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Concrete shrinks as it dries. If its shrinkage movement is restrained, it can crack, causing serviceability and durability

problems. To ensure satisfactory performance of a reinforced concrete (RC) structure, the shrinkage crack widths

are generally controlled to within acceptable limits by providing steel reinforcement for crack control. However, due

to unavoidable empiricism, the design guidelines given in the various design codes for computing the amount of

crack-control steel are rather inconsistent. Moreover, the various existing models for prediction of crack widths

do not agree with each other, indicating that the shrinkage cracking phenomenon is still far from fully understood.

With the aim of resolving this problem, a rigorous analytical model for shrinkage cracking of RC is presented. The

governing equations are first derived purely based on the mechanics of the steel bar–concrete interaction. The

governing equations are then solved analytically without making any unjustified assumptions. Finally, the analytical

model is validated through analysis of experimental results from the literature.

Notation
Ac concrete section area
As steel area
Ec elastic modulus of concrete
Ec* effective elastic modulus of concrete
Es elastic modulus of steel
fb average bond strength
fcc cylinder compressive strength of concrete
fct tensile strength of concrete
kb bond stiffness
L length of concrete member between restraints
l bond force transfer length
lmax maximum crack spacing
lmin minimum crack spacing in BS 8007 (BSI, 1987)
l* upper limit of bond force transfer length
lt bond force transfer length
lt* upper limit of bond force transfer length in the

model of Häußler-Combe and Hartig (2012)
l0 minimum crack spacing in the model of Nejadi and

Gilbert (2004)
m modular ratio
m* effective modular ratio
n number of steel bars
ncr number of cracks
nl number of transfer lengths
sb bond slip
sr crack spacing
s1 bond slip at peak bond stress

uc displacement of concrete
us displacement of steel
w crack width
wmax maximum crack width
x distance from crack
βt constant empirical factor describing the shape of the

steel stress distribution along the transfer length
γ proportionality constant
Δu change in member length due to support movement
Δσs change in steel stress between the two ends of

transfer length
ε effective strain
εcE imposed strain
εcm mean strain of concrete
εcs shrinkage strain
εcs* ultimate concrete shrinkage strain
εsm mean strain of steel
ξ maximum bond slip
ρ steel ratio
σav average stress in uncracked concrete
σc concrete stress
σcm mean concrete stress
σc1 concrete stress at distance of l0 from the crack
σc1* final concrete stress at distance of l0 from the crack
σs steel stress
σsm mean steel stress
σsr maximum steel stress
σs1 steel stress at distance of l0 from the crack
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σs2 steel stress at crack
σs2* final steel stress at crack
τb bond stress
τm mean bond stress
τp peak bond stress
ϕ steel bar diameter
ϕc creep coefficient
ϕc* final creep coefficient

Introduction
The shrinkage of concrete after hardening is to some extent
unavoidable. In a long reinforced concrete (RC) structure
restrained at the ends from longitudinal movement, such as a
podium floor deck connected at each end to a rigid core wall,
the shrinkage-induced tensile stress could exceed the tensile
strength of concrete, thus resulting in the formation of shrink-
age cracks. Shrinkage cracks are typically through cracks (i.e.
cracks going through the whole thickness of the concrete sec-
tion) that allow not only the ingress of moisture and deleter-
ious chemicals to reach the steel reinforcing bars, but also
create paths of water leakage from the upper floor to the lower
floor. Such shrinkage cracking could pose serviceability and
durability problems. To ensure satisfactory performance of RC
structures, the shrinkage crack widths must be controlled to
within acceptable limits (Castel and Gilbert, 2014; Hughes,
1971a, 1971b). However, to do so, the crack widths need to be
evaluated in the first place.

Shrinkage cracking may be alleviated or controlled by a
number of measures (Kwan et al., 2002, 2003). Basically, these
include the provision of movement joints, the provision of late-
cast strips, the use of high-performance concrete with better
dimensional stability, the addition of expanding or shrink-
age reducing agents to the concrete mix, and the provision of
crack-control steel reinforcement. The provision of crack-
control steel, which does not affect construction scheduling, is
the most commonly adopted among these measures. However,
the relationships between the concrete tensile strength, the ulti-
mate shrinkage strain, the crack-control steel provided and the
resulting crack spacings and crack widths are still not well
understood. Fairly high levels of empiricism and conservatism
have been adopted in various design guides and codes such as
British standard BS 8007 (BSI, 1987). As a result, the amount
of crack-control steel to be provided is often quite large.

After cracking, the shrinking concrete tends to move away
from the cracks and this tendency is opposed by the crack-
control steel through the steel bar–concrete bond. It limits the
shrinkage movement of the concrete and thus reduces the
crack widths to smaller values. Although at the cracks the con-
crete tensile stresses are relieved to zero, the bond action would
still induce tensile stresses in the concrete, which are generally
larger at greater distance from the nearest crack. As the shrink-
age further increases, the tensile stresses in between two

existing cracks increase and eventually can become large
enough to cause the formation of a new crack. In general,
the provision of more crack-control steel would lead to the
formation of more cracks with smaller crack widths. On the
other hand, the shrinkage movement of the concrete pulls
the crack-control steel away from the cracks through the steel
bar–concrete bond. As a result, the crack-control steel would
be subjected to much higher tensile stresses at the cracks than
at other locations. Figure 1 illustrates the spatial distributions
of concrete, steel and bond stresses across a shrinkage crack.

