/2 1/2( ) ( )damp damp damp damp

n n n n  F F D F D F .                         (19) 

and Eq.(18) is revised as: 

(a) 1/2

11 22

1 1
.[ , ,...]( )damp

n n n ndiag
M M

  D P F F                      (20) 

Using the central difference approximation, 

(b) 1/2 1/2n n n t   D D D                                          (21) 

(c) 1 1/2n n n t   D D D                                            (22) 

(a) to (c) form the employed explicit time integration scheme. 

3. Six-node interpolation for the membrane strain  

Although RFT3 is efficient and performs well in the previous numerical tests [Zhou and 

Sze, 2012], non-physical sharp folds are sometimes observed in dynamic analyses [Zhou, 
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2013] and when coarse meshes are employed as shown in Fig. 1. The causes have been 

traced to be the small-curvature assumption coupled with the membrane energy 

computed by the CST. As a simple illustration, the initial configuration in Fig. 3(a) is 

considered in which the nodal spacing is 1 cm. Imagine that nodes 2 to 6 are fixed whilst 

node 1 moves towards node 4 over 5-6 with the lengths of 1-5 and 1-6 kept unchanged. 

For the prescribed deformation, the total energy per unit area evaluated at the centroid of 

4-5-6 is: 

2 2

11 11 centroid of 4-5-6

1
( )

2

b m

xx xxE D D   .                                 (23) 

Let x be aligned with warp and the wool properties measured by Kang & Yu [1995] be 

considered, i.e. 𝐷11
𝑏  = 0.083 gf·cm and 𝐷11

𝑚  = 1118.2 gf/cm. Fig. 3(b) plots the total 

energy against the angle  defined by the two chained lines joining node 1, mid-point of 

5-6 and node 4, see Fig. 3(a). In the prescribed deformation, xx computed by RFT3 

vanishes. The figure also plots the total energy in which the bending energy is computed 

by RFT3 but the membrane energy is computed from the more accurate six-node 

displacement interpolation. The membrane energy as computed by the six-node 

displacement interpolation increases significantly as the curvature departs from the small-

curvature assumption. Hence, this membrane energy would be a more appropriate 

companion to the bending energy of the RFT3 than one currently used in RFT3 for 

suppressing the non-physical sharp folds:  

Although one can compute the membrane energy directly from a six-node 

interpolation, the scheme using the parametric interpolation presented by Flores & Onãte 

[2005] in their EBST RF triangle appears to be handful and reasonably efficient for 

boundary treatment. In the scheme, the global coordinate vector X and local coordinate 

vector x of the nodes in the initial configuration as well as the displacement are 

interpolated as: 
6

1

i i

i

N


X X  , 
6

1

i i

i

N


x x  and 
6

1

i i

i

N


U U                   (24) 

 

          
(a)                                                                                     (b) 

Fig. 3. Comparison of the energy at the centroid of 4-5-6 when the membrane energy is considered by three-

node and six-node displacement interpolations. 
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where N1=(-1)/2, N2=(-1)/2, N3=(-1)/2, N4=+, N5=+, N6=+  and =1-

-. In the interpolation functions, ,   [-1,+1] are the parametric coordinates as shown 

in Fig. 4(a). Thus, the Green strain in Eq.(14) can be computed accordingly and the 

following chain rule is required: 
1

/ / / /

/ / / /

x x x

y y y

  

  


            

    
            

                       (25) 

To compute membrane energy in 4-5-6, the strains at I, II and III which are the mid-

points of 5-6, 6-4 and 4-5, respectively, are averaged and taken to be the strain within 4-

5-6. A one-point quadrature rule can be used accordingly. It can be checked that: 

2 3 3 1 1 2

2 3 3 1 1 2
1/2, 0 1/2, 1/2 0, 1/2

, , , , , ,

, , , , , ,

N N N N N N

N N N N N N

     

     
          

     
      

     
   (26) 

Taking I as an example, the strain at I depends only on the coordinates and displacement 

of the four nodes bounding I. Similar dependence can be drawn for II and III.  

