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Abstract

The Porter Hypothesis (PH) posits that well-designed environmental regulations can

stimulate innovation, which may lead to efficiency gains or even profit increase for the reg-

ulated firms. Extant theoretical works examining the PH neglect two important aspects in

their models and analyses: firm heterogeneity and general equilibrium. In this study, we re-

visit the PH by incorporating these two features in our model and analysis. We show that the

PH holds for high-capability firms, but not for low-capability firms. Although heterogeneous

responses exist in innovation investment, the average industry productivity increases.
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1 Introduction

In a controversial article, Porter and van der Linde (1995) challenge the conventional view

that stringent environmental regulations reduce firm competitiveness because of the additional

costs to meet the regulations. They argue that "properly designed environmental standards can

trigger innovation that may partially or more than fully offset the cost of complying with them"

(Porter and van der Linde 1995, p. 98). This argument is well known as the Porter Hypothesis

(PH).

Porter and van der Linde (1995) use a large number of cases to support their argument. Since

the publication of their paper, the PH has been extensively scrutinized both theoretically and

empirically. Researchers often divide the PH into two versions: the "weak version" claims that

properly designed environmental regulations may spur firm innovations whereas the "strong

version" extends that properly designed regulations can increase firm performance, such as

competitiveness and profits (Ambec et al., 2013). Results from existing empirical studies are

mixed partly because they are derived from data of different countries, industries, and time

periods. The "weak version" has acquired more supportive evidence than the "strong version".

Nevertheless, findings from other recent studies provide additional supportive results to the

"strong version" (Ambec et al., 2013).1

In theoretical analysis, the PH has received significant attention because conventional wis-

dom based on standard economic models often suggests the opposite: tightening environmental

regulations will lower revenue (e.g., in the case of pollution tax) and/or increase production cost

(e.g., in the case of emission standard), thus reducing firms’ innovation incentive because the

marginal benefit from innovation decreases (Palmer et al., 1995). Models generating results in

support of the PH deviate from standard models. Many existing theoretical studies find evidence

supporting the PH, mostly the "weak version", by introducing different types of frictions (or

"failure") to standard models. In this study, we do not rely on ad hoc frictions to analyze the

PH. Instead, we introduce firm heterogeneity to the standard monopolistic competition model

with general equilibrium analysis and reexamine the PH, both the "weak version" and "strong

version", within this framework. Our framework is more applicable to the real world than those

in the existing theoretical studies on the PH, and it allows empirical researchers to conduct their

analysis on the basis of measurable variables and verifiable conditions.

Specifically, we introduce pollution and innovation investment to the model of Melitz and

Ottaviano (2008), which features heterogeneous firms in a monopolistically competitive industry.

To emphasize the distinguishing features of this studies compared with those in the literature,

we first examine the partial equilibrium outcomes of the model, which is equivalent to the

1Jaffe et al. (1995) provide an earlier survey of this literature. Using the US data on paper mills’ technological
choice, Gray and Shadbegian (1998) find that stricter regulations tend to divert investment from productivity
to abatement, thus hindering productivity growth. Based on OECD survey data, Lanoie et al. (2011) provide
evidence of the causal link suggested by the PH. A recent paper by Greenstone et al. (2012) uses a comprehensive
data and sophisticated method to estimate the effects of environmental regulations on the competitiveness of US
manufacturing. The effects are generally negative, that is, strict environmental regulations result in decreased
total factor productivity. The opposite finding is obtained for carbon monoxide regulations.
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monopoly model in Section 2. We show that a stringent environmental regulation, or an increase

in compliance cost, leads to different responses of firms in their innovation investments. Firms

with high capability of innovation increase their investments, whereas firms with low capability

of innovation reduce their investments. Firms with the lowest capability of innovation even stop

operation and exit the market. The PH holds for some firms but not for others within the same

industry. These heterogeneous responses are due to two opposite forces in operation when the

compliance cost increases. On one hand, provided that the production scale is fixed, firms are

incentivized to increase their innovation investments for improving operating efficiency as the

marginal benefits of investment (to offset the increased compliance cost) grow. On the other

hand, every firm downsizes its production scale, thus reducing the incentive to invest because

the benefit of investment is shared across all units of production. Under reasonable conditions,

the negative scale effect is dominated by the positive cost-offsetting effect for high-capability

firms, but the opposite outcome holds for low-capability firms.

When firms adjust their innovation investments and production scale, the competition en-

vironment changes. The changed competition environment further induces individual firms to

adjust their investments and production. This latter effect is the general equilibrium effect of

tightening environmental regulations. In the partial equilibrium case, the least capable firms exit

the market, relaxing the competition for the surviving firms and providing additional incentives

for the surviving firms to invest in innovation. If the general equilibrium effect is sufficiently

strong, the resulting equilibrium profits for the most capable firms can increase despite the

rising compliance cost. This effect lends support to the “strong version” of the PH. The regula-

tions may even raise the total industry investments in innovations, and thus, the whole industry

becomes more productive.

Brannlund and Lundgren (2009) and Ambec et al. (2013) provide comprehensive literature

reviews of the PH. We only discuss some of the existing theoretical studies to highlight the

connections and contributions of the present paper.

One set of studies are related to market failure. For example, Morh (2001) considers the

situation in which new technology is available but nobody adopts it because, on one hand,

there is a learning cost in adopting the new technology, and on the other hand, there is a

positive externality of using the new technology on other firms in the industry. Under such

situation, the new technology may not be introduced, resulting in a suboptimal outcome. If

the regulation authority introduces an environmental policy that forces all firms to adopt the

new technology, the outcome can be a win-win situation. Andre and Gonzalez (2009) and

Greaker (2006) also examine coordination failure under other situations: Andre and Gonzales

(2009) focus on product quality, while Greaker (2006) look into technology spillover. A common

point made in these studies is that although market fails to solve the coordination problem,

environmental regulations can. In the same vein, Xepapadeas and de Zeeuw (1999) analyze firms’

capital investment decision when faced with pollution tax. They assume that firms can change

their composition of capital by installing modern machines and disposing old ones. Although

modern machines are both more productive and less pollution-intensive, installing such machines
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requires additional cost. In this setup, Xepapadeas and de Zeeuw (1999) find that increase in

production costs, resulted from stringent environmental policy, triggers a modernization of the

capital stock and thus increases average productivity. However, firms profit decreases, not

supporting the "strong version" of the PH.2 Hart (2004) constructs an environmental new-

growth model, which combines two types of research (environmentally oriented and ordinary

research) with production vintages, to show that an environmental tax not only gives incentives

to reduce pollution (through more environmentally oriented research) and shifts profits from old

vintages to new, but also possibly increase growth rate.

Another set of studies focus on organizational failure. By developing a principal-agent model

with renegotiation, Ambec and Barla (2002) formalize the idea that stringent environmental

regulations may help firms to overcome organization inertia and thus increase productivity.

In their model, a manager (the agent) obtains private information about the outcome of an

investment in research and development (R&D). A successful R&D program implies both a

more productive and less pollution intensive production technology. To favor revelation by the

agent, informational rent must be offered to the agent. The information rent is a cost for the

principal (the owner of the firm) that reduces incentive to invest in R&D. Ambec and Barla

(2002) show that environmental regulations reduce informational rent and thus increases R&D.

