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Quantum technologies are developing powerful tools to generate and manipulate coherent superpositions of
different energy levels. Envisaging a new generation of energy-efficient quantum devices, here we explore how
coherence can be manipulated without exchanging energy with the surrounding environment. We start from
the task of converting a coherent superposition of energy eigenstates into another. We identify the optimal
energy-preserving operations, both in the deterministic and in the probabilistic scenario. We then design a
recursive protocol, wherein a branching sequence of energy-preserving filters increases the probability of success
while reaching maximum fidelity at each iteration. Building on the recursive protocol, we construct efficient
approximations of the optimal fidelity-probability trade-off, by taking coherent superpositions of the different
branches generated by probabilistic filtering. The benefits of this construction are illustrated in applications to
quantum metrology, quantum cloning, coherent state amplification, and ancilla-driven computation. Finally, we
extend our results to transitions where the input state is generally mixed and we apply our findings to the task of
purifying quantum coherence.
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I. INTRODUCTION

Rapid experimental advances are pushing towards the
realization of new quantum technologies [1–6]. Decoherence
still remains the grand challenge, but, as quantum technologies
approach real-life applications, questions of energy efficiency
are bound to become increasingly more relevant. Nowadays,
energy efficiency is one of the major problems in information
and communication technology [7] and, as such, it is the
object of a large amount of research, both experimentally [8,9]
and theoretically [10,11]. In this area, quantum technologies
hold a large, relatively unexplored potential, which is likely to
become critical in the long-term future. In this perspective, it is
compelling to explore the ultimate performances achieved by
quantum devices with limited energy resources. The problem
is not only of fundamental interest. Pioneering experiments
in quantum optomechanics have already started to develop
the tools for manipulating quantum systems with minimal
amounts of energy [12]. Similarly, engineered light-matter
interactions in quantum dots [13] and superconducting cir-
cuits [14] enable the control of dynamics at the level of single
quanta, offering a promising platform for the realization of
prototypes of energy-optimized quantum devices.

In order to address the question of energy efficiency, one
needs to characterize the quantum operations that can be
performed with given energy resources. Concretely, an energy
resource is described by the state of a battery, i.e., an auxiliary
system that exchanges energy with the system used as the
information register. The constraint that the battery is the only
energy resource used in the processing amounts to the
requirement that the joint evolution of register and battery be
energy-preserving. In general, energy-preserving evolutions
need not be reversible: the register and the battery can interact
nontrivially with auxiliary degrees of freedom, as long as they
do not exchange energy with it. This scenario is illustrated
in Fig. 1(a). The achievable operations are then modeled as
reduced evolutions of the information register, with the battery

initialized in a given resource state. In this model, charac-
terizing and optimizing the energy-preserving operations on
the composite system of battery and information register is
an essential step towards characterizing and optimizing the
achievable operations on the information register alone.

The focus of this paper is the characterization and opti-
mization of energy-preserving operations, which provide the
foundation to the broader program aimed at designing energy-
optimized quantum devices. Energy-preserving operations are
also interesting per se, as the operations that can be realized
without the assistance of external energy resources. This
property is appealing in situations where a device has to
switch to a “low-power mode,” as it is often the case for
nowadays mobile devices and will arguably be the case also
for future devices incorporating quantum gadgets [15]. In these
situations, it may become convenient to disconnect part of the
device from the battery and to let that part of the device operate
in an energy-autonomous way, as illustrated in Fig. 1(b).
Studying energy-preserving operations is also a useful strategy
to derive results about other related types of operations. For
example, the energy-preserving family includes as a special
case the operations that can be achieved with passive optical
elements like beam splitters, phase shifters, and mirrors.
As a result, the optimization of a desired task over all
energy-preserving operations yields upper bounds on the
performance of arbitrary quantum circuits built with passive
optical elements. Results about energy-preserving operations
can also be used in situations involving the preservation of
observables other than the energy. This is an important point,
because constraints on the preservation of suitable observables
occur naturally in many applications. An interesting example
arises in quantum dots, where the implementation of logical
gates often benefits from the existence of “sweet spots”—
special working points where the charge noise is suppressed.
The set of gates that can be performed at the sweet spot
is limited: for example, in the three-electron exchange-only
spin qubit [16], only the rotations around the z axis can be
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FIG. 1. Manipulating quantum information with limited energy
resources. (a) Quantum device powered by a battery. The device
contains an information register, where data are stored, and a battery,
representing the energy resource(s) used to operate on the data. The
information register and the battery are allowed to interact with the
surrounding environment (possibly including ancillas), as long as
the interaction involves no exchange of energy. The situation where
the device uses energy from the environment to aliment its battery
can be included in the model by formally regarding the energy
sources in the environment as part of the battery. (b) Quantum device
in low-power mode. In this mode, some quantum operations are
performed without the aid of the battery, i.e., relying only on the
interaction between the information register (here denoted simply
as “the system”) and the environment (possibly including ancillas).
The evolution of the system is described by an energy-preserving
operation.

performed at the sweet spot, while all other rotations incur
into undesired noise [17]. Regarding the component of the
spin along the z axis as the “energy,” it follows that the
“energy-preserving” channels are exactly the operations that
can be performed with suppressed noise. Similar physics arises
in superconducting flux qubits, where the sweet spot is with
respect to magnetic noise [18].

This paper characterizes the set of energy-preserving
operations and identifies the most efficient strategies for the
manipulation of quantum states exhibiting coherence across
energy levels. We will start from the basic task of transforming
a pure superposition of energy eigenstates into another pure
superposition. In this context, it is interesting to consider not
only deterministic operations but also probabilistic operations
arising from measurements that can be implemented at zero
energy cost. By allowing for a nonunit probability of success,
we find out that the constraint of energy preservation can be
stretched to a previously unsuspected extent. For example, we
will see that a beam of N atoms, each of them prepared in the
superposition |S〉 = (|E〉 + |G〉)/√2 of the ground state and

the first excited state, can be probabilistically transformed at no
energy cost into a stronger beam of N2−ε atoms in a state that
is nearly identical to the state of N2−ε identical copies of |S〉,
up to an exponentially small error. The ability to efficiently
approximate forbidden transformations of coherence at zero
energy cost is a new twist of the postselection approach widely
applied in quantum information [19–32] and complements
existing results on the resource theory of coherence [33–39].

After having characterized the structure of the optimal
energy-preserving operations, we move to a different scenario,
where the probability of success is not fixed a priori. We con-
sider adaptive protocols whereby the experimenter performs
repeated rounds of probabilistic operations and is free to decide
on the fly whether to be content with the result obtained
so far or whether to continue further. In this scenario we
design a recursive protocol, consisting of a sequence of energy-
preserving binary measurements that produce at each step the
best approximation of the target with the highest probability
allowed by quantum mechanics. Subsequent iterations of our
protocol lead to an increasing probability of success, but also
to a degradation of the state of the system and, eventually,
to the loss of the advantages of postselection. This behavior
is a consequence of the inevitable trade-off between the
enhanced performance of probabilistic transformations and
their reduced probability of success. The advantage of our
recursive protocol is that it gives an explicit, ready-to-apply
method to construct lower bounds to the optimal trade-off
curve between fidelity and probability of success, a problem
that so far has been solved only in one case [26]. Remarkably,
in this particular case we find out that our protocol reproduces
the optimal trade-off curve, provided that the input state
is a superposition of sufficiently many energy levels. We
conjecture that our protocol is asymptotically optimal also
in those situations where the input and the target consist of
many identical copies of pure states, an example being the
asymptotic cloning of quantum coherence. Independently of
the validity of this conjecture, the importance of the recursive
protocol can be best appreciated in all those cases where
the optimal trade-off curve is not explicitly known. To get
even better lower bounds to the optimal curve, we finally
introduce the operation of coherent coarse-graining, which
consists in joining different outcomes into a single quantum
operation. Coherent coarse-graining allows one to keep the
same probability of success of the outcomes that are joined,
while increasing the fidelity with the target. Combined with
our recursive protocol, this operation provides a canonical way
to generate analytical lower bounds to the optimal trade-off be-
tween fidelity and success probability, whose exact calculation
is generally hard to perform without resorting to numerical
optimization.

To demonstrate the broad applicability of our methods,
we illustrate the recursive protocol and its coherent coarse-
graining in a number of concrete examples, including quantum
phase estimation, energy-preserving amplification of coherent
states, and the optimal design of correction operations for
ancilla-driven computation. In addition to the applications
presented explicitly in the paper, our results can be directly
applied to most of the canonical problems of quantum
information processing, such as optimal state discrimination,
gate programming, entanglement conversion, universal NOT,
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and universal transpose, whose implementation is significantly
affected once one imposes the requirement that no energy
should be drawn from the environment.

Finally, we go beyond the regime of pure state transitions
and extend our results to transitions where mixed states are
given as inputs. For such transitions, we prove upper bounds
for the performances of both deterministic and probabilistic
operations, providing conditions for the saturation of the
bounds. This extension provides optimal strategies for the im-
plementation of quantum tasks such as purification [32,40,41]
and broadcasting of mixed states [42].

The paper is organized as follows. Section II introduces
the basic framework. In Sec. III we characterize the optimal
energy-preserving process. Using this result, we construct
the recursive protocol and study the operation of coherent
coarse-graining in Sec. IV and apply it to several tasks in
quantum information processing (Sec. V), including phase
estimation (Secs. V A and V B), state cloning (Sec. V C),
coherent light amplification (Sec. V D), and ancilla-driven
computation (Sec. V E).The extension of our results to mixed
states is discussed in Sec. VI. Finally, the conclusions are
drawn in Sec. VII.

II. THE ENERGY-PRESERVING PARADIGM

In this section we introduce the framework that will be
adopted in the rest of the paper. We first present the class
of energy-preserving channels, which model deterministic
evolutions that can be implemented without drawing energy
from the environment. We then move to probabilistic oper-
ations, characterizing the stochastic evolutions that can be
implemented at zero energy cost.

A. Energy-preserving channels

Consider a quantum system interacting with the surround-
ing environment from time t1 to time t2 through an interaction
Hamiltonian Hint(t), which we assume to be zero before t1
and after t2. As a result of the interaction, the system and the
environment evolve jointly via the unitary operator

U = T exp

{
− i

h̄

∫ t2

t1

dt[Hsys + Henv + Hint(t)]

}
, (1)

where T exp denotes the time-ordered exponential and Hsys

and Henv are the Hamiltonians of the system and of the
environment, both assumed to be time-independent. Regarding
energy as a resource, we require the evolution to satisfy the
condition

U †(Hsys + Henv)U = Hsys + Henv, (2)

meaning that the total energy after t2 is equal to the total energy
before t1. A sufficient condition for the validity of Eq. (2) is
the commutation relation

[Hint(t),Hsys + Henv] = 0 ∀t ∈ [t1,t2], (3)

which guarantees that the sum of the system and environment
energies is a constant of motion during the entire evolution. Our
analysis covers this case and, possibly, more general scenarios
where the sum of the system and environment energies is not
a constant of motion at all times: condition (2) is generally

weaker than condition (3). Note however that conditions (2)
and (3) define the same set of input-output evolutions from time
t1 to time t2: for every unitary U that commutes with Hsys +
Henv one can always find a suitable interaction Hamiltonian
H ′

int(t) that generates U as and commutes with Hsys + Henv at
all times.

Among the evolutions that conserve the total energy, we
are interested in those that leave the energy of the environment
untouched. Such evolutions satisfy the additional condition

U †HenvU = Henv. (4)

Clearly, the combination of Eqs. (2) and (4) implies that the
evolution has to preserve the energy of the system, namely

U †HsysU = Hsys. (5)

Assuming that the environment is initially in the state
ρenv, the effective evolution of the system is described by the
quantum channel (completely positive trace-preserving map)
M defined by

M(ρ) = Trenv[U (ρ ⊗ ρenv)U †] (6)

where Trenv denotes the partial trace over the Hilbert space of
the environment. By construction, the channelM preserves the
expectation value of the system’s energy. Even more strongly,
condition (5) implies that the channel M preserves also the
variance and all the momenta of the Hamiltonian, namely

M†(Hn
sys

) = Hn
sys ∀n ∈ N, (7)

where M† is the completely positive identity-preserving map
describing the evolution in the Heisenberg picture, defined by

M†(A) = Trenv[(Isys ⊗ ρenv)U †(A ⊗ Ienv)U ], (8)

for arbitrary operators A. When Eq. (7) is satisfied, we say that
M is an energy-preserving channel.

The energy-preserving condition (7) is equivalent to the re-
quirement that the evolution M does not affect the probability
distribution of the energy, i.e., that one has the equality of
probabilities

Tr[PEM(ρ)] = Tr[PEρ], (9)

where ρ is an arbitrary state, E is an arbitrary eigenvalue of
Hsys, and PE is the projector on the eigenspace corresponding
to E.

It is easy to see that every energy-preserving channel M is
covariant with respect to the free time evolution of the system;
that is, M satisfies the condition

M(Ut · U
†
t ) = UtM(·)U †

t ∀t ∈ R, (10)

with Ut = exp[−itHsys/h̄]. However, the converse is not true
in general: for example, a channel that discards the input state
and re-prepares an eigenstate of the energy is covariant but not
energy-preserving. Physically, the difference between energy-
preserving and covariant channels is that covariant channels
preserve the sum Hsys + Henv, while the energy-preserving
channels separately preserve the individual summands Hsys

and Henv. Further discussion on the relation between energy-
preserving channels and other classes of channels, such as
incoherent channels and Hadamard channels, is presented in
Appendix A.
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Energy-preserving channels provide an economical way
to process information in situations where energy becomes
a scarce resource. For example, one can imagine a scenario
where a microscopic machine has to perform a desired task
on the system (like copying data, correcting for an error,
or erasing information) without changing the energy of the
surrounding environment. While scenarios of this kind are not
a practical reality yet, prototype demonstrations of energy-
preserving channels can be conceived for quantum systems
with a high degree of control, such as ion traps [43,44], optical
cavities [45,46], optical lattices [47,48], and optomechanical
systems [49,50].

B. Structure of the energy-preserving channels

We have seen that every energy-preserving interaction
induces an energy-preserving quantum channel, i.e., a channel
satisfying Eq. (7). The converse is also true: given an energy-
preserving channel M, one can always engineer an interaction
between the system and the environment that conserves the
total energy and does not draw energy from the environment.
To establish this fact, note that the map M† satisfies the
condition

M†(A) = A ∀A ∈ A, (11)

where A is the commutative algebra generated by the powers
of the Hamiltonian. The algebra A contains the identity and
is closed under adjoint. Technically, algebras of this kind are
known as unital ∗-algebras [51]. For any such algebra, the maps
that satisfy Eq. (11) are characterized by a simple lemma:

Lemma 1 (Lindblad [52]). LetM† be an identity-preserving
completely positive map, written in the Kraus form M†(A) =∑K

k=1 M
†
kAMk , and let A be a unital ∗-algebra A. The map

M† preserves the elements of A if and only if each Kraus
operator Mk belongs to the commutant of A, i.e., to the set of
operators

A′ := {B ∈ B(H),[A,B] = 0 ∀A ∈ A},
B(H) denoting the set of bounded operators on H.

In the case of the Abelian algebra generated by the powers
of Hsys, the commutation condition reduces to

[Mk,Hsys] = 0, (12)

meaning that each Kraus operator Mk must be of the block
diagonal form

Mk =
⊕

E

PEMkPE, (13)

with the sum running over the eigenvalues of Hsys. All
throughout the paper we will assume the energy spectrum
to be discrete.

As a consequence of the block diagonal form (13), one can
realize the channel M through an energy-preserving isometry.
Specifically, one can express the channel as

M(ρ) = Trenv[VρV †], (14)

where V is the isometry defined by

V : Hsys → Hsys ⊗ Henv, V :=
K∑

k=1

Mk ⊗ |φk〉, (15)

{|φk〉}Kk=1 being a set of orthonormal states in the environment’s
Hilbert space. With this definition, the isometry V satisfies the
relation

V Hsys = (Hsys ⊗ Ienv)V. (16)

In turn, Eq. (16) implies that the isometry V can be realized
via an interaction that preserves both the energy of the system
and the energy of the environment:

Theorem 1. Let M be a quantum channel transforming
states on H. Then, the following are equivalent:

(1) M is energy-preserving;
(2) M can be realized through a joint evolution of the

system together with an environment of the following form:

M(ρ) = Trenv[U (ρ ⊗ |φ0〉〈φ0|)U †], (17)

where |φ0〉 belongs to ground eigenspace of Henv and U is a
unitary evolution that commutes with Hsys and with Henv;

(3) M can be realized through a joint evolution as in
Eq. (17), where the unitary U is generated by an interaction
Hint(t) that commutes with Hsys and Henv at all times.

