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Abstract

We present a detailed orbital and stability analysis of the HD59686 binary-star planet system. HD59686 is a
single-lined, moderately close (aB=13.6 au) eccentric (eB=0.73) binary, where the primary is an evolved K
giant with mass M=1.9Me and the secondary is a star with a minimum mass of mB=0.53Me. Additionally, on
the basis of precise radial velocity (RV) data, a Jovian planet with a minimum mass of mp=7 MJup, orbiting the
primary on a nearly circular S-type orbit with ep=0.05 and ap=1.09 au, has recently been announced. We
investigate large sets of orbital fits consistent with HD 59686ʼs RV data by applying bootstrap and systematic grid
search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of
these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system
have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular
apsidal alignment with the angle between the periapses, Δω, librating about 0°. We also test a large number of
mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find
that for nearly coplanar and retrograde orbits with mutual inclination 145°Δi�180°, the system is fully stable
for a large range of orbital solutions.

Key words: planetary systems – planets and satellites: detection – planets and satellites: dynamical evolution and
stability – techniques: radial velocities

1. Introduction

The first Doppler surveys looking for extrasolar planets were
focused on finding solar system analogs and usually avoided
known binary stars with semimajor axes aB�200au (see
Eggenberger & Udry 2010; Thebault & Haghighipour 2014).
As a result, the number of known binary systems with planets
orbiting around one of the components (in circumstellar or
S-type orbits) or around both stars (in circumbinary or P-type
orbits; see Dvorak 1986) is still relatively low when compared
to planets orbiting single stars. To date,5 we know of ∼50
S-type planets that are part of wide binaries separated by at
least 50–1000 au (Roell et al. 2012) and ∼20 P-type planets
orbiting both stars where the binary separation is below 1 au
(mostly discovered with the Kepler satellite; Borucki
et al. 2010; Doyle et al. 2011; Welsh et al. 2012; Kostov
et al. 2013; Leung & Lee 2013). However, only a handful of
S-type planet candidates in moderately close binary systems
(aB� 30au) are known in the literature, and they all were
discovered using the radial velocity (RV) method.

A famous example is the γCephei binary system, which
consists of a K-giant primary of M=1.6Me and a secondary
star with a minimum mass of m isin 0.44B = Me separated by
aB∼19 au. This system has a Jovian planet with a minimum
mass of m isin 1.7p ~ MJup (Campbell et al. 1988; Hatzes
et al. 2003) orbiting on a stable orbit around the primary star at
ap∼2.0 au (Haghighipour 2006). A planet candidate on an
S-type orbit is also evident in the RV data taken for the
HD196885 binary system (Correia et al. 2008). This system
consists of an F8V primary of M=1.3Me and a secondary

star with a minimum mass of m isin 0.45B = Me, orbital
semimajor axis aB=21 au, and eccentricity eB=0.42. The
double Keplerian best fit for the RV data of HD 196885 reveals
an S-type planet around the primary with ap∼2.6 au,
ep∼0.48, and a minimum mass of m isin 3.0p ~ MJup.
Chauvin et al. (2011) carried out dynamical simulations that
show that the planet’s orbit is more stable in a highly inclined
configuration near the equilibrium points of the Lidov–Kozai
regime (Kozai 1962; Lidov 1962). Later, Giuppone et al.
(2012) confirmed the stability of a highly inclined configuration
with a mutual inclination of Δi≈43° or 137°, but they also
found stable, nearly coplanar configurations, where the planet’s
orbit is either prograde or retrograde, with the retrograde orbits
being less chaotic.
Another remarkable example is the νOctantis binary

(Ramm 2015; Ramm et al. 2009; 2016). This system consists
of an M=1.6Me K1III giant primary and a low-mass
secondary star separated by only aB=2.5 au, with a moderate
eccentricity of eB=0.24. The binary inclination is well
constrained at iB=71°, which yields a secondary mass of
mB=0.6Me. A lower-amplitude periodic RV variation is
present in addition to the secondary-star RV signal, and if these
variations are due to an orbiting planet, then the S-type
companion would have ap∼1.2 au, ep∼0.1, and a minimum
mass of about m isin 2.0p ~ MJup. The planetary interpretation
is problematic because the best-fit orbit (with semimajor axis
ratio ap/aB≈0.47) is located well outside the boundary for
stability if one assumes a coplanar and prograde planet with
respect to the binary’s orbit (Holman & Wiegert 1999).
However, Eberle & Cuntz (2010) and Goździewski et al.
(2013) showed that a nearly coplanar retrograde orbit is stable,
even though the stable region is small due to nearby mean-
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motion resonances (MMRs) at the 2:1, 3:1, and 5:2 period
ratios.

The existence of prograde, retrograde, or even Lidov–Kozai
resonance S-type giant planets as a part of moderately compact
systems remains a very challenging dynamical problem. Apart
from the long-term stability problem, it is puzzling how planets
can grow through core-accretion or disk-instability mechanisms
in such close binaries. These systems provide important clues
on how planets could form and remain in stable orbits around a
star under the strong gravitational influence of a close stellar
companion.

In this work, we study the HD59686 single-lined binary
system, which is composed of a 1.92Me K giant and a low-
mass star with a minimum mass of m isin 0.53B = Me. This
system was reported to have a massive (m isin 7.0p » MJup)
Jovian S-type planet orbiting at ap=1.09au around the
primary star (Ortiz et al. 2016). The binary itself, however, is
very eccentric (eB=0.73), which challenges the planet’s
orbital stability. We carry out an extensive statistical and
dynamical analysis of the available RV data to demonstrate that
this system has stable configurations and further constrain its
orbital parameters.

This paper is organized as follows. InSection 2, we review
the physical configuration of the HD 59686 system. Section 3
describes the methodology of our dynamical fitting and long-
term stability analysis. In Section 4, we introduce the best-fit
results from our tests, and we reveal the possible S-type planet
configurations. In Sections 5 and 6, we present dynamical and
stability results around the best fits based on our bootstrap and
systematic parameter grid search analysis. Finally, in Section 7,
we present conclusions based on our results and discuss the
possible S-type planet configurations.

2. The HD59686 Binary-planet System

2.1. System Configuration

HD59686 (=HR 2877, HIP 36616) is a bright, photome-
trically stable (V= 5.45 mag; van Leeuwen 2007) horizontal-
branch (HB) redgiant star with an estimated mass of
M=1.92±0.21Me, radius of R=13.2±0.3Re (Reffert
et al. 2015), and metal abundance of [Fe/H]=0.15±0.1
(Hekker & Meléndez 2007). With luminosity
L=73.3±3.3 Le and effective temperature
Teff=4658±24K, HD59686 is a typical K2 III giant star.
More physical parameters of HD59686 can be found in Reffert
et al. (2015).