The present paper is different from the above-discussed theoretical literature in two ways.

First, all existing models assume either a single firm or many identical firms. Under such as-

sumptions, all firms respond to a change in environmental regulations in a uniform manner.

By contrast, we explicitly assume that firms within the same industry are heterogenous. Ac-

tually, firms differ in many aspects. Although most studies following the recent literature of

international trade assume firm heterogeneity in production productivity (Melitz, 2003), the

present paper assumes that firms possess different innovation capabilities. In the technology

literature, researchers have defined the characteristics of innovation capability and emphas-

ized the importance of innovation capability in affecting firm performance (Adler and Shenbar,

1990; Christensen, 1995; Guan and Ma, 2003; Acemoglu et al., 2013). Our result that firms

with different innovation capabilities respond to environmental regulations distinctly can help

to understand the contradictory empirical evidence found in different studies: By pooling all

observations in a regression analysis, the estimated results only deliver the average effects across

firms.3

Second, another aspect that is overlooked by previous studies is the general equilibrium effect

of environmental policies. Firms’ innovation incentives depend crucially on the competitive

environment in which the firms operate. Firms’ innovations in return change the competition.

Thus, environmental regulations that apply universally to all firms in an industry ultimately

2Feichtinger et al. (2005) show that the positive result of Xepapadeas and de Zeeuw (1999) is sensitive to the
functional forms of their model and that the opposite can possibly occur when those functional forms are changed,
that is, an emission tax may actually increase the capital’s average age.

3Cao et al. (2016) find that faced with the same environmental regulation, Chinese firms with different pro-
ductivity make different investments in advanced abatement technologies. This evidence supports the prediction
of their theory.
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alters the competitive environment of the industry. By considering this general equilibrium

effect, the present study shows that the PH tends to be supported.

The rest of the paper is organized as follows. In Section 2, we analyze the monopoly model. In

Section 3, we examine the monopolistic competition model to emphasize the general equilibrium

effect. In Section 4, we check the main results under a general consumer preference. In Section

5, we explore the case of a different type of environmental regulation (i.e., emission standard)

as opposed to pollution tax in all other sections. In Section 6, we conclude the paper.

2 Monopoly Model

In this section, we consider and analyze a monopoly model. Specifically, we assume that in an

economy, a continuum of industries exists, and these industries are symmetric and independent.

The inverse demand curve in each industry is assumed to be linear, given as p = A− bq, where

A is a demand shifter that is exogenously given.

Each industry consists of one firm. Each firm needs to invest on an innovation to obtain the

technology to produce its product. We assume that each firm obtains its innovation capability

(i.e., innovative capacity in Acemoglu et al., 2013), denoted as θ ≥ 0, randomly from a distribu-

tion G(θ). Upon realizing its draw of θ, every firm makes a decision whether to stay in or exit

its industry. If a firm stays, it first chooses the level of innovation investment k, which gives the

firm the following production function (technology):

x =
q2

k
,

where q is the unit of output, and x is the unit of intermediate inputs required to produce q.

The cost of investment for a firm with its drawn capability θ, called a type-θ firm, is θk. Thus,

a firm’s innovation capability is higher if its θ is lower. Following Copeland and Taylor (2003),

we assume that production of the intermediate inputs generates pollution, but production of the

final goods does not. The firm chooses and allocates labor optimally between intermediate inputs

and abatement activities. Consequently, we can assume that producing the inputs requires both

labor (l) and emission (z) in the Cobb-Douglas form described as follows:4

x = zη · l1−η, η ∈ (0, 1). (1)

4Suppose that producing intermediate inputs generates pollution as a by-product. Pollution can be reduced if
a firm puts resources into abatement activities. Assume that by allocating a fraction, ∆, of labor l into abatement
activities, the amount of intermediate inputs (x) and emission (z) is given by x = (1−∆)l, and z = ϕ(∆)l, where

0 � ∆ � 1, ϕ(0) = 1, ϕ(1) = 0 and dϕ/d∆ < 0. As in Copeland and Taylor (2003), assume ϕ(∆) = (1 −∆)
1

η ,
where η ∈ (0, 1). We can use the above three equations to eliminate ∆, and get x = zηl1−η. Thus, although
pollution is a by-product of intermediate input production, we can equivalently view it as an input of the final
good production.
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We suppose that each unit of pollution emission is charged with a pollution tax τ and that

the wage rate is given as w. Wage rate w is exogenously given, and so without loss of generality,

we normalize w = 1. Then, the implied minimum cost of unit input is given by

c = η−η · (1− η)−(1−η) · τη.

Thus, changes in c is equivalent to changes in τ , and for succinctness, we refer to c as compliance

cost. In what follows, we use tightening of regulation to signify that the regulation authority

raises the compliance cost c.

As c is the unit cost of input, the total production cost for a firm with investment k and

output q is given by

cx =
cq2

k
. (2)

A type-θ firm’s profit is given by

π(θ) = (A− bq)q − cq2

k
− θk.

We can view a firm’s profit optimization as a two-stage decision. In the first stage, the firm

chooses the level of investment k. In the second stage, it decides on how much to produce, that

is, the level of q.

We solve the problem backwards. Conditional on k, the firm’s second-stage problem is to

maximize the operating profit: Maxq≥0

�
(A− bq)q − cq2

k

�
. From the first-order condition, we

obtain the optimal quantity produced and the optimal operating profit, denoted as Π(k):

�q(k) = Ak

2(bk + c)
and Π(k) =

A2k

4(bk + c)
.

Moving backward, the first-stage problem is: Maxk≥0 [Π(k)− θk]. From the first-order condi-

tion, we obtain the optimal level of investment

k∗(θ) =
1

b

�
A
√
c

2
√
θ
− c

�
. (3)

As a result, the optimal quantity produced and price are

q∗(θ) =
A− 2

√
θc

2b
and p∗(θ) =

A+ 2
√
θc

2
.
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The corresponding profit is given by

π∗(θ) = Π(k∗(θ))− θk∗(θ) =
1

4b
(A− 2

√
θc)2 (4)

Clearly, ∂k∗(θ)
∂θ

< 0. That is, high capability firms invest more in innovation because their

investments are more effective (i.e., marginal returns to investment is higher).

A firm obtains non-negative profit, or can survive, if and only if k(θ) ≥ 0. On the basis of
(3), we find that after drawing their respective θ, firms with innovation capability θ ≤ θ∗ stay

in their respective industries, whereas firms with θ > θ∗ exit their industries, where

θ∗ ≡ A2

4c
.

An increase in the compliance cost results in a smaller cutoff θ∗, that is, fewer firms can survive.

This result is the selection effect.

We now evaluate the PH. In particular, we examine how a firm’s innovation investments

responds to an increase in compliance cost c. To answer this question, we derive partial derivative

of k with respect to c and obtain

∂k∗

∂c
=

1

2b
√
c

�
A

2
√
θ
− 2
√
c

�
. (5)

Thus,
∂k∗

∂c
> 0 if and only if θ < θ̂ ≡ A2

16c
.

The above analysis leads to the following proposition.