Some simple formulas for the determination of the crack
spacing and crack width are given in BS 8007 (BSI, 1987).
These formulas are based on the assumption that the bond
stress is uniform near the cracks. While such an assumption is
rather empirical and might not be justified, it has the advan-
tage of being simple to use. Gilbert (1992, 2001) developed
an analytical model for evaluating shrinkage cracking in fully
restrained concrete members. It is based on the assumption
that the concrete, steel and bond stresses would vary along the
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Figure 1. Stress distributions across a shrinkage crack: (a) cracked

RC member; (b) concrete stress; (c) steel stress; (d) bond stress
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length only within a certain distance from the crack. This dis-
tance is evaluated using an empirical expression in terms of
only the crack-control steel ratio and diameter. However, in
some cases, the computed crack spacing could be unreasonably
large or small. Gilbert (2003) and Nejadi and Gilbert (2004)
later improved this model by modifying the previous formulas.
More recently, Häußler-Combe and Hartig (2012) proposed
another analytical model based on certain empirical coeffi-
cients for evaluating the crack spacing and crack width. Their
model was validated using the experimental results reported
by Nejadi and Gilbert (2004).

Apart from these analytical models, finite-element models
have also been developed to analyse the shrinkage movement
and cracking of RC structures (Jurkiewiez et al., 1999; Kwan
and Ng, 2009; Liu et al., 2006). In the finite-element models,
time step analyses were applied to evaluate the spatial and
temporal variations of the bond, concrete and steel stresses.
Theoretically, the finite-element models should be more rigor-
ous and generally applicable. However, with the bond slip
at the steel bar–concrete interface ignored, the concrete and
steel bars modelled as an integrated continuum and the cracks
modelled as smeared cracks rather than as discrete cracks,
these finite-element models are not capable of giving the crack
spacing and crack width in the computed results (Ma and
Kwan, 2015). For these reasons, the evaluation of the amount
of crack-control steel needed and the resulting crack spacing
and crack width still cannot be carried out using the finite-
element method.

To rationalise the design of steel for the control of shrink-
age cracking, the relationships between the material properties,
the ratio and diameter of the crack-control steel, crack spacing
and crack width need to be established. A rigorous analytical
model for shrinkage cracking of RC is developed in this paper
based on a set of governing differential equations. By solving
the governing differential equations analytically, closed-form
solutions are obtained, from which the effects of various struc-
tural parameters on the crack spacing and crack width may be
evaluated algebraically and the crack-control steel needed may
be evaluated directly.

Shrinkage and creep of concrete
As shrinkage takes place and tensile stresses are induced in
concrete due to movement restraint, creep also occurs, thus
relieving parts of the shrinkage-induced tensile stresses through
relaxation (Kwan and Ng, 2015). Both shrinkage and creep are
time-dependent, as explained in the following section.

There are two main types of concrete shrinkage – autogenous
shrinkage and drying shrinkage (Neville, 2011). Autogenous
shrinkage is caused by self-desiccation, whereas drying shrink-
age is caused by loss of water due to evaporation. Generally,
autogenous shrinkage is fairly small compared with drying

shrinkage. Since the loss of water over time depends on the
permeability of the concrete, the size of the concrete member
and the environmental conditions, the rate of drying shrink-
age is also dependent on these factors (Kwan et al., 2010). On
the other hand, there are two dominant mechanisms of
concrete creep. The first mechanism is viscous sliding of the
C–S–H (calcium silicate hydrate) gel particles (Neville, 1958;
Vandamme and Ulm, 2009). The second mechanism is the
internal movement of adsorbed or intra-crystalline water,
which is believed to be caused mainly by changes in the hygral
equilibrium within the pore structure of the gel inside concrete
(Neville, 1955; Powers, 1968). As for drying shrinkage, the
rate of creep is also dependent on the permeability of the con-
crete, the size of the concrete member, and the environmental
conditions.

However, it takes many months to measure the shrinkage and
creep of a particular concrete. Therefore, in usual practice, the
shrinkage strain is just evaluated using the shrinkage coeffi-
cient given in design codes and the creep effect is taken into
account by changing the elastic modulus to the long-term
elastic modulus, which may be evaluated using the creep coeffi-
cient given in design codes (Gilbert and Ranzi, 2011).

Bond stress–slip constitutive model
At the steel bar–concrete interface, bond slip occurs and
bond stresses are developed. The bond stiffness of the interface
affects the effectiveness of the crack-control steel and should
thus be properly accounted for. For the bond stress–slip rela-
tion, CEB-FIP Model Code 1990 (hereafter referred to as
MC-90) (CEB, 1993) gives the bond stress–slip curve shown in
Figure 2. According to MC-90, if ribbed steel bars are used
(plain round bars are rarely used nowadays because of inferior
bond), the bond slip at which peak bond stress would be
developed is 0·6 mm, regardless of whether the concrete is

sbs3s2s1

τb

τp

τb = τp(sb/s1)0·4

For ribbed bars, s1 = 0·6 mm 

Figure 2. Bond stress–slip curve given in MC-90 (CEB, 1993)
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unconfined or confined. Such a bond slip value of 0·6 mm
is actually quite large. As the crack width is twice the bond
slip, and the allowable crack width is generally not larger than
0·3 mm, the bond slip at the serviceability limit state has to be
controlled to within 0·5� 0·3 mm=0·15 mm. Basically, before
the peak bond stress is developed, the bond stress is an increas-
ing function of the bond slip. Herein, for simplicity, the bond
stress is assumed to be proportional to the bond slip and the
bond stiffness kb is taken to be the mean secant stiffness, as
evaluated below. As per MC-90, at bond slip sb not larger than
that giving the peak bond stress, the bond stress τb is related to
the peak bond stress τp by

1: τb ¼ τpðsb=s1Þ0�4

where s1 is the bond slip at peak bond stress. The secant bond
stiffness is equal to τb/sb and the mean secant stiffness within
the range of bond slip from 0·02sb to sb may be evaluated from
Equation 2 (the bond stiffness in MC-90 is unreasonably or
even infinitely large at very small bond slip and therefore is
not included in the evaluation).