Based on 88 precise (5–8 m s−1) RV observations of
HD59686 taken at Lick Observatory between 1999 November
and 2011 December, Ortiz et al. (2016) reported that
HD59686 is actually part of a much more complicated three-
body system. The Keplerian orbital solution for HD59686
given in Ortiz et al. (2016) shows that the RV data have a large-
amplitude variation of KB=4014.12±5.84m s−1, whose
characteristic RV shape reveals a stellar companion with
m isin 0.53B = Me on a highly eccentric orbit (eB=0.73).
The large eccentricity and the fact that the binary recently
passed through its periastron (∼2008 February) allowed the
orbital period to be well determined as
PB=11679.94±192.92 days, even though the time span of
the observations does not cover a full period of the binary orbit.
In addition, the RV data yielded a lower-amplitude signal of
Kp=136.92±3.31m s−1 with a derived period of

Pp=299.36±0.28 days. This signal is due to a Jovian
planet with a minimum mass of m isin 6.92p = MJup on a
nearly circular (ep= 0.05± 0.02) S-type orbit around the
primary K-giant star. The planetary signal remained coherent
over many periods and was further confirmed by Trifonov et al.
(2015) using follow-up RV measurements in the near-infrared
taken with ESO’s VLT spectrograph CRIRES (Kaeufl
et al. 2004).

2.2. Constraints on the Planetary Companion from the
Hipparcos Intermediate Astrometric Data

HD 59686 was a target of the Hipparcos mission (HIP
36616). We analyze the Hipparcos Intermediate Astrometric
Data of HD 59686 based on the rereduction by van Leeuwen
(2007) in the same way as described in Reffert & Quirrenbach
(2011). We ignore the stellar companion, since its period is
much longer than the Hipparcos mission duration, and fit only
the astrometric orbit of the planetary companion to the abscissa
residuals, simultaneously allowing for adjustments in the
standard astrometric parameters (position, proper motion,
parallax) and keeping the spectroscopic parameters fixed. The
best fit occurs at an inclination ip=2°.9 and longitude of the
ascending node Ωp=266°.7. The joint 3σ confidence region
extends from ip=1°.6 to 12°.8 and from Ωp=206°.8 to 308°.2.
Thus, a significant parameter range in ip and Ωp can be formally
rejected as a possible solution, and in Reffert & Quirrenbach
(2011), we argued that this is the best indicator for an actual
detection of the astrometric orbit.
However, there are several concerns with the Hipparcos data

of HD 59686.
(1) The reduced 2c value in the van Leeuwen version of the

Hipparcos catalog is 0.71, already quite small. It indicates that
either the errors are overestimated or that the solution is in fact
already quite satisfactory, with no need for a better model for
the measurements. The reduced χ2 value after fitting for the
astrometric orbit is 0.59, which is uncomfortably small.
(2) There is a clear correlation between the time of year and

the scan direction (not only for HD 59686 but also for other
targets). This is particularly a problem for periods close to 1 yr,
which is the case for the planet orbiting HD 59686 (best-fit
spectroscopic period ≈299 days). On top of that, many
Hipparcos measurements have been obtained during the same
season, i.e., with the same scan direction. Thus, the Hipparcos
measurements for HD 59686 are poorly constrained in the
perpendicular direction (roughly coinciding with the right
ascension direction) and can float freely to fit any astrometric
orbit.
We believe that, as a result, the Hipparcos data for HD

59686 should be treated with caution. In fact, we will show
later on that any solution with ip<30° for the inner
companion is highly improbable, so the detection of an
astrometric orbit could not be brought in line with the observed
RV data. We conclude that, most likely, the astrometric orbit of
the inner companion has not been detected in the Hippar-
cos data.

2.3. Dynamical Considerations

As discussed in Ortiz et al. (2016), the stellar companion of
HD59686 must be either a low-mass (and low-luminosity)
star, such as a K dwarf, or a white dwarf remnant. These
scenarios are particularly important to trace the possible origin
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of the S-type planet. However, the question of whether the
secondary is a K dwarf or white dwarf is of little importance for
the goal of this paper, which is to study the current permitted
(stable) orbital configuration.

At first look, it is unclear how the planet could remain stable
in such a configuration. The binary semimajor axis is
aB=13.6au, but the pericenter distance is only
qB=3.67au, leading to strong interactions with the planet,
which has ap=1.09 and qp=1.03au. Assuming a minimum
mass of m isin 0.53B = Me, the Hill radius of the secondary
star can be approximated as

r a m M3 6.2 au, 1B B BH,
3 » » ( )

which would cover the S-type planet orbit entirely during the
binary periastron passage. Due to the large eccentricity of the
binary, however, one can define the Hill radius at the pericenter
distance qB instead of aB (see Hamilton & Burns 1992), which
leads to a smaller value of rH,B≈1.66 au. This suggests that
the planet–secondary separation close to the binary periastron
would be ∼1.5 rH,B, making the survival of the planet still
challenging.

Aquick check using the empirical stability criterion of
Holman & Wiegert (1999) reveals that the critical (upper limit)
semimajor axis for the S-type planet is acrit.∼1.03 au.
Considering the binary-planet orbital uncertainties, we find
that the S-type planet is most likely unstable, with an orbit
slightly outside the stability region. Using similar empirical
stability criteria from Eggleton & Kiseleva (1995), we find that
the planet is most likely stable, while the criterion of Mardling
& Aarseth (2001) suggests that the planet is unstable. In any
case, these stability criteria agree that the planet is close to the
stability border. Therefore, in this paper, we aim to inspect the
three-dimensional orbital architecture of the HD59686 system
and study its long-term stability and dynamics.

3. Methodology

Our orbital analysis for HD59686 is based on the
multidimensional N-body modeling scheme, which was pre-
viously applied to the 2:1 MMR exoplanet pairs around
HD82943 (Tan et al. 2013), HD73526 (Wittenmyer
et al. 2014), and ηCeti (Trifonov et al. 2014). Briefly, we
model the RV data using a Levenberg–Marquardt χ2

minimization scheme, which performs an N-body fit by
integrating the equations of motion using the Gragg–
Bulirsch–Stoer integration method (see Press et al. 1992).
The output parameters from our fitting code are the planetary
and secondary-star RV semi-amplitude (Kp,B), orbital
period(Pp,B), eccentricity(ep,B), argument of
periastron(ωp,B), mean anomaly(M0p,B), inclination(ip,B) rela-
tive to the sky plane, and ascending node (Ωp,B), as well as the
RV offset (RVoff). All orbital parameters are the osculating
ones in the Jacobi frame (e.g., Lee & Peale 2003) at the first
RV observational epoch, which is JD=2,451,482.024. Each
fit comes with a reduced χ2 value (χν

2), the residual rms value,
and the 1σ uncertainties of the adjusted parameters obtained
from the covariance matrix.