Proposition 1: In the monopoly model, in response to an increase in compliance cost,

(i) marginal firms (i.e., least capable firms) exit their industries; and

(ii) for surviving firms, those with high innovation capability, θ < θ̂, increase their innovation

investments, whereas those with low innovation capability, θ ∈ (θ̂, θ∗), reduce their innovation

investments.

This proposition indicates that the “weak version” of the PH holds for high-capability firms,

but fails for low-capability firms. The question is why firms with varying levels of innovation

capability react to the same policy change in the opposite directions. Two opposing forces

arise from an increase in the compliance cost. On one hand, holding production scale constant,

operating cost increases with rising compliance cost; and thus, a firm acquires stronger incent-

ives to undertake more R&D to offset the increased compliance cost. That is, the marginal

benefit of innovation increases. On the other hand, when the compliance cost rises, a firm’s

production scale shrinks, which reduces R&D incentives because the marginal benefit of innov-

ation decreases. The proposition implies that for high-capability firms, the positive effect (i.e.,
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cost-offsetting effect) dominates, whereas for low-capability firms, the negative effect (i.e., scale

effect) dominates. The following analysis demonstrates such difference.

We reconsider a firm’s decision as the following two stages, which are equivalent to the

maximization analyzed earlier to obtain (3). In the first stage, the firm chooses k to minimize

its total cost (including variable cost and investment cost) for any given quantity produced:

Mink≥0

�
cq2

k + θk
�
. This decision yields the investment function: k = k(q, c) =

�
c
θq. From

which we obtain

∂k

∂c
=

q

2
√
θc

> 0 and
∂k

∂q
=

	
c

θ
> 0.

The first property shows that holding q constant, when c increases, the firm has an incentive

to increase k. This consequence is the cost-offsetting effect. The second property indicates that

when q is higher, the firm has an incentive to increase k. This outcome is the scale effect. The

functional form k(q, c) is independent of the preference (demand) structure. That is, these two

effects are general.

In the second stage, taking the k(q, c) schedule as given, the firm maximizes its profit by

choosing the optimal quantity to produce: Maxq≥0

�
(A− bq)q − c(τ)q2

k(q,c) − θk(q, c)
�
. This choice

determines the optimal quantity produced: q = q(c). Substituting back into the k function, we

obtain the optimal investment: k(c) = k(q(c), c). Taking full derivative to derive

dk(c)

dc
=

∂k

∂c
+
∂k

∂q

dq

dc
=

∂k

∂c
− ∂k

∂q

q

c
ǫqc

=
q

2
√
θc
−
	

c

θ

q

c
ǫqc =

q√
θc

�
1

2
− ǫqc

�
=

q√
θc

�
1

2
− ǫpcǫqp

�
,

where

ǫqc = −
dq

dc

c

q
, ǫpc =

dp

dc

c

p
, and ǫqp = −

dq

dp

p

q
.

As a result,

sign



dk(c)

dc

�
= sign

�
1

2
− ǫpcǫqp

�
.

In equilibrium, the low-θ firms always produce more (i.e., q is higher). Under a linear

demand, the high-capability firms are producing at the inelastic range of the demand curve,

implying a lower ǫqp for them. When cost increases, the markup of high-capability firms are

higher, allowing for a lower pass-through (lower ǫpc). These two features together explain a

positive sign of dk(c)
dc

for high-capability firms (i.e., 1
2 − ǫpcǫqp > 0), and a reversed sign for

low-capability firms because both ǫpc and ǫqp are large for them.
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3 Monopolistic-competition model: General equilibrium effects

The preceding analysis shows how individual firms in their respective monopolist industries

adjust their innovation investments directly in response to regulation changes. Regulations may

also alter the competitive environment in the market where firms operate, which in turn further

affects firms’ innovation incentives. This consequence can be viewed as the indirect effect of

regulation. In the previous section, we deliberately omitted the indirect effect to emphasize

the direct effect. We did that by assuming that firms are monopolists, each in a different

(independent) industry. To capture the indirect effect, we now assume that all firms are in

the same industry characterized by monopolistic competition. In particular, all firms produce

differentiated but substitutable goods. To keep the model similar to the previous one as much

as possible, we adopt the consumer preference of Melitz and Ottaviano (2008), which results

in linear demand for each product variety (firm). Specifically, we assume that L identical

consumers exist and each (representative) consumer has the following quasi-linear preference on

the industry’s products:

U = qc0 + α

�

i∈Ω
qcidi−

1

2
β

��

i∈Ω
qcidi

�2
− 1
2
γ

�

i∈Ω
(qci )

2 di,

where α, β, and γ are positive parameters, qc0 is the consumption of the numeraire good, Ω is

the set of all varieties from the industry, and qci is the consumption of variety i produced by firm

i. A consumer maximizes her utility subject to a budget constraint. We assume that consumers

have positive demands for the numeraire good. Then, market demand for variety i from all L

consumers is pi = α− β
L



j∈Ω qjdj−

γ
L
qi. Parameter β measures substitutability among varieties.

Let M be the measure of Ω and P =


i∈Ω pidi be the aggregate price of all varieties. Then,

the demand function for variety i can be written as

pi = A− bqi, where b =
γ

L
and A =

αγ + βP

βM + γ
. (6)

We are not stressing the roles of γ and L, and thus, without loss of generality, we suppose γ = L

to obtain b = 1, which saves notation.

Competition from all varieties is completely captured in the vertical intercept (A) of the

demand function. For example, holding other things constant, if M (the measure of active

firms) increases, then A decreases. The reason is that a larger number of firms in the market

reflects stronger competition, which effectively reduces the size of residual demand for each

firm. If on average the industry’s aggregate price (P ) drops, competition becomes tougher, and

the residual demand for each firm shrinks correspondingly.5 When compliance cost changes,

individual firms responds to the change directly, which results in changes in M (selection effect)

5We can view the model/analysis in Section 2 as a partial equilibrium of the present model. In particular, in
the current model, if each firm treats its demand shifter A fixed when adjusting its innovation investment and
production decision, the situation is exactly the same as in the monopoly model.
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and P . Consequently, A changes, which further induces changes in individual firms’ innovation

incentives. This outcome is the general equilibrium effect, which is absent in the previous model.

To simplify the ensuing analysis and to follow the literature, we parameterize the model by

assuming that the innovation-capability parameter θ follows a Pareto distribution with cumulat-

ive distribution function G(θ) = θσ, for θ ∈ [0, 1], where σ > 0. Before entering into the market,

firms have no information about their cost parameter θ, but they know the distribution. Entry is

costly, and each firm must pay a fixed and irreversible cost F . After paying the entry cost, each

firm draws its θ randomly from G(θ). Upon knowing its own type, each firm decides whether to

stay or exit the market. If it stays, it decides its innovation investment and production.

Given A, each firm’s decision is similar that analyzed in the previous section, only firms with

θ < θ∗ = A2

4c can survive in the market. Let N denote the number of firms that pay the fixed

entry cost. This N is endogenously determined in equilibrium. Then, we obtain the number of

surviving firms as

M = NG(θ∗). (7)

Aggregate price is obtained by integrating individual prices of all surviving firms, which is

P = N

� θ∗

0
p(θ)dG(θ) = N

� θ∗

0

�
A

2
+
√
θc

�
dG(θ) =

(4σ + 1)A2σ+1N

2(2σ + 1) (4c)σ
. (8)

Substituting (7) and (8) into (6), we obtain

(4c)σ =
βN

2(2σ + 1)γ

�
A2σ+1

α−A

�
, (9)

which defines the equilibrium relationship between A and N .