For the boundary treatment, Fig. 4(b) is considered in which A, B and H are the 

image nodes required to compute the bending energy in RF models [Phaal and Calladine, 

1992a; Zhou and Sze, 2012]. To compute the membrane energy of D-E-H, the strains at 

II, V and VI are required. With the membrane strain at II taken to be the strain obtained 

by the three-node displacement interpolation of D-E-H, the membrane strain energy 

would be independent of any image node displacement. Similarly, to compute the 

membrane energy of C-D-G, the strains at I, III and IV are required. With the membrane 

strains at I and III taken to be the ones obtained by three-node displacement interpolation 

of C-D-G, the strain energy would again be independent of any image node displacement. 

 For convenience, the modified RF model in which a six-node displacement 

interpolation is employed to take the membrane energy into account is abbreviated as 

RFT6.  

 

          
                 (a)                                                                                    (b) 

Fig. 4. (a) Element patch in its parametric coordinates system. (b) A typical domain boundary. 
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4. Examples on Static Drapes 

In this section, some of the static drape problems considered by RFT3 in [Zhou and Sze, 

2012] are re-considered by RFT6. In all examples, wool fabric with the following 

properties [Kang and Yu, 1995] is considered: 

tensile rigidity along the warp: 1118.2 gf/cm; tensile rigidity along the weft: 759.5 

gf/cm; 

bending rigidity along the warp: 0.083 gf·cm; bending rigidity along the weft: 0.063 

gf·cm; 

shear rigidity: 41.8 gf/cm; bending rigidity for the twisting: 0.027 gf·cm; 

and the fabric weight: 0.019 gf/cm2. 

To enhance the convergence, the simple scaling scheme for the iterative refinement given 

in [Liu and Sze, 2009; Zhou and Sze, 2012] is also employed. In all examples, warps and 

wefts in the initial configuration are always aligned with the global X- and Y- directions. 

4.1.  Kang & Yu’s example on clamped fabric strip 

In this example, a 1×5 cm strip clamped at one end is draped under its own weight. This 

example has also been considered in [Kang and Yu, 1995; Teng et al., 1999; Liu and Sze, 

2009; Zhou and Sze, 2012]. As shown in Fig. 5, the normalized curvature is small. Thus, 

the predictions given by RFT3 and RFT6 are almost the same. Both of them agree well 

with the reference solution yielded by using 10×50 Abaqus S4R elements [Zhou and Sze, 

2012].  

 

          
                 (a)                                                                                    (b) 

Fig. 5. Predictions for Kang & Yu’s example on a 1×5 cm wool strip clamped at one end. (a) Initial and 

deformed configurations of the strip; (b) side view of the predictions of RFT3 and RFT6 as well as the 

reference solution given by Abaqus. 
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4.2.  Kang & Yu’s example on a square cloth draped on a square pedestal  

In this example, a 20×20 cm fabric is draped over a 10×10 cm square pedestal. Kang & 

Yu [1995] conducted the physical experiment for this example and the measured result is 

often used to qualitatively compare with predictions from drape simulations [Kang and 

Yu, 1995; Teng et al., 1999; Liu and Sze, 2009; Zhou and Sze, 2012]. Nevertheless, the 

measured configuration is not symmetric which might be caused by various 

environmental and human factors. Here, a highly converged solution with respect to the 

mesh density obtained by 120×120 Abaqus S4R shell elements in [Zhou and Sze, 2012] 

is employed as the reference solution. Fig. 6(a) shows the top views of the fabric 

boundaries predicted by RFT3 and RFT6. Using 33×33 nodes, the RFT3 is too flexible, 

especially in the weft direction, whilst RFT6 is too stiff. However, the prediction of 

RFT6 is much closer to the reference solution. It can also been seen that RFT6 yields a 

 

          
(a) 

           
                 (b)                                                                                    (c) 

Fig. 6. Predictions for Kang & Yu’s example on a 20×20 cm fabric draped over on a 10×10 cm pedestal. (a) 

The deformed boundary predicted by Abaqus, RFT3 and RFT6; (b) Top and (c) isometric views predicted by 

RFT6 using 61×61 nodes. 
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better prediction when 61×61 nodes are employed. The related top and isometric views 

are plotted in Fig. 6(b) and (c), respectively. Both of them look realistic. 