For HD59686, we adopt a stellar mass of 1.92Me and a
stellar velocity jitter amplitude of 20m s−1. Ortiz et al. (2016)
showed that the Lick data of HD59686 are consistent with an
additional stellar RV jitter of about 20m s−1. The most likely
reason for the notable RV noise in early K giants like

HD59686 is solar-like p-mode oscillations (Barban et al. 2004;
Zechmeister et al. 2008), which have typical periods much
shorter than the typical time sampling of our Lick data and thus
appear as scatter. Using the stellar parameters for HD59686
from Reffert et al. (2015) and the scaling relation from
Kjeldsen & Bedding (2011), we estimated a jitter amplitude of
16.1±2.9m s−1, which agrees well with the observed jitter of
other K2III giants in the Lick survey (Frink et al. 2001;
Hekker et al. 2006; Trifonov et al. 2014; Reffert et al. 2015).
Therefore, for our dynamical modeling, we adopt a uniform
a priori stellar jitter value of 20m s−1, which we quadratically
add6 to the total RV data error budget.
All dynamical fits in our study are further tested for long-

term dynamical stability. We integrate the orbits using a custom
version of the Wisdom–Holman algorithm (Wisdom &
Holman 1991), modified to handle the evolution of hierarchical
systems consisting of massive bodies (Lee & Peale 2003). The
bodies are assumed to be point masses, and mutual collisions
between them are not considered in defining system stability.
We also neglect general relativity and companion-star tidal
effects during the simulations. We integrate the individual fits
for a maximum of 10Myr by adopting an integration time step
equal to 1 day. Our integration setup corresponds to more than
3 105´ full binary orbits with about 300 steps per complete
planetary orbit. We find that this setup is sufficient to resolve
the planet’s orbit with high resolution and study the system’s
long-term stability.
We define the HD59686 system as stable if, during the

integration, the companion bodies remain in orbits that do not
deviate significantly from their initial best-fit configuration.
The system’s stability depends primarily on the survival of the
S-type planet. In most cases, when the planet inclination is
30°<ip<90°, the planet has relatively low mass to perturb
the binary orbit significantly and can be well approximated as a
test particle in a two-body system. However, we also test fits
with ip<30°, where the mass of the S-type body becomes
quite large as isin p gets smaller, and thus it can significantly
influence the binary orbit during the orbital evolution. A
simulation is terminated and the system is considered unstable
if at some point in the integration the semimajor axis ap or aB
changes by more than±60% from the initial values or if
ep,B>0.95. Particularly, when e 0.95p > and ap<1.2 au, the
planet periastron distance to the central star, qp, is well within
the physical radius of the K giant (qp<R≈0.06 au), and the
planet will collide with the star. Although these criteria for
instability are somewhat arbitrary, our simulations show that
even small chaotic deviations in ap and ep quickly accumulate,
and there are no cases where the orbits change significantly
without exceeding these criteria.

4. Best Fits

4.1. Edge-on Prograde and Retrograde Fits

The best coplanar and edge-on dynamical fit is generally
consistent with the Keplerian fit shown in Ortiz et al. (2016).
Our dynamical fit is close to a double Keplerian, since any
significant gravitational perturbations on the planetary orbit

6 Alternatively, the RV jitter could be fitted as a free parameter of the RV
model (e.g., Baluev 2009). The best double Keplerian fit of HD59686
optimized with an additional jitter term to the Lick data yields a jitter value of
19.6−1.5

+1.8 m s−1, which is consistent with the uniform jitter value of 20m s−1

adopted in this work.
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(and thus on the induced RVs) are expected to be detected only
after a few binary cycles, while the RV data currently cover
only ∼40% of one full binary orbit. We first keep the orbital
inclinations fixed at ip=iB=90° and the difference between
the lines of node ΔΩ=Ωp − ΩB=0°, which defines a planar
and prograde configuration. The best fit in this orbital
configuration has χν

2=0.995 and leads to orbital elements of
Pp=299.1±0.30 days, ep=0.05±0.02, ap=1.09 au, and
mass of mp=6.97MJup for the planet and orbital elements of
PB=11696.4±196.4 days, eB=0.73±0.003,
aB=13.61 au, and secondary-star mass of mB=558MJup

for the binary. The full set of orbital elements and their
bootstrap (see Section 5) and covariance matrix estimated
uncertainties are given in Table 1, while the actual fit to the
data (black curve in the upper panel) and its residuals are
illustrated in Figure 1. The long-term evolution of the orbital
semimajor axes and eccentricities is shown in Figure 3 (left
panel). According to our stability criteria, this fit is stable for
only about 42 kyr before the planet collides with the star. A
close examination of this fit indicates that the orbits show large
variations in ep and small but chaotic variations in eB.
Eventually, the secondary companion excites the planet
eccentricity above ep>0.95, which interrupts our integration.

Since the best coplanar and prograde fit is unstable, we test
how the fit quality and stability change if we allow non-
coplanar orbits. We simplify this test by keeping the binary on
an edge-on orbit with fixed iB=90° and ΩB=0°. For the
planet, we also fix the inclination at ip=90°, but we
systematically vary Ωp between 0° and 359° with a step of
1°. Thus, in this test, we keep the companion masses at their
minimum, while the mutual inclination comes only from the
difference between the longitudes of the ascending nodes
ΔΩ=Ωp−ΩB following the expression

i i i i iarccos cos cos sin sin cos . 2p B p BD = + DW[ ( ) ( ) ( ) ( ) ( )] ( )

Figure 2 shows the results from this test. We plot the quality of
the mutually inclined fit in terms of 2cn (χ

2) as a function ofΔΩ

(Δi). Horizontal dashed lines show the 1σ, 2σ, and 3σ
confidence levels according to Δχ2. The best fit in Figure 2
appears at Δi=180°, which is again a coplanar but retrograde
planet orbit. The best coplanar prograde fit has χCP

2 =76.61,
while the best coplanar retrograde fit has χCR

2 =75.63,
resulting in Δχ2=0.98. This difference is slightly below the
1σ limit, and thus the retrograde fit does not represent a
significant improvement to our model. In Figure 2, most of the
edge-on fits with Δi<145° are above 1σ from the best fit and
are unstable (red line), while all fits with Δi between 145° and
180° are within 1σ and are stable (thick blue line) for at
least10Myr.