Prior to entry, the expected profit of a firm is

 θ∗
0 π∗(θ)dG(θ)− F , where π∗(θ) is given in

(4). Free entry yields the condition of zero expected profit. Using (2) and (4), the free-entry

condition becomes � θ∗

0
π∗(θ)dG(θ) =

� θ∗

0

1

4
(A− 2

√
θc)2dG(θ) = F.

N does not enter into the free-entry condition directly. Thus, this condition alone suffices

to pin down equilibrium A. After some manipulations, we obtain

A = ζF
1

2(σ+1) c
σ

2(σ+1) , where ζ = 2[(2σ + 1)(σ + 1)]
1

2(σ+1) . (10)

ζ is a constant. (9) and (10) yield the equilibrium number of entrants

N =
22σ+1(2σ + 1)γ

β

�
α−A

A2σ+1

�
cσ =

22σ+1(2σ + 1)γ

βζF
2σ+1
2(σ+1)

�
αc

σ
2(σ+1) − ζF

1
2(σ+1) c

σ
σ+1

�
. (11)
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Substituting the equilibriumA from (10) in θ∗ = A2

4c , we obtain the equilibrium exit threshold

θ∗e =
1

4
ζ2F

1
σ+1 c

− 1
σ+1 .

Clearly, ∂θ
∗
e

∂c < 0. A more stringent regulation raises the cost for every firm and makes the least

capable firms, which have very low profits before the change of regulation, unprofitable. These

firms drop out from the market. The equilibrium number of firms is given by

M = NG(θ∗e) = N (θ∗e)
σ =

22σ−1(2σ + 1)γ

β
ζF

1−2σ
2(σ+1)

�
αc
− σ
2(σ+1) − ζF

1
2(σ+1)

�
,

and so dM
dc

< 0. Furthermore, from (10), we have ∂A
∂c

> 0. Hence, an increase in compliance cost

causes an upward shift of the demand intercept for each surviving firm. We note that

P =
(4σ + 1)A2σ+1N

2(2σ + 1) (4c)σ
=
(4σ + 1) γζ2σ

β

�
α− ζF

1
2(σ+1) c

σ
2(σ+1)

�
,

and thus ∂P
∂c < 0. P decreases as c increases because the surviving firms are more productive

on average. As A = αγ+βP
βM+γ , the property of

∂A
∂c > 0 must be because the effect of the decrease

in M (i.e., selection effect) dominates that of the decrease in P.

We now turn to the effect of an increase in compliance cost c on firms’ innovation investments.

For any given A, the optimal k is given as in (3). With A being endogenously determined, the

effect can be decomposed to two parts as

dk

dc
=

∂k

∂c
+

∂k

∂A

∂A

∂c
.

The first part is the partial equilibrium effect (or the direct effect mentioned earlier), which

takes A as given and unchanged. This effect has been analyzed in the previous section and more

specifically in (5). The second part is the general equilibrium effect. An increase in c causes

a change in the competitive environment, A, which in turn affects k. This effect is positive

because ∂k
∂A

> 0 and ∂A
∂c

> 0. Thus, in general equilibrium, surviving firms have stronger

innovation incentives than in the case of partial equilibrium.

By substituting (10) back into (3), we obtain the equilibrium expression of k as

k∗ =

�
ζ

2
√
θ
F

1
2(σ+1) c

2σ+1
2(σ+1) − c

�
. (12)

Direct differentiation gives

dk∗

dc
=

�
2σ + 1

2σ + 2

�

ζ

2
√
θ

�
F

1
2(σ+1) c

− 1
2(σ+1) − 1, (13)
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from which, we obtain

dk∗

dc
> 0 if and only if θ < θ̂e ≡

�
2σ + 1

2σ + 2

�2
θ∗e.

Thus, heterogeneous responses remain present. In response to more stringent regulations, high-

capability firms increase their innovation investments, whereas low-capability firms reduce their

innovation investments.

An interesting question is why the innovation investments of low-capability firms continue

to decrease although the general equilibrium effect raises all firms’ investment incentives. We

notice that
∂A

∂c
=

σ

2(σ + 1)
ζF

1
2(σ+1) c

− σ+2
2(σ+1) and

∂k

∂A
=

√
c

2b
√
θ
.

As c increases, A increases, which in turn raises k for all firms. However, ∂k
∂A

is smaller for larger

θ. That is, the general equilibrium effect for low-capability firms is excessively small that it is

dominated by the partial equilibrium effect, which is negative for them.

In addition,
θ̂e

θ∗e
=

�
2σ + 1

2σ + 2

�2
>
1

4
=

θ̂

θ∗
.

Thus, under Pareto distribution, the above relationship implies that conditional on survival,

a larger fraction of firms increase their innovation investment, as predicted by the PH, in the

general equilibrium analysis than that in partial equilibrium.

3.1 The “strong version” of Porter Hypothesis

Porter and van der Linde (1995) posit the possibility that after an increase in compliance cost,

even the profitability of firms may increase in certain cases. We have already shown that after

an increase in compliance cost, The residual demand for all the surviving firms increases along

with the innovation investments of high-capability firms. The question is whether these positive

effects are sufficiently strong to offset the negative effect from the cost increase. We evaluate

this "strong version" of PH in this subsection.

By substituting (10) and (12) into (4), we obtain the equilibrium profit π∗(θ, c) = 1
4ζ
2F

1
σ+1 c

σ
σ+1−

2ζ
√
θF

1
2(σ+1) c

2σ+1
2(σ+1) . Taking derivative with respect to c, we obtain

∂π∗

∂c
=



ζ

4

σ

2σ + 1
F

1
2(σ+1) c

−1
2(σ+1) −

√
θ

�
(2σ + 1)F

1
2(σ+1) ζc

−1
2(σ+1)

σ + 1
,

which is positive if and only if

θ < θs ≡
1

16

�
σ

2σ + 1

�2
ζ2F

1
σ+1 c

−1
σ+1 =

1

4

�
2σ

2σ + 1

�2
θ∗e < θ̂e.
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Hence, we have θs < θ̂e < θ∗e. We state the above result in the following proposition.

Proposition 2. As a result of tightening regulation,

(i) marginal firms (i.e., lowest-capability firms) ( θ > θ∗e) exit the market;

(ii) low-capability firms ( θ̂e < θ < θ∗e) reduce their innovation investment and their profits

fall;

(iii) high-capability firms ( θs < θ < θ̂e) increase their innovation investment but their profits

fall; and

(iv) highest-capability firms ( θ < θs) increase their innovation investment and their profits

increase.

The sorting pattern described above is shown graphically in Figure 1. The intuition behind

the proposition is as follow. First, although the negative cost shock hurts all firms, the damage

to the more capable firms is relatively less because their demand elasticity is smaller. Second,

the more capable firms increase their innovation investment to offset (partly) the negative effect

of the cost increase. Third, the exit of some firms from the industry benefits all firms staying

in the industry (selection effect). These features have implications on both productivity and

profits of different firms at various degrees. When these effects are very strong, we have case

(iv), and when they are less strong, we have cases (ii) and (iii). The least capable firms do not

have these two benefits, and thus exit the market.