2: kb ¼ 1
0�98sb

ðsb
0�02sb

τp
ðsb=s1Þ0�4

sb
dsb ¼ 2�0ðτp=sbÞðsb=s1Þ0�4

Regarding the peak bond stress τp, MC-90 suggests that it may
be taken as 2·0( fcc)

0·5 for unconfined concrete or as 2·5( fcc)
0·5

for confined concrete, where fcc is the cylinder compressive
strength of the concrete.

Existing methods of shrinkage
cracking analysis
Three common methodologies for shrinkage cracking analysis
– the method given in BS 8007 (BSI, 1987), the model devel-
oped by Nejadi and Gilbert (2004) and the model developed
by Häußler-Combe and Hartig (2012) – are highlighted in this
section.

The BS 8007 method
At a crack, the concrete stress is zero. Assuming uniform bond
stress near the crack, the concrete stress σc at a distance l from
the crack is equal to

3: σc ¼ l nπϕð Þfb
Ac

¼ l
4ρ
ϕ

� �
fb

where n is the number of steel bars, ϕ is the steel bar diameter,
ρ is the steel ratio, fb is the average bond strength and Ac is the
concrete section area. The concrete would crack again at a
minimum distance from the existing crack of lmin, where σc
reaches the tensile strength of concrete fct. Based on this

condition, the minimum crack spacing lmin may be obtained as

4: lmin ¼ ϕ

4ρ

� �
fct
fb

� �

Between two existing cracks, the concrete stress increases
from zero at one crack to a maximum value at mid-distance
between the two cracks and then decreases to zero at the other
crack. If the distance between the two existing cracks is longer
than 2lmin, the maximum concrete stress would be higher than
the tensile strength and a new crack would be formed between
the two existing cracks. Hence, the maximum crack spacing
lmax may be taken as

5: lmax ¼ 2lmin ¼ ϕ

2ρ

� �
fct
fb

� �

From the above, the maximum crack width wmax is derived as

6: wmax ¼ lmaxε

where ε is the effective strain evaluated as the sum of shrink-
age strain and thermal contraction strain deducted by 100
micro-strain as stipulated in BS 8007 (BSI, 1987). For type 2
deformed bars, the ratio ( fct/fb) may be taken as 0·67.

From the above, the following important characteristics of the
method are noted.

& It is assumed that full bond strength would be developed
along the steel bar–concrete interface. However, as can be
seen from Figure 2, for ribbed bars, this is generally not
possible unless the bond slip is larger than 0·6 mm or,
in other words, the crack width is larger than 1·2 mm.
Such an assumption would lead to overestimation of the
bond stress and underestimation of the crack spacing.

& The predicted crack spacing is independent of the effective
strain.

& The predicted crack width increases with the effective
strain.

Model proposed by Nejadi and Gilbert
According to the model of Nejadi and Gilbert (2004), the con-
crete stress varies from zero at the crack to σc1 at a distance of
l0 from the crack and then remains constant at further distance
from the crack. On the other hand, the steel stress varies from
σs2 at the crack to σs1 at a distance of l0 from the crack and
then remains constant at further distance from the crack. At
the first crack, l0 may be evaluated as l0 =ϕ/(10ρ), but at the
final or long-term stage, the value of l0 should be multiplied
by 1·33 to become ϕ/(7·5ρ) so as to cater for the deterioration
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in bond with time. The distance l0 may be interpreted as the
minimum crack spacing.

After first cracking, the concrete stress σc1 at distance l0 from
the crack and the steel stress σs2 at the crack are derived as
follows (Gilbert, 1992, 2001, 2003)

7: σc1 ¼ ð3LÞmρ fct
2l0 þ ð3LÞmρ

8: σs2 ¼ ð3L� 2l0Þmfct
2l0 þ ð3LÞmρ

where L is the length of the concrete member between restraints,
m is the modular ratio (Es /Ec) and ρ is the steel ratio (As /Ac).
After all shrinkage has taken place and the final crack pattern is
established, the final concrete stress at distance l0 from a crack
(σc1*) and the final steel stress at each crack (σs2*) become

9: σc1* ¼ 3EsρΔu
2ncrl0

� ð3LÞm*ρ
2ncrl0

σav þ εcs*Ec*ð Þ � fct

10: σs2* ¼ 3EsΔu
2ncrl0

� ð3L� 2ncrl0Þm*
2ncrl0

σav þ εcs*Ec*ð Þ

in which Δu is the change in length of the member due to
support movement, ncr is the number of cracks, σav is the
average stress in the uncracked concrete, εcs* is the ultimate con-
crete shrinkage strain, Ec* is the effective elastic modulus of
concrete and m* is the effective modular ratio (Es /Ec*). The
average concrete stress σav may be taken as (σc1 + fct)/2 in
which fct is the concrete tensile strength, whereas the effective
elastic modulus Ec* may be taken as Ec /(1 +ϕc*) in which ϕc* is
the final creep coefficient. On the other hand, the number
of cracks ncr should be taken as the smallest integer value such
that σc1*≤ fct. Lastly, provided the steel at the crack has not
yielded, the final mean crack width w is given by

11: w ¼ � σ*c1
Ec*

L
ncr

� 2
3
l0

� �
þ εcs*

L
ncr

� �� �

The following important characteristics of the model are noted.

& The actual bond stress distribution is not evaluated as a
part of the solution.

& The minimum crack spacing is dependent only on the steel
bar diameter and ratio.

& The number of cracks increases, whereas the mean crack
spacing decreases as the magnitude of shrinkage strain
increases.