Figure 3 (middle panel) shows an ∼50 kyr time span of the
orbital evolution for the best coplanar retrograde fit. The
semimajor axes ap and aB are nearly constant during the
stability test. The planet eccentricity ep oscillates with a large
amplitude between 0 and 0.35, but the system remains stable,
with the bodies well separated from each other. Interestingly,
the mean period ratio of this stable retrograde fit is P P 39B p » ,
but the system is not in 39:1 MMR, as none of the resonance
angles associated with the 39:1 MMR are librating. For the n:1
MMR, the resonance angles are

n m m n1 , 3m n p B p B1,q l l v v= - + - - -= ( ) ( ) ( )

where n is positive for prograde motion and negative for
retrograde motion, ϖp,B are the longitudes of periastron, and
λp,B are the mean longitudes. All fits with Δi between 145° and
180° have similar behavior for ap, aB, ep, and eB, while Δi

Table 1
HD59686 System Best Dynamical Fits

Coplanar Edge-on Prograde

Parameter HD59686 Ab HD59686 B

K [m s−1] 137.0−4.5
+3.6 (±3.4) 4012.6−8.2

+9.9 (±20.6)
P [days] 299.1−0.3

+0.3 (±0.3) 11696.4−170.7
+209.2 (±196.4)

e 0.05 0.02
0.03

-
+ (±0.02) 0.730−0.003

+0.004 (±0.003)
ω [deg] 121.1 25.7

28.5
-
+ (±28.7) 149.4−0.1

+0.2 (±0.1)
M0 [deg] 299.5−32.7

+20.9 (±28.4) 259.2−1.5
+1.7 (±1.7)

RVoff [m s−1] 248.6−10.4
+13.5 (±12.5) L

i [deg] 90.0a 90.0a

Ω [deg] 0.0a 0.0a

Δi [deg] 0.0 L
a [au] 1.089−0.001

+0.001 13.611−0.132
+0.163

m MJup[ ] 6.97−0.23
+0.18 558.41−0.99

+1.20

rms [m s−1] 19.59 L
χ2 76.61 L
χν
2 0.995 L

Coplanar Edge-on Retrograde

Parameter HD59686 Ab HD59686 B

K [m s−1] 136.7−4.4
+3.7 (±3.3) 4013.7−7.7

+9.8 (±20.5)
P [days] 299.0−0.3

+0.3 (±0.3) 11669.3−147.0
+218.1 (±194.7)

e 0.05 0.02
0.03

-
+ (±0.02) 0.729−0.003

+0.004 (±0.003)
ω [deg] 126.8 24.5

27.1
-
+ (±28.3) 149.4−0.2

+0.2 (±0.1)
M0 [deg] 293.5−51.5

+29.5 (±28.4) 258.9−1.1
+2.6 (±1.7)

RVoff [m s−1] 247.1−9.3
+13.6 (±12.4) L

i [deg] 90.0a 90.0a

Ω [deg] 180.0a 0.0a

Δi [deg] 180.0 L
a [au] 1.089−0.001

+0.001 13.591−0.145
+0.169

m [MJup] 6.96−0.23
+0.18 558.46−0.91

+1.21

rms [m s−1] 19.46 L
χ2 75.63 L
χν
2 0.982 L

Mutually Inclined

Parameter HD59686 Ab HD59686 B

K [m s−1] 130.1−3.0
+3.1 (±26.2) 4020.0−5.5

+6.2 (±182.1)
P [days] 300.5−0.6

+0.2 (±0.5) 11398.3−95.2
+204.0 (±1244.3)

e 0.08 0.02
0.02

-
+ (±0.02) 0.725−0.002

+0.003 (±0.003)
ω [deg] 145.2 17.6

19.2
-
+ (±19.7) 149.8−0.2

+0.2 (±4.7)
M0 [deg] 280.4−19.9

+26.3 (±20.0) 256.4−0.7
+2.4 (±21.0)

RVoff [m s−1] 239.5−9.0
+13.0 (±12.7) L

i [deg] 178.8−0.5
+0.3 (±0.3) 86.4−2.4

+2.4 (±3.3)
Ω [deg] 316.5 17.7

10.4
-
+ (±10.3) 0.0a

Δi [deg] 92.73 L
a [au] 1.15−0.02

+0.02 14.06−0.18
+0.26

m MJup[ ] 359.22−120.44
+114.33 618.36−15.82

+18.45

rms [m s−1] 16.62 L
χ2 55.50 L
χν
2 0.750 L

Note. Included are −0.0
+0.0 bootstrap uncertainties and (±0.0) covariance matrix

uncertainties.
a Fixed parameters.
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oscillates with small amplitude around the initial fitted value.
None of them seem to be locked in an MMR.
The most likely reason for the wider stable region for the

retrograde orbits is that the individual MMRs are of higher
order for retrograde than prograde orbits. As demonstrated in
Morais & Giuppone (2012), at the same n:q mean-motion ratio,
the MMR is of order n−q for prograde versus order n + q for
retrograde orbits, which, for the latter, results in much narrower
MMR libration widths and thus smaller phase-space overlap of
neighboring MMRs where the planet would likely be unstable.
The findings of Morais & Giuppone (2012), however, were
restricted to the dynamics of S-type planets in circular binary
systems, while the dynamics of the planet in the highly
eccentric HD 59686 binary is far more complex. A more
detailed analysis of resonance width and overlap for prograde
and retrograde orbits using the formalism developed by
Mardling (2008) in the context of the HD 59686 system will
be presented in a future paper (K. H. Wong & M. H. Lee 2018,
in preparation).

4.2. Inclined Coplanar Fits—Constraining sin i

Both prograde and retrograde edge-on best fits suggest a
coplanar configuration. Therefore, as a next step, we test how
the fit quality and stability for both configurations depends on
the inclination i (measured from the plane of the sky). For the
prograde geometry, we fix ΔΩ=0° and ip=iB. We system-
atically vary ip and iB from 90° to 5° with a decreasing step of
1°, and thus we gradually increase the companion masses by a
factor of approximately sin i. The same test is done for the
retrograde fits, which are constructed by keeping ΔΩ=180°,
iB=180°−ip, and varying ip from 90° to 5° with a step of 1°.
According to Equation (2), the prograde fits have a mutual
inclination of Δi=0° and the retrograde fits Δi=180°.
The results from this systematic test are illustrated in

Figure 4, which shows a comparison between prograde and
retrograde dynamical fits as a function of sin i. The χν

2

minimum for both prograde and retrograde cases is at isin 1= ,
which corresponds to the same best fits presented in Table 1
and Figure 2. The Δχ2 confidence levels (1σ, 2σ, and 3σ) in
Figure 4 are measured from the best retrograde fit and represent
the same confidence levels as in Figure 2. Clearly, our N-body
fits can only weakly constrain the orbital inclination from the
RV data. Overall, the retrograde fits have better χν

2 values, but
in both configurations, the fits are gradually becoming worse
for lower isin and thus higher planet and secondary-star
masses. For retrograde fits down to 2σ, the orbital inclination
can be between 10° and 90°, while for prograde fits, the
inclination can be between 20° and 90°. In both configurations,
however, the inclination is unlikely to be less than 30°, as the
secondary star would then be at least a G-type main-sequence
star with about twice the minimum mass. Such a stellar
companion should have been detected by Ortiz et al. (2016) via
the Large Binocular Telescope (LBT) angular differential
imaging, but since it was not, we assume isin 0.5B = as a lower
limit.
When it comes to stability, all retrograde coplanar fits in

Figure 4 are stable for 10Myr, including those at very low
inclinations, while none of the prograde fits are long-term
stable.