The proof is presented in Appendix B.
Note the appearance of the Hamiltonian of the environment

in the statement of the theorem. This is natural, because in
general we are dealing with the evolution of an open system.
In this situation, the Hamiltonian of the environment plays a
crucial role, for it determines the minimum amount of energy
one has to invest into the realization of the desired channel.
Ideally, Theorem 1 guarantees that such amount can be reduced
to zero in the case of energy-preserving channels. Specifically,
the desired evolution can be engineered by initializing the
environment in an eigenstate of its Hamiltonian and by turning
on a coupling that preserves the individual energies of system
and environment, keeping the latter inside the ground space
for the whole time evolution. As a result, the evolution is
implemented at zero energy cost, at the price of an entropy
increase in the environment, which is generally left in a mixture
of states with the same energy. In other words, the environment
is only used passively as computational workspace wherein
information can be stored.

C. Energy-preserving instruments

While in the case of deterministic evolutions the notion
of energy preservation is pretty straightforward, the situ-
ation is different for probabilistic transformations induced
by quantum measurements. In this section we introduce a
notion of probabilistic energy-preserving transformations,
which characterizes those operations that can be implemented
(in principle) without paying an energy cost.

Adopting Ozawa’s model of the measurement process [53],
we view probabilistic evolutions as the result of a unitary
interaction between the system and the environment, followed
by the projective measurement of a “meter observable” O on
the environment. In this model, the preservation of the energy
imposes constraints on the interaction as well as constraints on
the measurement. Like in the previous sections, we demand
that the system-environment interaction preserve the total
energy of the system and the environment [Eq. (2)] and do not
change the energy of the environment [Eq. (4)]. As we argued
in the previous paragraph, these requirements characterize
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the evolutions that can be implemented at zero energy cost.
Regarding the measurement, we demand that it should not
disturb the energy of the environment, or, equivalently, that the
meter observable and the energy are compatible observables,
namely

[O,Henv] = 0. (18)

If this condition were not satisfied, the measurement of O

would collapse an eigenstate of the energy into a random
eigenstate of O, thus altering the expectation value of the
energy. Observables that commute with the Hamiltonian of
the environment are the prototype of measurements that can
be performed without paying an energy cost. The condi-
tions (2), (4), and (18) are the standard requirements put
forward in the Wigner-Araki-Yanase theorem [54–56] and in
all the works that followed it up [57–60]. In this context the
commutation relation (18) is known as Yanase’s condition [56].
Recently, the same framework discussed here has been used
as the starting point to define energy requirements for the
implementation of quantum measurements [60,61].

Let us analyze the probabilistic evolutions resulting from
the requirement of zero energy cost. According to quantum
measurement theory [53,62–64], the measurement of O

induces a stochastic evolution of the state of the system,
described by a quantum instrument, namely a collection of
quantum operations (completely positive trace nonincreasing
maps) {Mx}x∈X subject to the normalization condition∑

x∈X

Tr[Mx(ρ)] = Tr[ρ] (19)

for every quantum state ρ. For a system prepared in the
state ρ, the measurement generates the outcome x ∈ X with
probability

p(x|ρ) = Tr[Mx(ρ)], (20)

and, conditionally on outcome x, returns the system in the state

ρ ′
x = Mx(ρ)

Tr[Mx(ρ)]
. (21)

In the model considered here, the set of outcomes is the
spectrum of the meter observable O and the quantum operation
Mx is defined by

Mx(ρ) = Trenv[(Isys ⊗ Qx)U (ρ ⊗ ρenv)U †], (22)

Qx being the projector on the eigenspace of O with eigenvalue
x. Note that, by summing over all possible outcomes, one
obtains∑

x∈X

Mx(ρ) = Trenv[U (ρ ⊗ ρenv)U †] ≡ M(ρ),

where M is an energy-preserving channel. Energy preserva-
tion for M simply follows from the condition U †HsysU =
Hsys. Note that this conclusion is independent of the validity
of Yanase’s condition, because the sum over all measurement
outcomes yields the identity operator, no matter what type of
measurement is performed.

The physical model discussed so far motivates the following
definition:

Definition 1. We say that a quantum instrument {Mx}x∈X
is energy-preserving if the average channel M :=∑x∈X Mx

is energy-preserving.
Energy-preserving instruments are exactly the instruments

that can be implemented (in principle) at zero energy cost.
Precisely, every such instrument can be realized via an energy-
preserving interaction, followed by the measurement of a meter
observable that commutes with the energy:

Theorem 2. Let {Mx}x∈X be a quantum instrument trans-
forming states on H. Then, {Mx}x∈X is energy-preserving if
and only if one has

Mx(ρ) = Trenv[(Isys ⊗ Qx)U (ρ ⊗ |φ0〉〈φ0|)U †] ∀x ∈ X,

where |φ0〉 is a ground state of the environment’s Hamiltonian,
U satisfies the conditions U †HsysU = Hsys and U †HenvU =
Henv, and {Qx} is a projective measurement satisfying Yanase’s
condition [Qx,Henv] = 0 ∀x ∈ X.

The proof can be found in Appendix B, while a simple
illustration of the result is shown in the following example:

Example 1. Consider a system with two energy levels
E0 = 0 and E1 = �E, corresponding to the pure states |0〉 and
|1〉, respectively. Clearly, the von Neumann instrument for the
energy measurement—described by the quantum operations
Mx(·) = |x〉〈x| · |x〉〈x|, x = 0,1—is energy-preserving. To
implement this instrument, one can use as environment two
identical copies of the system, choose the initial state |φ0〉 =
|0〉|1〉, and engineer a joint evolution U satisfying

U |0〉|0〉|1〉 = |0〉|0〉|1〉,
U |1〉|0〉|1〉 = |1〉|1〉|0〉,
U |0〉|1〉|0〉 = |0〉|1〉|0〉,
U |1〉|1〉|0〉 = |1〉|0〉|1〉,
U |0〉|0〉|0〉 = |0〉|0〉|0〉,
U |1〉|0〉|0〉 = |1〉|0〉|0〉,
U |0〉|1〉|1〉 = |0〉|1〉|1〉,
U |1〉|1〉|1〉 = |1〉|1〉|1〉.

By measuring the meter observable M = |1〉〈1| ⊗ |0〉〈0| on
the environment, one then obtains the instrument {M0,M1}
as effective evolution of the system.

It is worth stressing that, despite the fact that the energy is
preserved on average, its expectation value can fluctuate due
to postselection. For instance, in Example 1 one can decide
to postselect the output state |1〉. With probability 1/2, the
postselection will transform the state |+〉 = (|0〉 + |1〉)/√2
into the state |1〉, whose energy is twice the expected energy
of |+〉. Still, the transformation will take place at no energy
cost, because both the interaction and the measurement of the
meter observable preserve the energy. A further discussion on
this point is provided in Appendix C.

Motivated by the above discussion, we put forward the
following:

Definition 2. A probabilistic transformation M0 is energy-
preserving iff there exists an energy-preserving instrument
{Mx}x∈X and an outcome x0 ∈ X such that M0 = Mx0 .

Probabilistic energy-preserving transformations can be
demonstrated in engineered quantum systems with a high
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degree of control. For example, a proposal for an experimental
amplification of weak coherent states via probabilistic energy-
preserving transformations was recently reported by Partanen
et al. in Ref. [65], where high-fidelity amplification was
achieved using only passive optical elements.

D. Energy-preserving and covariant instruments:
The stationary case

We now show that energy-preserving instruments play a
central role in the optimization of probabilistic operations.
Consider an instrument whose outcome probabilities are not
affected by time translations, namely

Tr[Mx(UtρU
†
t )] = Tr[Mx(ρ)], ∀x ∈ X,∀t ∈ R, (23)

where ρ is a generic quantum state and Ut = exp[−itHsys/h̄].
We call the instruments satisfying Eq. (23) stationary.

A common example is that of stationary instruments with
outcomes X = {succ,fail}. In this case, the stationarity con-
dition (23) simply means that the probability of implementing
the desired transformation Msucc is the same at every time.
Stationary two-outcome instruments can be used to describe
tasks like probabilistic covariant cloning and probabilistic
amplification, or more generally, any task where the goal is
to probabilistically transform a set of states generated by time
evolution. An important class of stationary instruments are
those that are covariant under time evolution, namely

Mx(UtρU
†
t ) = VtMx(ρ)V †

t ∀t ∈ R, (24)

where ρ is an arbitrary input state and {Vt |t ∈ R} is the unitary
representation of the translation group describing the time
evolution of the output system.

Energy-preserving instruments and stationary covariant
instruments are closely related. First of all, every energy-
preserving instrument is stationary and covariant; indeed, the
block form of the Kraus operators (13) implies that every
quantum operation Mx satisfies the covariance condition with

Ut = Vt = exp[−itHsys/h̄]. (25)

Moreover, energy-preserving instruments are the key prob-
abilistic element at the basis of every stationary covariant
instrument:

Proposition 1. Let {Mx}x∈X be a stationary covariant
instrument transforming states onHin into states onHout. Then,
{Mx}x∈X can be decomposed as

Mx = CxPx ∀x ∈ X,

where {Px}x∈X is a pure energy-preserving instrument trans-
forming states on Hin into states on Hin and Cx is a covariant
channel transforming states on Hin into states on Hout.

This result, proven in Appendix D, provides additional
motivation to the study of energy-preserving instruments.
Indeed, there is a large class of tasks where the optimal
probabilistic strategy is described by a stationary covariant
instrument—this is the case, e.g., of phase-covariant proba-
bilistic cloning [27–29] and probabilistic amplification [32].
Proposition 1 establishes that energy-preserving instruments
are the canonical probabilistic element in all these tasks. The
search for the optimal quantum operation is then split into two
sub-problems: (i) the search for the optimal energy-preserving

instrument and (ii) the search for the optimal deterministic
operation. Now, the optimization of deterministic operations
has been studied extensively in the literature, and the solution
of problem (ii) is known in a number of relevant cases. In all
these cases, the search for the optimal probabilistic operation
is reduced to the search of the optimal energy-preserving
instrument. A general method for the solution of the problem
will be provided in Sec. III.

E. Energy-preserving and covariant instruments:
The nonstationary case

The relation between energy-preserving and covariant
instruments can also be extended to nonstationary cases where
the outcome probabilities are transformed by time evolution
as

Tr[Mx(UtρU
†
t )] = Tr[Mf−t (x)(ρ)], ∀x ∈ X,∀t ∈ R.

(26)

Here ft : X → X is a function representing the action of the
time evolution on the outcomes. This means that ft is invertible
and satisfies the condition

ft1 ◦ ft2 = ft1+t2 , ∀t1,t2 ∈ R.

Note that stationary instruments are included as a special case,
because Eq. (23) can be obtained from Eq. (26) by setting
ft (x) = x for every x and t .

In the nonstationary case, covariant instruments are defined
by the condition [63]

Mx(Ut · U
†
t ) = VtMf−t (x)(·)V †

t , ∀x ∈ X,∀t ∈ R. (27)

An example of nonstationary covariant instrument arises
in the task of phase estimation, where the time evolution is
periodic and the set of outcomes is X = [0,2π ). A covariant
measurement of phase satisfies Eq. (26), with

ft (θ ) = θ + ωt mod 2π, ∀θ ∈ [0,2π ),t ∈ R,

where ω is the frequency of the oscillator. Another example
arises in probabilistic phase estimation [26], where the set of
outcomes is

X = {0,2π} ∪ {fail},
and the outcome “fail” occurs when no phase estimate is
produced. In this case, it is natural to require

ft (fail) = fail, t ∈ R,

implying that the probability of failure is the same at all times.
For probabilistic phase estimation, the set of outcomes

can be partitioned into two orbits: one orbit containing all
the outcomes in [0,2π ) and one orbit containing the single
outcome {fail}. In general, for a nonstationary instrument
satisfying Eq. (26), the outcome set X can be partitioned into
disjoint orbits, as

X =
⋃
y∈Y

Oy, (28)

where each Oy is an orbit under the action of the translation
group and the set Y labels the different orbits. With this
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notation, every covariant instrument can be decomposed as
follows:

Proposition 2. Let {Mx}x∈X be a covariant instrument
transforming states on Hin into states on Hout. Then, {Mx}x∈X
can be decomposed as

Mx = M(y)
x ◦ Py, (29)

where y is the orbit label defined in Eq. (28), {Py}y∈Y is a
pure, energy-preserving instrument transforming states on Hin

into states on Hin, and {M(y)
x }x∈Oy

are covariant instruments
transforming states on Hin into states on Hout.

The proof is provided in Appendix E. Physically, Proposi-
tion 2 tells us that we can realize every time-covariant covariant
instrument through a preselection implemented with energy-
preserving operations, followed by conditional measurements
that estimate the action of time translations.

In the case of probabilistic phase estimation, this im-
plies that every probabilistic phase measurement can be
broken down into a two-outcome, energy-preserving filter
{Psucc,Pfail}, followed by a deterministic phase measurement
{M(succ)

x }x∈[0,2π) in the successful case. Physically, this means
that the postselection on the measurement outcomes can be
freely transformed into a preselection on the input state.
Since the preselection can be done at zero energy cost, our
result shows that the energy cost of every probabilistic phase
measurement is equal to the energy cost of a corresponding
deterministic measurement.

Proposition 2 has also important implications for the search
for the optimal phase estimation strategy with a desired
probability of success. The optimization problem is split
into two subproblems: (i) the search for the optimal energy-
preserving instrument and (ii) the search for the optimal
deterministic estimation. Since the latter is known in a number
of cases [63], Proposition 2 reduces the optimization to the
search for the optimal energy-preserving instrument. It is also
important to stress that every point in the trade-off between
precision of phase estimation and probability of success can
be explored by applying the optimal phase measurement after
a probabilistic preselection done at zero energy cost.

III. OPTIMAL ENERGY-PRESERVING OPERATIONS

We are now ready to start the search for the optimal
operations that transform a coherent superposition of energy
eigenstates into another. In this section we formalize the
problem and address the optimality question, providing the
general form of the optimal energy-preserving operations.

A. How well can we implement a desired state transition
without exchanging energy?

Regarding energy as a resource, a natural question is how
well a desired task can be achieved without the assistance
of external energy sources. Consider the most basic task:
transforming a pure input state |ϕ〉 into a target output state
|ψ〉. For example, the input could be a weak coherent state
with known amplitude but unknown phase, and the target
could be another coherent state with the same phase but with
larger amplitude. The problem of amplifying laser pulses using
energy-preserving operations was recently studied in Ref. [65],

where the authors showed that a nearly perfect amplification
can be achieved probabilistically by exploiting the quantum
fluctuations of the field, without drawing any energy from
the outside. Another interesting example is quantum cloning:
Suppose that a spin-1/2 particle, immersed in a magnetic field,
is prepared in a superposition of spin up and spin down. As
a result, the particle will precess around the direction of the
magnetic field and its state will evolve in time. How well
can we copy the time information without tapping external
energy sources? Note that both in the amplification and in
the cloning example, the input and the target states are drawn
from a set of states: more precisely, the problem is to transform
the input state |ϕt 〉 = e−itHsys/h̄|ϕ〉 into the target state |ψt 〉 =
e−itHsys/h̄|ψ〉 for an arbitrary (and possibly unknown) value of
the parameter t . However, since we require our operations to be
energy-preserving, we do not need to optimize them for every
value of t : indeed, every energy-preserving transformation
that approximates the transition |ϕ〉 → |ψ〉 will do equally
well in approximating the transition |ϕt 〉 → |ψt 〉, due to the
covariance condition of Eqs. (24) and (25). This point is made
clear if we measure the performance of our operations in terms
of the fidelity between the target state and the actual output.
For a probabilistic transformation Mx , the fidelity between
target state and the actual output state is

Fx,t := 〈ψt |ρ ′
x(t)|ψt 〉, ρ ′

x(t) = Mx(|ϕt 〉〈ϕt |)
Tr[Mx(|ϕt 〉〈ϕt |)] .

Using the covariance condition one immediately sees that
Fx,t is independent of t . Physically, this means that energy-
preserving transformations perform equally well on all possi-
ble inputs that are connected by time evolution.

More generally, it is interesting to consider the probabilistic
transformations obtained by postselection over the outcomes
of a quantum measurement. We will call a filter an instrument
{Mx}x∈X along with a partition of outcome set X into
two disjoint subsets—Xsucc and Xfail—which correspond to
successful and unsuccessful instances, respectively. Averaging
the fidelity over the successful instances, we obtain the value

F =
∑

x∈Xsucc

p(x|succ)〈ψ0|ρ ′
x(0)|ψ0〉, (30)

where p(x|succ) is the conditional probability of obtaining x

given that a successful outcome has occurred. Making the filter
explicit, the average fidelity can be rewritten as

F = 〈ψ |Msucc(|ϕ〉〈ϕ|)|ψ〉
psucc

, (31)

where Msucc is the quantum operation defined by

Msucc :=
∑

x∈Xsucc

Mx (32)

and psucc is the probability of success

psucc = Tr[Msucc(|ϕ〉〈ϕ|)]
= Tr[M†

succ(I )|ϕ〉〈ϕ|]
= 〈ϕ|Psucc|ϕ〉,

Psucc := M†
succ(I ). (33)
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In a realistic situation one will be interested not only in
maximizing the fidelity but also in having a sufficiently high
probability of success. Requiring the success probability to be
larger than a given threshold, the problem becomes to find the
energy-preserving quantum operation Msucc that maximizes
the fidelity.

