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Abstract

The Cathaysia Block is located in southeastern part of South China, which situates in the

west Pacific subduction zone. It is thought to have undergone a compression-extension

transition of the continental crust during Mesozoic-Cenozoic during the subduction of Pacific

Plate beneath Eurasia-Pacific Plate, resulting in extensive magmatism, extensional basins

and reactivation of fault systems. Although some mechanisms such as the trench roll-back

have been generally proposed for the compression-extension transition, the timing and

progress of the transition under a convergence setting remain ambiguous due to lack of suit-

able geological records and overprinting by later tectonic events. In this study, a numerical

thermo-dynamical program was employed to evaluate how variable slab angles, thermal

gradients of the lithospheres and convergence velocities would give rise to the change of

crustal stress in a convergent subduction zone. Model results show that higher slab dip

angle, lower convergence velocity and higher lithospheric thermal gradient facilitate the sub-

duction process. The modeling results reveal the continental crust stress is dominated by

horizontal compression during the early stage of the subduction, which could revert to a hori-

zontal extension in the back-arc region, combing with the roll-back of the subducting slab

and development of mantle upwelling. The parameters facilitating the subduction process

also favor the compression-extension transition in the upper plate of the subduction zone.

Such results corroborate the geology of the Cathaysia Block: the initiation of the extensional

regime in the Cathaysia Block occurring was probably triggered by roll-back of the slowly

subducting slab.

1. Introduction

Subduction is a process that dominates the dynamics of the Earth as it modifies the nature of

the mantle and crust, produces arc volcanism, and releases most of the seismic energy on

Earth [1]. Various processes associated with subduction such as slab development, magmatism
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at active margins, have been extensively studied in the past [2–8]. Regional stress configuration

of continental crust would be very different in various processes or stages of subduction so

that crustal stress would be changed during subduction. In most cases, the continental crust

would experience the transition from compression to extension as subduction goes on, con-

comitant with extensive magmatism and formation of sedimentary basins [6–8]. Thus, the

mechanism of such transition is critical for the understanding of the nature of paleo-subduc-

tion. Traditional methods employed in studying the active-passive margin transition, includ-

ing swath bathymetry, seismic profile and stratigraphical analysis, can only be used to establish

the evolution of the margin at different time stages [6, 7]. Although the direction and rate of

plate movements can be roughly reconstructed by paleomagnetic data, many essential paleo-

geological conditions including the geothermal gradient and the dipping angle of the slab are

very difficult to determine by such traditional methods.

Numerical geodynamic modeling has been successfully applied in many studies of various

scenarios of subduction [9, 10] and crustal / mantle lithosphere deformation [11, 12]. For exam-

ple, the code Flamar v12 [11] can be used to stimulate how geological parameters may affect

crustal stress configuration, which could be validated with geological observations. Thus,

numerical modeling is a powerful tool to reconstruct the subduction system and thus the evolu-

tionary history of crustal stress. Most of the previous studies on modeling of the switch of

crustal stress from compression to extension mainly focused on the initiation of subduction at

passive margins and addressed dominant controls for the transition, such as thermal buoyancy

force and sedimentary loading [13–16]. Other factors controlling the process of transition from

compression to extension of continental crust in the subduction zone is still poorly understood.

The Cathaysia Block is located in Southeastern China (Fig 1), which is in the upper plate of

a subduction zone [17–19]. During Late Jurassic to Cretaceous, this block was subjected to the

subduction of the paleo-Pacific Plate in the southeast coastal region [19–22] and the oblique

subduction of the Izanagi Plate in the northeast [23], accompanied with a major regional mag-

matism. This block then underwent a transition from compressional to extensional setting

[24], leading to the formation of the fault and basin system in the Cathaysia Block, including

the reactivation of numerous NE-striking faults and the formation of oil- and natural gas-bear-

ing basins, whose development climaxed with deposition of the Late Cretaceous-Paleocene

continental red beds [18, 25–30]. In addition, long-term subduction beneath the Cathaysia

Block has generated extensive granitic magmatism, forming different types of granitoids and

volcanic rocks[19]. Thus, tectonic transition of the Cathaysia Block has been well recorded,

making it a good example to study the mechanism and process of transition from active to pas-

sive margin by numerical modeling.

This study utilized a numerical thermo-dynamical program to address how geological

parameters (e.g. variable slab angles, thermal gradients of the lithosphere and convergence

velocities) may give rise to crustal deformation and thus assess the mechanism of compres-

sion-extension transition at convergent continental margins. The numerical results will be fur-

ther compared with a global compilation of subduction zone parameters within the same type

of subduction system. The modeling results, together with the geology of the Cathaysia Block,

provide constraints on the setting of the geodynamic evolution of the subduction system dur-

ing the tectonic switch of the Cathaysia Block.

2. Setup of numerical model

2.1 Code description

The thermo-mechanically and thermo-dynamically coupled numerical code Flamar v12 [11]

was used to simulate the stress configuration of the subduction zone. FLAMAR is a mixed

Numerical modeling of initiation of continental crustal extension in the subduction zone
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finite-element/finite difference code based on the FLAC algorithm [31]. It solves simulta-

neously Newtonian dynamic equations of motion, in a Lagrangian formulation. Several

parameters are taken into consideration of this code: (1) large strains and visco-elasto-plastic

rheologies, (2) pressure-temperature strain-rate dependent ductile creep, (3) mineralogical

phase transitions, and (4) free surface boundary conditions and surface processes. The profiles

of lithology, temperature, stress, strain, topography and etc. can be obtained at any moment

during the model running. FLAMR has been already tested on a number of geodynamical

problems for subduction/collision context [32–34].

2.1.1 Basic equations. Flamar (derivative of PARAVOZ) is a FLAC-like code [31]. It has a

mixed finite-difference/finite element scheme, with a Cartesian coordinate frame and a 2D

plane strain formulation. The Lagrangian mesh is composed of quadrilateral elements subdi-

vided into two couples of triangular subelements with tri-linear shape functions. Flamar uti-

lizes a large strain fully explicit time-marching algorithm. It locally solves full Newtonian

Fig 1. Simplified geological map of the Cathaysia Block and the surrounding areas (Modified after [26]). The NW-

trending faults were reactivated during the subduction and rifting.

doi:10.1371/journal.pone.0171536.g001
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equations of motion in a continuum mechanics approximation

< r€u > � rσ � rg ¼ 0 ð1Þ

coupled with constitutive equations:

Ds

Dt
¼ F s; u; _u;r _u; . . . T . . .ð Þ ð2Þ

and with equations of heat transfer (heat advection term _urT is included in the lagrangian

derivative DT/Dt):

rCPDT
Dt

� kr2T �
Pn

i Hi ¼ 0 ð3Þ

r ¼ f ðP;TÞ ð4Þ

where u, σ, g, k are the respective terms for displacement, stress, gravitational acceleration and

thermal conductivity. P is pressure (negative for compression). The inertial term in triangular

brackets in Eq (1) is negligible for geodynamic applications. It is retained since FLAC employs

an artificial inertial dampening density allowing to slow-down the elastic waves and hence

advance with considerably larger time steps [31] than would be required in a fully inertial

mode. The terms t, ρ, CP, T, Hi designate, respectively, time, density, specific heat capacity,

temperature, internal heat production per unit volume. The symbol ∑ means summation of

various heat sources Hi. The expression ρ = f(P,T) refers to the formulation in which phase

changes are taken into account and density is computed by a thermodynamic module that

evaluates the equilibrium density of constituent mineralogical phases for given P and T as well

as latent heat contribution Hl to the term
Pn

i Hi ð
Pn

i Hi ¼ Hr þHf þHl þHa . . .Þ, which also

accounts for radiogenic heat Hr, frictional dissipation Hf and adiabatic heating Ha. Although

some studies advocate for strong efficiency of shear heating [35], in the absence of direct

observational data we decided not to include the shear heating in our computation. The terms

Dσ/Dt and F denote the objective Jaumann stress rate and a function, respectively. In the

Lagrangian method, incremental displacements are added to the grid coordinates allowing the

mesh to move and deform with the material. This allows for the solution of large-strain prob-

lems while using locally the small-strain formulation: on each time step the solution is

obtained in local coordinates, which are then updated in a large-strain mode, as in a standard

finite element framework.

Solution of Eq (1) provides velocities at mesh points used for computation of element

strains and of heat advection _urT. These strains are used in Eq (2) to calculate element

stresses and equivalent forces used to compute velocities for the next time step. Due to the

explicit approach, there are no convergence issues, which is rather common for implicit meth-

ods in case of non-linear rheologies. The algorithm automatically checks and adopts the inter-

nal time step using 0.1–0.5 of Courant’s criterion of stability, which warrants stable solution.

2.1.2 Explicit phase changes. A direct solution for density, Eq (4): ρ = f(P,T), is obtained

from direct optimization of Gibbs free energy for a typical mineralogical composition of man-

tle and lithosphere material. The thermodynamic PERPLEX algorithm [36] has been coupled

with the main code via Eq (4) to introduce progressive density changes rather than using a

fixed density grid based on metamorphic facies alone. PERPLEX minimizes free Gibbs energy

G for a given chemical composition to calculate an equilibrium mineralogical assemblage for

the given P-T conditions:

G ¼
Pn

i¼1
miNi ð5Þ

Numerical modeling of initiation of continental crustal extension in the subduction zone
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where μi is the chemical potential and Ni the moles number for each component i constitutive

of the assemblage. Given the mineralogical composition, the computation of density is

straightforward [10, 37]. The thermodynamic and solid state physics solutions included in

PERPLEX also yield estimations for elastic and thermal properties of the materials, which are

integrated in the thermo-mechanical kernel of Flamar.

2.1.3 Explicit elastic-viscous-plastic rheology. We use a serial (Maxwel-type) body for

isotropic material, in which the total strain increment in each numeric element is defined by a

sum of elastic, viscous and brittle strain increments. Consequently, in contrast to fluid

dynamic approaches, where non-viscous rheological terms are simulated using pseudo-plastic

viscous terms (e.g.[38, 39]), our method explicitly treats all rheological terms. The parameters

of elastic-ductile-plastic rheology laws for crust and mantle are derived from rock mechanics

data [40, 41].

a) Plastic (brittle) behavior

The brittle behavior of rocks is described by Byerlee’s law [42, 43], which corresponds to a

Mohr-Coulomb material with friction angle φ = 30˚ and cohesion |C0|<20 MPa (e.g. [44])

jtj ¼ C0 � sntanφ ð6Þ

where σn is normal stress sn ¼
1

3
sI þ sdev

P
sinφ; 1

3
s1 ¼ P is the effective pressure (negative for

compression), sdev
P

is the second invariant of deviatoric stress, or effective shear stress. The con-

dition of the transition to brittle deformation (function of rupture f) reads as: f ¼ sdev
P
þ

Psinφ � C0cosφ ¼ 0 and @f/@t = 0. In terms of principal stresses, the equivalent of the yield

criterion reads as

s1 � s3 ¼ � sinφðs1 þ s3 � 2C0=tanφÞ ð7Þ

b) Elastic behavior

The elastic behavior is described by the linear Hooke’s law

sij ¼ lεiidij þ 2Gεij ð8Þ

where λ and G are Lamé’s constants. Repeating indexes mean summation and δ is the Kro-

necker’s operator.

c) Viscous (ductile creep) behavior

Within deep lithosphere and underlying mantle regions, creeping flow is highly dependent

on temperature and is non-linear non-Newtonian since the effective viscosity can vary within

10 orders of magnitude as function of differential stress [40, 43]:

_εd ¼ Aðs1 � s3Þ
nexpð� QR� 1T � 1Þ ð9Þ

where _εd is effective shear strain rate, A is a material constant, n is the power-law exponent, Q
is the creep activation enthalpy, R is the universal gas constant, and T is the absolute tempera-

ture, σ1 and σ3 are the principal stresses. The effective viscosity μeff for this law is defined as

meff ¼ _εð1� nÞ=nA� 1=nexpðQðnRTÞ� 1
Þ ð10Þ

For non-uniaxial deformation, the law Eq (10) is converted to a triaxial form, using the

invariant of strain rate and geometrical proportionality factors

meff ¼ _εdð1� nÞ=n
P ðA�Þ� 1=nexpðQðnRTÞ� 1

Þ ð11Þ

Numerical modeling of initiation of continental crustal extension in the subduction zone
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where

_εd
P
¼ ½ln uPð _εijÞ�

1=2 and A� ¼ 0:5A � 3ðnþ1Þ=2 ð12Þ

Parameters A, n, Q are experimentally determined material constants (Table 1). Using oliv-

ine parameters, one can verify that the predicted effective viscosity at the base of the litho-

sphere is 1019–5�1019 Pa�s matching post-glacial rebound data [45]. In the depth interval of

250 km—0 km, the effective viscosity grows from 1019 to 1025−1027 Pa�s with decreasing tem-

perature. Within the adiabatic temperature interval in the convective mantle, the dislocation

flow law Eq (10) is replaced by a nearly Newtonian diffusion creep, which results in a quasi-

constant mantle viscosity of 1019−1021 Pa�s (e.g. [45]).