& The predicted mean crack width w increases with the
magnitude of shrinkage strain.

Model proposed by Häußler-Combe and Hartig
Like the other models, the model developed by Häußler-Combe
and Hartig (2012) assumes that there is a certain bond force
transfer length at the two sides of a crack, within which the
bond force at the steel bar–concrete interface would cause the
concrete stresses to vary from zero at the crack to a maximum
value at the end of the bond force transfer length and the steel
stress, to vary from a maximum value at the crack to a
minimum value at the end of the bond force transfer length.

According to this model, the crack width w of a symmetrical
crack can be calculated as

12: w ¼ 2ltðεsm � εcmÞ

where lt is the bond force transfer length, εsm is the mean strain
of the steel and εcm is the mean strain of the concrete. In turn,
the mean strains are evaluated from the corresponding mean
stresses. Let the maximum steel stress be σsr and the change in
steel stress between the two ends of the transfer length be Δσs.
The mean steel stress σsm may be evaluated as

13: σsm ¼ σsr � βtΔσs

where βt is a constant empirical factor describing the shape of
the stress distribution in the steel along the transfer length.
Likewise, the mean concrete stress σcm may be evaluated as

14: σcm ¼ ρβtΔσs

in which ρ=As/Ac is the steel ratio. The force transfer between
the steel bar and concrete is effected by the bond stresses devel-
oped along the transfer length. Based on equilibrium

15: Δσs ¼ nπϕ
As

ltτm ¼ 4
ϕ

� �
ltτm

where n is the number of steel bars and τm is the mean bond
stress. For simplicity, it is assumed that τm= γfct, where γ is a
proportionality constant and fct is the concrete tensile strength.
Since the concrete stress increases from zero at the crack to a
maximum value of ρΔσs at the end of the transfer length,
and the concrete stress cannot be larger than fct, Δσs has a
maximum value of fct/ρ. As a result, the transfer length lt is
subjected to an upper limit of lt*, which can be determined by
substituting Δσs = fct/ρ into Equation 15, giving

16: lt* ¼ ϕ

4ρ

� �
fct
τm

� �

124

Magazine of Concrete Research
Volume 69 Issue 3

A rigorous analytical model for shrinkage
cracking of reinforced concrete
Ng and Kwan

Downloaded by [ University of Hong Kong] on [06/04/18]. Copyright © ICE Publishing, all rights reserved.



Let the crack spacing be sr. The crack spacing sr cannot be
longer than 2lt* because otherwise the maximum concrete
stress (= ρΔσs) occurring at the mid-point between two adjacent
cracks would exceed the concrete tensile strength and a new
crack would be formed. Hence, the crack spacing sr has to
satisfy the condition

17: lt* � sr � 2lt*

In other words, there is a maximum crack spacing of 2lt* and a
minimum crack spacing of lt*.

For a RC member subjected to an imposed strain εcE < 0 over
the entire length L (the imposed strain could be shrinkage or
thermal contraction strain) and having a total of ncr cracks
formed in the stabilised cracking state, the mean crack width w
may be evaluated from Equation 18 based on the compatibility
condition

18: ncrwþ LεcE þ ncrð2ltÞσcm
Ec

� �
¼ Δu

in which Δu is the change in length of the member due to
support movement. Substituting the value of σcm = ρβtΔσs and
the value of lt = (ϕ/4)(Δσs/τm) into the above equation and
assuming that Δσs has its maximum value of fct /ρ, the formula
for the mean crack width w under the condition of stabilised
cracking is derived as

19: w ¼ ϕ

2ρ

� �
fct
τm

� �
Δu
L

� εcE � βt
fct
Ec

� �

in which Ec is the effective elastic modulus of concrete. To
account for creep, the effective elastic modulus may be taken
as the elastic modulus divided by the factor (1 + ϕc), where ϕc
is the creep coefficient.

This model has the following characteristics.

& The actual bond stress distribution is not evaluated as a
part of the solution.

& The computed results are dependent on the assumed values
of the coefficients βt and γ.

& Both the minimum crack spacing lt* and maximum crack
spacing 2lt* are independent of the shrinkage strain.

& The computed mean crack width w increases with the
magnitude of shrinkage strain.

A new and rigorous analytical model
The existing methods of shrinkage cracking analysis detailed in
the previous section differ widely in their formulations and are
therefore not consistent with each other. Actually, none of the
methods are capable of giving the actual variations of the bond,

concrete and steel stresses along the RC member. The previous
models generally assume that there is a well-defined bond force
transfer length at each side of the crack and that the bond stress
varies within the transfer length with a certain fixed mean bond
stress. The authors of this paper do not agree with these assump-
tions and are of the view that evaluation of the actual variations
of the bond, concrete and steel stresses should be incorporated
as an integral part of the formulation, as presented below.

In the following, a RC member subjected to a shrinkage strain
of εcs and an imposed strain of Δu/L due to support movement
(Δu is the change in length and L is the total length) is ana-
lysed. If only one crack has formed, the segment of the
member from the crack to one end of the member is con-
sidered. If two or more cracks have formed, the segment of the
member from one crack to the mid-point between this crack
and the adjacent crack is considered. The segment under con-
sideration here is shown in Figure 3. The maximum bond slip
ξ occurs at the crack; at the end of the segment, the bond slip
is equal to zero because of symmetry or end fixity. Let the dis-
tance from the crack be x and the displacements of concrete
and steel be uc and us, respectively. These displacements are
related to the concrete stress σc, steel stress σs and bond stress
τb by the equations

20:
@uc
@x

¼ εcs þ σc
Ec

21:
@us
@x

¼ σs
Es

22: uc � us ¼ τb
kb

in which Ec is the elastic modulus of concrete, Es is the elastic
modulus of steel and kb is the bond stiffness. The equilibrium
condition gives rise to