B. Deterministic transitions: Optimality of eigenstate alignment

Let us consider first the case psucc = 1. In this case, the
optimization problem has a closed-form solution, correspond-
ing to an operation that we call eigenstate alignment. Given
two superpositions of energy eigenstates, eigenstate alignment
is an energy-preserving unitary operation that transforms the
eigenstates in one superposition into the eigenstates in the
other. Precisely, let us decompose the pure states |ϕ〉 and |ψ〉
as

|ϕ〉 =
∑
E

√
pE|ϕE〉 and |ψ〉 =

∑
E

√
qE|ψE〉 (34)

with

pE = ‖PE|ϕ〉‖2, qE = ‖PE |ψ〉‖2,

|ϕE〉 := PE|ϕ〉
‖PE |ϕ〉‖ , |ψE〉 := PE |ψ〉

‖PE |ψ〉‖ , (35)

PE being the projector on the eigenspace of Hsys with energy E.
In the rest of the paper, we will extensively use the notations
pE and qE for the energy spectrum of the initial and final
state, respectively. With this notation, we say that a unitary
operator U is an eigenstate alignment of |ϕ〉 with |ψ〉 if U is
energy-preserving and

U |ϕE〉 = |ψE〉 ∀E : pE �= 0,qE �= 0. (36)

It is immediate to see that an eigenstate alignment exists
for every pair of pure states. In general, eigenstate alignments
are not unique, unless the spectrum of Hsys is nondegenerate
and every energy E in the spectrum satisfies the conditions
pE �= 0 and qE �= 0. The importance of eigenstate alignment
comes from the following:

Theorem 3. For psucc = 1, eigenstate alignment achieves the
maximum fidelity for the transition |ϕ〉 → |ψ〉. The maximum
fidelity is given by

Fdet =
(∑

E

√
pEqE

)2

. (37)

The proof is provided in Appendix F. Theorem 3 shows
that the optimal energy-preserving channel can be chosen to
be unitary without loss of generality. In this case, no interaction
with the environment is needed. We stress that the optimality
of unitary transformations is a specific feature of the energy-
preserving framework. Unitary transformations may not be
optimal in the broader class of phase-covariant channels—for
example, they are sometimes suboptimal for cloning qubit
states on the equator of the Bloch sphere [66].

C. Probabilistic transitions: Optimality of pure
quantum operations

Let us move to the general case psucc � 1. We now show
that, without loss of generality, the optimal quantum operation

Msucc can be chosen to be pure, i.e., of the form Msucc(·) =
Msucc · M

†
succ for some suitable operator Msucc. To prove this

result, we provide a construction that transforms any given
quantum operationMsucc into a pure quantum operationM′

succ
with the same probability of success and possibly a higher
fidelity. The construction is based on an ingredient that we
name the Lüders reduction.

1. Lüders reduction

The Lüders reduction transforms a given quantum operation
into a pure quantum operation with the same probability
of success. Specifically, the Lüders reduction of a quantum
operation M is the pure quantum operation P defined by

P(·) =
√

P ·
√

P , P = M†(I ). (38)

When P is a projector, the quantum operationP coincides with
the state transformation defined by Lüders in his treatment of
the measurement process [67]. When P is not a projector,
P is often called the “generalized Lüders transformation”
associated with P [68].

By construction, a quantum operation and its Lüders
reduction have the same probability: For every quantum state
ρ one has

Tr[P(ρ)] = Tr[
√

Pρ
√

P ]

= Tr[Pρ]

= Tr[M†(I )ρ]

= Tr[M(ρ)]. (39)

Among the quantum operations that happen with the same
probability asM, the Lüders reduction can be characterized as
the “least noisy,” meaning that every other quantum operation
can be reproduced by applying a noisy channel to the output
of P:

Proposition 3. Every quantum operation M can be de-
composed as M = C ◦ P where P is the Lüders reduction of
M and C is a suitable quantum channel. Moreover, if M is
energy-preserving, then also P and C are energy-preserving.

The proof is provided in Appendix G. Using this result,
the search for the optimal quantum operation is split into two
different problems: the search for an optimal pure operation
P and the search for the optimal deterministic operation C.
Note that this conclusion applies not only to the problem
of transforming pure states, but also to the optimization of
transitions involving mixed states.

2. Increasing the fidelity without changing the success probability

Combining the Lüders reduction and eigenstate alignment
we can turn every quantum operation Msucc into a pure quan-
tum operation M′

succ with the same success probability and a
possibly higher fidelity. The idea is simple: by Proposition 3,
every energy-preserving quantum operation Msucc can be
decomposed as

Msucc = C ◦ Psucc,

where C is an energy-preserving channel and Psucc is the
Lüders reduction given by

Psucc(·) =
√

Psucc ·
√

Psucc, Psucc = M†
succ(I ).
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When the Lüders reduction takes place, the input state |ϕ〉 is
transformed into the pure state

|ϕ′〉 =
√

Psucc|ϕ〉
‖√Psucc|ϕ〉‖ . (40)

Now, the probability of success depends only on the operator
Psucc. Fixing Psucc, we know that the optimal energy-preserving
channel for the transition |ϕ′〉 → |ψ〉 is given by eigenstate
alignment (Theorem 3). Hence, the fidelity for the quantum
operation Msucc cannot be larger than the fidelity of the
quantum operation

M′
succ = U ◦ Psucc, (41)

where U is the unitary channel corresponding to the eigenstate
alignment of |ϕ′〉 with |ψ〉. Note that M′

succ is energy-
preserving, because it is the composition of two energy-
preserving operations. Summarizing, we have proven the
following:

Proposition 4. For every energy-preserving operation
Msucc, the energy-preserving operation M′

succ defined in
Eq. (41) has the same success probability and at least the same
fidelity in the implementation of the state transition |ϕ〉 → |ψ〉.

Explicitly, the success probability and the fidelity of M′
succ

are given by

psucc =
∑
E

pE〈ϕE|Psucc|ϕE〉 (42)

and

F =
(∑

E

√
p′

EqE

)2

, p′
E = pE〈ϕE |Psucc|ϕE〉

psucc
, (43)

where pE and qE are the probabilities in the input and output
states, as defined in Eq. (35). The above expression of the
fidelity follows directly from the application of Theorem 3 to
the transition |ϕ′〉 → |ψ〉.

Now, since turning a quantum operation into a pure
quantum operation can only increase the fidelity, we proved
the following:

Corollary 1 (optimality of pure quantum operations). For
every fixed value of the success probability, the energy-
preserving operation that maximizes the fidelity can be chosen
to be pure without loss of generality.

3. Optimal quantum operations from Lagrangian optimization

The optimization of the fidelity for given success proba-
bility can be completed by Lagrangian optimization. Let us
define the coefficients

xE := 〈ϕE |Psucc|ϕE〉.
With this definition, the probability of success (42) and the
fidelity (43) can be expressed as

psucc =
∑
E

pExE (44)

and

F = p−1
succ

(∑
E

√
xEpEqE

)2

, (45)

respectively. By Lagrangian optimization, we obtain that the
optimal filter has a simple structure: the energy spectrum
is partitioned into two disjoint subsets, S0 and S1, and the
coefficients of the optimal transformation are given by

xE =
{

1 E ∈ S0,
psucc−p(S0)

1−q(S0)
qE

pE
E ∈ S1,

(46)

where p(S0) :=∑E∈S0
pE and q(S0) :=∑E∈S0

qE . In other
words, the optimal filter is completely determined by the
choice of the set S0. Inserting Eq. (46) into Eq. (45), the
maximization of the fidelity is reduced to the maximization of
the quantity

�[S0] =
∑
E∈S0

√
pEqE +

√
[psucc − p(S0)][1 − q(S0)].

(47)

Examples of quantum operations of the form (46) can be
found in Ref. [26], which focused on the specific problem of
phase estimation. More examples will be provided in Sec. V.

D. The ultimate limits of probabilistic
energy-preserving processes

So far we considered the optimization of the fidelity for
fixed success probability. We now remove the constraint and
focus only on the maximization of the fidelity. The problem is
interesting because it highlights the quantum limits to what is
logically possible, no matter how small the probability [69].

The ultimate limit for energy-preserving operations is
characterized by the following:

Proposition 5. Let |ϕ〉 and |ψ〉 be two generic pure states of
a finite-dimensional quantum system. For the transition |ϕ〉 →
|ψ〉, the maximum of the fidelity over all energy-preserving
quantum operations is

Fmax =
∑

E∈Sp(ϕ)∩Sp(ψ)

qE, (48)

where qE is the probability defined in Eq. (35) and Sp(χ )
denotes the energy spectrum of a generic state |χ〉, defined as

Sp(χ ) := {E|〈χ |PE|χ〉 �= 0}.
For a quantum operation achieving fidelity Fmax the maximum
probability of success is given by

pmax
succ =

(
min

E∈Sp(ϕ)∩Sp(ψ)

pE

qE

)
Fmax, (49)

where pE is the probability defined in Eq. (35). The quantum
operation achieving maximum fidelity with maximum proba-
bility is pure and its Kraus operator satisfies the condition

M|ϕE〉 =
[

min
E′∈Sp(ϕ)∩Sp(ψ)

√
pE′

qE′

]√
qE

pE

|ψE〉 (50)

for every energy E in Sp(ϕ).
The proof is provided in Appendix H.

IV. MULTIROUND RECURSIVE PROTOCOLS

In the previous section we provided a recipe to find the
protocol that achieves maximum fidelity for a fixed value of
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the success probability. By definition, the resulting protocol is
tailor-made to that specific value of the probability. However,
in many situations it is useful to have a more flexible protocol,
where the experimenter can make successive attempts at
realizing the desired transformation and is free to decide on
the fly when to stop. In this section we analyze protocols of
this form, which we refer to as recursive protocols. Under
the energy-preserving constraint, we identify the protocol that
produces the best possible approximation of the target state
at each step. It is important to stress that the protocol does
not require an actual experimenter to read the outcomes and
to make decisions: in principle, all the measurements and
conditional operations can be implemented by a fully quantum
machine operating in an energy-preserving fashion.

A. The optimal recursive protocol

Given a sequence of K binary filters with outcomes
{succ,fail}, consider the protocol defined by the following
instructions:

(1) Set k = 1.
(2) If k � K , then apply the kth filter; else terminate.
(3) If the outcome is x = succ, then terminate.
(4) If the outcome is x = fail, then replace k with k + 1

and go back to instruction (2).
Recursive protocols of this form are an example of

“quantum loop programs,” studied in Ref. [70]. All these
protocols can be can be visualized as decision trees of the
following form:

Filter 1
succ

fail

Filter 2
succ

fail
...

fail

Filter K
succ

fail

Protocols of this form have been employed for different
purposes, including entanglement concentration [71], im-
plementation of quantum gates [72–74], and ancilla-driven
computation [75]. One such protocol that is particularly similar
to ours is quantum rejection sampling [76]. There, the goal is
to generate a target superposition |ψ〉 using a black box Uϕ

that prepares another superposition |ϕ〉 from a fixed state |0〉.
The difference between rejection sampling and our problem is
that in our case we do not have the black box Uϕ at disposal.
Instead, we have the coherent superposition |ϕ〉, which is a
strictly weaker resource than the gate Uϕ , due to Nielsen and
Chuang’s no-programming theorem [77].

In our case, the goal of the protocol is to transform a
coherent superposition of energy eigenstates into another. Of
course, at each step there will be a trade-off between the fidelity
with the target and the probability of success. In the simplest
scenario, the protocol can be designed to attain the absolute
maximum of the fidelity at each round, and to do so with
maximum probability of success. An experimenter following
such a protocol will have the guarantee that the best possible
performance is achieved in each individual round.

We consider the transition |ϕ〉 → |ψ〉 in the case of states
|ϕ〉 and |ψ〉 in a finite-dimensional Hilbert spaceH � Cd , d <

∞, or, more generally, states whose energy spectra intersect

on a finite set of points, with |Sp(ϕ) ∩ Sp(ψ)| � d. For the
optimal protocol we make a list of desiderata in decreasing
order of priority: for every k ∈ {1, . . . ,K − 1}

(1) at the kth round, the successful quantum operation
should transform the input state ρ(k) into the target |ψ〉 with
maximum fidelity;

(2) the optimal transition ρ(k) → |ψ〉〈ψ | must be achieved
with maximum probability of success;

(3) the unsuccessful quantum operation at the kth round
should produce the state ρ(k+1) that leads to maximum fidelity
for the transformation ρ(k+1) → |ψ〉〈ψ | at the (k + 1)th round;

(4) at the final round (k = K) the successful quantum
operation should achieve maximum fidelity with maximum
probability and, conditional on the fulfillment of this require-
ment, the unsuccessful quantum operation should achieve
maximum fidelity.

The derivation of the optimal protocol is rather technical
and is provided in Appendix I. In the following we present the
final result of the optimization and discuss the implications of
our findings.

At the kth round, the optimal binary filter consists of two
pure quantum operations,B(k)

succ(·) = B(k)
succ · B

(k)†
succ andB(k)

fail(·) =
B

(k)
fail · B

(k)†
fail . Since all quantum operations are pure, the state of

the system is pure at every round. The input state at the kth
round, denoted by |ϕ(k)〉, can be expanded as

|ϕ(k)〉 =
∑
E

√
p

(k)
E |ϕE〉,

where the energy eigenstates are the same as in the decompo-
sition of |ϕ〉; cf. Eq. (35). With this notation, the successful
quantum operation is determined in an essentially unique way
by the condition

B(k)
succ|ϕE〉 =

⎡⎣ min
E′∈Sp(ϕ(k))∩Sp(ψ)

√
p

(k)
E′

qE′

⎤⎦√ qE

p
(k)
E

|ψE〉

∀E ∈ Sp(ϕ(k)). (51)

Here the only freedom is in the definition of the operator
in the subspace spanned by energy eigenstates outside the
spectrum of |ϕ(k)〉. The form of Eq. (51) follows directly
from the requirements 1 and 2 in our list of desiderata (cf.
Proposition 5). Similarly, the unsuccessful quantum operation
is determined in an essentially unique way by the condition

B
(k)
fail =

√
I − B

(k)†
succB

(k)
succ. (52)

The form of Eq. (52) follows from the requirement 3 in our list.
Remarkably, the quantum operation B(k)

fail does not maximize
only the fidelity achievable from the input state ρ(k+1), but also
the probability that maximum fidelity is achieved.

B. Fidelity and success probability

The optimal protocol is specified recursively by Eqs. (51)
and (52). Making the dependence on the input and target
states explicit, it is possible to derive closed formulas for the
fidelity and the success probability. To this purpose, we need
to introduce some notation. Given a pair of pure states |ϕ〉
and |ψ〉 and given the corresponding probabilities pE and qE
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defined in Eq. (35), we define the ratio pE/qE for all values of
the energy in Sp(ϕ) ∩ Sp(ψ). Then, we arrange the values of
the ration rE in increasing order as

0 < r1 < r2 < · · · < rL,

where rL is the maximum ratio. Clearly, by the assumption of
finite dimensionality, L satisfies the relation

L � |Sp(ϕ) ∩ Sp(ψ)| � d.

For every possible value ri , we consider the set of energy
eigenvalues Ri defined as

Ri :=
{
E ∈ Sp(ϕ) ∩ Sp(ψ)

∣∣∣∣pE

qE

= ri

}
(53)

and we denote the union of the first k sets by

Uk :=
k⋃

i=1

Ri . (54)

With this definition, the fidelity and the success probability at
the kth step can be expressed as

F (k)
max =

∑
E∈Sp(ϕ)\Uk−1

qE (55)

and

p(k)
succ = (rk − rk−1) · F (k)

max, (56)

respectively. The proof is presented in Appendix J. Note that
the fidelity is strictly decreasing with k, reaching zero for
k = L. In other words, it is useless to consider protocols with
more than L rounds.

The explicit expressions given by Eqs. (55) and (56) turn
out to be very useful for studying the trade-off between fidelity
and success probability.

Indeed, they allow us to evaluate the probability that the
protocol succeeds in one of the first T rounds, given by

psucc(T ) :=
T∑

k=1

p(k)
succ

=
∑

E∈UT −1

pE + rT F (T )
max, (57)

and to observe its scaling with the average fidelity achieved in
the first T steps, given by

F (T ) :=
∑T

k=1 p(k)
succF

(k)
max

psucc(T )
. (58)

The trade-off curve between F (T ) and psucc(T ) will be
illustrated in Sec. V for a number of concrete examples.