Figure 1. Three best-fit models to the Lick data (blue points). In the upper
panel, the top curve (black) is the best edge-on coplanar prograde fit, while the
middle and bottom curves are the best edge-on coplanar retrograde (green) and
mutually inclined (red) fits, offset vertically for illustration purposes by
−1500and −3000m s−1, respectively. Error bars include 20 m s−1 added
quadratically to the formal uncertainties to account for stellar jitter. The
residuals of the best edge-on prograde fit are compared to the difference
between the prograde fit and the best edge-on retrograde or mutually inclined
fits in the lower two panels. The difference between the prograde and
retrograde fits is very small. The mutually inclined fit better models some data
points with large residuals in the other orbital fits, although these data points lie
in the relatively sparsely sampled epochs around the periastron passage of the
binary orbit.

Figure 2. Edge-on (ip=iB=90°) but mutually inclined fits of HD59686.
The mutual inclination angle Δi in edge-on orbits comes from
ΔΩ=Ωp−ΩB. The Δχ2 confidence levels in terms of 1σ, 2σ, and 3σ are
drawn for the χ2 minimum, which is at edge-on and retrograde orbits
(Δi=180°). All fits between Δi∼145° and 180° (thick blue line) are stable.
These fits also have better quality when compared to the prograde, polar, and
near-polar fits, which are unstable.
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4.3. Mutually Inclined Fits—The Global Minimum

Finally, in our dynamical modeling of HD59686ʼs RV data,
we allow non-edge-on mutually inclined orbits by indepen-
dently fitting ip and iB in the range between 0° and 180° and
ΔΩ between 0° and 360°. In this way, we allow our fits to
adopt a large range of companion masses, and we cover all
possible orbital alignments.

Our mutually inclined best fit has a strong minimum with
0.752c =n , yielding Pp=300.5±0.5 days,

ep=0.08±0.02, and ap=1.15 au for the inner companion
and PB=11398.3±1244.3 days, eB=0.725±0.003, and

aB=14.06 au for the outer companion (see Table 1).
Remarkably, this fit suggests that the inner companion has a
nearly face-on orbit with well-constrained ip=178°.8±0°.3.
This means that the inner companion is no longer a planet but a
stellar-mass companion with mp=359MJup (=0.34Me)
forming an inner binary pair with the Kgiant. The outer
companion has a nearly edge-on orbit with iB=86°.4±3°.3
and mass mB=618MJup (=0.59Me). The difference between
the ascending nodes is ΔΩ=316°.5±10°.3, and according to
Equation (2), this leads to Δi=92°.7±3°.3. We achieve
practically the same fit (within the errors) with 0.752c =n at
ip=1°.15±0°.6, iB=93°.4±2°.5, and ΔΩ=43°.7±12°.3,
which is a mirror image of the above orbital configuration.
The χ2 value for this mutually inclined fit is 55.5, which is

much lower than the best coplanar retrograde fit with
χCR
2 =75.6. This fit, however, has three additional fitting

parameters compared to the edge-on coplanar fits, which must
be taken into account when testing for significance. Following
the 2cD approach, we assume that ip, iB, and ΔΩ are
systematically adjusted, while the rest of the orbital parameters
are fitted by our N-body model. The Δχ2 confidence intervals
in this case obey the χ2 distribution for 3 degrees of freedom.
The difference between the fits is Δχ2=χCR

2 −χMI
2 =20.1,

suggesting that the best coplanar retrograde fit is between 3σ
and 4σ worse than the mutually inclined fit, and thus the latter
represents a significant model improvement.
Since the coplanar model with p1=11 fitting parameters is

“nested” within the mutually inclined model with p2=14
parameters, another way to test the significance is the use of the
F-test and determining the F-value following (Bevington &
Robinson 2003)

F 8.95, 4CR
2 2

1
2

2

2
1

2

c c z

c z
c z
c

=
-

=
D

=
n

( )
( )

where ζ1=p2−p1 is the number of additional parameters
being tested and ζ2=n−p2 is the number of degrees of
freedom for the best mutually inclined model, with n the
number of data points. For F=8.95, the probability for model

Figure 3. Semimajor axes, eccentricities, and mutual inclination evolution for the best coplanar edge-on prograde and retrograde fits and the best mutually inclined fit.
The best coplanar prograde fit (left) is unstable on short timescales of about 43 kyr, when the planet eccentricity is excited to ep>0.95, leading to collision with the
star. The retrograde fit (middle) is stable during the 10 Myr test (∼50 kyr shown). In this fit, ep oscillates with large amplitude between 0 and 0.35, but the orbits
remain well separated and stable. The best mutually inclined configuration (right) does not survive even 600 yr. The planet is initially on a nearly circular orbit but
with i 93D »  with respect to the binary plane. Due to the Lidov–Kozai effect, the planet eccentricity is quickly excited to ep>0.95.

Figure 4. Comparison of the quality of coplanar prograde and retrograde fits as
a function of the inclination i. Retrograde configurations have better 2cn than
prograde ones and are all stable for 10 Myr, while none of the prograde fits are
long-term stable. In both cases, χν

2 is minimum at i=90° (edge-on) and
increases only slowly with decreasing i. The Δχ2 confidence levels (1σ, 2σ,
and 3σ) are obtained from the best retrograde fit, as in Figure 2. The red dashed
line marks i=30°, below which the secondary must be at least a G dwarf mass
star, which would have been detected with LBT angular differential imaging
(Ortiz et al. 2016).
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improvement is p=0.000039, which is much lower than our
adopted cutoff value of α=0.01, meaning that the null
hypothesis is successfully rejected. Thus, we conclude that the
mutually inclined fit is indeed better when compared to the
coplanar edge-on model.

This significant model improvement is intriguing and
deserves a closer look. First, it should be noted that the Δχ2

and F-tests only work well for Gaussian errors and models that
are linear in the parameters (or could be linearized in the
uncertainty region of the parameters due to large enough
sample size; Press et al. 1992), which we do not have when we
apply an N-body dynamical fit to the existing RV data for
HD59686.

Dynamical fitting of RV data consistent with two or more
companions can be, in principle, sensitive to the true
companion masses, but this has been proven to be very
challenging even for the most extensively studied multiplanet
systems (see Bean & Seifahrt 2009; Correia et al. 2010; Nelson
et al. 2016). The critical requirements to measure successfully
mutual inclinations are (1) high RV precision; (2) low velocity
jitter, typically on the order of at most a few m s−1; (3) a large
set of RV data covering many orbital cycles; and (4) a signal
discrepancy between the minimum mass coplanar fit and the
mutually inclined fit that is larger than the RV noise. In this
context, we note that the available Lick data for HD59686 do
not satisfy these criteria, with only 88 RVs (with precision of
5–9 m s−1) distributed over 11 yr covering only ∼40% of the
outer binary orbit and RV jitter of ∼20 m s−1. Thus, it is
unlikely that we would be able to tightly constrain the true
companion masses (through Δi, ip, and iB).