2.1.4 Surface erosion and sedimentation. The code handles explicit free surface bound-

ary condition. Thus different from a number of existing codes, the surface velocity and dis-

placement are computed in a straightforward way, without simplifying assumptions.

A simple law to simulate erosion and sedimentation is applied to the short-range surface

processes associated with small-scale topography elevations (e.g. [46, 47]). Linear or nonlinear

diffusion equation is expressed as:

@hs

@t
¼ r kerhsð Þ ð13Þ

where hs and ke denote surface elevation and coefficient of erosion respectively. In particular,

the diffusion equation assures a number of important properties of the surface processes: (1)

dependence of the local erosion rate on surface curvature and slope, so that actively deforming

topography is subject to faster erosion; (2) mass conservation; and (3) smoothing of the surface

with time in the absence of active subsurface deformation.

2.2 Initial configuration

In order to simulate the processes of different subduction systems, the physical parameters of

the materials used were set as realistic as possible. The initial parameters include: (1) rheologi-

cal and thermal parameters of materials used (Tables 1 and 2), (2) geometrical configuration

(Fig 2; Tables 3 and 4) (3) geothermal gradient (Fig 3), (4) dip angle, (5) thickness of crust and

mantle and (6) velocity of convergence. Among these parameters, rheological and thermal

parameters of materials are set as constant values in the program (Tables 1 and 2). The thick-

nesses of different crustal units (Table 3) for the reference model (subd_ref) are derived from

the modern Cathaysia Block. As we don’t know the status of Cathaysia Block, we also designed

some reasonable variations of the crustal thickness (Table 4) to explore other possibilities.

Table 1. Rheological parameters used in all experiments for each unit/phase.

Natural material Sediment Continental crust Oceanic crust Mantle

Upper Lower Upper Lower Lithospheric Asthenospheric

Substitutes in models Schist Quartz Granulite Olivine Serpentine Olivine Olivine

Viscosity n 31 3 4.2 3 5.8 3 3

A (MPa-n�s-1) 1.30E-67 6.80E-06 1.40E+04 7.00E+03 2.10E-20 7.00E+03 7.00E+03

Q (KJ�mol-1) 9.80E+04 1.56E+05 4.45E+05 5.10E+05 2.10E+04 5.10E+05 5.10E+05

references S & K [48] R & M [49] W & C [50] G & E [51] G & E [51] G & E [51]

Elasticity λ (Pa) 1.00E+10 3.00E+10 3.00E+10 3.00E+10 3.00E+10 4.00E+10 4.00E+10

μ (Pa) 1.00E+10 3.00E+10 3.00E+10 3.00E+10 3.00E+10 4.00E+10 4.00E+10

Plasticity cohesion (Pa) 1.00E+06 2.00E+07 2.00E+07 2.00E+07 1.00E+07 2.00E+07 5.00E+08

friction angle(˚) 5 30 30 10 5 30 2

doi:10.1371/journal.pone.0171536.t001

Numerical modeling of initiation of continental crustal extension in the subduction zone
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The initial geotherm of the model is vertically divided into 2 parts (Fig 3): (1) The tempera-

ture varies in a non-linear gradient from 0º on the surface to 1330ºC (1600 K) at the litho-

sphere/asthenosphere boundary as the conventional value [45]; (2) The temperature of mantle

increases linearly with depth until 1440ºC at the depth of 440 km. In the models with different

lithospheric geothermal gradients, the initial temperature gradient in the asthenospheric man-

tle varies from 1 to 3˚C/km. There is no horizontal thermal flux from the two sides of the

model box.

Table 2. Thermal parameters and densities of adopted materials.

Thermal parameters

Surface temperature (0 km depth), T0 0˚C

Temperature at the bottom of lithosphere, Tm 1330˚C

Temperature at 500km depth 1450˚C

Thermal conductivity of crust, kc 2.5 W m-1˚C-1

Thermal conductivity of mantle, km 3.3 W m-1˚C-1

Specific heat capacity 1*103J kg-1˚C-1

Surface radiogenic heat production, Hs 5*10−9 W kg-1

Radiogenic heat production decay depth, hr 12 km

Thermotectonic age of oceanic/continental lithosphere, a 250 / 500 Ma

Material densities

Continental upper crust 2750 kg m-3

Continental lower crust 2980 kg m-3

Oceanic crust 2900 kg m-3

Sediment 2600 kg m-3

Lithospheric mantle 3300 kg m-3

Asthenospheric mantle 3330 kg m-3

doi:10.1371/journal.pone.0171536.t002

Fig 2. Boundary conditions applied to models (Example of the reference model).

doi:10.1371/journal.pone.0171536.g002

Numerical modeling of initiation of continental crustal extension in the subduction zone

PLOS ONE | DOI:10.1371/journal.pone.0171536 February 9, 2017 7 / 35



The dimension of the model is 2200 km×500 km and the initial geometry (Fig 2) corresponds

to an ongoing subduction process. The spatial resolution (meshing) of the models is 5×5 km.

2.3 Boundary conditions

In the numerical experiments conducted, the boundary conditions applied are as demon-

strated in Fig 2:

The surface of the models is kept as a free boundary and is modified only by erosion and

sedimentation. We considered values for erosion coefficient of 1000 m2/year that yield denu-

dation rates of the order of those predicted by previous parametric models (e.g. [52]) for con-

vergence rates characterizing Eurasia-Pacific subduction.

On the side boundaries, constant speeds are applied to the nodes of mesh in the horizontal

direction. For convergent settings, it does not make a difference whether the total shortening

velocity is applied to one side or to both sides of the models [53]. Hence, in this model, the

rates considered equivalent to the convergence velocity are applied to both sides of the model,

which means that each side shares half of the effective full convergence velocity. No speed is

imposed on any nodal points inside of the model as the modeling conducted by [54] and [55].

No basal shear is applied to the subduction zone in the lithosphere so that it is free to grow.

At the bottom of the model, we apply Winkler’s pliable basement (i.e., hydrostatic equilibrium)

with free horizontal slip condition. The Winkler’s condition is such that the model overlies an

infinite space filled with an inviscible fluid having a small density contrast (10 kg m-3) with the

lower part of the model (Fig 2). The boundaries of vertical velocities are left free, thus the shorten-

ing related to laterally applied velocity would result in downward movement of the base.

2.4 Parameters tested

The configuration of the reference model is set up using the representative parameter values

(Table 4) based on the parameters for subduction zones in the peri-Pacific region as reported

Table 3. Material thickness in the reference model.