C. Output states and termination time of the protocol

In addition to the fidelity and success probability, it is useful
to know what states are produced at every step of the protocol.
Assuming that the total number of rounds is upper bounded
as K � L, the explicit expression of the output state produced
at the kth round can be obtained as follows. We regard the
recursive protocol as a quantum instrument, with outcomes in

the set {1, . . . ,K + 1}. The outcome k corresponds to the pure
quantum operation with Kraus operator

Mk :=
{

B(k)
succB

(k−1)
fail · · ·B(1)

fail k = 1, . . . ,K,

B
(K)
fail B

(K−1)
fail · · · B(1)

fail k = K + 1.
(59)

For k � K , the Kraus operators are characterized in Ap-
pendix J. Using this characterization, we show that the output
state in the case of success at the kth round is given by

|ψ (k)〉 := Mk|ϕ〉
‖Mk|ϕ〉‖

= 1√
F

(k)
max

∑
E∈Sp(ϕ)\Uk−1

√
qE|ψE〉. (60)

Note that |ψ (k)〉 is a truncated version of the target state,
with the energy spectrum deprived of all the values in Uk−1

and of all the values that are not in in the spectrum of |ϕ〉. The
energy spectrum of the output state is eroded from one step to
the next: each iteration of the protocol produces a state with a
strictly lesser amount of coherence in the energy eigenbasis.
Due to the assumption of finite dimensionality, the process of
erosion terminates in a finite number of steps, equal to Tmax.
Protocols with more than Tmax rounds terminate after Tmax

steps, meaning that the probability of success satisfies

psucc(T ) = 1 ∀ T > Tmax.

The fact that the protocol is guaranteed to terminate in a finite
time is an appealing feature. It is worth stressing that the
termination time Tmax is upper bounded by the number of
distinct energy levels of the system, which can be much smaller
than the dimension of the Hilbert space, as in the following:

Example 2. Consider the case of N identical noninteracting
systems of dimension d. In this case the total Hamiltonian is
the sum of the single-system Hamiltonians, and its number of
energy levels is upper bounded by the number of partitions
of N into d non-negative numbers (see, e.g., [27]). We then
have that the number of rounds needed to terminate is upper
bounded as

Tmax �
(

d + N − 1
N

)
< (N + 1)d−1,

i.e., by a polynomial in N . Even if the probability of success
in the first round is exponentially small in N , as in the case
of quantum super-replication [27,28], the recursive protocol is
guaranteed to reach unit probability in a polynomial number
of iterations.

D. Increasing the fidelity of the recursive protocol

At every iteration of the recursive protocol, the total
probability of success increases, while the average fidelity
decreases. In general, the relation between fidelity and proba-
bility of success is not optimal, because the histories leading to
successful outcomes are mixed incoherently: at the T th step,
the successful quantum operation has the form

M(T )(ρ) =
T∑

k=1

MkρM
†
k , (61)
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where Mk are the Kraus operators defined in Eq. (59). Now, we
have a systematic method to increase the fidelity while keeping
the same success probability: the method is to take the Lüders
reduction of M(T ) and to perform eigenstate alignment on the
output. The following paragraphs highlight the main features
of this method.

1. Coherent coarse-graining

The Lüders reduction transforms the quantum operation
M(T ) into the pure quantum operation

P (T )(·) =
√

P (T )(·)
√

P (T )

with

P (T ) = M(T )†(I ) =
T∑

k=1

M
†
kMk.

The technique of joining different quantum operations into a
single one will be an important tool in the following. For this
reason, it is convenient to have a name for it:

Definition 3. We call P (T ) the coherent coarse-graining of
the quantum operations {Mk|k = 1, . . . ,T }.

An intuitive way to visualize coherent coarse-graining is
through a generalization of the double-slit experiment. Con-
sider an interference experiment involving multiple slits [78].
When detectors are placed on the slits, the passage of a particle
through the kth slit will trigger the occurrence of the quantum
operation Mk . When the detectors at the first T slits are
removed, the passage through these slits will result into the
coherently coarse-grained operation P (T ).

Note that the flexibility of the recursive protocol is lost
after coherent coarse-graining: when multiple histories are
coherently combined, it is not possible anymore to choose
on the fly when to stop the protocol. Still, the advantage of
coherent coarse-graining is that it provides a heuristic way to
construct lower bounds on the probability-fidelity trade-off.

2. Eigenstate alignment

By construction, coherent coarse-graining does not change
the probability of success. The fidelity is then increased
by eigenstate alignment, achieved by any energy-preserving
unitary U such that

U |ϕE〉 = |ψE〉 ∀E ∈ Sp(ϕ) ∩ Sp(ψ).

Note that the operation of eigenstate alignment does not
depend on how many rounds of the protocols are coarse-
grained. The operation could be performed even before the
filter is applied, provided that one suitably adapts the definition
of the filter.

When combined, coherent coarse-graining and eigenstate
alignment yield the pure quantum operation

M(T )′(·) = M (T )′ · M (T )′†, M (T )′ := U

√√√√ T∑
k=1

M
†
kMk, (62)

whose action on the energy eigenstates is given by

M (T )′|ϕE〉 =
⎧⎨⎩|ψE〉 E ∈ UT ,√

rT
qE

pE
|ψE〉 E �∈ Sp(ϕ) \ UT ,

(63)

[see Eq. (J8) of Appendix J for the explicit derivation]. For
T larger than the termination time Tmax, our construction
eventually yields the optimal energy-preserving channel for
the transition |ϕ〉 → |ψ〉 (cf. Theorem 3).

3. The performance of the coherently coarse-grained protocol

Since taking eigenstate alignment as an obliged step in the
optimal operation, we refer to the quantum operation M(T )′
simply as a coherent coarse-graining (of the first T steps of
the protocol). By construction, the probability of success of
the quantum operation M(T )′ is equal to the probability that
the original (non-coarse-grained) protocol, succeeds within T

steps [cf. Eq. (56)]. On the other hand, the fidelity can be
evaluated explicitly by using Eq. (63), which yields

F ′(T ) =
[∑

E∈UT

√
pEqE + √

rT

∑
E∈Sp(ϕ)\UT

qE

]2∑
E∈UT

pE + rT

∑
E∈Sp(ϕ)\UT

qE

. (64)

Performing the operation of coherent coarse-graining for
different values of T one can obtain a sequence of filters that
approximate the optimal curve of the fidelity-probability trade-
off. The improvement due to coherent coarse-graining will
be illustrated in the next section with a number of concrete
examples.

V. APPLICATIONS

In this section we apply the recursive protocol and the
method of coherent coarse-graining to the tasks of phase
estimation, cloning of quantum clocks, phase-insensitive
amplification of coherent states, and approximate correction
in ancilla-driven quantum computation.

A. Quantum metrology with probabilistic
energy-preserving operations

Here we apply the recursive protocol to the task of phase
estimation [63,79]. The main idea is the following: When the
phase is encoded in a quantum state in a suboptimal way, one
can try to improve the precision of phase estimation by first
transforming the state into the optimal state. Of course, such
transition cannot take place deterministically—for otherwise
the original state would have been already optimal. However,
a probabilistic protocol can produce good approximations of
the optimal state and, conditionally on the success of the
probabilistic transformations, it can enable an improved phase
estimation. In the following we will use our recursive protocol
to scan the trade-off curve between fidelity and probability of
success.

To illustrate the idea, we consider the simple case where the
phase is encoded into the state of a two-level quantum system,
as

|ϕθ 〉 = e−iθZ|ϕ〉 θ ∈ [0,2π ),

with Z = |0〉〈0| − |1〉〈1| and |ϕ〉 = (|0〉 + eiθ |1〉)/√2. We
assume that N identical copies of the state are available and
search for the optimal strategy to estimate θ . To quantify the
precision, we use the gain function G(θ,θ̂ ) defined by [63]

G(θ,θ̂ ) := 1 + cos(θ − θ̂ )

2
.
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Note that the gain function assigns a larger gain when the
estimate θ̂ is closer to the true value θ , attaining the maximum
value 1 if and only if θ̂ = θ . Then, the goal is to find the
estimation strategy that maximizes the average gain

〈G〉 :=
∫

dθ

2π

∫
dθ̂

2π
G(θ,θ̂ )〈ϕθ |⊗NEθ̂ |ϕθ 〉⊗N, (65)

where {Eθ̂ } is the positive operator valued measure (POVM)
describing the estimation strategy.

For phase estimation with pure states, the optimal POVM
has been derived by Holevo [63]. Specifically, for pure states
of the form

|θ 〉 =
N∑

n=0

cne
−iθn|n〉, cn � 0,∀n ∈ [0,N ], (66)

Holevo’s POVM yields the gain

〈Gdet〉 = 1
2 + 1

2 〈0|�|0〉,
�mn = 1

2 [δm(n−1) + δm(n+1)]. (67)

In our case, the above expression yields the value

〈Gdet〉 = 1

2
+ 1

2N+1

N−1∑
n=0

√(
N

n

)(
N

n + 1

)

= 1 − O

(
1

N

)
. (68)

Now, when the unknown phase shift e−iθZ is probed N

times, one can obtain a much better estimate by preparing the
optimal input state, which in this case is the “sine state” [80,81]

|ϕopt,θ 〉 =
√

2

N + 1

N∑
n=0

sin

(
nπ

N + 1

)
eiθn|n〉. (69)

This state achieves the Heisenberg scaling 〈G〉 = 1 −
O(1/N2). In the following, we will use our recursive protocol
to transform the state |ϕθ 〉⊗N into approximations of the
optimal state |ϕopt,θ 〉, which will then be used for state
estimation.

Note that the output states of our protocol are of the
form (69) at every step. Thanks to this fact, we can apply
Holevo’s recipe (67) to compute the optimal gain. Precisely,
the gain at the kth step is given by

〈G(k)〉 = 1
2 + 1

2 〈ψ (k)|�|ψ (k)〉, (70)

where |ψ (k)〉 is the output state at the kth step, given by Eq. (60).
Averaging over the first T steps we obtain the gain

〈GT 〉 :=
∑T

k=1 p(k)
succ〈G(k)〉

psucc(T )
, (71)

where p(k)
succ is the probability of achieving success at the kth

step and psucc(T ) =∑T
k=1 p(k)

succ. The value of the gain can be
explicitly calculated using Eqs. (57), (60), and (J8). In Fig. 2
we show the estimation gain for N = 30 copies of the input
state and for K = 27 iterations of the recursive protocol.

The performance of the recursive protocol can be compared
with the performances of its coherent coarse-graining. By

0.2 0.4 0.6 0.8 1.0psucc
0.95

0.96

0.97

0.98

0.99

1.00

FIG. 2. Probabilistic phase estimation via the recursive protocol
and its coherent coarse-graining. The figure shows the trade-off
between success probability and average gain for phase estimation
with the qubit state |ϕθ 〉⊗N for N = 30. The green solid line (with
numerics represented by red dots) shows the trade-off between
estimation gain and success probability for a recursive protocol with
K = 27 rounds, with the T th point corresponding to the first T steps.
The blue solid line (with numerics represented by the black dots)
shows the trade-off for filters generated by coherent coarse-graining,
with the T th point corresponding to the coherent coarse-graining of
the first T steps. Note that the gain for the coherent coarse-graining
remains higher than the optimal deterministic estimation’s gain
(the black dashed line) even when the protocol becomes “almost
deterministic” (i.e., the probability of success tends to one), while the
gain for the recursive protocol drops down quickly with the growth
of the success probability.

coherently coarse-graining over the first T rounds, we obtain
the average gain given by

〈G′
T 〉 = 1

2 + 1
2 〈ψ ′(T )|�|ψ ′(T )〉, (72)

with

|ψ ′(T )〉 = M ′(T )|ϕ〉⊗N

‖M ′(T )|ϕ〉⊗N‖
and M (T ) as in Eq. (62). The estimation gain of the coherent
coarse-graining is plotted in Fig. 2. In addition, Fig. 3 shows
the scaling of the gain and the success probability with the
number of copies N .

B. Converting coherence into metrological precision

In the previous subsection we analyzed the problem of
phase estimation with N identical qubits. Here we will
consider a one-shot scenario, where the phase has to be
estimated from a single copy of the state

|ϕθ 〉 := 1√
N

N−1∑
n=0

e−inθ |n〉, (73)

consisting of a uniform superposition of the eigenstates of
the Hamiltonian H =∑N−1

n=1 n|n〉〈n|. The above state is the
maximally coherent state [34] in the energy eigenbasis; that is,
it is the most valuable state in the resource theory of coherence.
Interestingly, it is not the optimal state for phase estimation.
Indeed, the estimation gain for the maximally coherent state
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FIG. 3. Scaling of the gain and success probability for coherently
coarse-grained protocols. Panel (a) shows the estimation gain as a
function of the number of copies N , for three coherently coarse-
grained protocols corresponding to different values of T , including
T = 1 (black line with black dots), T = 3 (green line with red dots),
and T = 5 (blue line with purple dots). The dashed line with black
dots represents the optimal deterministic gain 〈Gdet〉. Panel (b) shows
the decrease of the total success probability as a function of N for
different values of T , including T = 1 (black line with black dots),
T = 3 (green line with red dots), and T = 5 (blue line with purple
dots).

can be evaluated with Eq. (67), which in this case yields

〈Gdet〉 = 1 − 1

2N
. (74)

When the number of copies is asymptotically large, the gain
approaches its maximum value with the standard quantum
limit scaling 1/N , rather than the Heisenberg scaling 1/N2.

We now explore how the maximally coherent state can be
transformed into approximations of the optimal state for phase
estimation. The performance of the recursive protocol and of
its coherent coarse-graining can be evaluated using Eqs. (71)
and (72). When the number of iterations T is small compared
to the number of energy levels N , the average gain has the
simple analytical expression

〈GT 〉 = 1 − π2

2N2

[
T (T − 1) + 1

2

]
+ O

[(
T

N

)3]
. (75)

0.55 0.60 0.65 0.70 psucc
0.986

0.992

0.996

0.999

FIG. 4. Probabilistic phase estimation via the recursive protocol
and its coherent coarse-graining. The figure shows the trade-off
between success probability and average gain for phase estimation
with maximally coherent states with N = 61. The green solid line
(with numerics represented by red dots) shows the probability-gain
trade-off for K = 17 rounds of the recursive protocol. At the
first round the protocol reaches the maximum possible gain, equal
to Gmax = 99.9%, in agreement with the analytical expression of
Eq. (75). The blue solid line (with numerics represented by the
black dots) shows the trade-off for filters generated by coherent
coarse-graining, with the T th point corresponding to the coherent
coarse-graining of the first T steps of the recursive protocol. For the
first K = 17 rounds the estimation gain of coherent coarse-graining
remains approximately equal to Gmax = 99.9%, although eventually
it is bound to decrease to the optimal deterministic value 〈Gdet〉 =
99.2% (black dashed line).

Note that the gain exhibits Heisenberg scaling with the number
of energy levels N , with a constant that grows quadratically
with the number of rounds T . The success probability can also
be evaluated analytically in the regime N � T and its value
is given by

psucc(T ) = 1

2
+ π2

N2

[
T (T − 1) + 1

8

]
+ O

[(
T

N

)3]
. (76)

From the above expressions, one can clearly see the trade-off
between gain and success probability, which can be made
explicit in the trade-off curve

〈GT 〉 = 1 − 3π2

16N2
− psucc(T ) − 1/2

2
, N � T . (77)

In Fig. 4 we illustrate the trade-off between the probability
of success and the average gain for N = 61. The recursive
protocol manages to increase the probability of success by
approximately 30% from the first round to the 14th, while
keeping the average gain above the deterministic gain. In Fig. 5
we show the scaling of the gain and the success probability
with the dimension N for different values of T .

Let us evaluate now the performance of coherent coarse-
graining. In the N � T regime, the gain has the analytical
expression

〈G′
T 〉 = 1 − π2

4N2

{
1 + 4

[
psucc(T ) − 1

2

]2}
.

The trade-off between estimation gain and probability of
success is illustrated in Fig. 4 for N = 61. Also in this case,
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FIG. 5. Scaling of the estimation gain and success probability for
the recursive protocol. Panels (a) and (b) show the average gain G

and the total success probability (b) as a function of the energy scale
N for different values of T , including T = 1 (black line with black
dots), T = 2 (green line with red dots), and T = 3 (blue line with
purple dots).

one can observe that coherent coarse-graining offers a better
trade-off curve than the recursive protocol.

Finally, it is interesting to compare the performance of
the coherent coarse-graining with the optimal trade-off curve
between gain and probability of success, which is known
explicitly in the case under consideration [26]. Remarkably,
the comparison shows that for large N the coherent coarse-
graining yields exactly the optimal estimation strategy of
Ref. [26]. In other words, in this case the coherent coarse-
graining of our recursive protocol is asymptotically optimal.
At this point, a natural question is whether coherent coarse-
graining always gives the optimal fidelity/probability trade-off.
The answer turns out to be negative: by evaluating Eq. (72)
for small values of N (e.g., N = 10) we find out that the
average gain of the coherent coarse-graining sometimes falls
below the threshold of the optimal deterministic gain in
Eq. (74), clearly indicating suboptimality in the nonasymptotic
regime.

C. Energy-preserving cloning of quantum coherence

Here we consider the problem of quantum cloning [82,83],
where the task is to transform N identical copies of an unknown
quantum state into a larger number M � N of approximate
copies.