4.3.  Square fabric draped on square pedestals with long free-hanging lengths   

Fig. 7 shows a 40×40 cm fabric draped over a 20×20 cm pedestal predicted by RFT6 with 

81×81 nodes. The prediction of RFT3 appears to be very similar and, thus, is not here 

repeated to save space. A 80×80 cm fabric draped over a 40×40 cm pedestal is then 

considered with again 81×81 nodes. Figs. 8(a)-(b) show the prediction of RFT3 whilst 

Figs. 8(c)-(d) show the prediction of RFT6. In this example, the prediction of RFT3 is 

less stiff than that of RFT6. Both sets of predictions look realistic and match our daily 

perception. However, the enlarged views in Figs. 8(e)-(f) for the predictions of RFT3 and 

RFT6, respectively, reveal that non-physical sharp folds have been developed in the 

prediction of the RFT3 but not RFT6. That is the underlining reason for the related 

“softer” look. 

4.4. A square cloth draped on a circular pedestals   

RFT3 and RFT6 are further compared by using a relatively coarse unstructured mesh 

with 371 nodes and 646 triangles to model a 50×50 cm fabric draped over a Ø20 cm 

pedestal. The prediction of RFT3 has been portrayed in Fig. 1 and possesses many non-

physical sharp folds. On the other hand, the prediction of RFT6 in Fig. 9 is smooth and 

contains no sharp fold. The slight asymmetry is inherit from that of the mesh. Next, we 

will illustrate that the mesh density is not adequate to resolve finer details of the 

deformed configuration. 

The same fabric sheet is modelled with 21×160 and 31×240 nodes. The predictions of 

RFT6 are portrayed in Figs. 10(a)-(b) and 10(c)-(d), respectively. The two sets of 

predictions look similar and 12 folds are observed, indicating that the mesh with 21×160 

nodes has been adequate. They also agree well with those of RFT3 in [Zhou and Sze, 

2012]. 

 

           
              (a)                                                                                       (b) 

Fig. 7. A 40×40 cm fabric draped over a 20×20 cm pedestal. (a) Top and (b) isometric views predicted by 

RFT6 using 81×81 nodes. 
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4.5. A square cloth draped on a sphere   

In this example, a 30×30 cm square cloth is draped over a Ø10 cm sphere. As the 

spherical surface can be expressed in a simple mathematic expression, the contact can be 

conveniently handled by the penalty method as in [Liu and Sze, 2009; Zhou and Sze, 

2012]. The prediction of RFT6 by using 61×61 nodes are shown in Figs. 11(a)-(b). They 

look nature and are also consistent with the predictions of RFT3 in [Zhou and Sze, 2012]. 

 

           
(a)                                                                           (b) 

       
         (c)                                                                              (d) 

                      
   (e)     (f) 

Fig. 8. A 80×80 cm fabric draped over a 40×40 cm pedestal modelled by 81×81 nodes. (a) Top and (b) 

isometric views predicted by RFT3. (c) Top and (d) isometric views predicted by RFT6. (e) and (f) are the 

enlarged viewed of the boxed regions in (b) and (d), respectively. 



 13 

 

         
        (a)                                                                                   (b) 

            
       (c)                                                                                       (d) 

Fig. 10. A 50×50 cm fabric draped over a Ø20 cm pedestal. (a) Top and (b) isometric views predicted by using 

21×160 nodes; (c) top and (d) isometric views predicted by using 31×240 nodes. 

 

           
                       (a)                                                                                     (b) 

Fig. 9. (a) Top and (b) isometric views of a 50×50 cm fabric on a Ø20 cm pedestal predicted by RFT6 using 

371 nodes. 
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     When a coarser mesh with only 17×17 nodes is employed, the prediction of RFT6 is 

shown in Figs. 11(c)-(d). Although the fabric appears to be a bit stiffer, the draped pattern 

still looks smooth and nature. On the other hand, RFT3 fails to converge. In the un-

converged solution, non-physical sharp folds and self-penetrations of the fabric sheet are 

noted. 