Natural material Thickness (km)

Upper continental crust 15

Lower continental crust 15

Continental lithospheric mantle 110

Upper oceanic crust 5

Lower oceanic crust (serpentine) 5

Oceanic lithospheric mantle 100

doi:10.1371/journal.pone.0171536.t003

Table 4. Parameter values used for numerical experiments.

Parameters Values tested

Slab dip angle (˚) 30 50 60

Continental thermal gradient (˚/km) 9.5 16.6 22.2

Continental lithosphere thickness (km) 140 80 60

Oceanic thermal gradient (˚/km) 12.1 26.6 33.3

Oceanic lithosphere thickness (km) 110 50 40

Velocity of convergence (cm/yr) 2 3 4.5 6 12

Note: Bold numbers are the values used for the reference model (subd_ref, Table 5). Because the

temperature at the lithosphere-asthenosphere boundary is set as 1330˚C, the thickness of lithosphere in

each model can be calculated according to the thermal gradient.

doi:10.1371/journal.pone.0171536.t004
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by [56] and [57]. By varying initial geometry, thermal property of the lithosphere and kinetic

parameters, we examined the effects of different parameters on the reference model. All param-

eter values used in this study for every model are presented in Tables 4 and 5 respectively. The

ranges of the parameter values were chosen according to published databases [56, 57].

3. Results

3.1 Reference model

Some geometrical and kinematic parameter values have been selected for the reference model

in this study, i.e., slab dip angle at 50˚, continental lithosphere thermal gradient at 9.5˚/km,

oceanic lithosphere thermal gradient at 12.1˚/km, convergence velocity at 3 cm/year (Table 4).

The evolution of the reference model “subd_ref” during the numerical simulation is shown in

Fig 4. Under a constant convergence velocity at 3 cm/year, this model experienced slab break-

off and delamination of the lower continental lithosphere (Fig 4A). The oceanic lithosphere

subducted into the mantle and preserved its original slab dip angle through the entire simula-

tion (Fig 4A). When there is mantle upwelling under the continental lithosphere (Fig 4A), the

stress regime in the continental crust is generally extensional (Fig 4B).

In general, under constant convergent velocity and slab angle, the model bears constant

crustal compression in the overriding plate. Parameter values in the reference model are selec-

tively changed in determining how the subduction parameters may modify the crustal stress

configuration.

3.2 Convergence velocity

Convergence velocities ranging from 2 cm/year to 12 cm/year were employed in the numerical

modeling. The evolutions of models with the same amount of shortening (360 km) were selected

for comparison (Fig 5) at convergence rate of 2 cm/year, 3 cm/year, 4.5 cm/year, 6 cm/year and

12 cm/year respectively. As shown in Fig 5A and 5B, models with low velocities underwent

smooth subduction processes. However, the model with higher convergence velocities at 4.5

cm/year, 6 cm/year and 12 cm/year (Fig 5C–5E) shows buckling in the oceanic plate at 8 My, 6

My and 3Ma respectively, which indicates strong rheological coupling (defined as the effective

strength of rocks composing the plate interface) at the subduction zone. As shown by the viscos-

ity profiles, the faster the subduction process is, the more coupling at the subduction zone. The

result of numerical models suggests that, high convergence velocity probably yields a strong rhe-

ological coupling, thus retarding the subduction process [58]. Slow rate of convergence, on the

Fig 3. Initial thermal profile of the reference model.

doi:10.1371/journal.pone.0171536.g003
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Table 5. Values of geometrical, thermal, physical and kinematic parameters of subduction models used for investigating the general development

of subduction zone.

Initial slab dip angle (˚) Thermal gradient (˚C/km) Convergence velocity (cm/yr)

Continent Ocean

subd_ref 50 9.5 12.1 3

subd_v1 50 9.5 12.1 2

subd_v2 50 9.5 12.1 6

subd_v3 50 9.5 12.1 12

subd_v4 50 9.5 12.1 4.5

subd_therm1 50 16.625 26.6 3

subd_therm2 50 22.2 33.3 3

subd_angle1 30 9.5 12.1 3

subd_angle2 60 9.5 12.1 3

subd_angle1_therm1 30 16.625 26.6 3

subd_angle1_therm2 30 22.2 33.3 3

subd_angle2_therm1 60 16.625 26.6 3

subd_angle2_therm2 60 22.2 33.3 3

subd_angle1_v1 30 9.5 12.1 2

subd_angle1_v2 30 9.5 12.1 6

subd_angle1_v3 30 9.5 12.1 12

subd_angle1_v4 30 9.5 12.1 4.5

subd_angle2_v1 60 9.5 12.1 2

subd_angle2_v2 60 9.5 12.1 6

subd_angle2_v3 60 9.5 12.1 12

subd_angle2_v4 60 9.5 12.1 4.5

subd_therm1_v1 50 16.625 26.6 2

subd_therm1_v2 50 16.625 26.6 6

subd_therm1_v3 50 16.625 26.6 12

subd_therm1_v4 50 16.625 26.6 4.5

subd_therm2_v1 50 22.2 33.3 2

subd_therm2_v2 50 22.2 33.3 6

subd_therm2_v3 50 22.2 33.3 12

subd_therm2_v4 50 22.2 33.3 4.5

subd_angle1_therm1_v1 30 16.625 26.6 2

subd_angle1_therm1_v2 30 16.625 26.6 6

subd_angle1_therm1_v3 30 16.625 26.6 12

subd_angle1_therm1_v4 30 16.625 26.6 4.5

subd_angle1_therm2_v1 30 22.2 33.3 2

subd_angle1_therm2_v2 30 22.2 33.3 6

subd_angle1_therm2_v3 30 22.2 33.3 12

subd_angle1_therm2_v4 30 22.2 33.3 4.5

subd_angle2_therm1_v1 60 16.625 26.6 2

subd_angle2_therm1_v2 60 16.625 26.6 6

subd_angle2_therm1_v3 60 16.625 26.6 12

subd_angle2_therm1_v4 60 16.625 26.6 4.5

subd_angle2_therm2_v1 60 22.2 33.3 2

subd_angle2_therm2_v2 60 22.2 33.3 6

subd_angle2_therm2_v3 60 22.2 33.3 12

subd_angle2_therm2_v4 60 22.2 33.3 4.5

doi:10.1371/journal.pone.0171536.t005
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other hand, favors a swift subduction process. This is consistent with previous seismological

studies [59, 60] showing that coupling can be enhanced by fast subduction rate.

3.3 Geothermal gradient of continental/oceanic lithosphere

Since the conventional value of temperature at the lithosphere/asthenosphere boundary is

1330ºC [45], the thickness of lithosphere varies with the thermal gradient (i.e., the higher the

geothermal gradient is, the thinner the lithospheric thickness is) (Fig 6). Based on the setting

of the reference model, two more datasets of thermal gradients of continental and oceanic lith-

ospheres were tested (Table 4), using the reference setting of initial slab dip angle (50º) and

convergence velocity (3 cm/year).