In the monopoly model, although the "weak version" of the PH holds for the high-capability

firms, the “strong version” never holds as all firms’ profits drop after pollution tax increases.

By contrast, the result of Proposition 2(iv) supports the "strong version" of the PH. These

two models together indicate that the efficiency gain from increased investments per se is not

sufficiently strong to raise profits, but the efficiency gain together with the selection effect raises

profits.

3.2 Entry and composition of firms

In the preceding analysis, we focus on individual firms ex post decisions of innovation investment

and output. In this subsection, we examine ex ante entry and ex post composition of each type

of firms in equilibrium.

Taking derivative of the number of entrants N from (11) with respect to c, we obtain

dN

dc
> 0, if and only if ζF

1
2(σ+1) c

σ
2(σ+1) <

α

2
.

The condition ζF
1

2(σ+1) c
σ

2(σ+1) < α
2 implies low initial compliance cost. The intuition is as

follows. Firms make their ex ante entry decisions on the basis of the expected profits. On one

hand, an increased c exerts a direct and negative effect on every firm’s probability. On the

13
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Figure 1: Sorting Pattern

other hand, increasing c exerts an indirect and positive effect on every surviving firm because

of the increased demand intercept A in general equilibrium. When c is small, the latter effect

dominates, which encourages entry. On the contrary, when c is already large, the former effect

dominates; and thus, entry is discouraged.

Under the condition of low c, as the compliance cost increases, more entrants ex ante exist

(N increases) along with more exiters ex post (M decreases). These two results, together with

the fact that only the high-capability firms can survive, imply the effects of compliance cost on

the composition of firms, as depicted in Figure 2. We state this result in Proposition 3.

Proposition 3. If initial compliance cost is low, specifically, ζF
1

2(σ+1) c
σ

2(σ+1) < α
2 , then, an

increase in the compliance cost induces more entry to the industry and a larger number of high-

capability firms remain in the industry, whereas a larger number of low-capability firms exit.

If, however, the initial compliance cost is high (ζF
1

2(σ+1) c
σ

2(σ+1) > α
2 ), we have

dN
dc

< 0 (and
dM
dc

< 0). As a result, when the compliance cost increases, the number of entrants decreases

along with the number of surviving firms at every capability level.

3.3 Industry level productivity

In this subsection, we analyze another aspect of industry at the aggregate level, namely, the

total and average level of industry innovation investments, or productivity.

Productivity is determined by innovation investment. We have shown that changes in com-

pliance cost results in heterogenous responses from firms in their equilibrium innovation invest-

ments. Thus, we need further investigation to obtain industry-level innovation investments.

First, the aggregate innovation investments of the industry can be obtained as

14
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K(c) = N

� θ∗e(c)

0
k∗(θ, c)dG(θ) =

2σ + 1

2σ − 1
2γς2σ−1

βF
1

2(σ+1)

�
αc

σ+2
2(σ+1) − ζF

1
2(σ+1) c

�
.

Evidently,

dK

dc
> 0, if and only if c <



(σ + 2)α

2 (σ + 1) ς

� 2(σ+1)
σ

F−
1
σ .

Thus, as c continuously increase from an initially low level, the aggregate innovation investments

of the entire industry first increase but then decrease. That is, K has an inverted-U shape with

respect to c.

Conditional on surviving, we define and obtain the average investments as

k(c) =
1

G (θ∗e)

� θ∗e(c)

0
k∗ (θ, c) dG (θ) =

c

2σ − 1 .

The above result is obtained under the condition σ > 1
2 , without which the integrand becomes

not integrable on [0, θ∗e(c)]. Under this condition, k is an increasing function of c.

The intuition for the changes of total and average industry-level innovation investments in

response to changes in regulation is as follows. When the regulation becomes tightened, three

types of changes occur in firms. First, the least-capability firms exit. Second, the low-capability

firms reduce their investment level. Third, the high-capability firms increase their investment

level. The first two changes reduce the total industry investment, whereas the last change

raises total industry investment. When the compliance cost is small, the distribution of firms

favors high-capability firms as Proposition 3 indicates. Thus, total industry investments tend to

increase. However, when the compliance cost is high, fewer high-capability firms increase their
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investment; and thus, total industry investments tend to drop. As for the average investment,

the number of firms staying in the industry after an increase in compliance cost decreases, and

the average capability of the staying firms increases. Hence, average investment always increases

although total investment may decrease.

4 A general model

In the preceding sections, we have obtained results supporting the PH based on models with

linear demand for individual firms’ products. We now show that the PH holds in general models.

To do so, we follow Zhelobodko et al. (2012) in considering one class of consumer preferences in

which consumers’ utility function is additive separable. In particular, we suppose thatN varieties

of differentiated goods, indexed by i ∈ [0,N ], are available in the market, and a representative
consumer’s utility is given as

U =

� N

0
u(qi)di, with u(0) = 0, u′(·) > 0 and u′′(·) < 0.

The individual utility function u(·) is continuous and differentiable. The consumer optimization
problem is

max
{qi≥0}Ni=0

� N

0
u(qi)di, s.t.

� N

0
piqidi = w,

where w is the consumer’s income to be spent on these differentiated goods, and we normalize

w = 1. From the first-order condition, we obtain the inverse demand function for each variety

(i ∈ [0, N ]) as
pi =

1

λ
u′(qi),

where λ is the Lagrange multiplier.

As in the preceding sections, each firm draws its innovation capability θ from G(θ) after

paying the fixed entry fee F . After observing their θ, some firms may exit the industry. All

remaining firms make their respective investment in innovation and engage in monopolistic

competition in the product market. Each firm treats the Lagrange multiplier λ as an exogenous

parameter when making its decisions. As firms are symmetric in the product market, we omit

subscript i in the analysis below for simplicity. Faced with λ and c, a type-θ firm obtains its

operating profit net of investment cost as

π∗ (θ, λ; c) = max
{k≥0,q≥0}



1

λ
u′(q)q − cq2

k
− θk

�
.

From the first-order condition with respect to k, we obtain cq2

k2
= θ. Thus, π∗ (θ, λ; c) can be
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written as

π∗ (θ, λ; c) = max
{q≥0}



1

λ
u′(q)q − 2

√
θcq

�
. (14)

The first-order condition with respect to q gives

u′′(q)q + u′(q) = 2λ
√
θc, (15)

which determines the optimal quantity of a type-θ firm. We denote this optimal quantity as

q = q (θ, λ; c).

Assume that the second-order condition is satisfied, which means u′′′(q)q+2u′′(q) < 0. Then,

based on the first-order condition (15) and the second-order condition, for any given λ and c, q

is an decreasing function of θ: ∂q∂θ < 0.

Every firm must pay a fixed cost of production, f .6 The following equation define the cutoff

capability level, θ∗(λ; c),

π∗ (θ∗, λ; c)− f = 0. (16)

Applying the envelope theorem to (14) gives ∂π∗

∂θ < 0. Thus, firms with θ ≤ θ∗ stay, and those

with θ > θ∗ exit the market.