23: nπϕτb ¼ Ac
@σc
@x

¼ �As
@σs
@x

x

ξ

l

uc

us

Concrete Steel

(∆υ/L)l

Figure 3. Segment of RC member subjected to shrinkage
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where n is the number of steel bars, ϕ is the steel bar diameter,
Ac is the concrete area and As is the steel area. Expressing in
terms of displacements only, the following differential equation
is obtained

24: nπϕkbðuc � usÞ ¼ EcAc
@2uc
@x2

¼ �EsAs
@2us
@x2

Dividing the whole equation by EcAc and introducing the par-
ameter λ, which denotes the ratio

25: λ ¼ nπϕkb
EcAc

¼ 4ρ
ϕ

� �
kb
Ec

� �

Equation 24 becomes

26: λðuc � usÞ ¼ @2uc
@x2

¼ �mρ
@2us
@x2

in which m is the modular ratio (Es/Ec) and ρ is the steel ratio
(As/Ac).

Equation 26 is the governing equation of the structural system.
It is actually a set of two second-order partial differential equa-
tions, which need to be solved with the boundary conditions
considered. The boundary conditions are

& at the crack: x=0, uc = ξ, us = 0 and σc = 0
& at the end of the segment: x= l, uc = (Δu/L)l, us = (Δu/L)l

and σc≤ fct.

Note that l is the bond force transfer length from the
crack (where the bond slip is maximum) to the end of
the segment (where the bond slip is equal to zero). For con-
ciseness, the procedures of solving the governing equation
together with the boundary conditions are presented in the
Appendix.

As explained in the Appendix, a parameter ψ is employed to
solve the differential equations; ψ is defined as

27: ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1þmρÞ

mρ

s

Solving the governing equation, the concrete stress in terms of
the maximum bond slip ξ at the crack is obtained as

28: σcðxÞ¼Ec
Δu
L

�εcs�ξ � mρψ

1þmρ
� coshðψðl�xÞÞ

sinhðψlÞ �ξ � 1=l
1þmρ

� �

At x=0, σc = 0. This boundary condition yields

29:
Δu
L

� εcs � ξ � mρψ

1þmρ
� coshðψlÞ
sinhðψlÞ � ξ � 1=l

1þmρ
¼ 0

Solving Equation 29, the maximum bond slip ξ is obtained as

30: ξ ¼ 1þmρ

1þ ðmρψl= tanhðψlÞÞ
Δu
L

� εcs

� �
l

Substituting into Equation 28, the concrete stress in terms of
the shrinkage strain εcs is obtained as

31: σcðxÞ ¼ Ec
Δu
L

� εcs

� �
mρψl

mρψl þ tanhðψlÞ
� �

� 1� coshðψðl � xÞÞ
coshðψlÞ

� �

The variations of the concrete stress σc with the distance x from
the crack for some typical cases (i.e. the specimens analysed in
next section) are illustrated in Figure 4. The maximum concrete
stress occurs at x= l and is derived from Equation 31 as

32: σcðlÞ ¼Ec
Δu
L

� εcs

� �
mρψl

mρψl þ tanhðψlÞ
� �

1� 1
coshðψlÞ

� �

Since the maximum concrete stress cannot be larger than the
concrete tensile strength, the following inequality applies

33: Ec
Δu
L

� εcs

� �
mρψl

mρψl þ tanhðψlÞ
� �

1� 1
coshðψlÞ

� �
� fct
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Figure 4. Variations of concrete stress with distance from a crack
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From this inequality, the upper limit of l, denoted l*, is
obtained as

34: l* ¼ 1
mρψ

� �
tanhðψlÞfct

Ec½ðΔu=LÞ � εcs�½1� ð1= coshðψlÞÞ� � fct

� �

In most cases, ψl≥ 3·0, tanh(ψl)≈ 1·0 and 1/cosh(ψl) < 0·1,
and the exact value of ψl has little effect on the value of l*.

Adopting the arguments of Häußler-Combe and Hartig
(2012), the crack spacing sr has to satisfy the condition

35: l* � sr � 2l*

Hence, the crack spacing sr could vary between l* and 2l* and
the transfer length l, which is equal to half the crack spacing,
could vary between 0·5l* and l*.

The crack width is related to the crack spacing and the transfer
length. However, the crack spacing is sometimes undefined
but the transfer length is always well defined, as illustrated
in Figure 5. For instance, when there is only one crack within
the length of the member, the crack spacing is undefined but
there will be two transfer lengths with a mean transfer length
equal to half the length of the member. When there is one
crack within the length and another crack at one end of
the member, there is only one crack spacing between the two
cracks and the mean crack spacing is difficult to define,
whereas there will be three transfer lengths with a mean trans-
fer length of one-third the length of the member. In fact,
the crack width is related more to the transfer length than the
crack spacing. From Equation 30, it can be seen that the
maximum bond slip ξ is directly related to the transfer length
l, not the crack spacing sr. For a crack within the length of the
member, the crack width is equal to 2ξ because there are bond
slips of concrete away from the crack at both sides, whereas for
a crack at the end of the member, the crack width is equal to ξ
because there is bond slip of concrete away from the crack at
only one side.