In the bottom panel of Figure 1, the RV residuals to the
coplanar prograde fit are shown, and overplotted (red curve) is
the difference of the mutually inclined model from the coplanar
prograde one. Clearly, some of the outliers present in the
coplanar prograde case are well modeled by the mutually
inclined model with three additional fitting parameters. These
outliers, however, lie in the relatively sparsely sampled epochs
between JD=2,454,200 and 2,455,200, which unfortunately
coincides with the outer binary periastron passage, when the
RV signal changes rapidly. Perhaps the signal would be
validated if we had more RV data following the mutually
inclined fit prediction at that orbital phase, but currently, it is
fair to conclude that we could be fitting noise rather than a true
signal.

In addition, this mutually inclined best fit is extremely
unstable. The inner companion has a nearly circular and highly
inclined (polar-like) orbit with respect to the outer binary plane.
Such orbits are potentially unstable due to the Lidov–Kozai
effect (Kozai 1962; Lidov 1962), which leads to periodic
exchanges between Δi and ep. Following the analytic
expression given in Takeda & Rasio (2005), we can estimate
the inner companion maximum eccentricity ep,max that can be
reached through the Lidov–Kozai cycle:

e i1 5 3 cos . 5p,max
2= - D( ) ( ) ( )

With Δi=92°.7 obtained from the best fit, ep,max≈0.998,
which exceeds our stability criterion. As expected, our direct
numerical integration (right panel of Figure 3) shows that the
best mutually inclined fit does not survive even 600 yr. The
inner companion is quickly excited to ep>0.95, and it
eventually collides with the Kgiant. Obviously, such a highly

inclined stellar triple is very unstable, which seems to be a good
argument against this solution.

5. Bootstrap Statistics

Our goal in this section is to obtain parameter estimates and
confidence regions based on the empirical distribution of
constructed orbital parameters using bootstrap resampling. We
analyze the distribution of the adjustable fitting parameters
around the best fit by randomly drawing RV data points with
replacement (e.g., Efron 1979; Press et al. 1992; Tan
et al. 2013) and perform a dynamical fit to each RV data set
obtained in this way.
We create a total of n=5000 bootstrapped data sets, and we

fit each sample with strictly coplanar edge-on (prograde and
retrograde) and mutually inclined configurations. All fits to the
bootstrapped data sets are integrated for a maximum of 10Myr,
and their stability is examined. The 1σ confidence levels from
the distributions are used to estimate the asymmetrical best-fit
parameter uncertainties. These estimates are listed in Table 1,
along with the best-fit covariance matrix errors. For the
mutually inclined fits, a bootstrapped sample is rejected if the
fit suggests iB<30° or iB>150° (i.e., isin 0.5B < ). This
ensures that our samples are consistent with a reasonable
secondary companion mass in the range mB≈0.53 to about

M1.1  and thus are consistent with the observational
constraints given in Ortiz et al. (2016). The total fraction of
fits with highly inclined ( isin 0.5B < ) outer companions is
∼6% of the total constructed bootstrapped RV data sets. In
addition, ∼1.5% of the fits are unable to converge when we try
to fit a mutually inclined configuration, meaning that in order to
get 5000 fits, we have to create a total of ∼5400 bootstrapped
RV data sets.
Figure 5 shows the results from the bootstrap analysis for the

edge-on (i=90°) prograde (Δi=0°) and retrograde
(Δi=180°) configurations. In each panel, we illustrate the
distribution of planet-versus-binary orbital elements (K, P, e, ω,
M0), semimajor axes a, and dynamical masses m. Solid
contours show the 1σ, 2σ, and 3σ (68.27%, 95.45%, and
99.73%) confidence levels from the two-dimensional parameter
distributions. In all panels, the green dot represents the position
of the best-fit values from the prograde or retrograde dynamical
fit to the original data set, while the green error bars are the
estimated uncertainties from the covariance matrix (see
Table 1). With blue dots, we mark the unstable configurations,
while with red points, we show the configurations that survive
for 10Myr.
Clearly, the distributions of orbital elements for the prograde

and retrograde configurations are very similar. For both
configurations, the covariance matrix errors estimated from
the original data and the 1σ (68.3%) confidence region from the
bootstrap analysis are roughly consistent with each other. The
main difference between the configurations comes from the
stability results. We find that ∼97% of the retrograde
configurations are stable for 10Myr, while for the prograde
case, this number is only ∼4%. We note, however, that the
stable prograde configurations fall mostly within the 1σ
confidence region, and from their distribution we can identify
potentially stable regions of the parameter space. As can be
seen in Figure 5, the stable fits seem to cluster around

145p Bw w» » , M0,B≈257° and 259°, ep≈0.05–0.08, and
a few discrete values in PB that avoid initial integer period
ratios of 39 and 40. This result implies that a small but robust
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set of stable prograde fits does exist. Therefore, we cannot
eliminate the possibility that the HD59686 system is in a stable
prograde configuration.

The results of the bootstrap analysis for the mutually inclined
configuration are shown in Figure 6. In particular, we aim to
quantitatively estimate the inclination distribution (ip, iB, Δi)
and see how often polar-like S-type companion orbits will
occur in the resampled data. Therefore, in Figure 6, we
introduce three additional panels: i isin sinp B- , Δi−ΔΩ,
and a comparison between the mutually inclined χmut

2 and
prograde coplanar χcopl

2 values. The last of these panels also
shows the F-test probability for significant improvement when
three additional parameters are added. We find that ∼86.1% of

the fits lead to significant improvement, applying our chosen
threshold of α=0.01.
The orbital parameter distributions are wider than those in

the coplanar cases but seem to agree with the best-fit errors.
The binary orbit covariance matrix errors are sometimes larger
than the bootstrap 1σ contours, but in general, the distribution
peak is consistent with the best-fit estimate. The inner
companion inclination ip is found mostly at lower values,
driving mp toward brown dwarf and starlike masses. On the
other hand, within 3σ, iB stays between 75° and 105° (i.e., isin B
between 1 and 0.96), leading to a value of mB similar to those
of the edge-on cases. The distribution of Δi clusters around the
best fit and is well constrained around ∼90°, leading to nearly

Figure 5. Distribution of orbital parameters from dynamical fits to the bootstrapped RV data sets for the edge-on prograde (upper panels) and retrograde (lower panels)
configurations. Best-fit values and covariance matrix errors based on the original data set are consistent with the 1σ confidence level of the bootstrap analysis. Only
∼4% of the prograde fits within the 68.3% confidence region are stable, while 97% of the retrograde fits are stable for at least 10 Myr. The prograde stable fits are
located at initial ωp≈145°, ep≈0.05–0.08, and P P 39B p ¹ or 40.
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perpendicular triple-star orbits. We suspect, however, that the
distribution in Δi might be the result of a model degeneracy.
By randomly scrambling the data with repetition, the possibly
problematic outliers with sparse cadence are not always
removed (see Figure 1 and discussion in Section 4.3). Even
worse, for some bootstrapped data sets, we repeat these points
while removing data points with lower residuals. We find that
none of the mutually inclined fits based on bootstrap analysis
and shown in Figure 6 are long-term stable. The average
bootstrap survival time is only a few hundred yr before the
inner binary pair collides, which is consistent with the orbital
evolution of the best mutually inclined fit to the original data.