Finally, the free-entry condition is given by

� θ∗(λ;c)

0
[π∗ (θ, λ; c)− f ]dG(θ) = F. (17)

By applying the envelope theorem to (14) again, we obtain ∂π∗

∂λ
< 0. Using this property,

together with ∂π∗

∂θ
< 0, in (17), we obtain ∂θ∗(λ;c)

∂λ
< 0. Thus, the left-hand-side of the free-

entry condition is decreasing in λ. The left-hand-side approaches infinity when λ → 0, and

it reaches zero when λ is sufficiently large because θ∗(λ; c) approaches 0. By the intermediate

value theorem, a unique solution of λ exists, denoted as λ∗ = λ∗(c) > 0, such that the free-entry

condition holds. Accordingly, we obtain the equilibrium cut-off efficiency point θ∗(c) = θ(λ∗; c)

and equilibrium quantity qθ(c) = q (θ∗, λ∗; c), as functions of c. k =
�

c
θ
q ; thus, we obtain the

equilibrium investment kθ(c) =
�

c
θ
qθ of the type-θ firm.

Differentiating the equilibrium quantity qθ with respect to c, we derive

dqθ

dc
=

∂q

∂c
+

∂q

∂λ

dλ

dc
. (18)

Evaluating the first-order condition (15) at equilibrium and taking differentiation, we obtain

�
u′′′(qθ)qθ + 2u

′′(qθ)
� ∂q
∂λ

= 2
√
θc, and

�
u′′′(qθ)qθ + 2u

′′(qθ)
� ∂q
∂c
= λ∗

	
θ

c
.

6We do not need the fixed cost of production in the models of previous sections to determine the threshold θ
because of linear demand.
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Substituting these expressions into (18), we obtain

dqθ

dc
=

λ∗

u′′′(qθ)qθ + 2u′′(qθ)

	
θ

c
+

2
√
θc

u′′′(qθ)qθ + 2u′′(qθ)

dλ∗

dc
.

We introduce a general notation ǫx to denote the elasticity of variable x with respect to c,

that is,

ǫx =
d ln(x)

d ln(c)
.

Then,

dqθ

dc
=

λ∗
�

θ
c

u′′′(qθ)qθ + 2u′′(qθ)
(1 + 2ǫλ∗) .

Using the first-order condition (15), we obtain

ǫqθ =
1

2

u′′(qθ)qθ + u′(qθ)

u′′′(qθ)qθ + 2u′′ (qθ)

1 + 2ǫλ∗

qθ
.

We now calculate ǫλ from the free-entry condition. Evaluating the free entry condition at

equilibrium, differentiating with respect to c, and noticing that the value of the integrand is zero

at θ∗, we can simply write the total derivative as

� θ∗

0

�
∂π∗

∂c
+
∂π∗

∂λ

dλ∗

dc

�
dG(θ) = 0.

By applying the envelope theorem to (14), we obtain

∂π∗

∂c
= −q (θ, λ; c)

	
θ

c
,

∂π∗

∂θ
= −q (θ, λ; c)

	
c

θ
,

and
∂π∗

∂λ
= − 1

λ2
u′[q (θ, λ; c)]q (θ, λ; c) .

After manipulation, we obtain

� θ∗

0
[R(θ)ǫλ∗ + qθ

√
θc]dG(θ) = 0, where R(θ) =

1

λ∗
u′(qθ)qθ.

R(θ) is the equilibrium revenue of a type-θ firm. As ǫλ∗ is independent of θ, it can be solved
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from the above equation as

ǫλ∗ = −

 θ∗
0 V (θ)dG(θ)

2

 θ∗
0 R(θ)dG(θ)

,

where V (θ) = 2qθ
√
θc =

cq2
θ

kθ
+ θkθ is the variable cost of production plus investment cost for a

type-θ firm.

ǫλ∗ ∈
�
−1
2 , 0
�
because 0 < V (θ) < R (θ) for all θ < θ∗. As a result, from the expression of

qθ, we always obtain ǫqθ < 0. That is, in response to a more stringent environmental regulation,

the surviving firms decrease their equilibrium production scale.

On the basis of kθ =
�

c
θqθ, we obtain

ǫkθ =
1

2
+ ǫqθ .

Define

MR(q) =
1

λ
[u′′(q)q + u′(q)],

which is the marginal revenue function. Inserting the expression of ǫqθ , we find that ǫkθ > 0 if

and only if
MR(q)

MR′(q)q
> − 1

2ǫλ + 1
∈ (−∞,−1). (19)

That is, if inequality (19) holds for a firm, the firm will increase its innovation investment in

response to a more stringent environmental regulation. We explore conditions for the above

inequality under two cases.

Case 1. The MR(q) curve crosses the horizontal axis once.

Result 1: If ∃ qφ ∈ (0,+∞), such that u′′(qφ)qφ+u′(qφ) = 0, then ∃ ε > 0, when θ∗ ∈ [0, ε),
ǫkθ > 0.

To prove this result, we rewrite the first-order condition (15) as MR(q) = 2
√
θc . Given the

equilibrium λ∗, this condition pins down the equilibrium q = qθ for each firm with θ. As the

second-order condition implies that MR(q) is a decreasing function of q, we obtain that qθ is a

decreasing function of θ. Then, supposing that ∃ qφ ∈ (0,+∞), such that u′′(qφ)qφ+u′(qφ) = 0,

we obtainMR(qφ) = 0, which implies θ = 0 for the firms with qφ. That is, qφ is the equilibrium

quantity of every type-0 firm, that is, q0 = qφ. As a result,

MR(q0)

MR′(q0)q0
= 0 > −1 > − 1

2ǫλ + 1
.

By continuity, the inequality (19) holds for certain neighborhood of θ = 0, completing the proof.

One example is the utility function which takes a CARA form (Behrens and Murata, 2007),

such as u(q) = 1 − e−mq, where m > 0. Then, u′(q) = me−mq, u′′(q) = −m2e−mq, and so

MR(q) = m(1− q)e−mq, which crosses the horizontal axis at q0 = 1 and only once.
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Case 2. The MR(q) curve does not cross the horizontal axis.

Result 2: Supposing that for any q ∈ (0,+∞), then, u′′(q)q+u′(q) > 0, and limq→+∞ u′′(q)q+

u′(q) = 0. We define g(x) = MR( 1x). If g(x) is locally convex at x = 0, then ∃ ε > 0, when

θ∗ ∈ [0, ε), ǫkθ > 0.
We now prove the above result. g(0) = limx→0MR( 1x) =

1
λ limq→+∞ u′′(q)q + u′(q) = 0.

Then

lim
q→+∞

MR(q)

MR′(q) · q = lim
x→0

MR( 1x)

MR′( 1
x
) · 1

x

= lim
x→0

g(x)

g′(x) · (−x2) · 1
x

= lim
x→0

−
g(x)−g(0)
x−0

g′(x)
.

As g(x) > 0, if g(x) is convex at x = 0, then g(x)−g(0)
x−0 < g′(x) in the neighborhood of x = 0.

Consequently, the following result holds in the neighborhood of x = 0:

lim
x→0

g(x)−g(0)
x−0

g′(x)
� 1.

Thus,

lim
q→+∞

MR(q)

MR′(q) · q = lim
x→0

−
g(x)−g(0)
x−0

g′(x)
� −1 > − 1

2ǫλ + 1
.