The important message conveyed in the last two and present examples is that RFT6 is 

more capable of producing smooth and realistic predictions than RFT. 

4.6. Dynamic draping of square fabrics hanged at two corners   

To demonstrate the dynamic simulation, draping of two square fabric sheets of side 

lengths 20 and 100 cm are considered. They are modelled by 41×41 and 51×51 nodes as 

shown in Figs. 12(a) and 13(a), respectively. Initially, they are kept flat, horizontal and 

stress-free. With the two adjacent corners pinned, they are then allowed to fall under 

gravity at t = 0. A viscous mass damping is introduced in these examples, and the 

damping force in Eq.(17) is expressed as: 
damp  F MD                                                         (27) 

in which the mass damping factor α is set rather arbitrarily and empirically to be 5.0 sec-1. 

Mass damping is considered to be reasonable for air resistance which increases with the 

         
(a)                                                                                  (b) 

    
     (c)                                                                                       (d) 

Fig. 11. A square fabric drapes over a sphere. (a) Top and (b) side views predicted by using 61×61 nodes. (c) 

Top and (d) side views predicted by using 17×17 nodes. 
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surface area. Fig. 12 extracts the frames showing smaller sheet at t = 0, 0.16, 0.32 and 2 

seconds. At t = 2 seconds, the fabric sheet has basically stop moving. Fig. 13 extracts the 

frames showing the larger sheet at t = 0, 0.48, 1.44 and 2.4 seconds. At t = 2.4 seconds, 

the larger sheet has basically stop moving. Comparing their transient and steady-state 

configurations, it can be seen that the small sheet overshoot its steady-state configuration 

more significantly than the larger sheet. On the other hand, the latter falls more slowly 

and the steady-state configuration shows more wrinkles than the former. The transient 

and steady-state configurations look realistic. Interested readers can download the related 

zipped Flash movies at http://1drv.ms/1gHS8HX.  

                     
(a) Time = 0 

                     
(b) Time = 0.16 s 

                                                                     
(c) Time = 0.32 s 

                                                          
(d) Time = 2 s 

Fig. 12. Dynamic draping of a 20×20 cm square fabric hanged at the two adjacent corners. (a) to (d) are 

isometric and side views at different instants. 

A 

B 
A(B) 

A(B) 

A 

A(B) 

A 

B 

A 

B A(B) 

http://1drv.ms/1gHS8HX
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5. Adaptive Remeshing   

Sections 4.3, 4.4 and 4.6 show that new membrane formulation in RFT6 is effective to 

suppress the non-physical sharp fold and more able to deliver smooth realistic predictions 

                            
(a) Time = 0 

                            
(b) Time = 0.48 s 

                                                                                                
(c) Time = 1.44 s 

                                                                                      
(d) Time = 2.4 s 

Fig. 13. Dynamic draping of a 100×100 cm square fabric hanged at the two adjacent corners. (a) to (d) are 

isometric and side views at different instants. 

A 

B 

A(B) 

A(B) 

A 

A(B) 

A 

B 

A 

B 

A(B) 

B 
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than RFT3. Section 4.4 also illustrates that the absence of sharp fold does not necessary 

imply an adequate nodal density. To secure an adequate but not excessive nodal density, 

adaptive remeshing has been a popular technique. It can also avoid large relative 

curvature and, thus, the deviation of the small-curvature assumption in the bending model. 

Several adaptive remeshing schemes have been proposed for drape/cloth simulations, 

see [Zhang and Yuen, 2001; Villard and Boeouchaki, 2005; Volkov and Li, 2005; Narain 

et al., 2012], for instances. Most of them are based on the local remeshing/refinement 

which may sometimes cause poor mesh qualities especially for the regions close to the 

domain boundaries and/or between different hierarchical levels. Furthermore, these 

schemes usually require adaptive data structures and add complexity to the 

implementation [Narain et al., 2012]. These drawbacks are particularly valid for RF 

models as the interpolation domain is larger than the integration domain and remeshing in 

one element requires the interpolation domains of the neighbouring elements be changed. 