It is thus suggested that we should work with the transfer
length, rather than the crack spacing. Let the number of cracks
be ncr. Each crack within the length of the member would pro-
duce two transfer lengths, while each crack at the end of the
member would produce only one transfer length. Assuming
that the first crack would be formed within the length, the
second crack would be formed at one end, the third crack
would be formed at the other end and subsequent cracks
would be formed within the length again, the number of trans-
fer lengths nl may be determined as

36: nl ¼ 2ncr �minðncr � 1; 2Þ

From the number of transfer lengths nl so determined, the
mean transfer length l may be evaluated as

37: l ¼ L
nl

¼ L
2ncr �minðncr � 1; 2Þ

The actual number of cracks ncr should be taken as the
smallest integer value such that the mean transfer length l
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evaluated using Equation 37 satisfies the condition l≤ l* (so
as to ensure that the maximum concrete stress σc(l ) is not
larger than the concrete tensile strength fct). Then, the mean
transfer length l may be substituted into Equation 30 to evalu-
ate the mean value of ξ. With the mean value of ξ so evalu-
ated, the total crack width may be calculated as the number
of transfer lengths nl times the mean value of ξ. Finally, the
mean crack width w may be evaluated as the total crack width
divided by the number of cracks, or simply as (nl/ncr)ξ.
Multiplying Equation 30 by nl/ncr, the mean crack width w is
obtained as

38: w ¼ 1þmρ

1þ ðmρψl= tanhðψlÞÞ
Δu
L

� εcs

� �
L
ncr

� �

Having completed the formulation, it is noted that the analyti-
cal solutions derived above are closed-form in nature and are
not dependent on any assumed empirical coefficients.

Analysis of test specimens
To validate the new analytical model, the RC slab specimens
tested by Nejadi and Gilbert (2004) were analysed. The dimen-
sions and details of the specimens are shown in Figure 6 and
listed in Table 1. Each specimen consisted of a 600 mm wide
by 2000 mm long prismatic portion connected monolithically
via two 330 mm long splayed portions to end blocks of 1·0 m
by 1·0 m by 0·6 m depth at the ends. The end blocks were
firmly clamped to a rigid floor to provide effective restraints to
the shrinkage movement of the prismatic portion. The splayed
portions, having the same depth, were to avoid stress concen-
tration. A total of eight specimens reinforced with two to four
steel bars of 10–12 mm diameter were tested. At the mid-
length of each specimen, two 75 mm wide full-depth notches
were formed at the two sides during concrete casting to induce
the first crack there.

The eight specimens were cast from two batches of concrete.
The material properties of each batch of concrete (compressive
strength, tensile strength, elastic modulus, shrinkage strain and
creep coefficient) as reported by Nejadi and Gilbert (2004) are
presented in Table 2. The specimens were kept undisturbed and
the number of cracks, the crack spacing, crack width and steel
strain of each specimen were measured. Furthermore, due to
shrinkage and fixity of the end blocks, the prismatic portion of
each specimen was elongated and the elongation of each speci-
men was measured. The elongation, number of cracks, mean
crack spacing and crack width, and maximum steel and con-
crete stresses (derived from the measured steel strains) as
reported by Nejadi and Gilbert (2004), are listed in Table 3.

These specimens were also analysed by Nejadi and Gilbert
(2004) and by Häußler-Combe and Hartig (2012) using their
own analytical models. The respective analysis results are sum-
marised in Tables 4 and 5 (note that in both tables, the
number of cracks includes the artificially induced crack at the
middle). It can be seen that both models predict that speci-
mens S1a and S1b should have the largest number of cracks
and the smallest mean crack width, whereas specimens S3a

1000

1000

2000

330

Plan

36 mm diameter
alloy bar anchored
to rigid floor

600

100

Elevation

Figure 6. Details of concrete slab specimens tested by Nejadi and

Gilbert (2004); dimensions in mm

Specimen Concrete Number of steel bars, n Steel bar diameter, ϕ: mm Steel area, As: mm2 Concrete depth: mm

S1a Batch I 3 12 339 102·2
S1b Batch I 3 12 339 99·8
S2a Batch I 3 10 236 101·6
S2b Batch II 3 10 236 98·3
S3a Batch I 2 10 157 99·2
S3b Batch I 2 10 157 99·3
S4a Batch I 4 10 314 100·5
S4b Batch I 4 10 314 101·1

Table 1. Dimensions and details of specimens tested by Nejadi

and Gilbert (2004)
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and S3b should have the smallest number of cracks and the
largest mean crack width. These predictions agree fairly well
with the experimental results. However, the model of Nejadi
and Gilbert (2004) predicts that the maximum steel stress in
specimens S3a and S3b should be around 553–562 MPa, but
the model of Häußler-Combe and Hartig (2012) predicts that
the maximum steel stress in specimens S3a and S3b should
be around 499–503 MPa. Moreover, the Nejadi and Gilbert
(2004) model predicts that the maximum concrete stress should
vary from 1·22 to 1·68 MPa but the Häußler-Combe and
Hartig (2012) model predicts that the maximum concrete stress
should remain constant at 1·97 MPa. The two models thus do
not quite agree.

The specimens were also analysed using the new analytical
model presented here. In conducting the analysis, the materials
properties reported by Nejadi and Gilbert (2004) were used.
Regarding the steel properties, the elastic modulus was
assumed to be 200 GPa and the yield strength was assumed to
be high enough to avoid yielding. The concrete was assumed
to be linearly elastic, with its tensile strength and elastic
modulus as given in Table 2. Regarding the bond properties,
the bond stiffness kb was taken as the mean secant stiffness
evaluated using Equation 2. Since the mean secant stiffness is
dependent on the maximum bond slip, it was determined by

an iterative process. First, it was evaluated as that correspond-
ing to a maximum bond slip of 0·15 mm. Then, it was used to
conduct shrinkage cracking analysis, from which the maximum
bond slip was obtained. The maximum bond slip so obtained
was used to re-evaluate the mean secant stiffness so as to
obtain an updated value. The updated mean secant stiffness
was then used to conduct the shrinkage cracking analysis
again, and the analysis was repeated. For all the specimens
analysed, the mean secant stiffness converged rapidly and only
two or three iterations were needed to obtain convergent
results. The analytical results obtained by this new model are
given in Table 6, where the mean transfer length instead of the
mean crack spacing is presented.