The model “subd_therm1” (geotherm: 16.6˚C/km for continent and 26.6˚C/km for ocean)

displayed a slab break-off at 6 My, developed as a low-angle subduction afterward and started

flat-slab subduction at 25 My (Fig 6B). Comparably, the model “subd_therm2” (geotherm:

22.2˚C/km for continent and 33.3˚C/km for ocean) had a slab break-off at 9 My, evolved into

a high-angle subduction, started flat-slab subduction at 16 My and then had a second slab

break-off at 32 My, tending to roll-back (Fig 6C). It is obvious that the “slab break-off” easily

occurs in models with higher geothermal gradients, because the thinner lithospheres break up

more easily than the thicker ones (e.g. Fig 6B compared with Fig 6A). “Flat-subduction” some-

times occurs after the slab break-off, probably caused by the unloading of slab pull. However,

Fig 4. Evolution of model “subd_ref” at 0 My, 5 My, 15 My and 20 My. (a) lithological phases with isotherms in the lithosphers; (b) profiles of second

invariant of deviatoric stress, indicating the effective shear stress.

doi:10.1371/journal.pone.0171536.g004
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further tests of these three sets of geothermal gradients show that high geothermal gradients

do not favor a readily going subduction process when other parameters are changed, such as

the convergence velocity and the initial slab dip angle. The plausible results will be summarized

in the discussion.

3.4 Initial slab dipping angle

According to the global subduction zone database [57], the slab dip angle mainly varies from

32˚ to 58˚. To evaluate the role of the initial slab dip angle in subduction zone, three models

with initial slab dipping angles at 30˚, 50˚ and 60˚ were tested, using the reference setting of

thermal gradients of oceanic (12.1˚C/km) and continental (9.5˚C/km) lithospheres and con-

vergence velocity (3 cm/year).

As shown in Fig 7A, the model with the smallest slab dip angle got severe coupling in the

subduction zone at a very early stage. Meanwhile, the bigger slab angle subduction models (Fig

7B and 7C) sustain more fluent process than the low slab angle subduction (Fig 7A). For the

Fig 5. Comparison of models at different velocities with the same amount of shortening (360 km). Models with velocity at (a) 2 cm/year; (b) 3 cm/year,

(c) 4.5 cm/year, (d) 6 cm/year and (e) 12 cm/year correspond to “subd_v1”, “subd_ref”, “subd_v4”, “subd_v2” and “subd_v3” respectively in Table 5.

doi:10.1371/journal.pone.0171536.g005
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low angle subduction model (Fig 7A), large contact area between the subducting plate and the

upper plate might be a main reason to yield more friction and to make the subducting slab

more difficult to proceed forward. The model with the greatest slab dip angle (Fig 7C) shows a

decreasing slab angle after the slab break-off. Thus, high angle subduction models are prone to

undergo slab roll-back and break-off, due to greater influence of the mantle convection on the

subducting slab.

The parameter values adopted in this series of models for convergence velocity and geother-

mal gradients are the same as those used the reference model. In the following sections, models

for different initial slab dip angles are conducted and further elaborated with other settings of

lithospheric thermal gradient and convergence velocity.

Fig 6. Comparison of models with different thermal gradients.

doi:10.1371/journal.pone.0171536.g006
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3.5 Combined effects of multiple parameters

The previously presented models on three types of parameters were obtained by changing only

one parameter of the reference model. In order to study in greater detail the subduction mech-

anism, the evolution of the reference model was also tested by varying simultaneously pairs of

parameters.

3.5.1 Slab dip angle–Geothermal gradient. The tests in this section adopted a moderate

convergence velocity as in the reference model: 3 cm/year, because this is the most commonly

observed convergence velocity in the peri-Pacific subduction zones [57]. Models (Fig 8A–8D)

with different slab dip angles (30˚ and 60˚) and variable geothermal gradients (16.6˚C/km and

22.2˚C/km for continental lithosphere; 26.6˚C/km and 33.3˚C/km for oceanic lithosphere)

exhibit the following features:

1. The slab dip angles increase during the simulation and probably retreat, which are some-

times coeval to the mantle upwelling;

2. The slabs with higher geothermal gradients (thinner lithosphere) are easily broken-off. The

thinner lithosphere might be less resistant to the mantle flow;

3. The mantle flow acting on the slab with greater dip angle can push the subducting slab to

retreat. As a result, when a thin slab (i.e. very high geothermal gradient) subduct in high dip

angle, the double-side subduction is prone to develop after the slab roll-back (Fig 8D).

3.5.2 Slab dip angle–Convergence velocity. Models described in this section are based on

low thermal gradients of the lithospheres (9.5˚C/km for continent and 12.1˚C/km for ocean).

The conclusion of Section 3.2 and 3.4 is that higher slab dip angle and lower convergence

velocity normally facilitate the progress of subduction. The models in Section 3.2 with conver-

gence velocity higher than 6 cm/year do not work and end up with strong coupling of the sub-

duction zone. In this section, studies on slabs with different initial dip angles (30˚ and 60˚) at

Fig 7. Model evolution of the models “subd_angle1”, “subd_ref” and “subd_angle2”.

doi:10.1371/journal.pone.0171536.g007
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high convergence velocity (6 cm/year) still could not produce any efficient subduction process

(Fig 9).

Distinguished from the high velocity models, subduction process can take place readily at

low convergence velocity with different slab dip angles (Fig 10). The model with low slab angle

(“subd_angle1_v1”) encountered some difficulty in subducting since around 20 My, while the

model with high dip angle (“subd_angle2_v1”) maintained a stable subduction with the slab

dip angle increasing in value with time (Fig 10).

Based on the results of the models in this section, high convergence velocity (equal to or

faster than 6 cm/year) does not produce effective subduction at low geothermal gradients.

Models with higher geothermal gradients will be further explored.

3.5.3 Geothermal gradient—Convergence velocity. Models were designed to investigate

the role of different geothermal gradients and convergent velocities at the same time. They are

based on the slab dip angle of 50˚ as employed in the reference model.