On the other hand, the global adaptive remeshing commonly used in structural analyses is 

seldom seen in drape/cloth simulations. The major reason is probably that the bending 

rigidity of fabric is very weak. The transfer from the old to an entirely new mesh often 

causes considerable oscillation which adversely affects the simulation quality. However, 

if only the steady-state configuration is concerned as in the dynamic relaxation method, 

the global adaptive remeshing can be a good choice for achieving high-quality meshes for 

capturing folds/wrinkles. In this work, the global adaptive refinement scheme of Lee & 

Lo [1995] will be generalized to dynamic drape simulations, and further to garment 

sewing simulations in Part II of the present series. The advancing front technique [Lo and 

Lee, 1994] is employed to generate the mesh and the interpolation domain in the RF 

triangle can be easily traced along with the moving front. 

5.1. Determination of the element size   

In most global adaptive remeshing schemes, the new element sizes are designed by using 

error indicator and equal error distribution criterion [Lee and Lo, 1995]. However, the 

related treatments are complex and also unnecessary in drape/cloth simulations which 

often, if not always, aim at predictions consistent to our daily perception. 

      Curvature-based expressions are the most commonly used refinement criteria for 

drape/cloth simulations [Villard and Boeouchaki, 2005; Volkov and Li, 2005; Narain et 

al., 2012]. Volkov & Li [2005] compared a number of curvature-based criteria and 

recommended: 
2 'a  prescribed value 'h κ                                           (28) 

as the criterion to determine whether local mesh refinement is required. In this expression, 

h is the element size which will here be taken as the average side length of the RF 

triangle for simplicity. In global adaptive remeshing, remeshing is conducted for the 

entire problem domain and the spatial distribution of the targeted element size htarget is 

required. In analogous to Eq.(28), htarget is determined from: 
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2

newh constκ    and   

upper new upper

target lower new lower

new

for

for

otherwise

h h h

h h h h

h

 


 



                   (29) 

where const is a preset coefficient and κ is the curvature vector which can be computed 

by Eq.(7) for each RF triangle. When the fabric is locally flat or close to flat, the 

determined htarget would be unrealistically large. On the other hand, if the determined 

htarget is too small, stable time step size of the explicit time integration would be 

unrealistically small. Hence, lower and upper bounds are imposed on htarget. A point of 

remark is that the relative curvature ||h is non-dimensional. The additional h in ||h2, 

however, is effective in smoothing the spatial distribution of htarget [Volkov and Li, 2005] 

and this point is echoed in our computational trials. 

5.2. Adaptive remeshing procedure  

The simple yet reliable remeshing scheme of Lee & Lo [1995] is employed. A 

background grid is used to transfer the element size and kinematic variables (i.e. 

displacement and velocity) during the adaptive remeshing. The procedures for the 

adaptive remeshing and advancement of the predictions are summarized below:  

a. An initial mesh is inputted or generated. 

b. Form a square background grid covering the initial computational domain for 

transferring the element sizes and the kinematic variables as in [Lee and Lo, 

1995].  

c. If the existing time step size leads to instability, stop, reduce the integration time 

step size and restart.  

d. The time integration is advanced for a prescribed number of time steps. 

Alternatively, the time integration can be kept advancing until ||h2 is larger than 

a predefined value.  

e. For each RF triangle in the present mesh, htarget is calculated according to 

Eq.(29). 

f. Transfer htarget and the kinematic variables from the existing mesh to the 

background grid.  

g. Use the advancing front technique [Lo and Lee, 1994] to generate a new mesh 

based on htarget stored on the background grid.  

h. Transfer the kinematic variables from the background grid to the nodes in the 

new mesh. 

i. Goto step b.  

6. Numerical examples on Adaptive Remeshing 

In this section, three previous static drape problems are re-considered by RFT6 with 

adaptive remeshing in the dynamic relaxation process. The viscous mass damping in 

Eq.(27) is again employed and the fabric sheet would finally come to still. As only the 

static equilibrium configuration is the concern, the mass scaling method is employed to 

lengthen the stable time step and reduce the fictitious oscillation during remeshing. Here, 
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the mass matrix is scaled up 100 times. The weight in the external force vector is kept 

unchanged. Flash movies for the examples in this section showing the remeshing along 

with the dynamic relaxation can be downloaded at http://1drv.ms/1gHS8HX. 