In most cases, the problem has been addressed without
imposing any constraint on the cloning process, except for its

compatibility with the laws of quantum mechanics. Instead,
here we consider copy machines that have to work without
any supply of energy for the outside. Consider for example
a scenario where one wants to clone the state of a quantum
clock [27], given by

|ψt 〉 = e−itH/h̄|ψ〉,
where H = H † is a suitable Hamiltonian. Here the time
parameter t is assumed to be unknown and the copy machine
is required to work equally well for every value of t . In
order to produce copies without requiring energy from the
outside, the machine has to process the N input clocks
jointly with a state of M − N “blank clocks,” which provide
no information about time, but possess sufficient energy to
enable the desired transition. Indeed, in order to approximate
M perfect copies of the state |ψt 〉 the machine should at
least be able to produce output states that have energy
close to M〈ψ |H |ψ〉, meaning that the blank clocks should
have energy close to (M − N )〈ψ |H |ψ〉. The problem of
energy-preserving cloning of clock states is equivalent to the
problem of cloning coherence: denoting by |β〉 the blank
state, the cloning machine attempts at converting the state
|ψ〉⊗N ⊗ |β〉 into the state |ψ〉⊗M . Choosing the blank state to
be an eigenstate of the energy, we have that maximizing the
fidelity for the transition |ψ〉⊗N ⊗ |β〉 −→ |ψ〉⊗M under the
energy-preserving restriction is equivalent to maximizing the
fidelity of cloning for every instant of time.

In the following we analyze in detail the simplest example
of energy-preserving cloning of quantum coherence: we
consider N two-level systems, each of them with Hamiltonian
H = h̄ω

2 Z and initially prepared in the coherent superposition
|+〉 = (|0〉 + |1〉)/√2. The question is how well one can
produce M > N approximate copies without paying an energy
cost. For simplicity, we assume that the difference M − N is
even: under this assumption, we can choose the blank state
to be an energy eigenstate with energy exactly equal to zero.
Specifically, we choose the state |β〉 = |M − N,0〉, belonging
to the symmetric eigenbasis

|L,m〉 :=
∑

π∈SL
Uπ |0〉⊗(L+m)/2 ⊗ |1〉⊗(L−m)/2

√
L![(L + m)/2]![(L − m)/2]!

,

where SL denotes the group of permutations of an L-element
set and Uπ is the unitary that permutes L Hilbert spaces
according to the permutation π .

We now apply our recursive protocol, producing at each
step an approximation of the desired M-copy state. Let us
expand the states |ψ〉⊗N and |ψ〉⊗M as

|ψ〉⊗L = 2−L/2
L∑

m=−L

√(
L

L−m
2

)
|L,m〉 L = M,N,

then use the formulas for the fidelity and success probability
derived in Sec. IV. At the first step of the protocol, the
successful quantum operation produces an output state with
the maximum possible fidelity, given by

F (1)
max = 1

2M

N∑
n=−N

(
M

M−n
2

)
.
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FIG. 6. Energy-preserving cloning of quantum clocks via the
recursive protocol and its coherent coarse-graining. The figure shows
the trade-off between success probability and fidelity for the N -
to-M cloning of the clock state |ψt 〉 = (eiωt/2|0〉 + e−iωt/2|1〉)/√2
with M = 400 and N = 80. The green solid line (with numerics
represented by red dots) shows the probability-fidelity trade-off for a
recursive protocol with K = 32 rounds. The blue solid line (with
numerics represented by the black dots) shows the trade-off for
filters generated by coherent coarse-graining, with the T th point
corresponding to the coherent coarse-graining of the first T steps
of the recursive protocol. Finally, the black dashed line represents
the fidelity for the optimal deterministic cloning protocol. Notice
that the recursive protocol maintains fidelity larger than the optimal
deterministic fidelity for all steps up to the last.

The above fidelity turns out to be equal to the absolute
maximum of the fidelity achievable over all covariant quantum
operations, derived by Fiurášek in Ref. [29]. For large N , the
fidelity is close to 1 whenever M is small compared to N2, thus
allowing one to achieve quantum super-replication [27]. It is
well known that the price of super-replication is a probability
of success vanishing exponentially fast with N [27]. The main
interest of our recursive protocol lies in the fact that it allows
us to increase the probability of success. In a protocol with
K > 1 steps, the average fidelity decreases at each step, while
the probability of success increases. The trade-off between the
fidelity and the probability of success is illustrated in Fig. 6 for
the case of N = 80, M = 400, and K = 32, using Eqs. (55)
and (56). In addition, we compare the fidelity of the recursive
protocol with that of its coherent coarse-graining, given by
Eq. (64). As already observed, the coherent coarse-graining
achieves a higher fidelity, while keeping the same success
probability. In the figure we also plot the optimal fidelity
in the deterministic case (black dashed line in Fig. 6). The
deterministic fidelity (derived in Theorem 3) coincides with
the fidelity for phase-covariant cloning [66], meaning that the
optimal cloner can be realized in an energy-preserving fashion.

Figure 6 well illustrates the advantages of the recursive
protocol. At the first round the fidelity is very high, but
the success probability has the extremely tiny value p(1)

succ =
6 × 10−20. The subsequent rounds of the protocol increase the
success probability dramatically, reaching a probability of ap-
proximately 23% at the 31st step. The fidelity for the recursive
protocol remains higher than the optimal deterministic fidelity
up to almost the very last step. An even better performance is
attained through coherent coarse-graining.

D. Probabilistic energy-preserving amplification
of coherent light

In quantum optics the energy-preserving instruments are
those that preserve the average photon number. In the single-
mode scenario, the number observable is nondegenerate
and the energy-preserving quantum operations have diagonal
Kraus operators in the Fock basis {|n〉}. In the following
we consider the application of the recursive protocol to the
amplification of the coherent state of light

|r1〉 −→ |r2〉 0 � r1 � r2.

Note that, since we require the amplification map to be part of
a number-preserving quantum instrument, our protocol defines
a phase-insensitive amplifier [84], which works equally well
for the transition

|r1e
iθ 〉 −→ |r2e

iθ 〉 0 � r1 � r2,

where θ is an arbitrary angle.
Amplifying a coherent state without increasing its photon

number seems to be a daunting task. However, the fact that the
number is preserved only on average grants us the opportunity
to reach high fidelity in a probabilistic fashion. In the case
of amplifiers, the trade-off between success probability and
fidelity is essentially a trade-off between success probability
and photon number modulation.

Since the Hilbert space is infinite dimensional, our recursive
protocol cannot be applied directly. To overcome the obstacle,
we define a threshold N and assume that the successful
operations project the input state inside the subspace spanned
by Fock states with number smaller than N . Practically, for
N � r2

2 , the projection can be done without affecting the
fidelity. The fidelity at the kth round, given by Eq. (55), can be
lower bounded as

F (k)
max � 1 − e−r2

2

(
r2

2 e

N − k + 1

)N−k+1

(78)

when N − k + 1 > r2
2 . On the other hand, the probability of

success in Eq. (56) can be expressed as

p(k)
succ =

⎧⎨⎩er2
2 −r2

1
(

r1
r2

)2N
F (1)

max k = 1,

er2
2 −r2

1
(

r1
r2

)2N−2k+2[
1 − ( r1

r2

)2]
F (k)

max k > 1.
(79)

Interestingly, the successful quantum operation at the first
round of our protocol (k = 1) coincides with the optimal
probabilistic amplifier for coherent states with known ampli-
tude [29,85], which indeed can be implemented with energy-
preserving operations. Specifically, evaluating Eqs. (78)
and (79) for k = 1 one retrieves the expressions for the optimal
fidelity and success probability appearing in Eqs. (6.24) and
(6.36) of Ref. [85] For the subsequent rounds of the recursive
protocol (k > 1), the input state is not coherent anymore and
the successful quantum operation differs from the optimal
coherent-state amplifier.

In Fig. 7 we show the performance of the recursive protocol
and its coherent coarse-graining for the amplification of
coherent states from r1 = 1 to r2 = 1.5. The threshold in
the Fock space is chosen to be N = 80 and the protocol
is applied recursively for K = 81 rounds. From the plot it
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FIG. 7. Energy-preserving amplification of coherent light via the
recursive protocol and its coherent coarse-graining. The figure shows
the trade-off between success probability and the average fidelity for
the amplification |r1〉 → |r2〉 with r1 = 1, r2 = 1.5, and N = 80. The
green solid line (with numerics represented by red dots) shows the
probability-fidelity trade-off for a recursive protocol with K = 81
rounds. The blue solid line (with numerics represented by the black
dots) shows the trade-off for filters generated by coherent coarse-
graining. Note that the difference between the two curves becomes
large as the success probability tends to 1. For unit probability the
recursive protocol and its coherent coarse-graining give fidelities
Fdet = 49.9% and F ′

det = |〈r1|r2〉|2 = 77.9%, respectively.

can be seen that the filters generated by coherent coarse-
graining reach a relatively high fidelity, compatibly with the
strong constraint set by the number-preserving condition. For
instance, the coherent coarse-graining of the recursive protocol
with K = 80 succeeds with probability psucc = 79.6% and
reaches fidelity F = 83.9%. When the probability reaches
1, the fidelities of the recursive protocol and its coherent
coarse-graining become Fdet = 49.9% and F ′

det = |〈r1|r2〉|2 =
77.9%, respectively. The latter is well above the fidelity of the
optimal amplifier for arbitrary coherent states, which is given
by Funiversal = 4/9 [31,86].

E. Energy-preserving correction in ancilla-driven
quantum computation

In ancilla-driven quantum computation [75] the evolution
of the system is determined by the outcomes of measurements
on the ancilla. Ideally, the goal is to implement measurements
that induce unitary gates on the system. To achieve this goal,
the measurements should not extract any information about
the state of the system: the probability of each outcome should
be the probability that a particular unitary gate is applied
to the system [87]. However, in many nonideal situations
the measurement extracts some information, thus inducing a
nonunitary evolution on the system. When this is the case,
one can attempt to correct the unwanted nonunitarity by
performing additional measurements. This type of correction
has been studied in Refs. [88,89], where a number of different
strategies have been proposed.

Here we consider the problem in the energy-preserving
setting: suppose that a quantum system with d nondegenerate
energy levels interacts with an ancilla via an energy-preserving
unitary evolution. Then, the ancilla undergoes the measure-

ment of an observable that is compatible with the energy.
As a result, the system evolves randomly according to an
energy-preserving instrument {Mx}x∈X. We assume that the
measurement on the ancilla is a rank-1 projective measurement
and, therefore, the quantum operations {Mx} are pure. For
every given x ∈ X, the problem is to correct the quantum
operation Mx , making it as close as possible to a desired
energy-preserving unitary gate Ux . As a correction we allow
ourselves to use an energy-preserving filter, with quantum
operations {N (x)

succ,N
(x)
fail }. Due to the presence of the filter, an

initial pure state |η〉 is transformed probabilistically into the
pure state

|ηx〉 = N (x)
succMx |η〉∥∥N (x)
succMx |η〉∥∥ .

To evaluate the quality of the correction, we consider the
fidelity between |ηx〉 and the target state Ux |η〉, averaging
over all possible pure input states. Assuming that initially the
state |η〉 is drawn at random according to the Haar measure,
the conditional probability distribution over the pure states is
given by

p(η|x,succ)dη = λx

∥∥N (x)
succMx |η〉∥∥2

dη,

where Mx and N (x)
succ are the Kraus operators of Mx and

N (x)
succ, respectively, and λx is the normalization constant

λx := (
∫ ‖N (x)

succMx |η′〉‖2dη′)−1. Hence, the average fidelity
over all pure states is given by

Fx :=
∫

dηp(η|x,succ)|〈ηx |Ux |η〉|2

=
∫

dη
∣∣〈η|U †

xN
(x)
succMx |η〉∣∣2∫

dη′∥∥N (x)
succMx |η′〉∥∥2

= F
(x)
0 · d + 1

d + 1
, (80)

where F
(x)
0 is the fidelity given by

F
(x)
0 =

∣∣〈e0|U †
xN

(x)
succMx |e0〉

∣∣2∥∥N (x)
succMx |e0〉

∥∥2

|e0〉 =
∑d

n=1 |n〉√
d

.

Maximizing the average fidelity is then equivalent to finding
the optimal quantum operation for the transformation

|ϕx〉 := Mx |e0〉
‖Mx |e0〉‖ −→ |ψx〉 := Ux |e0〉.

The maximization under the energy-preserving constraint is
exactly the problem solved in this paper. In particular, for
every outcome x we can use our recursive protocol to obtain
a high-fidelity approximation of the desired transformation.
In this context, it is immediate to realize that our protocol
provides an approximate correction strategy, with the property
that the overall quantum operation acts exactly like the target
gate Ux in a suitable subspace, whose dimension shrinks at
every step.
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FIG. 8. Energy-preserving correction of a quantum operation via
the recursive protocol and its coherent coarse-graining. The figure
shows the trade-off between success probability and average fidelity
for unlearning the quantum operation with Kraus operator Mx =∑d

n=1 μn/2|n〉〈n| with d = 100 and μ = 0.9. The green solid line
(with numerics represented by red dots) shows the probability-fidelity
trade-off for a recursive protocol with K = 70 rounds. The blue solid
line (with numerics represented by the black dots) shows the trade-off
for filters generated by coherent coarse-graining.

For concreteness, let us see explicitly how the protocol
works in a concrete example. We choose the quantum
operation Mx with Kraus operator Mx =∑d

n=1 μn/2|n〉〈n|.
The fidelity at the kth step is given by

F (k)
x = d + 2 − k

d + 1
,

while the probability of success, averaged over all pure states,
is given by

p(k)
succ =

{
μd−k(1 − μ)2(d + 1 − k)/(1 − μd ) k > 1,

μd−1(1 − μ)d/(1 − μd ) k = 1.

The features of the recursive protocol and of its coherent
coarse-graining are illustrated in Fig. 8 for d = 100, μ = 0.9,
and K = 70. The probability of success increases from a very
small value (p(1)

succ = 3 × 10−4) to approximately 14% at the
68th step, at the cost of a reduced fidelity.

VI. EXTENSION TO MIXED STATES

So far we considered transitions between pure states.
However, for many practical applications it is important to
consider transformations where the input states are mixed, e.g.,
due to the presence of decoherence. Normally the target state
is still pure, since ideally one would like to remove the noise
from the output. This is the case for tasks like mixed-state puri-
fication [32,40,41], super-broadcasting [42], and for the
evaluation of the corresponding quantum benchmarks [90]. In
all these cases, our techniques provide general upper bounds
on the fidelity of the optimal energy-preserving operations.
The bounds are achievable for a quite large class of states,
which includes all the thermal states associated with stoquastic
Hamiltonians [91,92], such as the Hamiltonians of flux qubits
in Josephson junctions [93] and the Hamiltonians of (bosonic)
Bose-Einstein condensates [94].

A. Deterministic transitions and eigenstate alignment

Given a generic mixed state ρ, we search for the best energy-
preserving approximation of the transition ρ → |ψ〉〈ψ |,
where |ψ〉 is a target pure state. To this purpose, it is convenient
to decompose the initial state into blocks corresponding to the
different energy eigenvalues, namely

ρ =
∑
E,E′

ρE,E′ ρE,E′ = PEρPE′ . (81)

With this notation, we have the following:
Theorem 4. For psucc = 1, every energy-preserving approx-

imation of the transition ρ → |ψ〉〈ψ | satisfies the bound

Fdet �
∑

E,E′∈Sp(ρ)

√
qEqE′ ‖ρE,E′ ‖1, (82)

where ‖A‖1 = Tr[
√

A†A] is the trace norm, qE = ‖PE |ψ〉‖2,
and Sp(ρ) is the energy spectrum of ρ, defined as

Sp(ρ) = {E|PEρPE �= 0}. (83)

The bound is achievable if the input state ρ is block positive,
that is, if there exist orthonormal bases for the energy
eigenspaces such that, when the matrix elements are taken
in those bases, each matrix [ρE,E′] is positive semidefinite. In
this case, every quantum channel A satisfying the condition

A(ρ) =
∑
E,E′

‖ρE,E′ ‖1|ψE〉〈ψE′ | ∀E,E′ ∈ Sp(ρ) (84)

is optimal where |ψE〉 and |ψE′ 〉 are defined by Eq. (35).
Note that when the input state is pure, the bound (82)

coincides with the optimal fidelity. We refer to every channel
A satisfying Eq. (84) as an eigenstate alignment of the mixed
state ρ to the pure state |ψ〉. Note that eigenstate alignment
may not be a unitary operation anymore, because it may
have to send different eigenstates with energy E to the fixed
eigenstate |ψE〉.

The proof of Theorem 4 is provided in Appendix K. Three
applications of the theorem are as follows:

Example 3 (nondegenerate Hamiltonians). When the
Hamiltonian H is nondegenerate, the bound (82) becomes

F �
∑
E,E′

√
qEqE′ |〈ϕE|ρ|ϕE′ 〉|, (85)

where {|ϕE〉} is the energy eigenbasis. Note that since the
Hamiltonian is nondegenerate, the choice of eigenbasis is
unique up to phase transformations |ϕE〉 �→ |ϕ′

E〉 = eiθE |ϕE〉.
The bound is achievable if, for a suitable choice of phases, one
has

〈ϕE|ρE|ϕE′ 〉 � 0 ∀E,E′. (86)

Mixed states of this form were called pure in phase by
D’Ariano et al. [95], who considered them in the context
of phase estimation. Such states play an important role in
the area of quantum Hamiltonian complexity, where they
arise as thermal states of stoquastic Hamiltonians [91,92],
i.e., Hamiltonians with nonpositive matrix elements in a given
basis. Physically, we can consider a scenario where the system
starts in the thermal state of a stoquastic Hamiltonian and
subsequently undergoes a rapid change of Hamiltonian to
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a diagonal one, making the initial thermal state a nontrivial
resource.