To facilitate the comparison, the experimental crack widths and
crack widths from the three analytical models are listed together
in Table 7. The table shows that there is a very large discrepancy
between the experimental crack width of specimen S3a and the
corresponding crack widths from all three analytical models. For
specimen S3a, the experimental crack width of 0·84 mm appears
to be exceptionally large, bearing in mind that the analytical
crack widths obtained by the three models are all within 0·51 to
0·56 mm. The experimental results reveal that, for this particular
specimen, there was only one crack in the middle and the maxi-
mum steel stress at the crack was as high as 532 MPa. Hence,
there is a strong possibility that the steel bars in this specimen
had yielded during cracking, thus causing the formation of a
very wide crack. Particular care is therefore needed when inter-
preting the experimental results of specimen S3a.

For an assessment of accuracy, the percentage errors of the
mean crack width predictions by the three analytical models
were evaluated and these are also presented in Table 7. With
all specimens included, the mean absolute errors of the mean
crack width predictions by the models of Nejadi and Gilbert
(2004) and Häußler-Combe and Hartig (2012) and the new
model are 15·6%, 19·1% and 13·7%, respectively. With speci-
men S3a excluded, the mean absolute errors are 12·3%, 16·8%

Concrete material properties Batch I Batch II

Compressive strength at 28 d: MPa 24·3 28·4
Tensile strength at 28 d: MPa 1·97 2·10
Elastic modulus at 28 d: MPa 22 810 23 210
Shrinkage strain at 122 d: με 457 495
Creep coefficient at 122 d 0·98 1·16

Table 2. Concrete material properties of Nejadi and Gilbert

(2004) test specimens

Specimen Elongation, Δu:
mm

Number of
cracks

Mean crack
spacing: mm

Mean crack
width: mm

Maximum steel
stress: MPa

Maximum concrete
stress: MPa

S1a 0·305 4 670 0·21 273 1·77
S1b 0·383 4 403 0·18 190 1·41
S2a 0·309 3 674 0·30 250 1·13
S2b 0·315 3 700 0·31 290 1·46
S3a 0·402 1 Undefined 0·84 532 1·45
S3b 0·419 2 997 0·50 467 1·31
S4a 0·245 3 783 0·23 270 1·64
S4b 0·162 3 995 0·25 276 1·71

Table 3. Experimental results reported by Nejadi and Gilbert

(2004)
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and 10·4%, respectively. Hence, based on the mean absolute
errors, the new model has slightly better accuracy. Moreover,
with specimen S3a excluded, the mean errors of the mean
crack width predictions by the three models are −12·3%,
+11·5% and +5·7%, respectively. Hence, the model of Nejadi
and Gilbert (2004) tends to underestimate the mean crack
width, the Häußler-Combe and Hartig (2012) model tends to
overestimate the mean crack width, whereas the new model

has insignificant tendency to either overestimate or underesti-
mate the mean crack width (bearing in mind that the errors of
predictions by the new model are partly due to experimental
errors).

Conclusions
Existing analytical models for shrinkage cracking analysis of RC
members have been reviewed and, in order to avoid reliance on

Specimen Number
of cracks

Mean crack
spacing: mm

Mean crack
width: mm

Maximum steel
stress: MPa

Maximum concrete
stress: MPa

S1a 4 667 0·19 246 1·68
S1b 5 500 0·16 196 1·43
S2a 3 1000 0·28 337 1·54
S2b 4 667 0·26 235 1·22
S3a 1 Undefined 0·51 553 1·63
S3b 1 Undefined 0·50 562 1·65
S4a 4 667 0·18 261 1·66
S4b 4 667 0·20 227 1·47

Table 4. Analytical results reported by Nejadi and Gilbert (2004)

Specimen Number
of cracks

Mean crack
spacing: mm

Mean crack
width: mm

Maximum steel
stress: MPa

Maximum concrete
stress: MPa

S1a 5 500 0·25 275 1·97
S1b 5 500 0·26 289 1·97
S2a 4 667 0·33 369 1·97
S2b — — — — —

S3a 3 1000 0·56 499 1·97
S3b 3 1000 0·56 503 1·97
S4a 5 500 0·23 295 1·97
S4b 5 500 0·21 279 1·97

Table 5. Analytical results reported by Häußler-Combe and Hartig

(2012)

Specimen Number of
cracks

Mean transfer length:
mm

Mean crack width:
mm

Maximum steel stress:
MPa

Maximum concrete stress:
MPa

S1a 4 333 0·24 301 1·91
S1b 5 250 0·22 242 1·55
S2a 3 500 0·32 435 1·89
S2b 3 500 0·33 463 2·08
S3a 2 667 0·53 596 1·73
S3b 2 667 0·54 603 1·74
S4a 4 250 0·23 298 1·80
S4b 4 333 0·21 277 1·70

Table 6. Analytical results using the new analytical model
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empirical coefficients, a new and more rigorous analytical model
was developed. The new model was formulated purely based on
the mechanics of the steel bar–concrete interaction. From the
formulation, two governing equations, which are second-order
partial differential equations, were derived. With the bond
stress–slip relation taken into account and the boundary con-
ditions duly considered, the governing equations can be solved
analytically without making any assumptions on the concrete,
steel and bond stress distributions along the transfer length. In
fact, the actual concrete, steel and bond stress distributions are
evaluated as an integral part of the solution. The new model is
therefore mathematically more rigorous than the existing models.
Moreover, closed-form solutions are obtained, from which the
effects of various parameters on the crack spacing and crack
width may be evaluated algebraically, and the crack-control steel
designed to meet the crack width requirements.