                                
(a) 

                  
(b) 

                  
(c) 

                                                                            

(d) 

Fig. 14. Kang and Yu’s example on a 20×20 cm cloth draped over a 10×10 cm square pedestal. (a) to (d) are 

isometric and top views at different instants. 

http://1drv.ms/1gHS8HX
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6.1. Kang & Yu’s example on a square cloth draped on a square pedestal   

Fig. 14 shows the representative frames for the 20×20 cm fabric sheet which has also 

been considered in Section 4.3. The computation starts with the unstructured mesh in Fig. 

14(a). At the very beginning, the curvature is small and the remeshed mesh gets coarser 

as shown in Figs. 14(a)-(b). Once larger and larger curvature comes in, the mesh is 

successively refined as shown in Figs. 14(b)-(d). Comparing Fig. 5 with Fig. 14(d), one 

can see that the static drape yielded by the iterative static equilibrium solution and the 

dynamic relaxation are highly similar. 

6.2. A square cloth draped on a circular pedestals   

Fig. 15 shows the representative frames for the 50×50 cm square fabric draped on a 

Ø20cm pedestal. When the adaptive remeshing is employed along with the dynamic 

relaxation, the final configuration in Fig. 15(d) is attained. Although the prediction 

possesses 8 folds whist 12 folds are predicted in the iterative static equilibrium solution 

portrayed in Fig. 10 by using a dense structural mesh, both predictions look realistic. It is 

not surprising to see two solutions as drape problems can possess multiple solutions [Liu 

and Sze, 2009] and different solution schemes can converge to different solutions. 

6.3. A square cloth draped on a sphere  

Fig. 16 shows the representative frames of a 30×30 cm fabric draped on a Ø10 cm sphere. 

For the contact treatment, the kinematic constraint commonly used in dynamic 

simulations is employed to replace the penalty method used in Section 4.5 for the contact 

treatment. If penetration occurs at the end of a time step, a radial displacement correction 

will be applied to the penetrated node such that it would rest on the surface of the sphere 

and the corrected displacement is treated as the displacement solution at the end of the 

time step. Starting with the coarse initial mesh in Fig. 16(a), realistic prediction for the 

steady-state drape in Fig. 16(d) with high quality mesh is obtained. The drape pattern is 

largely consistent with that in Fig. 11 which portrays the iterative static equilibrium 

solution.  

7. Closure 

In this paper, the non-physical sharp folds which sometimes appear in the intermediate 

and converged solutions of the previous rotation-free triangle RFT3 are subdued by 

computing the membrane strain from the six-node instead of the three-node displacement 

interpolation. By applying the modified rotation-free triangle RFT6 to drape simulations, 

the yielded predictions are essential the same as those of RFT3 when the meshes are 

dense. When the meshes are coarse, the non-physical sharp folds appear in the 

predictions of RFT3 are largely suppressed in those of RFT6. Furthermore, a global 

adaptive remeshing capability is developed by using the advancing front method. The 

element size in the new mesh is controlled by curvature prediction of the old mesh. 

Numerical examples demonstrate that the remeshing scheme along with the dynamic 
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relaxation method can provide sufficient mesh density to capture the realistic folds in 

drape simulations. 

In the second paper of this series, some techniques from computer graphics and textile 

engineering, e.g., collision detection and treatment, human body model construction and 

garment sewing, will be introduced and integrated with the RFT6. Simulation of clothes 

on still and moving human body model will be presented. 

 

                                
(a) 

                  
(b) 

                          
(c) 

                                                                                                 

(d) 

Fig. 15. A 50×50 cm cloth draped over a Ø20 cm pedestal. (a) to (d) are isometric and top views at different 

instants. 

A(B) 
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(d) 

Fig. 16. A square cloth draped over a sphere. (a) to (d) are isometric and top views at different instants                                                      
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