Example 4 (pure states subject to random time evolution).
Suppose that the system, initially prepared in a pure state |ϕ〉,
has evolved under its free Hamiltonian for a time t which
is not perfectly known, e.g., due to the finite-time resolution
of the clocks available in the laboratory. Then, the system is
effectively described by the mixed state

ρ =
∫

dtπ (t)Ut |ϕ〉〈ϕ|U †
t , Uτ = e−itHsys/h̄,

π (t) being the probability distribution for t . In this case, the
bound (82) becomes

F �
∑
E,E′

√
qEqE′pEpE′ |π̃ (E − E′)|,

where pE and qE are defined as in Eq. (34) and π̃ is the Fourier
transform of π . If the Fourier transform is positive (i.e., if the
noise has positive spectrum), then the bound is attainable by
every unitary operation U satisfying the eigenstate alignment
condition [Eq. (36)].

Example 5 (multiple copies of qubit mixed states). Consider
a system of N noninteracting qubits, each having the same
Hamiltonian H = E0Z/2. Then, the total Hamiltonian of the
system is degenerate and has the block diagonal form

Hsys = E0

⊕
l

(
J (l)

z ⊗ I
d

(N)
l

)
,

where l is the quantum number of the total angular momentum,
J (l)

z is the z component of the angular momentum operator in
the subspace with quantum number l, and I

d
(N)
l

is the identity

on a multiplicity space M(N)
l , of dimension

d
(N)
l = 4l + 2

N + 2l + 2

(
N

N/2 + l

)
.

From the above decomposition it is clear that the eigenvalues
of the energy are given by Em = E0m, where m are the
eigenvalues of the z component of the total angular momentum
operator. A basis for the corresponding eigenspace is given by
the vectors

|ϕm,l,n〉 = |l,m〉 ⊗ |μl,n〉,
where l goes from |m| to N/2, |l,m〉 is the eigenstate of J (l)

z

with eigenvalue m, and {|μl,n〉|n = 1, . . . ,d
(N)
l } is a basis for

the multiplicity space. Now, suppose that each qubit is initially
prepared in the state

ω = eβX

Tr[eβX]
, β � 0, X =

(
0 1
1 0

)
.

With this choice, the state ω⊗N satisfies the condition for
the achievability of the bound (82); indeed, one has

PEm
ω⊗NPEm′ =

⊕
l

〈l,m|e2βJ
(l)
x |l,m′〉

Tr[eβX]N
(|l,m〉〈l,m′| ⊗ I

d
(N)
l

)
,

(87)

and 〈l,m|e2βJ
(l)
x |l,m′〉 � 0 since the matrix J (l)

x has positive
matrix elements. Hence, the matrix elements of the operator

PEm
ρPEm′ in the basis {|l,m〉 ⊗ |μl,n〉|l � max{|m|,|m′|},n =

1, . . . d
(N)
l } form a non-negative matrix. For the transition

ω⊗N → |ψ〉〈ψ |, eigenstate alignment is not a unitary opera-
tion, because all basis vectors with energy Em are transformed
into |ψEm

〉.

B. The ultimate probabilistic fidelity

We now provide the exact value of the maximum fidelity
for the transition ρ → |ψ〉〈ψ | when no restriction is imposed
on the probability of success.

Theorem 5. For a finite-dimensional Hilbert space, the
maximum fidelity over all energy-preserving operations is
given by

Fmax = ‖A‖∞,

A =
∑
E,E′

√
qEqE′ |ψE〉〈ψE′ | ⊗ (ρT

E,E

)− 1
2 ρT

E,E′
(
ρT

E′,E′
)− 1

2 ,

(88)

where ‖A‖∞ = max‖|ψ〉‖=1 ‖A|ψ〉‖ denotes the operator norm
and ρT denotes the transpose of ρ. For a quantum operation
achieving fidelity Fmax, the maximum probability of success
is equal to

pmax
succ = max

σ
min

E

1∥∥(ρT
E,E

)−1/2
σE

(
ρT

E,E

)−1/2∥∥
∞

, (89)

where the maximum maxσ runs over all density matrices σ

with support contained in the eigenspace of A with maximum
eigenvalue and σE := Tr1[(PE ⊗ I )σ ], Tr1 denoting the partial
trace over the first Hilbert space.

The proof, provided in Appendix K, includes the explicit
construction of the optimal strategy and an expression for the
maximum probability of success.

C. Purification of coherence at zero energy cost

We now illustrate the application of our techniques to the
concrete problem of purifying a mixed state [40,41]. Suppose
that we are given N identical quantum systems, each prepared
in the same mixed state, which happens to possess a nonzero
amount of coherence across different energy levels. Can we
collect the coherence present in the N systems and concentrate
it in a single system? And can we do it without drawing energy
from the outside? Mathematically, the task is to implement the
transition

ω⊗N → |φ〉〈φ| ⊗ |β〉〈β|,
where ω is the initial mixed state, |φ〉 =∑d

n=1 |n〉/√d is the
maximally coherent state, and |β〉 is an eigenstate of the energy,
in which N − 1 systems are meant to be left. In the following
we discuss the qubit case (d = 2) and we choose the mixed
state to be

ω = eβX

Tr[eβX]
.

This state can be thought as the thermal state of the initial
Hamiltonian Hin = −X and represents a nontrivial resource
if the Hamiltonian is suddenly changed into H = Z. For
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FIG. 9. Optimal purification of coherence via energy-preserving
operations. Panel (a) shows the optimal fidelities as function of the
number of input copies N . Here different colors represent different
values of β—specifically, β = 0.4 (blue line with purple dots), β =
0.8 (black line with black dots), and β = 1.2 (green line with red
dots). The dashed lines represent the deterministic fidelities, while the
solid lines represent the probabilistic fidelities. While the probabilistic
fidelities increase with N , the deterministic fidelities decrease, due
to the restriction imposed by energy preservation. Panel (b) shows
the maximum success probability for the quantum operations with
maximum fidelity. The color code is the same as in panel (a).

simplicity, we choose N to be odd, so that |β〉 can be chosen
to be an eigenstate with zero energy.

Let us consider first the deterministic transitions. The
performance of the optimal energy-preserving channel is
determined by Theorem 4, which leads to the expression

Fdet = 1

2

∑
m,m′=± 1

2

N
2∑

l= 1
2

d
(N)
l 〈l,m|e2βJ

(l)
x |l,m′〉

Tr[eβX]N
.

Here the right-hand side follows from Eqs. (82) and (87),
using the fact that ω⊗N is block positive, as observed in
Example 5. The optimal deterministic fidelity is plotted in
Fig. 9(a) for various values of N and β. Note that, quite
counterintuitively, the deterministic fidelity decreases with the
growth of N . The origin of this behavior can be found in the

constraint of energy preservation. Essentially, a deterministic
energy-preserving operation cannot do anything better than
realigning the blocks corresponding the values m = ±1/2
to the corresponding eigenstates. However, when N grows,
the blocks are spread over an increasing number of values of
m, so that the weight of the m = ±1/2 component becomes
less and less significant. As a result, the deterministic fidelity
vanishes in the limit N → ∞. While the state ω⊗N contains
an increasing amount of coherence, collecting this coherence
from the high-energy blocks requires an exchange of energy
with the surrounding environment.

For probabilistic strategies, the situation is different: the
limitation due to energy-preservation can be partially lifted
and the fidelity approaches unit as N increases. To evaluate
the maximum fidelity, we have to compute the norm of the
operator A defined in Eq. (88). In the case at hand, we have

A = 1

2

∑
m,m′=± 1

2

N
2∑

l= 1
2

〈l,m|e2βJ
(l)
x |l,m′〉√

〈l,m|e2βJ
(l)
x |l,m〉〈l,m′|e2βJ

(l)
x |l,m′〉

×
∣∣∣∣12 ,m

〉〈
1

2
,m′
∣∣∣∣⊗ |l,m〉〈l,m′| ⊗ I

d
(N)
l

.

Taking the operator norm, we then obtain

Fprob = max
l∈{ 1

2 ,..., N
2 }

1 + al

2
,

with

al =
〈
l, 1

2

∣∣e2βJ
(l)
x

∣∣l,− 1
2

〉√〈
l, 1

2

∣∣e2βJ
(l)
x

∣∣l, 1
2

〉〈
l,− 1

2

∣∣e2βJ
(l)
x

∣∣l,− 1
2

〉 .
The optimal probabilistic fidelity is plotted in Fig. 9(a) for
different values of N and β.

Finally, Theorem 5 allows us to evaluate the maximum
probability of success for the quantum operations that achieve
maximum fidelity. According to the theorem, it is enough
to characterize the density matrices that have support inside
the eigenspace of A with maximum eigenvalue. Such density
matrices have the form σ = |N/2〉〈N/2| ⊗ τ , where |N/2〉
is the maximally entangled state

|N/2〉 =
(∣∣∣∣12 ,

1

2

〉∣∣∣∣N2 ,
1

2

〉
+
∣∣∣∣12 ,−1

2

〉∣∣∣∣N2 ,−1

2

〉)/√
2.

Hence, we have the relation

σm = Tr1

[(∣∣∣∣12 ,m

〉〈
1

2
,m

∣∣∣∣⊗ I

)
σ

]
= 1

2

∣∣∣∣N2 ,m

〉〈
N

2
,m

∣∣∣∣⊗ τ,

which can be inserted into Eq. (89), yielding

pmax
succ = max

τ
min

m=± 1
2

2〈l,m|e2βJ
(l)
x |l,m〉

Tr[eβX]N‖τ‖∞

= 2d
(N)
l

〈
l,− 1

2

∣∣e2βJ
(l)
x

∣∣l,− 1
2

〉
Tr[eβX]N

.

A plot of the probability of success as a function of N and β

is shown in Fig. 9(b).
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VII. CONCLUSIONS

We introduced and analyzed the class of quantum opera-
tions that can be implemented with zero transfer of energy
to the external environment. Within this class, we addressed
the search for the optimal operations implementing a desired
state transition. We considered operations that can generally
be probabilistic, showing that the limitations arising from the
preservation of the energy can be lifted to a surprising extent
at the price of a reduced probability of success.

Our investigation started from the problem of transforming
a given input state into a desired output state. To solve
this problem, we developed two general techniques, dubbed
eigenstate alignment and the Lüders reduction. Eigenstate
alignment provides the best deterministic way to transform
pure states at zero energy cost. The Lüders reduction applies
more generally to the optimization of energy-preserving quan-
tum operations. Essentially, it allows one to break down every
quantum operation into the product of a pure probabilistic part
followed by a deterministic part.

Employing these techniques, we reduced the search for
the best energy-preserving transformations of pure states to a
simple Lagrangian optimization.

The characterization of the optimal energy-preserving
transformations of pure states allowed us to construct a
multiple-round recursive protocol that achieves maximum
fidelity with maximum success probability in each round. The
probability of success of the protocol increases from one round
to the next and, for a system with finite-energy spectrum,
the protocol terminates deterministically in a finite number of
steps.

Our protocol can be easily applied to every desired
transformation of pure states, allowing one to find lower
bounds to the optimal trade-off curve between fidelity and
probability, whose exact expression is known only in a few
cases. As an illustration of the versatility of the protocol, we
applied it to a number of concrete tasks, including quantum
phase estimation, cloning of coherence, energy-preserving
amplification, and ancilla-driven computation at zero energy
cost.

To further improve the bounds on the fidelity-probability
trade-off, we applied the techniques of Lüders reduction and
eigenstate alignment to the different histories resulting from
subsequent rounds of the recursive protocol. Specifically, we
introduced an operation of coherent coarse-graining, whereby
a set of quantum operations are joined into a pure quantum
operation, with the same probability of occurrence of the
original set and, typically, with a higher fidelity with the target.
Remarkably, when applied to the problem of phase estimation
with maximally coherent states, coherent coarse-graining
yields points that lie exactly on the optimal trade-off curve,
provided that the number of energy levels is sufficiently large.
Characterizing all the situations in which our method provides
the optimal trade-off curve is an open problem. In general, we
expect optimality to be achieved asymptotically in scenarios
where the energy distribution of the state is sufficiently regular,
including, e.g., the cases of phase estimation and quantum
cloning in the asymptotic regime [96].

In this paper we provided a comprehensive study of the
optimal quantum information processing under the energy-

preserving constraint. A related avenue of future research is
the study of optimal quantum information processing under
general conservation laws. The techniques developed in this
paper are already adapted to search of optimal quantum
evolutions that preserve an algebra of quantum observables,
such as the algebra generated by the angular momentum
operators. Interactions that preserve the angular momentum
have recently attracted attention in the implementation of
quantum gates and quantum measurements [53,56,57,59,60],
although the characterization of the optimal operations is still
an open problem. In this context, our result suggests a strategy
to approach the optimization, by considering probabilistic
modulation of the amplitudes of the wave function in sectors
with different angular momentum. Also in this case, our results
allow one to construct first a recursive protocol and to increase
its fidelity through the operation of coherent-coarse graining.
While such generalizations are beyond the scope of the present
paper, it is our hope that our work will pave the way to a
systematic optimization of quantum operations under arbitrary
conservation laws.
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APPENDIX A: RELATION TO COVARIANT CHANNELS,
HADAMARD CHANNELS, INCOHERENT CHANNELS,

AND DECOHERENCE MAPS

Here we highlight the relations between energy-preserving
channels and other important classes of channels considered
in the literature. We start from the case of channels that are
covariant under time evolution [63], i.e., channels that satisfy
the relation

M(Ut · U
†
t ) = UtM(·)U †

t ∀t ∈ R.

Covariant channels are at the basis of the resource theory of
asymmetry [97–99].

Every covariant channel can be realized via a unitary
evolution—as in Eq. (6)—with the property that the initial
state of the environment |φ0〉 is an eigenstate of the energy and
the joint unitary evolution preserves the sum of the energies of
the system and the environment:

U †(Hsys + Henv)U = Hsys + Henv (A1)

(see, e.g., [100]). Note that the interaction preserves the sum
of the energies of the system and the environment, but may
involve an exchange of energy between them. This is the
reason why not all covariant channels preserve the energy
of the system individually.

A related subclass of covariant channels is the class of
cooling maps considered in Ref. [101] which arise from the
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exchange of energy between the system and an environment,
originally initialized in the Gibbs state at near-zero temper-
ature. In this case, the exchange of energy can go only in
the direction from the system to the environment, as the
environment can acquire energy from the system but not vice
versa.

Energy-preserving channels are also closely related to
Hadamard channels [102], also known as decoherence
maps [103–105], and to the class of incoherent chan-
nels [33,34]. The relation can be seen in the case of a
Hamiltonian Hsys with nondegenerate spectrum. In this case,
the energy-preserving channels have been characterized in
Ref. [104]; denoting by {|En〉}dn=1 the energy eigenbasis, it
turns out that a channel is energy-preserving if and only if it is
of the form

M(ρ) =
∑
m,n

Cmn〈Em|ρ|En〉|Em〉〈En|, (A2)

where C = [Cmn] is a positive matrix with diagonal elements
equal to 1. Channels of this are also known as Hadamard
channels in the literature on quantum Shannon theory, where
they represent one of the important classes of channels
with tractable capacity regions [106,107]. Energy-preserving
channels with nondegenerate Hamiltonian have a number
of properties. First, note that every energy eigenstate is
a fixed point of the channel, and so is every mixture of
energy eigenstates. Hence, in the case of the nondegenerate
Hamiltonian, the energy-preserving channels are a special case
of incoherent channels, i.e., channels that transform incoherent
mixtures into incoherent mixtures. Viewing coherence in
the energy eigenbasis as a resource, it is clear that energy-
preserving channels cannot be used to generate resourceful
states from nonresourceful ones. On the contrary, typically
they reduce quantum coherence, by damping down the off-
diagonal elements of the density matrix [104].

The inclusion relations among energy-preserving, covari-
ant, and incoherent operations are illustrated in Fig. 10.