For example, we let the utility function be of the Stone-Geary form, that is, u(q) = log(1+q).

Then, u′(q) = 1
1+q , u

′′(q) = − 1
(1+q)2

, and so u′′(q)q + u′(q) = 1
(1+q)2

, which does not cross

the horizontal axis. Moreover, g (x) = 1
λ

�
x
1+x

�2
, which is locally convex at x = 0 because

g′′ (0) = 2 > 0.

5 Emission standard

The objective of this extension is to show that qualitatively similar results can be obtained for

different types of environmental regulations. For this purpose, we focus on emission standard and

simplify the analysis by restricting to the monopoly model (one monopolist in one industry), as

in Section 2. We suppose that the firm (monopolist) in a particular industry draws its innovation

capability θ. Emission intensity is defined as the emission level per unit of final goods output.

The government imposes an emission standard ρ, that is, the firm emission intensity must be

no higher than ρ.

Unlike in the preceding analysis where we hide the pollution level in the background, now we

need to address it explicitly. The firm allocates a fraction, ∆ ∈ (0, 1), of labor into abatement
activities, and the rest for intermediate inputs production. Moreover, if the firm employs l units

of labor, the amount of intermediate inputs produced is x = (1−∆)l and the emission level is
z = (1−∆)

1
η l, where η ∈ (0, 1). Given the final goods output q, with the intermediate inputs
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requirement function x = q2

k , we obtain the labor requirement as a function of q:

l =
q2

(1−∆)k ,

which is also the variable cost function under the normalization w = 1. Clearly, the larger the

fraction of labor is devoted to abatement, the larger is the amount of labor required to produce

a given quantity of the final product.

The emission intensity, e, can be defined and calculated as

e ≡ z

q
=

z

x

x

q
= (1−∆)

1
η
−1 q

k
. (20)

Thus, the firm’s maximization problem is7

Max{∆,k,q}



(A− bq)q − q2

(1−∆)k − θk

�
, s.t. (1−∆)

1
η
−1 q

k
� ρ and ∆ ≥ 0.

We first characterize the equilibrium outcomes, and then examine how the firm’s innovation

investment changes when the emission standard is tightened.

If constraint e ≤ ρ is not binding for the firm, then it is always optimal to set ∆ = 0.

Intuitively, if the firm’s emission intensity is already low or the emission standard is not high

(large ρ), production resources need not be diverted into abatement activities. Under such a

situation, the firm’s optimization problem becomes

Max{k,q}



(A− bq)q − q2

k
− θk

�
.

From the first-order condition with respect to k, we obtain q
k =

√
θ, which implies e =

√
θ. Thus,

if θ < ρ2, the firm automatically meets the emission standard without putting any resources

into abatement activity. The firm’s optimal decision is

∆ = 0, q =
A− 2

√
θ

2b
, and k =

A− 2
√
θ

2b
√
θ

. (21)

The firm survives if and only if k > 0, or θ < A2

4 .

To summarize this part for all industries, if ρ > A
2 , then only firms with θ ∈ (0, A24 ) survive,

the emission standard are not binding for them, and their optimal decisions are given in (21);

if ρ < A
2 , then firms with θ ∈ (0, ρ2) do not find the emission standard binding and thus their

optimal decisions are given in (21), but firms with θ ∈ (ρ2, A24 ) find the constraint binding. We

7 Implicilty, another constraint, β ≤ 1, exists.
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need to analyze separately the optimal decisions of firms with θ ∈ (ρ2, A24 ).
To save space, we fully characterize the outcomes under a given emission standard ρ in the

following lemma and leave the proof in the Appendix. In the lemma, we only present the results

of the surviving firms. Other firms exit their respective industries under various situations. We

first define a cut-off point

θ̃ ≡ (1− η)1−η

(2− η)2−η
A2−ηρη.

Lemma 1. (i). If ρ � 1
2A, then firms with θ ∈ (0, A24 ) have their optimal decisions as given by

(21).

(ii). If 1−η
2−ηA ≤ ρ < 1

2A, then firms with θ ∈ (0, ρ2] have their optimal decisions as given by

(21); and firms with θ ∈ (ρ2, ρ(A− ρ)) have their optimal decisions as q =
A−ρ− θ

ρ

2b , k =
A−ρ− θ

ρ

2bρ ,

and ∆ = 0.

(iii). If 0 < ρ < 1−η
2−ηA, then firms with θ ∈ (0, ρ2] have their optimal decisions as given

by (21); firms with θ ∈ (ρ2, ρ2

1−η ] have their optimal decisions as q =
A−ρ− θ

ρ

2b , k =
A−ρ− θ

ρ

2bρ , and

∆ = 0; firms with θ ∈ ( ρ
2

1−η , θ̃) have their solutions as q = 1
2b

�
A− 2−η

1−ηρ
− η
2−η (1− η)

1
2−η θ

1
2−η

�
,

k =
Aρ

−
η

2−η−(2−η)(1−η)
−
1−η
2−η θ

1
2−η

�
ρ
−

η
2−η

�2

2b[(1−η)θ]
1−η
2−η

, and ∆ = 1− [(1− η) θ]
− η
2−η ρ

2η
2−η .

With the above equilibrium outcomes, we examine how firms’ innovation investment changes

in response to tightening of emission standard (i.e., reduction of ρ). We state the results in the

following proposition and provide a proof in the Appendix.

Proposition 4. If the government tightens the emission standard, then the least capable firms

decrease their innovation investments, firms with medium levels of capability increase their in-

vestments, and the most capable firms do not adjust their investment levels.

The result is similar to that in pollutions tax in the sense that tightening environmental

regulations induce the high-capability firms to increase their innovation investments. This result

supports the "weak version" of the PH. The only difference is that the highest-capability firms

also increase their investment in the case of pollution tax, but keep their investment levels

unchanged in the case of emission standard. This is not surprising because in the case of emission

standard, the highest-capability firms have very low emission intensity and thus tightening of

emission standard does not affect them, whereas a change in pollution tax affects every firm

regardless of its innovation capability.8

8Tightening the emission standard also drives out the least capable firms from the markets in some cases, but
not in all cases. This outcome is another difference from the effects of raising pollution tax.

22



6 Conclusion

The PH stimulates heated debates in both public policy circle and academic research. The

empirical evidence is inconclusive, which is not surprising because the empirical studies are

based on data of different countries, industries, and time periods. Even Porter and van der

Linde (1995) claim that only properly designed environmental regulations may induce more

innovations and raise firm performance. The environmental regulations in reality are not likely

to be properly designed.

Theoretical investigations of the PH are important because they can help identify reasons

and conditions for the PH to hold, which in turn provides guidance for empirical analysis. Critics

of the PH is not always doubtful about the validity of the PH in some cases, but challenges the

generality of the PH. The existing studies in the theoretical literature of the PH have identified a

number of situations, with market or organizational failure, in which the PH holds. The present

paper pushes this frontier further by showing that both the "weak version" and "strong version"

of the PH can hold in situations without market or organizational failure. It holds in a model

of monopolistic competition with heterogenous firms. The two distinguishing features of this

model and analysis, namely, firm heterogeneity and general equilibrium, add valuable insights

to the PH debate.