To examine the high convergence velocity (6 cm/year) models with varying geothermal gra-

dients, two models “subd_therm1_v2” (geotherm: 16.6˚C/km for continent and 26.6˚C/km for

ocean) and “subd_therm2_v2” (geotherm: 22.2˚C/km for continent and 33.3˚C/km for ocean)

were created. As shown in Fig 11, both models display a slab break-off during subduction. The

model “subd_therm1_v2” with medium geothermal gradients continued with a flat-slab sub-

duction and probably mantle-derived magma underplating underneath the continental crust

(phase at 15 My in Fig 11A). Dissimilarly, in the model “subd_therm2_v2” with high geother-

mal gradients, the subduction ceased, probably because the slab was too thin to be resistant to

Fig 8. Model evolution of “subd_angle1_therm1”, “subd_angle1_therm2”, “subd_angle2_therm1” and “subd_angle2_therm2”.

doi:10.1371/journal.pone.0171536.g008
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the compressional force coming from the continental lithosphere (phase at 11 My in Fig 11B).

Therefore, the geothermal gradient contrast between oceanic plate and continental plate (i.e.

the contrast of lithosphere thickness between ocean and continent) is crucial to the evolution

of the subduction. For a medium slab dip angle, if the geothermal gradient of the oceanic plate

is very high, it might produce a strong coupling of the subduction zone as shown in model

“subd_therm2_v2” (Fig 11B).

The above-mentioned geothermal gradients were also tested based on the model with a low

convergence velocity of 2 cm/year (Fig 12). Both model results show the process of slab break-

off at early stage and then fluent subduction at late stage (Fig 12), while the slab in the model

with higher geothermal gradients (“subd_therm2_v1”) steepened and showed more potentials

of fluent evolution (Fig 12B).

Since medium geothermal gradients seem to be a favorable parameter for continent-ocean

subduction models, two more values of convergence velocity for high geothermal gradients

(22.2˚C/km for continent and 33.3˚C/km for ocean) are tested: one is a extremely fast,

12 cm/year, named as “subd_therm2_v3”; the other one is moderate, 4.5 cm/year, named as

“subd_therm2_v4”.

Fig 9. Evolution of high convergence velocity models with different slab dip angles. (a) 30˚ (“subd_angle1_v2”) and (b) 60˚ (“subd_angle2_v2”).

doi:10.1371/journal.pone.0171536.g009
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As shown in Fig 13 (“subd_therm2_v3”), the subduction process is severely blocked at an

early stage. The model “subd_therm2_v4” produced a slab break-off once and then the sub-

duction stopped owing to strong coupling at the subduction zone (Fig 14), indicating that fast

subduction is not suitable for subduction under high geothermal gradient conditions and a

critical value of convergence rate for high geothermal gradient models should be between 3

cm/year and 4.5 cm/year.

The systematic modeling results of subduction zone in this study show that the slab dip

angle is a key factor controlling the roll-back of the subducting slab. A relatively high conver-

gence velocity is shown to produce a strong coupling of the subducting slab with the overrid-

ing plate, and a higher mantle thermal gradient would facilitate the rolling back of the slab and

sometimes the flattening of slab.

4. Discussion

Different parameters in the numerical modeling of subduction zone, such as thermal gradient

of lithosphere, slab angle, density of lithosphere and velocity of convergence, have shown vari-

able spatial and temporal patterns of the continental deformation. Comparable with the

Fig 10. Evolution of low convergence velocity models with different slab dip angles. (a) 30˚ (“subd_angle1_v1”) and (b) 60˚ (“subd_angle2_v1”).

doi:10.1371/journal.pone.0171536.g010
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geological observations of current subduction zones [56, 57], the numerical model results

could be used for explaining the role of parameters such as slab angle, convergence velocity

and geothermal gradients (thickness of continent) in the paleo-geological processes.

4.1 Feasible parameters of the subduction model

Feasible parameters for the subduction model can be deduced from the systematic modeling

of all parameter combinations (Fig 15). Different parameters play different roles in the subduc-

tion process.

4.1.1 Roles of subduction slab angle. Higher slab dip angle allows the mantle to convect

in a larger space. Slabs with high dip angle can roll back easily and then trigger large-scale

mantle upwelling, which eventually lead to the initiation of back-arc extension. Meanwhile,

the slab dip angles are in turn controlled by the mantle flow through lateral pressure on the

slab [61]. Previous studies propose that the slab angle increases with time before the slab

reaches the 670-km discontinuity [2]. We can infer that if the subduction zone is not coupled

Fig 11. Evolution of high convergence velocity (6 cm/year) models with different geothermal gradients. (a) 16.6˚C/km for continent and 26.6˚C/km for

ocean (“subd_therm1_v2”) and (b) 22.2˚C/km for continent and 33.3˚C/km for ocean (“subd_therm2_v2”). There is slab break-off at 8 My for the model

“subd_therm1_v2” and at 11 My for the model “subd_therm2_v2”.

doi:10.1371/journal.pone.0171536.g011
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at the beginning of the convergence, the slab dip angle will increase, favor the steady subduc-

tion process, and eventually lead to extension in the upper plate.

4.1.2 Roles of convergence velocity. For a high thermal gradient model, low slab dip

angle favors the subduction and vice versa. The relatively high convergence velocities are

shown to produce a strong coupling of the subducting slab with the overriding plate. The slabs

in the models with very low convergence velocities have much more time to sink down and

Fig 12. Evolution of low convergence velocity (2 cm/year) models with different geothermal gradients. (a) 16.6˚C/km for continent and 26.6˚C/km for

ocean (“subd_therm1_v1”) and (b) 22.2˚C/km for continent and 33.3˚C/km for ocean (“subd_therm2_v1”).

doi:10.1371/journal.pone.0171536.g012
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roll-back, which will sometimes result in the subduction of continental plate under oceanic

plate (i.e. obduction).

4.1.3 Roles of thermal gradient. For efficient subduction processes, the thermal gradients

could not be too high or too low. Subduction zones with low thermal gradients (thick litho-

sphere) need more mantle upwelling to produce slab roll-back. Oceanic slabs with high ther-

mal gradient (thin lithosphere) get break-off easily, because they are less resistant to the force

of mantle convection.

In summary, the modeling results from the present study show that higher initial dipping

angle of the subducting slab (50–60˚), lower convergence velocity (2–4.5 cm/year) and

medium thermal gradient of the oceanic lithosphere (about 10–20˚C/km) are favorable to the

subduction process.