APPENDIX B: PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1. First, we show the implication 1 =⇒
2: every energy-preserving channel can be realized through
a unitary interaction that separately preserves the energy of
the system and the energy of the environment. We start from
Eq. (14), namely M(ρ) = Trenv[VρV †] with the isometry V

given in Eq. (13). From the definition it follows that V can be
written as

V =
⊕

E

VE VE :=
K∑

k=1

PEMkPE ⊗ |φk〉, (B1)

having chosen the environment to be K-dimensional, with
Henv = Span{|φk〉|k = 1, . . . ,K}. Every operator VE in
Eq. (B1) is a unitary mapping from the eigenspace of Hsys with
eigenvalue E, denoted by HE , to a subspace of HE ⊗ Henv,
denoted by SE . Since Henv is K-dimensional, HE ⊗ Henv can
be decomposed as

HE ⊗ Henv =
K⊕

k=1

S (k)
E , (B2)

FIG. 10. Hierarchy of quantum channels. Energy-preserving
channels are contained in the class of time-covariant channels,
corresponding to the special case of channels that arise from an
interaction that leaves the environment inside a fixed eigenspace at
every time. For Hamiltonians with nondegenerate spectrum, covariant
channels are a special case of incoherent channels, i.e., channels that
do not generate coherence across the eigenbasis of the energy.

where {S (k)
E }Kk=1 are orthogonal subspaces isomorphic to SE

and S (1)
E ≡ SE . Let us denote by UE,k the unitary that maps

the subspace SE into S (k)
E . With this notation, we can define

the unitary operator UE as

UE|ψ〉|φk〉 :=
{
VE |ψ〉 k = 1,

UE,kVE |ψ〉 k > 1.
(B3)

Note that, by construction, the operator UE maps the subspace
HE ⊗ Henv into itself, and therefore satisfies the condition

U
†
EPEUE = PE. (B4)

Now, consider the unitary U :=⊕E UE . Clearly, U preserves
the energy of the system; indeed, we have

U †HsysU = U †

(⊕
E

EPE

)
U =

⊕
E

EU
†
EPEUE

=
⊕

E

EPE = Hsys,

having used Eq. (B4) and the definition of U . On the other
hand, choosing the Hamiltonian of the environment to be
constant, e.g., Henv = 0, we trivially satisfy the condition
U †HenvU = Henv. Finally, Eq. (B3) gives the relation

U |ψ〉|φ1〉 =
⊕

E

UE|ψ〉|φ1〉

=
⊕

E

VE|ψ〉

= V |ψ〉
∀|ψ〉 ∈ Hsys.

In turn, this implies the condition

Trenv[U (|ψ〉〈ψ | ⊗ |φ1〉〈φ1|)U †]

= Trenv[V |ψ〉〈ψ |V †] = M(|ψ〉〈ψ |),
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meaning that the unitary U implements the desired channel
M on every pure state, and, by linearity, on every mixed state.

Let us now show the implication 2 =⇒ 3: the unitary
evolution U can be realized through an interaction Hint(t) that
commutes with the Hamiltonians Hsys and Henv at all times.
The proof is immediate from the spectral decomposition

U =
∑

n

e−iθn |φn〉〈φn|, θn ∈ [0,2π ).

Indeed, it is enough to define

H := ih̄

t1 − t0
ln U, ln U =

∑
n

−iθ |ϕn〉〈ϕn|,

and

Hint(t) := g(t)H,

where g(t) is an arbitrary function that quantifies the strength
of the interaction and satisfies the conditions

g(t) = 0 ∀t � t0, ∀t � t1,

g(t) � 0 ∀t ∈ (t0,t1),∫ t1

t0

dtg(t) = 1.

Finally, we note that the implication 3 =⇒ 1 has been already
proven in the main text. �

Note that the construction in the above proof allows one
to engineer a minimal realization of the desired channel, in
which the Hamiltonian of the environment is fully degenerate.
However, nothing prevents us from regarding the Hilbert space
of the environment in the above construction as a degenerate
eigenspace of a nontrivial Hamiltonian, acting on a larger
space.

Proof of Theorem 2. For every x, let us pick a Kraus
decomposition Mx(ρ) =∑mx

k=1 Mx,kρM
†
x,k . By definition, the

operators {Mx,k|x ∈ X,k = 1, . . . ,mx} are Kraus operators
for the energy-preserving channel M =∑x Mx . Hence, the
construction in the previous proof yields an environment with
Hilbert space

Henv = Span{|φx,k〉|x ∈ X,k = 1, . . . ,mx},
a constant Hamiltonian Henv, a unit vector |φ1,1〉 ∈ Henv, and
a unitary operator U such that

U |ψ〉|φ1,1〉 =
∑
x,k

Mx,k|ψ〉|φx,k〉 ∀|ψ〉 ∈ Hsys (B5)

and U satisfies the conditions U †HsysU = Hsys and
U †HenvU = Henv. Now, consider the projective measurement
{Qx}x∈X defined by Qx =∑mx

k=1 |φx,k〉〈φx,k|. By Eq. (B5), one
has the desired condition

Trenv[(Isys ⊗ Qx)U (|ψ〉〈ψ | ⊗ |φ1,1〉〈φ1,1|)U †]

= Mx(|ψ〉〈ψ |)
valid for every x and for every pure state |ψ〉, and, by linearity,
for every mixed state ρ. The projective measurement {Qx}x∈X
can be regarded as a measurement of an observable O =∑

x∈X f (x)Qx , where f : X → R is a fixed (but otherwise
arbitrary) injective function. Since the Hamiltonian of the

environment is constant, the observable O trivially satisfies
Yanase’s condition (18). �

APPENDIX C: WEAK VS STRONG ENERGY
PRESERVATION FOR PROBABILISTIC

TRANSFORMATIONS

Here we compare our notion of energy-preserving
transformation—defined as transformations that can be part
of an energy-preserving instrument—with a stronger notion.
For this reason, here we refer to our condition as weak energy
preservation:

Definition 4. A probabilistic transformation M0 satisfies
weak energy preservation if there exists an energy-preserving
instrument {Mx}x∈X and an outcome x0 ∈ X such that
M0 = Mx0 .

The above notion of weak energy preservation—on average
over all the possible outcomes of a measurement—is funda-
mentally different from an alternative, strong notion of energy
preservation, which requires the output of the transformation
to have the same energy distribution of the input:

Definition 5. A probabilistic transformation M0 satisfies
strong energy preservation if, for every input state ρ, one has

Tr
[
ρ ′Hn

sys

] = Tr
[
ρHn

sys

] ∀n ∈ N, (C1)

where ρ ′ is the conditional output state ρ ′ = M0(ρ)/
Tr[M0(ρ)].

While strong energy preservation may seem more natural
at first sight, a closer inspection reveals that the condition
is quite restrictive. For instance, it even forbids ideal energy
measurements on the system, which are the prototype of mea-
surements that can be performed at no energy cost [55,56,61].
Indeed, a von Neumann measurement of the energy trivially
collapses a mixture of different energy eigenstates into a
single energy eigenstate, thus violating Eq. (C1). Furthermore,
it is not hard to see that for nondegenerate Hamiltonians,
every quantum operation satisfying strong energy preservation
must be proportional to a deterministic energy-preserving
transformation. In other words, the operation can be realized
by tossing a biased coin, and, if the coin turns out heads,
by applying a deterministic transformation. As a result, the
strong notion of energy-preservation would make the study of
probabilistic transformations irrelevant.

In this work we focus on the more flexible notion of
weak energy preservation, which captures exactly the class
of transformations that can be implemented at no energy cost.
Since there is no ambiguity, we will omit the specification
“weak” and refer to these transformations simply as energy-
preserving.

APPENDIX D: DECOMPOSITION OF STATIONARY
COVARIANT INSTRUMENTS

Proof of Proposition 1. In Ref. [27] it was proven that every
instrument {Mx}x∈X can decomposed as Mx = CxPx , where
{Px}x∈X is the quantum instrument defined by

Px(·) =
√

Px ·
√

Px, Px = N†
x (I ) (D1)

022327-23



GIULIO CHIRIBELLA AND YUXIANG YANG PHYSICAL REVIEW A 96, 022327 (2017)

and Cx is a suitable quantum channel. Now, suppose that Mx

is stationary and covariant, with

VtMx(·)V †
t = Mx(Ut · U

†
t ) ∀t ∈ R.

Then, one has

U
†
t PxUt = U

†
t M†

x(I )Ut

= M†
x(V †

t Vt )

= M†
x(I )

= Px

∀t ∈ R.

Taking derivatives with respect to t on both sides and recalling
the definition, one then obtains

[Px,Hsys] = 0 (D2)

and consequently [
√

Px,Hsys] = 0. Hence, the quantum oper-
ation

Mx(·) =
√

Px ·
√

Px

is energy-preserving (Lemma 1). It remains to show that the
channel Cx is covariant. This can be done easily when Px is
invertible. In this case, one has Cx = MxP−1

x , where P−1
x is

the completely positive map

P−1
x (·) =

√
P −1

x ·
√

P −1
x .

Using this fact, we obtain

Cx(Ut · U
†
t ) = MxP−1

x (Ut · U
†
t )

= Mx

(√
P −1

x Ut · U
†
t

√
P −1

x

)
= Mx

(
Ut

√
P −1

x ·
√

P −1
x U

†
t

)
= VtMx

(√
P −1

x ·
√

P −1
x

)
V

†
t

= VtCx(·)V †
t ∀t ∈ R;

that is, Cx is covariant. When Px is not invertible, the above
reasoning shows that the restriction of Cx to the support of Px

is covariant. On the orthogonal complement of the support of
Px , the action of the channel Cx can be redefined arbitrarily in
such a way that the covariance condition is guaranteed. �

APPENDIX E: DECOMPOSITION OF NONSTATIONARY
COVARIANT INSTRUMENTS

Proof of Proposition 2. The proof follows the same lines as
the proof of Proposition 1: Define the instrument {Ny} as

Ny :=
∑
x∈X

Mx

(it is understood that, when the orbit is continuous, the sum
has to be replaced by an integral over the orbit). Define the
operators Py := N†

y (I ) and the pure instrument {Py}, with

Py(·) = √Py ·√Py.

Then, the same argument used in the proof of Proposition 1
shows that the instrument {Py} is energy-preserving. Then, for
every y ∈ Y, define the instrument {M(y)

x }x∈Oy
as

M(y)
x := Mx

(
P −1/2

y · P −1/2
y

)
.

By definition, the quantum operation M(y)
x satisfies the

condition

Mx = M(y)
x ◦ Py. (E1)

Moreover, the quantum operations {M(y)
x }x∈Oy

form a well-
normalized instrument transforming states with support of Py

into states with support Hout. When the support of Py is not
the whole of Hin, one can complete the quantum operations
{M(y)

x }x∈Oy
by extending their action on the kernel of Py . As a

result, one obtains a well-normalized instrument from Hin to
Hout, without affecting the validity of Eq. (E1). �

APPENDIX F: OPTIMALITY OF EIGENSTATE
ALIGNMENT

Proof of Theorem 3. Let M be an energy-preserving
quantum operation such that takes place deterministically on
|ϕ〉. The, the fidelity of M for the transition |ϕ〉 → |ψ〉 can be
computed as

F = 〈ψ |M(|ϕ〉〈ϕ|)|ψ〉
=
∑
E,E′

√
pEqEp′

Eq ′
E〈ψE |M(|ϕE〉〈ϕE′ |)|ψE′ 〉

=
∑
E,E′

√
pEqEp′

Eq ′
E〈ψE |M(|ϕE〉〈ϕE′ |)|ψE′ 〉.

Let M be an energy-preserving quantum operation, with
Kraus decomposition M(ρ) =∑k MkρM

†
k . Since M is

energy-preserving, every Kraus operator Mk must be of the
form

Mk =
⊕

E

PEMkPE ; (F1)

cf. Eq. (13). The probability of success is then given by

psucc = Tr[M(|ϕ〉〈ϕ|)]
=
∑

k

〈ϕ|M†
kMk|ϕ〉

=
∑

k

∑
E,E′

√
pEp′

E〈ϕE|M†
kMk|ϕE′ 〉

=
∑

k

∑
E

pE〈ϕE|M†
kMk|ϕE〉, (F2)

the third equality following from the decomposition of |ϕ〉
[Eq. (34)] and the fourth equality following from the block
diagonal form of Mk . Now, note that one has∑

k

〈ϕE |M†
kMk|ϕE〉 = Tr[M(|ϕE〉〈ϕE)] � 1.
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Hence, the condition psucc = 1 can be satisfied by Eq. (F2)
only if the equality∑

k

〈ϕE|M†
kMk|ϕE〉 = 1 (F3)

holds for every E such that pE �= 0. We will now optimize the
fidelity subject to this constraint.

The fidelity for the transformation |ϕ〉 → |ψ〉 can be
expressed as

F = 〈ψ |C(|ϕ〉〈ϕ|)|ψ〉
=
∑

k

|〈ψ |Mk|ϕ〉|2

=
∑

k

∣∣∣∣∣∑
E

〈ψ |PEMkPE|ϕ〉
∣∣∣∣∣
2

=
∑

k

∣∣∣∣∣∑
E

√
pEqE〈ψE |Mk|ϕE〉

∣∣∣∣∣
2

,

having used the decompositions of Eq. (34). Then, one has the
bound

F �
∑

k

(∑
E

√
pEqE |〈ψE|Mk|ϕE〉|

)2

�
∑

k

(∑
E

√
pEqE‖Mk|ϕE〉‖

)2

�
∑

k

(∑
E

√
pEqE‖Mk|ϕE〉‖2

)(∑
E′

√
pE′qE′

)
,

the third bound coming from the Schwarz inequality. Inserting
the relation ‖Mk|ϕE〉‖2 = 〈ϕE|M†

kMk|ϕE〉 one finally obtains

F �
∑

k

(∑
E

√
pEqE〈ϕE|M†

kMk|ϕE〉
)(∑

E′

√
pE′qE′

)

=
(∑

E

√
pEqE

)2

,

having used Eq. (F3). By direct inspection it is immediate to
see that eigenstate alignment attains the bound. �

APPENDIX G: DECOMPOSITION OF A QUANTUM
OPERATION IN TERMS OF ITS LÜDERS REDUCTION

Proof of Proposition 3. In the case when P is a projector,
the decomposition M = C ◦ P was proven by Bartlett et al.
in Ref. [108]. In general, the decomposition follows from the
decomposition of an instrument proven in Ref. [27]. Now,
suppose that M is energy-preserving. In this case, we have
already seen that P commutes with Hsys and, therefore, the
quantum operationP(·) = √

P · √P is energy-preserving (see
the proof of Proposition 1 in Appendix D). It only remains to
prove that C is energy-preserving. This is easily done when P

is invertible; in this case, one has

C = MP−1, P−1(·) =
√

P −1 ·
√

P −1, (G1)

meaning that every Kraus operator of C is the form Ck =
Mk

√
P −1, where Mk is a Kraus operator for M. Now, since

M is energy-preserving, every operator Mk commutes with
Hsys. Hence, also Ck commutes with Hsys. Since Ck is a generic
Kraus operator, Lemma 1 implies that C is energy-preserving.
When Px is not invertible, the above reasoning shows that the
restriction of C to the support of P is energy-preserving. On
the orthogonal complement of the support of P , the action of
the channel C can be redefined arbitrarily in such a way that
energy-preservation is guaranteed. �

APPENDIX H: THE ULTIMATE LIMITS
OF PROBABILISTIC OPERATIONS

Proof of Proposition 5. By Proposition 4, the maximum
fidelity is achieved by a pure quantum operation M(·) = M ·
M†, with success probability

psucc =
∑
E

pE〈ϕE|Psucc|ϕE〉, Psucc = M†M, (H1)

and fidelity

F =
(∑

E

√
p′

EqE

)2

, p′
E = pE〈ϕE |Psucc|ϕE〉

psucc
. (H2)

By the Schwarz inequality, one immediately obtains the bound

F �
∑

E∈Sp(ϕ)∩Sp(ψ)

qE.

The bound is achieved if and only if

〈ϕE|Psucc|ϕE〉 = c
qE

pE

, ∀E ∈ Sp(ϕ) ∩ Sp(ψ), (H3)

for some constant c � 0. Note that since the 〈ϕE|Psucc|ϕE〉
is the probability that M takes place on the state |ϕE〉, the
constant c must satisfy the relation

c � pE

qE

∀E ∈ Sp(ϕ) ∩ Sp(ψ). (H4)

Now, recall that the quantum operation M was constructed
from the Lüders reduction and eigenstate alignment. Hence,
its Kraus operator M must satisfy the condition

M|ϕE〉 ∝ |ψE〉 ∀E ∈ Sp(ϕ) ∩ Sp(ψ). (H5)

Combining this fact with Eq. (H3) and recalling that Psucc =
M†M , we obtain

M|ϕE〉 =
√

c
qE

pE

|ψE〉 ∀E ∈ Sp(ϕ) ∩ Sp(ψ). (H6)

Now, inserting Eq. (H3) into Eq. (H1), the probability of
success becomes

psucc = c
∑

E∈Sp(ϕ)∩Sp(ψ)

qE. (H7)

Given the constraint (H4), the maximum success probability
is obtained by choosing

c = min
E∈Sp(ϕ)∩Sp(ψ)

pE

qE

. (H8)

Inserting this value into Eqs. (H7) and (H6), we finally obtain
the desired relations (49) and (50). �
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APPENDIX I: DERIVATION OF THE OPTIMAL
RECURSIVE PROTOCOL

The optimal filter in the kth round is determined by
induction from the requirements 1–3 in Sec. IV A. At the first
round, the filter attempts at converting |ϕ〉 into |ψ〉. According
to Proposition 5, the maximum fidelity is given by

F (1)
max =

∑
E∈Sp(ϕ)

qE (I1)

and can be achieved with probability

p(1)
succ =

(
min

E∈Sp(ϕ)∩Sp(ψ)

pE

qE

)
F (1)

max.