The main conclusion from the present study that the PH holds for the more capable firms

but fails for the less capable firms within the same industry should be general. We have derived

this result from the monopolistic competition model, with linear demand and general demand,

with pollution tax and emission standard. It would be important to show that the result holds

in more general settings. It would be even more important to bring this prediction to data

for empirical verification. Cao et al. (2016) provide evidence consistent with this prediction

although they focus on investments in advanced abatement technology, rather than efficiency-

improving innovation investments.

7 Appendix

Proof of Lemma 1.

We divide the proof into four steps. The first step has been given in the text which leads to

the result of (i).

Step 2. For (ii), we suppose ρ < A
2 , and consider firms with cost parameter θ � ρ2. The

earlier analysis shows that if these firms continue to set∆ = 0, the emission constraint is binding.

Thus, the question is whether they should continue to set ∆ = 0 and adjust other decisions to

meet the constraint, or set ∆ > 0. We approach this issue by guess-and-verify below.

We suppose that the constraint is binding but ∆ > 0 for a firm with θ � ρ2. Substitut-

ing e =
√
θ into the objective function to eliminate ∆, the maximization problem becomes
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Max{k,q}

�
(A− bq)q − ρ

− η
1−η q

2−η
1−η k

− 1
1−η − θk

�
. The optimal solutions are

q (θ) =
1

2b



A− 2− η

1− η
ρ
− η
2−η (1− η)

1
2−η θ

1
2−η

�
, ((A1))

and

k (θ) =
Aρ

− η
2−η − (2− η) (1− η)−

1−η
2−η θ

1
2−η

�
ρ
− η
2−η

�2

2b [(1− η) θ]
1−η
2−η

. ((A2))

The above results are based on the assumption that ∆ > 0. We now check whether this is

the case. Using the above results in e =
√
θ, we obtain 1 −∆ = [(1− η) θ]−

η
2−η ρ

2η
2−η . We find

that 1−∆ ∈ (0, 1) if and only if θ > ρ2

1−η , that is, the assumption that ∆ ∈ (0, 1) is only valid
for firms with θ > ρ2

1−η . For firms with θ ∈ (ρ2, ρ2

1−η ), we must have ∆ = 0.

Step 3. We consider firms with θ ∈ (ρ2, ρ2

1−η ). With ∆ = 0 and e =
√
θ, the optimization

problem becomes Max{q,k}

�
(A− bq)q − q2

k − θk
�
, s.t. q

k = ρ. The solutions are

q (θ) =
1

2b



A−

�
ρ+

θ

ρ

��
and k (θ) =

1

2b

�
A

ρ
− θ

ρ2
− 1
�
.

If k > 0 for any θ ∈ (ρ2, ρ2

1−η ), then we must have k (θ) > 0 for θ =
ρ2

1−η (because k is decreasing

in θ), that is, k
�
ρ2

1−η

�
> 0, or equivalently ρ < 1−η

2−ηA. On the contrary, if ρ > 1−η
2−ηA, then

only firms with ρ2 < θ < ρ (A− ρ) have positive k (θ) and can survive, whereas firms with

θ ∈ (ρ (A− ρ) , ρ2

1−η ) exit the market. They exit the market because they cannot set ∆ > 0, as

we have already proved in Step 2. Furthermore, because firms with θ ∈ (ρ (A− ρ) , ρ2

1−η ) can not

survive, firms with θ > ρ2

1−η can not survive either (because a firm with a lower θ has a larger

choice set). We find that if ρ < A
2 , then ρ (A− ρ) > ρ2, which implies that (ρ2, ρ (A− ρ)) is

non-empty.

Step 4. The remaining situation to consider is what happens to firms with θ > ρ2

1−η when

ρ < 1−η
2−ηA. From step 2, we know that when θ > ρ2

1−η ,the solution is given by (A1) and (A2),

with ∆ > 0. Again, for firms to survive, we must have k > 0, which implies θ < θ̃. This condition

holds when ρ < 1−η
2−ηA.

Proof of Proposition 3.

(i). If ρ � 1
2A, then tightening emission standard exerts no effect on the investment decision

of any surviving firm.

(ii). If 12A > ρ > 1−η
2−ηA, then the regulation exerts no effect on investment of firms with

θ ∈ (0, ρ2]. However, for firms with θ ∈ (ρ2, ρ(A − ρ)), ∂k
∂ρ
= 1

2bρ2
(2θ −Aρ) . Apparently,

∂k
∂ρ ≷ 0 if and only if θ ≷ Aρ

2 . Under the current parameter range, Aρ
2 ∈ (ρ2, ρ(A − ρ)).
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Therefore, ∂k
∂ρ

< 0 for θ ∈ (ρ2, Aρ2 ), and
∂k
∂ρ

> 0 for θ ∈ (Aρ2 , ρ(A − ρ)), which implies that,

facing a tightening of regulation, firms with low capability decrease their investments, those

with medium-level capability increase their investments, whereas the most capable firms do not

adjust their decisions.

(iii). If ρ � 1−η
2−ηA, as before, then the regulation exerts no effect on the investments of firms

with θ ∈ (0, ρ2]. For firms with θ ∈ (ρ2, ρ2

1−η ),
∂k
∂ρ =

1
2bρ2

(2θ −Aρ). As a result, ∂k∂ρ ≷ 0 for

θ ≷ Aρ
2 . For firms with θ ∈ [ ρ

2

1−η , θ̃),

∂k

∂ρ
=

η

2bρ
2

2−η

�
2θ

1
2−η

(1− η)
1−η
2−η ρ

η
2−η

− 1

2− η
A

�
.

Hence, ∂k
∂ρ
≷ 0 for θ ≷ 1

22−η
θ∗. We find that

Aρ

2
�

ρ2

1− η
⇐⇒ ρ �

1− η

2
A,

1

22−η
θ̃ =

(1− η)1−η

22−η (2− η)2−η
A2−ηρη �

ρ2

1− η
⇐⇒ ρ �

1− η

2 (2− η)
A.

Depending on the location of the two critical points (Aρ2 and 1
22−η θ̃), three scenarios should be

considered to sign ∂k
∂ρ
.

Scenario 1: ρ � 1−η
2(2−η)A. Then,

∂k
∂ρ = 0 for θ ∈ [0, ρ

2], ∂k∂ρ < 0 for θ ∈ (ρ
2, ρ2

1−η )∪[
ρ2

1−η ,
1

22−η θ
∗),

and ∂k
∂ρ

> 0 for θ ∈ ( 1
22−η

θ∗, θ∗).

Scenario 2: 1−η
2(2−η)A < ρ < 1−η

2 A. Then, ∂k∂ρ = 0 for θ ∈ [0, ρ
2], ∂k∂ρ < 0 for θ ∈ (ρ

2, ρ2

1−η ) and

∂k
∂ρ > 0 for θ ∈ (

ρ2

1−η , θ̃).

Scenario 3: 1
2A > ρ � 1−η

2 A. Then, ∂k∂ρ = 0 for θ ∈ [0, ρ2], ∂k∂ρ < 0 for θ ∈ (ρ2, Aρ2 ), and
∂k
∂ρ

> 0 for θ ∈ (Aρ2 , θ̃).
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