6. Parameter Grid Search

A detailed picture of the dynamical properties of the
HD59686 system can also be assessed using the parameter
grid search technique (e.g., Lee et al. 2006). We systematically
vary a pair of orbital parameters, which we then keep fixed
while the rest of the parameters in the model are adjusted to
minimize χ2. This method allows us to systematically inspect
the multidimensional parameter space around the best fit and
study the properties and long-term stability of nearby fits.

6.1. Coplanar Prograde Grids

Our edge-on prograde bootstrap analysis reveals that stable
fits are clustered around initial ωp≈145°, ep=0.05–0.08, and
PB/P 39p ¹ or 40 (within 1σ from the best fit). These three
orbital parameters are also the least-constrained parameters
from our fitting, especially when compared to Pp, ωB, and eB.
Therefore, any grid combination including PB, pw , and ep yields
an adequate search for prograde coplanar stable fits. Figure 7
shows stability results for an edge-on coplanar grid in the
PB/Pp−ep space, where we fix Pp and ωB at their best-fit
values of 299.1 days and 149°.4, respectively. Since we know
from the bootstrap analysis that stability appears when
Δω≈0°, we keep ωp=ωB fixed, leading to an initially
aligned configuration with Δω=0°. In Figure 7, stability
within the 1σ confidence region from the best fit is achieved

when ep≈0.05–0.08 and PB/P 39p ¹ or 40, which confirms
the results from the bootstrap analysis.
As a next step, we test for stability in eight PB−ωp grids,

each with ep=0.02–0.09 in steps of 0.01. Here PB and ωp are
varied around the best coplanar fit in the ranges of
11,000–12,500 days and 60°–210°, respectively, while the
remaining parameters in the dynamical model are adjusted.
Figure 8 shows the survival time resulting from this test,
together with the confidence levels. Since these grids are
constructed with three systematically varied parameters (PB,
ωp, and ep), we consider Figure 8 as a three-dimensional
parameter cube, where each grid is a separate PB−ωp slice
placed on a lower-resolution “z”-axis constructed for different

Figure 6. Same as Figure 5 but for mutually inclined configurations. Best-fit values and errors from the covariance matrix are consistent with the bootstrap
distributions at the 68.3% (1σ) confidence level, except for larger covariance matrix errors for some binary parameters. The F-test shows that 86.1% of the mutually
inclined fits present a significant improvement over the prograde fits, but none of them are stable.

Figure 7. Edge-on coplanar prograde grid in the P P eB p p- space, where Pp

and ωB are fixed at their best-fit values of 299.1 days and 149°. 4, respectively,
while ωp is also fixed to 149°. 4 to assure Δω=0°. The time for which the
system is stable is color-coded. Black contours are the confidence levels
corresponding to the 1σ, 2σ, and 3σ confidence regions of the χν

2 minimum
(black star). For this aligned grid, stability is achieved only in the range of
initial ep≈0.05–0.08 and PB/Pp ¹ .
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ep. Thus, the significance levels (black contours) shown in
Figure 8 are calculated for three degrees of freedom. Clearly,
most of the fits are highly unstable, except those located
between integer period ratios with nearly aligned orbits
( 10wD ∣ ∣ ) and ep between 0.05 and 0.07. We find that
these stable islands cover the largest area when ep=0.06.

Knowing that ep and ωp are critical stability parameters, in
Figure 9, we show results for P P PB p p- grids, where we fix
ep=0.06 and ωp=ωB=149°.4, and we systematically adopt
inclinations of i=90°, 75°, 60°, 45°, and 30°. In this way, we
study the stability of fits in the P P PB p p- parameter space for
initially aligned orbits and increasing companion masses. In
these grids, the stable regions now extend through a large range
of Pp and cross inside the 1σconfidence regions. Configura-
tions with period ratios near an integer initially are highly
unstable, while stable configurations can be found between
initial integer period ratios. The stable regions are evident in the
i=90°–60° grids, but they become smaller with decreasing i
or increasing masses. The i=45° grid contains only a few
marginally stable fits, which are likely unstable beyond 10Myr,
while all configurations for the i=30° grid (not shown in

Figure 9) are unstable. These results identify a lower limit for
the inclination of i≈45° for stable prograde coplanar
configurations. This inclination limit happens to coincide with
the secondary-star mass constraints discussed in Ortiz
et al. (2016).
Table 2 gives the orbital parameters and corresponding

errors for the best stable fit among these grids, which has an
initial PB/Pp≈39.3. Figure 10 shows the orbital evolution of
this stable fit. The evolution of the semimajor axes ap and aB in
the upper left panel shows that this configuration remains long-
term stable with well-separated orbits. The binary eccentricity
eB has very small amplitude variations around 0.73, while the
planet remains nearly circular, with ep varying between 0.04
and 0.11 (upper right panel). The bottom two panels of
Figure 10 show the evolution of the secular apsidal angle
Δω=ωp−ωB, which exhibits a clear libration around 0° with
a semi-amplitude of±37°, while the mean period ratio during
the integration is ≈39.4, close to the initial PB/Pp. We examine
this configuration for librating resonance angles (see
Equation (3)) associated with the nearest 39:1 and 40:1
mean-motion commensurabilities and confirm that this stable

Figure 8. Edge-on coplanar prograde grids for systematically varied PB, ωp, and ep around their best-fit values. The survival time is color-coded, and black contours
correspond to the confidence levels of the best fit. Most of the fits are highly unstable, except those located between an integer period ratio and near alignment
(Δω≈0°), while ep is between 0.05 and 0.07. Some of these stable islands are within the 1σconfidence level of the best fit and provide valid possibilities for the
orbital configuration of the HD59686 system.

Figure 9. Coplanar prograde grids of PB/Pp vs. Pp for fixed ep=0.06, ωp=ωB=149°. 4 (i.e., Δω=0°), and i=90°, 75°, 60°, and 45°. The stable regions seen in
Figure 7 are now extended through the whole range of Pp and cross inside the 1σconfidence levels of the best fit. These stable regions exist down to i=60°, below
which both companions have masses large enough to make the system unstable.
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prograde fit is not involved in an MMR. Such an orbital
evolution is characteristic for secular apsidal alignment (e.g.,
Lee & Peale 2003; Michtchenko & Malhotra 2004). The
libration of Δω around 0° is critical for the stability of our
system, since it helps the lower-mass S-type object to retain
small eccentricities while being significantly perturbed by the
secondary star. We have investigated all stable prograde islands
shown in Figures 7–9, and they all exhibit similar evolution,
with librating Δω around 0°, circulating MMR angles θ1,n,
small ep, and a noninteger mean period ratio PB/Pp. Thus, we
conclude that if the HD59686 system is indeed prograde, then
it must be locked in secular apsidal alignment to stabilize the
orbits.