The optimal quantum operation must be pure and its Kraus
operator B(1)

succ must satisfy the condition

B(1)
succ|ϕE〉 = |ψE〉 ∀E ∈ R1,

where R1 is the set of energy values in Sp(ϕ) ∩ Sp(ψ)
that minimize the ratio pE/qE [cf. Eq. (H6)]. Writing the
unsuccessful quantum operation in the Kraus form B(1)

fail(·) =∑
t B

(1)
fail,t · B

(1)†
fail,t , we then obtain

B
(1)
fail,t |ϕE〉 = 0 ∀E ∈ R1 (I2)

for every possible value of t . At the second step, the filter
attempts to produce the target state |ψ〉 from the state

ρ(2) =
∑

t

p
(2)
t |ϕ(2,t)〉〈ϕ(2,t)|,

with p
(2)
t := ‖B(1)

fail,t |ϕ〉‖2/
∑

t ′ ‖B(1)
fail,t ′ |ϕ〉‖2 and

|ϕ(2,t)〉 := B
(1)
fail,t |ϕ〉∥∥B(1)
fail,t |ϕ〉∥∥ . (I3)

Clearly, the maximum fidelity achievable from the state ρ(2)

cannot be larger than the maximum over t of the fidelity
achievable from |ϕ(2,t)〉. Now, let us expand each state as

|ϕ(2,t)〉 =
∑
E

√
p

(2,t)
E

∣∣ϕ(2,t)
E

〉
,

for suitable probabilities {p(2,t)
E } and suitable energy eigen-

states {|ϕ(2,t)
E 〉}. Note that due to the condition in Eq. (I2), one

has

Sp(ϕ(2,k)) ⊆ Sp(ϕ) \ R1. (I4)

Using this fact, we can upper-bound the fidelity achievable
from the state |ϕ(2,t)〉—call it F (2,t)

max —as

F (2,t)
max �

∑
E∈Sp(ϕ(2,t))

qE

�
∑

E∈Sp(ϕ)\R1

qE,

the first inequality coming from Proposition 5. In turn, this
allows us to upper-bound the overall fidelity at the second step
as

F (2) � maxt F
(2,t)
max �

∑
E∈Sp(ϕ)\R1

qE =: F (2)
max. (I5)

The bound is attained when the quantum operation B(1)
fail is pure

and its Kraus operator is given by

B
(1)
fail :=

√
I − B

(1)†
succB

(1)
succ. (I6)

Luckily, this choice maximizes not only the fidelity at the
second step but also the probability that maximum fidelity
is achieved; indeed, denoting by p(2)

succ the probability that
the output has fidelity F (2)

max with the target and by p(2,t)
succ the

probability that the optimal transformation takes place on the
state |ϕ(2,t)〉, we have the bound

p(2)
succ �

∑
t

p
(2)
t p(2,t)

succ

=
∑

t

p
(2)
t

[
min

E∈Sp(ϕ(2,t))∩Sp(ψ)

p
(2,t)
E

qE

]
F (2,t)

max

� min
E

[∑
t

p
(2)
t p

(2,t)
E

qE

]
F (2)

max, (I7)

the equality in the second line coming from Proposition 5. It
is easy to verify that the pure quantum operation of Eq. (I6)
reaches the bound; indeed, its output state

|ϕ(2)〉 = B
(1)
fail|ϕ〉∥∥B(1)
fail|ϕ〉∥∥

can be converted optimally into the state |ψ〉 with probability
given by Proposition 5, which now yields

p(2)
succ = min

E∈Sp(ϕ(2))∩Sp(ψ)

[
p

(2)
E

qE

]
F (2)

max (I8)

with p
(2)
E := ‖PE|ϕ(2)〉‖2 ≡∑t p

(2)
t p

(2,t)
E . Inserting this equal-

ity in Eq. (I8) we then obtain that the bound of Eq. (I7) is
attained.

Summarizing, we have proven that the “best way to fail”
is via a pure quantum operation. Iterating the same argument,
we obtain that the optimal strategy at each step is described
by a binary filter consisting of two pure quantum operations,
with Kraus operators B(k)

succ and B
(k)
fail, respectively. Expanding

the state at the kth step as

|ϕ(k)〉 =
∑
E

√
p

(k)
E

∣∣ϕ(k)
E

〉
,

the successful Kraus operator is determined in an essentially
unique way by Proposition 5, which yields the condition

B(k)
succ

∣∣ϕ(k)
E

〉 =
⎡⎣ min

E′∈Sp(ϕ(k))∩Sp(ψ)

√
p

(k)
E′

qE′

⎤⎦√ qE

p
(k)
E

|ψE〉 (I9)

for every energy E in Sp(ϕ(k)). The unsuccessful Kraus
operator is then given by

B
(k)
fail :=

√
I − B

(k)†
succB

(k)
succ, (I10)

and its definition is essentially unique, up to the application of
an energy-preserving unitary on the output and to a possible
redefinition of B

(k)
fail outside the relevant subspace.
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Applying iteratively Eqs. (I9) and (I10) it is easy to obtain
that the eigenstates |ϕ(k)

E 〉 are independent of k; i.e., one has

|ϕ(k)
E 〉 ≡ |ϕE〉 ∀k = 1, . . . ,K,∀E ∈ Sp(ϕ(k)).

This condition implies that Eq. (I9) can be rewritten as

B(k)
succ|ϕE〉 =

⎡⎣ min
E′∈Sp(ϕ(k))∩Sp(ψ)

√
p

(k)
E′

qE′

⎤⎦√ qE

p
(k)
E

|ψE〉

for every energy E in Sp(ϕ(k)).

APPENDIX J: KRAUS OPERATORS
OF THE RECURSIVE PROTOCOL

Here we characterize the form of the successful Kraus
operators Mk , with k � K � L. Physically, the operator Mk

corresponds to the event that one succeeds at the kth round,
after having failed in the first k − 1 rounds, namely

Mk = B(k)
succB

(k−1)
fail · · · B(1)

fail. (J1)

To characterize Mk we first analyze the operators B
(i)
fail, with

i = 1, . . . ,k − 1. Combining Eqs. (I9) and (I10), we obtain
that B

(i)
fail satisfies the condition

B
(i)
fail|ϕE〉 = 0 ∀E ∈ R(i)

1 , (J2)

where R(i)
1 is the set defined by

R(i)
1 :=

{
E ∈ Sp(ϕ(i)) ∩ Sp(ψ)

∣∣∣∣∣p(i)
E

qE

= r
(i)
1

}
, (J3)

r
(i)
1 being the minimum nonzero value of the ratio r

(i)
E =

p
(i)
E /qE . Now, the key observation is provided by the following:

Lemma 2. The set R(i)
1 coincides with the set Ri defined in

Eq. (K1).
Proof. The proof is by recursion over i, based on the relation

p
(i+1)
E

qE

=
∥∥PEB

(i)
fail|ϕ(i)〉∥∥2

qE

∥∥B(i)
fail|ϕ(i)〉∥∥2

= 〈ϕ(i)|PE

(
I − B

(i)†
succB

(i)
succ

)
PE|ϕ(i)〉

qE

∥∥B(i)
fail|ϕ(i)〉∥∥2

=
p

(i)
E

{
1 − [minE′∈Sp(ϕ(i))∩Sp(ψ)

p
(i)
E′

qE′

]
qE

p
(i)
E

}
qE

∥∥B(i)
fail|ϕ(i)〉∥∥2

=
[

p
(i)
E

qE

− min
E′∈Sp(ϕ(i))∩Sp(ψ)

p
(i)
E′

qE′

]∥∥B(i)
fail|ϕ(i)〉∥∥−2

, (J4)

where the first equality follows from the definition |ϕ(i+1)〉 :=
B

(i)
fail|ϕ(i)〉/‖B(i)

fail|ϕ(i)〉‖, the second from the relation B
(i)
fail :=√

I − B
(i)†
succB

(i)
succ, and the third from Eq. (I9). Equation (J4)

shows that the set of energies for which the ratio p
(i+1)
E /qE has

the smallest value coincides with the set of energies for which
the ratio p

(i)
E /qE has the second smallest value, which in turn

coincides with the set of energies for which the ratio pE/qE

has the (i + 1)th smallest value. By definition of the sets R
(i)
1

and Ri , this proves the thesis. �
Using the above lemma, Eq. (J2) becomes

B
(i)
fail|ϕE〉 = 0 ∀E ∈ Ri . (J5)

We now use this relation to determine the form of the Kraus
operator Mk . Setting m

(k)
E := ‖Mk|ϕE〉‖2, the definition of Mk

[Eq. (J1)] gives the bound

m
(k)
E �

∥∥B(i)
fail|ϕE〉∥∥2 ∀i = 1, . . . ,k − 1.

Combining this bound with Eq. (J5) we obtain the condition

m
(k)
E = 0 ∀E ∈

k−1⋃
i=1

Ri ≡ Uk−1, (J6)

which shows that the operator Mk annihilates the subspace
spanned by the energy eigenstates with eigenvalues in Uk−1.

The action of Mk on the remaining eigenstates is determined
by the fact that when Mk is decomposed as in Eq. (J1), the last
operator acting in the sequence is B(k)

succ. Hence, we know that
the initial amplitude

√
pE should be modulated to

√
qE for

all the energy eigenvalues that survived the first k − 1 rounds;
that is,

m
(k)
E = ck

qE

pE

∀E ∈ Sp(ϕ) \ Uk−1, (J7)

where ck > 0 is a suitable proportionality constant. To de-
termine ck , note that the trace-preserving condition for the
instrument {Mk}K+1

k=1 is equivalent to

K+1∑
k=1

m
(k)
E = 1 ∀E.

Combining this fact with Eqs. (J6) and (J7) we then obtain the
recursion relations

c1
qE

pE

= 1 ∀E ∈ R1,

(c1 + c2)
qE

pE

= 1 ∀E ∈ R2,

...(
K∑

k=1

ck

)
qE

pE

= 1 ∀E ∈ RK.

Finally, using the definition of the sets Rk [Eq. (K1)] we can
solve the system of equations, obtaining ck = rk − rk−1 for
every k ∈ {1, . . . ,K}, having set r0 := 0. In conclusion, the
action of the successful Kraus operators is given by

Mk|ϕE〉 =
{

0 E ∈ Uk−1,√
(rk − rk−1) qE

pE
|ψE〉 E ∈ Sp(ϕ) \ Uk−1.

(J8)

The expressions of the fidelity and of the probability of
success, anticipated in Eqs. (55) and (56), can be easily derived
from the above equation. Indeed, we have

F (k)
max = |〈ψ |Mk|ϕ〉|2

‖Mk|ϕ〉‖2
=

∑
E∈Sp(ϕ)\Uk−1

qE
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and

p(k)
succ = ‖Mk|ϕ〉‖2

= (rk − rk−1)

⎛⎝ ∑
E∈Sp(ϕ)\Uk−1

qE

⎞⎠
= (rk − rk−1)F (k)

max.

APPENDIX K: THE ULTIMATE LIMIT FOR
PROBABILISTIC TRANSITIONS FROM MIXED

TO PURE STATES

Proof of Theorem 4. Let M be an energy-preserving
quantum channel that acts on the input state ρ. Its fidelity
for the transition ρ → |ψ〉〈ψ | is given by

F = 〈ψ |M(ρ)|ψ〉
=
∑
E,E′

√
qEqE′ 〈ψE|M(PEρPE′ )|ψE′ 〉

�
∑
E,E′

√
qEqE′ |〈ψE|M(ρE,E′)|ψE′ 〉|

�
∑
E,E′

√
qEqE′ ‖M(ρE,E′ )‖1,

the last inequality following from the relation | Tr[AB]| �
‖A‖∞‖B‖1 applied to the operators A = |ψE′ 〉〈ψE| and B =
M(ρE,E′). Since M is a trace-preserving quantum operation,
we then obtain the bound

F �
∑
E,E′

√
qEqE′ ‖ρE,E′ ‖1.

The bound can be achieved when the state ρ is block positive,
namely when there exists an orthonormal basis {|ϕE,k〉|k =
1, . . . ,dE} for each eigenspace with energy E such that all
matrices

[ρE,E′] = [〈ϕE,k|ρ|ϕE′,l〉] k,l � min{dE,dE′ }
are (square and) positive semidefinite. Then, one can define
the Kraus operators

Ak =
∑

E:k�dE

|ψE〉〈ϕE,k|

and the quantum channel A(·) =∑k Ak · A
†
k . With this defi-

nition, one has

F = 〈ψ |A(ρ)|ψ〉
=
∑

k

∑
E:k�dE

∑
E′:k�dE′

√
qEqE′ 〈ϕE,k|ρ|ϕE′,k〉

=
∑
E,E′

∑
k�min{dE,dE′ }

√
qEqE′ 〈ϕE,k|ρ|ϕE′,k〉

=
∑
E,E′

√
qEqE′ Tr[ρE,E′]

=
∑
E,E′

√
qEqE′ ‖ρE,E′ ‖1,

having used the fact that ρE,E′ is positive semidefinite, and
therefore Tr[ρE,E′] = ‖ρE,E′ ‖1. �

Proof of Theorem 5. Let M be an energy-preserving
quantum channel and let M be its Choi operator, defined as

M = (M ⊗ I)(|I 〉〉〈〈I |)
with |I 〉〉 =∑n |n〉|n〉 being the unnormalized maximally
entangled state on H1 ⊗ H2, H1 � H2 � H. In the Choi
representation, the energy-preserving condition is equivalent
to the requirement

�0M�0 = M, �0 =
⊕

E

(PE ⊗ PE).

Now, the fidelity can be expressed as

F = 〈ψ |M(ρ)|ψ〉
Tr[M(ρ)]

= Tr[M(|ψ〉〈ψ | ⊗ ρT )]

Tr[M(I ⊗ ρT )]

= Tr[M(|ψ〉〈ψ | ⊗ ρT )]

Tr[�0M�0(I ⊗ ρT )]

= Tr[σR−1/2(|ψ〉〈ψ | ⊗ ρT )R−1/2],

with

R = �0(I ⊗ ρT )�0

=
⊕

E

(
PE ⊗ ρT

E,E

)
(K1)

and

σ =
√

RM
√

R

Tr[MR]
.

Since σ is a density matrix, we have the achievable upper
bound

F � sup
σ :σ�0, Tr[σ ]=1

Tr[σR−1/2(|ψ〉〈ψ | ⊗ ρT )R−1/2]

= ‖R−1/2(|ψ〉〈ψ | ⊗ ρT )R−1/2‖∞

=
∥∥∥∥∥∑

E,E′

√
qEqE′ |ψE〉〈ψE′ | ⊗ (ρ− 1

2
E,E

)T
ρT

E,E′
(
ρ

− 1
2

E′,E′
)T ∥∥∥∥∥

∞
≡ ‖A‖∞,

achieved if and only if the support of σ is contained in the
eigenspace of A with maximum eigenvalue. Hence, we must
have

Aσ = Fmaxσ

and

M = γR−1/2σR−1/2, (K2)

for a suitable constant γ > 0. Note that γ is equal to the success
probability; indeed, we have

psucc = Tr[M(I ⊗ ρT )]

= γ Tr[R−1/2σR−1/2(I ⊗ ρT )]
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= γ
∑
E,E′

Tr
[(

PE ⊗ ρT
E,E

)−1/2
σ

× (PE′ ⊗ ρT
E′,E′

)−1/2
(I ⊗ ρT )

]
= γ

∑
E

Tr
{
σ
[
PE ⊗ (ρT

E,E

)−1/2
ρT
(
ρT

E,E

)−1/2]}
= γ

∑
E

Tr[σ (PE ⊗ QE)],

where QE is the projector onto the support of ρE,E . Now, note
that the support of A is contained in the support of the projector
P =∑E PE ⊗ QE . Since the support of σ is contained in the
support of A, we conclude

psucc = γ Tr

[
σ

(∑
E

PE ⊗ QE

)]
= γ.

Finally, the maximum value of γ can be derived from the
trace nonincreasing property of the quantum operation M. In
terms of the Choi operator, the nonincreasing property reads

Tr1[M] � I , where Trout denotes the trace on the output Hilbert
space. Using Eqs. (K2) and (K1) we obtain the relation

Tr1[M] = γ
∑
E,E′

Tr1
[(

PE ⊗ ρT
E,E

)−1/2
σ
(
PE′ ⊗ ρT

E′,E′
)−1/2]

= γ
∑
E

(
ρT

E,E

)−1/2
σE

(
ρT

E,E

)−1/2
,

where σE := Tr1[(PE ⊗ I )σ ] are the unnormalized states
on the input system, conditional on the outcomes of an
energy measurement on the output system. Hence, the trace
nonincreasing condition Tr1[M] � I is guaranteed if and only
if

γ � min
E

1∥∥(ρT
E,E

)−1/2
σE

(
ρT

E,E

)−1/2∥∥
∞

.

In conclusion, the maximum probability of success is given by

psucc = max
σ

min
E

1∥∥(ρT
E,E

)−1/2
σE

(
ρT

E,E

)−1/2∥∥
∞

.
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