4.2 Roles of slab dip angle and convergence velocity in changing

continental crust stress field

As shown by the stress field profiles of some models, continental crust stress configuration var-

ies significantly with different slab dip angles and convergence velocity (Fig 16). Continental

crustal extension occurred to models with increasing slab dip angle. On the contrary, a low-

angle subduction generally facilitates the transmission of compressive stress to the overriding

plate through increased contact area between the plates. The results are consistent with some

previous modeling results [60,62,63] and corroborate the inferences on the control of the

strain regime of the upper plate by the slab dip angle reported previously [60,64–66]. Through

Fig 13. Model evolution of “subd_therm2_v3”.

doi:10.1371/journal.pone.0171536.g013
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a compilation of all the actual oceanic subduction zone data of upper plate absolute motion,

trench absolute motion, back-arc deformation rate, upper plate strain regime and slab age,

Heuret and Lallemand [56,57] examined how combined effects of these parameters can

account for the observed back-arc deformations. This statistical work of current subduction

zone [57,67], in particular, presents a means for testing the effects of slab angles on strain

regime. The database, however, contains about 1/3 of transects located close to triple junctions

where the strain configuration could have been modified by kinematic motions along other

plate boundaries. The global database of subduction zones are therefore reduced by including

only and transects of continent-ocean subduction zones located away from triple junctions for

our analysis (Table 6).

Fig 14. Model evolution of “subd_therm2_v4”.

doi:10.1371/journal.pone.0171536.g014
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According to the approach of Jarrard [65], the transects are classified by strain characteris-

tics within the upper plate from significant active extension (class E3) to significant active

compression (class C3). The correlation between slab dip and upper plate strain is plotted for

the reduced subduction database (Fig 17). An improved correlation obtained from full data-

base by [57] demonstrates that upper plate extension usually occurs in subduction zones with

higher slab dip angles (Fig 17), consistent with our modeling results (Fig 7).

Numerical modeling results show that, greater initial slab dip angle models are generally

easier for subduction than the lower initial slab dip angle models. Both the high angle and low

angle models get along well with slow subductions. To better understand the relationship

between the convergence velocities and slab dip angles, the reduced database is used for analy-

sis (Table 6; Fig 18). For the current subduction systems, the convergence velocity tends to

decrease with the deep slab dip angle, whereas no apparent correlation can be found between

the shallow slab dip angle and convergence velocity (Fig 18). Model with deep slab dip angle is

mainly controlled by the mantle upwelling, whereas complicated stress and strain regime

could govern the model of shallow slab dip angle at the accretionary wedge.

The relationship between the convergence velocity and the deep slab angle implies that: (1)

The subducting slabs don’t get stuck in slow convergent zones because they have more time to

sink into the mantle, trigger mantle upwelling, and produce steeper slab dip angle; (2) Cou-

pling usually occurs in fast subduction zones with low slab dip angle because the compres-

sional stress and strain is enhanced by the fast convergence.

4.3 Implications on the subduction zone of the Cathaysia Block

4.3.1 Origin of extensive magmatism in the Cathaysia Block. Widespread Mesozoic

granitoids and volcanic rocks in the Cathaysia Block have been considered to result from

multi-stage magmatism under low-angle, west-dipping and prolonged subduction of the

Fig 15. Summary of conducted subduction models.

doi:10.1371/journal.pone.0171536.g015
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paleo-Pacific Plate, as revealed by their decreasing age in a sea-ward direction [21]. Chen et al.

[68] addressed the origin of Jurassic magmatism as a product of post-orogenic extension and

basalt underplating. Zhou et al. [19] proposed that the steepening slab angle is responsible for

the large-scale magmatism. These views are consistent with the results of numerical models

produced in this study (e.g. “subd_angle2_v1”; Fig 16), in which mantle upwelling is associated

with a slab retreat. The models with feasible parameter values for subduction process (Fig 15)

were examined for the occurrence of mantle upwelling. It seems that the slab roll-back is

relevant to mantle upwelling during the subduction process (Figs 15 and 19). The crustal

Fig 16. Model evolution of “subd_angle1_therm1” and “subd_angle2_v1”: (a) Stress field and phase lithological phase of model “subd_angle1_therm1”

at 2 My and 6 My; (b) stress field and temperature state of model “subd_angle2_v1” at 17 My, 21 My and 29 My. The white bars in the stress field profiles at

the left side represent the direction of the principle deviatoric stresses (σ1). Therefore, the outlined areas are mainly controlled by extensional regime.

doi:10.1371/journal.pone.0171536.g016
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Table 6. Subduction transects data used in this study (Extracted from [57]).

Name Slab dip angle Convergent velocity Upper plate strain

Shallow, ˚ Deep, ˚ Vc, mm/a Vcmp, mm/a

Andaman (ANDA) 34 70 18 3 E3

33 70 18 5 0

33 56 20 15 0

Sumatra (SUM) 29 40 41 41 0

28 40 28 28 0

28 49 37 37 0

28 49 38 38 0

28 61 39 39 0

27 63 50 50 0

Java (JAVA) 27 71 53 53 0

26 68 57 57 0

28 68 60 60 0

29 69 62 62 0

30 68 64 64 0

29 68 65 65 0

27 70 66 66 0

Philippines (PHIL) 35 - 37 95 C1

36 - 36 80 0

34 - 42 71 0

Ryukyu (RYU) 34 58 87 55 E2

35 61 82 53 E2

39 64 73 48 E2

Nankai (NAN) 12 - 48 48 C1

15 - 42 42 C1

19 - 37 37 C1

Japan (JAP) 26 31 93 101 C3

24 30 92 101 C3

23 29 86 96 C3

19 25 90 99 C3

South Kuril (SKOUR) 24 32 77 77 C2

27 33 74 74 C2

30 40 76 76 C2

31 44 71 71 C2

33 47 77 77 C2

North Kuril (NKOUR) 35 48 79 79 C1

36 50 77 77 C1

37 51 77 77 C1

Central Aleutian (C_ALE) 40 56 32 32 C1

40 57 42 42 C1

39 57.5 51 51 0

38 58 61 61 0

36 59 61 61 0

35,5 62 59 59 0

(Continued )
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Table 6. (Continued)

Name Slab dip angle Convergent velocity Upper plate strain

Shallow, ˚ Deep, ˚ Vc, mm/a Vcmp, mm/a

East Aleutian (E_ALE) 35 61 64 64 0

34 60 65 65 0

33 59 65 65 E1

32 - 64 64 E1

31 53 33 33 0

West Alaska (W_ALA) 29 - 62 62 0

28 48 60 60 0

26 - 59 59 0

24 - 58 58 0

23 45 58 58 0

East Alaska (E_ALA) 21 43 56 56 C1

19 40 52 52 C1

18 38 47 47 C1

Cascadia(CASC) 13 45 31 32 0

Mexico (MEX) 20 - 51 51 E1

16 - 55 55 E1

18 - 60 60 E1

25 - 61 61 E1

Costa-Rica (COST) 27 55 63 63 E1

28 54 68 68 0

30 64 73 73 0

32 66 78 78 0

Colombia (COL) 21 45 42 55 C3

Peru (PER) 11 45 69 69 C3

10 46 71 71 C3

10 47 71 71 C3

11 49 70 70 C3

12 49 68 68 C3

12 52 68 68 C3

North Chile (NCHI) 17 50 58 58 C3

25 41 63 73 C3

23 40 72 78 C3

18 45 71 75 C3

17 47 71 77 C3

14 49 68 73 C3

Juan Fernandez (JUAN) 13,5 - 69 75 C3

12 - 72 77 C3

South Chile (SCHI) 21 35 66 66 C1

22 - 62 62 C1

24 - 72 72 C1

25 - 75 75 C1

25 - 75 75 C1

Antilles (ANT) 39 - 11 11 E1

37 - 9 9 E1

35 - 6 6 E1

(Continued )
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Table 6. (Continued)