Apart from giving closed-form solutions, the new model
has the unique feature that it works with the transfer length,
rather than the crack spacing, which is sometimes undefined.
Nevertheless, as with the existing models, it still considers the
number of cracks. Basically, from the number of cracks, the
number of transfer lengths is determined and the mean transfer
length, which governs the maximum concrete stress, is evalu-
ated. The number of cracks is taken as the smallest integer
value such that the mean transfer length is not larger than the
upper limit of the transfer length or the maximum concrete
stress is not larger than the concrete tensile strength.

For validation and comparison with the existing models, the
new model was applied to analyse eight specimens tested by
Nejadi and Gilbert (2004). Due to randomness of cracking,
there are occasionally significant errors in the predicted crack

numbers and crack widths. Nevertheless, based on the absolute
errors, the new model has slightly better accuracy in crack
width prediction than the existing models. Moreover, based on
the mean errors, the new model has the smallest tendency to
over- or underestimate the crack width. Lastly, it is emphasised
that the new model, which does not rely on any assumed
values of empirical coefficients, should be more generally
applicable. However, the theoretical predictions by the new
model have been compared with only a limited number of
experimental results and comparison with more experimental
results for further verification is recommended.

Appendix: Solving the governing equations
of concrete cracking
The governing equation (Equation 26) may be split into the
following two equations

39:
@2uc
@x2

¼ �mρ
@2us
@x2

40:
@2uc
@x2

¼ λðuc � usÞ

The solution procedures start with the following general sol-
utions, in which ψ1 and ψ2 are the roots of the characteristic
equation, and A, B, C and D and A, B, C and D are coeffi-
cients to be determined from the boundary conditions.

41: uc ¼ Aeψ1x þ Beψ2x þ CxþD

Specimen wexp: mm Model of Nejadi and
Gilbert (2004)

Model of Häußler-Combe
and Hartig (2012)

New analytical model

w: mm Error: % w: mm Error: % w: mm Error: %

S1a 0·21 0·19 −10 0·25 +19 0·24 +14
S1b 0·18 0·16 −11 0·26 +44 0·22 +22
S2a 0·30 0·28 −7 0·33 +10 0·32 +7
S2b 0·31 0·26 −16 Not analysed 0·33 +6
S3a 0·84 0·51 −39 0·56 −33 0·53 −37
S3b 0·50 0·50 0 0·56 +12 0·54 +8
S4a 0·23 0·18 −22 0·23 0 0·23 0
S4b 0·25 0·20 −20 0·21 −16 0·21 −16
Mean absolute error

(with all specimens included): %
15·6 19·1 13·7

Mean absolute error (with S3a excluded): % 12·3 16·8 10·4
Mean error (with S3a excluded): % −12·3 +11·5 +5·7

Table 7. Comparison of experimental (wexp) and analytical mean

crack widths (w)
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42: us ¼ Aeψ1x þ Beψ2x þ CxþD

Substituting into Equations 39 and 40, the following equations
are obtained

43:

A ¼ �mρA

B ¼ �mρB

C ¼ C

D ¼ D

44:
ψ2
1 ¼

λð1þmρÞ
mρ

ψ2
2 ¼

λð1þmρÞ
mρ

The characteristic equation (Equation 44) has two roots, ψ1

and ψ2. Let the parameter ψ be defined by

45: ψ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λð1þmρÞ

mρ

s

The two roots of the characteristic equation are given by

46: ψ1 ¼ ψ

47: ψ2 ¼ �ψ

Substituting into Equations 41 and 42, the displacement func-
tions are obtained as

48: uc ¼ �mρAeψ1x �mρBeψ2x þ CxþD

49: us ¼ Aeψ1x þ Beψ2x þ CxþD

The boundary conditions that uc(0) = ξ and us(0) = 0 at x=0
lead to

50: ucð0Þ ¼ �mρA�mρBþD ¼ ξ

51: usð0Þ ¼ Aþ BþD ¼ 0

Likewise, the boundary conditions that uc(l ) = (Δu/L)l and
us(l ) = (Δu/L)l at x= l lead to

52: ucðlÞ ¼ �mρAeψ1l �mρBeψ2l þ Cl þD ¼ ðΔu=LÞl

53: usðlÞ ¼ Aeψ1 l þ Beψ2l þ Cl þD ¼ ðΔu=LÞl

Solving Equations 50–53 yields

54: A ¼ ξ

1þmρ
� eψ2l

eψ1l � eψ2 l

55: B ¼ �ξ
1þmρ

� eψ1l

eψ1 l � eψ2 l

56: C ¼ Δu
L

� ξ=l
1þmρ

57: D ¼ ξ

1þmρ

Substituting into Equations 48 and 49 then yields

58: uc ¼ Δu
L

xþ ξ

1þmρ
�mρ

eψ2 leψ1x � eψ1 leψ2x

eψ1l � eψ2 l
� x

l
þ 1

� �

59: us ¼ Δu
L

xþ ξ

1þmρ

eψ2 leψ1x � eψ1leψ2x

eψ1l � eψ2l
� x

l
þ 1

� �

From the above displacement functions, the concrete and steel
stresses are obtained as

60: σcðxÞ¼Ec
Δu
L

� εcs�ξ � mρψ

1þmρ
� coshðψðl�xÞÞ

sinhðψlÞ �ξ � 1=l
1þmρ

� �

61: σsðxÞ ¼ Es
Δu
L

þ ξ � ψ

1þmρ
� coshðψðl � xÞÞ

sinhðψlÞ � ξ � 1=l
1þmρ

� �
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