Name Slab dip angle Convergent velocity Upper plate strain

Shallow, ˚ Deep, ˚ Vc, mm/a Vcmp, mm/a

Proto-Antilles (PORTO) 32 - 8 3 E1

35 - 5 1 E1

Note: Vc is the effective convergence at trench, Vcmp is the convergence between major plates. All the velocities are normal component of the absolute

velocities, corresponding to the velocities in 2D models. The upper plate strain is characterized by significant active extension (E3) to significant active

compression (C3).

doi:10.1371/journal.pone.0171536.t006

Fig 17. Correlation between slab dip and upper plate strain (Modified after [57]). Abbreviations for subduction zones names are given in Table 6.

doi:10.1371/journal.pone.0171536.g017
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extension of the Cathaysia Block was probably produced by a slab roll-back coeval to the late

stage of the Mesozoic magmatism. As demonstrated in thermal profiles of models with exten-

sion in the upper plate (Figs 4 and 19), mantle upwelling under the Cathaysia Block are closely

related to the initiation of the extensional regime during the late stage of magmatism. Higher

topography is observed above the area of mantle upwelling in modeling results (profile at 19

Ma in Fig 19). The relationship between magmatism and subduction zones has long been

extensively discussed [69–72]. Although magmatism is commonly generated during subduc-

tion, the formation of volcanic rocks can also postdate active subduction and occur synchro-

nously with uplift, extension or strike-slip motion [73].

In a model comparable to the Cathaysia Block (Fig 19), at the very beginning of the subduc-

tion process, the subduction zone is characterized by compressional stress regime from outside

to inside, as revealed by the stress distribution in the stress field of the model at 0 My. In the

stress field profile at 10 My, the outlined area is mixed with horizontal, oblique and vertical

Fig 18. The graphs of convergence velocity with respect to slab dip angle, according to Table 6.

doi:10.1371/journal.pone.0171536.g018
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Fig 19. Thermal profiles and the corresponding topography in the areas of interest (upper continental plate) of the reference model at 0 My, 10 My

and 19 My.

doi:10.1371/journal.pone.0171536.g019
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principle stresses, while in the one of 19 My, the outlined area is dominated by vertical princi-

ple stresses. The change of the stress distribution shows that the outlined area has undergone a

transition from compression to extension, especially in the crustal level.

4.3.2 Subduction velocity in the Cathaysia Block during Mesozoic-Cenozoic. There are

some controversies on the convergence velocity in the South China–Paleo-Pacific subduction

zone: some publications considered a fast subduction of the paleo-Pacific Plate at a speed

between 12 cm/year and 14 cm/year during Late Cretaceous [23,74]; whereas the others esti-

mated the spreading rates of the Pacific Plate ridges as between 4–5 cm/year during Late Creta-

ceous to Early Paleogene [75–77]. The statistics on the modern subduction zone data showed

that the maximum convergence velocity of current subduction zones is at around 10 cm/year

(Table 6). This is consistent with our numerical modeling results under the designated setting:

it is barely possible to have a convergence velocity as high as 12 cm/year (e.g. model “sub-

d_therm2_v3”; Fig 13).

4.3.3 Compression-extension transition in the continental crust of the Cathaysia

Block. Almost all the feasible subduction models display a phase of slab roll-back, usually

accompanied with mantle upwelling. Examination of the stress field of the continental plate in

the reference model reveals that horizontal compression dominates during the early stage of

the subduction, but it reverts to a horizontal extension in the back-arc region later (Figs 4 and

20). In the reference model, the distribution of sub-vertically directed maximum principal

stress in the continental plate in the back-arc region demonstrates that the crust of this region

has been in an extensional setting from 19 My, associated with the roll-back of subduction slab

and high temperature of the mantle of the back-arc region.

From late Mesozoic, a lot of red bed basins were formed in the Cathaysia Block [78]. It

appears that the red-bed basins could have formed during the late stage of the subduction pro-

cess. At the same time, extensive granitic magmatism, particularly rift-related volcanism, has

been generated in the block, which has been thought to result from the mantle upwelling that

was triggered by slab roll-back [19]. This may account for the observations of concurrent vol-

canic rocks in some sedimentary basins in the Cathaysia Block [28,79]. The crustal extension

during the late stage of the subduction is also supported by the geological inferences from the

apatite fission-track data [80], which shows that the extensional events in the Cathaysia Block

started as early as the Late Cretaceous. The change of the stress regime observed in the numeri-

cal models is consistent with the extensional events in the continental crust of the Cathaysia

Block during the convergent subduction of the paleo-Pacific Plate underneath [17–19,21,24].

5. Conclusion

Based on our systematic numerical modeling study of the subduction system, by varying the

convergence velocity in of the subduction, the initial slab dip angle, the geothermal gradients

of continental and oceanic lithosphere, several major conclusions can be drawn as follows:

1. Parameters, such as low or medium convergence velocity, medium thermal gradients

together with various slab dip angles, high thermal gradient for low slab dip angle, and low

thermal gradient for high slab dip angle, were critical to an efficient subduction process.

2. Mantle upwelling caused by the diving of slab is believed to make a major contribution to

the initiation of continental extension. The utmost amount of mantle upwelling was

achieved by rolling-back of the subducting slab at high slab dip angle, which can lead to the

compression-extension transition in the continental plate.

3. The extensional regime in the Cathaysia Block can be triggered by the slab roll-back. The

slab roll-back can trigger more mantle upwelling and result in extensive magmatism (Fig
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21). Such crustal extension could have accounted for concurrent volcanic rocks in red-bed

basins and crustal exhumation shortly after the cessation for magmatic episodes in the

Cathaysia Block.

Fig 20. Zooming of stress field in continental crust and the corresponding thermal profile of the reference model at 19

Ma. The profiles of second invariant of deviatoric stress indicate the effective shear stress.

doi:10.1371/journal.pone.0171536.g020
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Fig 21. Evolutionary diagram of the Cathaysia Block during the compression-extension transition.

doi:10.1371/journal.pone.0171536.g021
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