Two additional remarks on the secular apsidal alignment and
non-MMR nature of the stable islands in Figures 7–9 are in
order. First, one may be concerned that the noninteger initial
and mean period ratios may not represent the true period ratio
due to the large mass of the secondary star. However, the
Hamiltonian in Jacobi coordinates in Equation (11) of Lee &
Peale (2003) shows that the perturbations to the Keplerian
motions from the interactions between the secondary star and
the planet remain small, and the semimajor axes and period
ratio should be nearly constant throughout most of the binary
orbit (including the initial epoch when the secondary is ∼20 au
from the primary). Even when the secondary is at periastron,
we can estimate from the lowest-order term in the perturbations
to the Kepler motions in Equation (11) of Lee & Peale (2003)
that the full amplitude of the variation in the period ratio should
be m M a a e9 2 1 3.3%B p B B

3
*~ - ~( )( )( ( )) if ep is small.

These results are consistent with the evolution of P PB p shown
in Figure 10, where P PB p is near the initial value most of the
time and shows scatter of ∼4.5%.

Second, K. H. Wong & M. H. Lee (2018, in preparation)
systematically studied the stability of circumprimary planetary
orbits in the HD59686 system, with initial conditions in grids
of ap and ep for several values of Δω and mean anomalies. For
the coplanar prograde case, they confirmed the existence of
islands stabilized by secular apsidal alignment. They also found
islands that are stabilized by MMR, but these are at higher ep
and do not fit the observed planet.

6.2. Coplanar Retrograde Grids

We repeat the grid analysis for retrograde coplanar
configurations by fixing Δi=180° for each fit. We find that
all fits within 3σ from the best fit are stable for at least 10Myr.
Particularly, all fits in the P P PB p p- grids are stable despite
the large companion masses for i=30° and even i=15°. The
stability of the P P PB p p- grids in the range i=90°–15° is in
agreement with the results presented in Figure 4 and
Section 4.2, where all the retrograde coplanar inclined best
fits are stable down to i=5°. We conclude that the best
retrograde coplanar fit is well within a large stable phase-space
region, not necessarily involved in an MMR. Therefore, no
meaningful stability constraints can be obtained from the
retrograde coplanar grids, except that the retrograde orbits yield
very strong candidates for the HD59686 system configuration.

6.3. Mutually Inclined Grids

We construct 12 separate iB−ip grids, where for each grid
we adoptΔΩ=0°–330° with a step size of 30°. In these grids,
iB and ip are varied from 5° to 175° with a step size of 3°.4,
corresponding to 50 different values. Fits with ip and iB below
5° and above 175° are not considered, since these inclinations
lead to nearly face-on orbits, and the dynamical masses of the
companions will be very large. In fact, as discussed in
Section 4.2, other observations constrain isin B to values greater
than 0.5, but since the dynamical model does not reject a more
massive secondary stellar companion, we construct symme-
trical grids with the same range of ip and iB. Thus, we study
mutually inclined configurations covering almost all possible
system geometries. The results from this test are shown in
Figure 11.
The only stable region we find in these grids corresponds to

nearly coplanar retrograde geometries with Δi>145°. The
orbital evolution of these stable fits is very similar to that of the
best retrograde coplanar fit discussed in Section 4.1 and shown
in the middle panel of Figure 3. For nearly coplanar retrograde
orbits, the amplitude of the variations in the inner companion
eccentricity ep is rather large. It is about 0.35 for strictly
coplanar orbits and increases with the increasing mass of the
secondary star (i.e., with decreasing isin B) to about 0.42 at
maximum, when iB and Δi≈145°. Meanwhile, the ep and eB
oscillation frequency is highest in the coplanar configuration
and decreases with decreasing Δi. For fits near the stability
boundary of Δi≈145°, another shorter-term eccentricity
variation is visible on top of the main secular eccentricity
oscillation, which has a period of a few hundred yr. In this
stable region, Δi also exhibits small variations around the
initial best-fit value, except for the coplanar case, where Δi
remains constant at 180°. We do not find evidence that any of
the stable retrograde fits are in MMR.
The small isin p retrograde corners of Figure 11 are

intriguingly stable, suggesting that the inner companion’s
dynamical mass could be as high as 10 times its minimum mass
(i.e., isin 0.1p » ), converting the planet to a massive brown
dwarf or, at the extreme, even a very low-mass M-dwarf star. A
massive, highly inclined, and retrograde inner companion may
be consistent with the Hipparcos astrometry and dynamical
modeling, but to preserve the system’s stability, the outer
binary companion must also have a small isin B, and that is not
supported by observations. On the one hand, if we assume that
the outer companion is a main-sequence star, then we can limit

Table 2
Stable Prograde Fit with PB/Pp≈39.3

Parameter HD59686 Ab HD59686 B

K [m s−1] 137.0±3.3 4011.6±3.7
P [days] 299.2a 11772.7a

e 0.06a 0.731±0.005
ω [deg] 149.3a 149.4±0.1
M0 [deg] 272.0±1.4 259.8±0.4
RVoff [m s−1] 243.2±4.0 L
i [deg] 90.0a 90.0a

Ω [deg] 0.0a 0.0a

Δi [deg] 0.0 L
a [au] 1.09 13.67
m isin [MJup] 6.97 558.5
rms [m s−1] 19.84 L
χ2 78.57 L
χν
2 0.970 L

a Fixed parameters.
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its inclination to 150°�iB�30° (blue dashed lines in
Figure 11), beyond which it would be a solar-mass star and
should have been detected in Ortiz et al. (2016). All stable
solutions with secondary i150 30B   support a planet-
mass object for the inner companion. On the other hand, the
LBT observations obtained in Ortiz et al. (2016) would not be
sensitive to a white dwarf secondary with ∼1Me. Thus, in
principle, both companions of HD59686 can have very small

isin , making the system a hierarchical retrograde triple of a K
giant, M dwarf, and white dwarf. Such an exotic system would
be stable in a retrograde orbit, but then, in all cases, the excited
inner binary eccentricity would oscillate with much larger
values than the one currently observed; i.e., our observations
would have caught the system at a very special time. Therefore,
we conclude that the inner companion is most likely of
planetary origin.

Overall, we identify a large and confident stable region for
the HD59686 system, which turns out to be at high mutual
inclinations of Δi145°, corresponding to nearly coplanar
but retrograde orbits. Mutual inclinations with Δi between 30°
and 145° lead to instability on very short timescales due to
Lidov–Kozai effects, and thus such orbital configurations are
very unlikely. Nearly coplanar and prograde best fits with

i 30D  are also unstable.

7. Summary and Conclusions

HD59686 is without any doubt a very interesting three-body
system. It consists of a single-lined spectroscopic binary with
aK-giant primary with M=1.92Me, a low-mass secondary
star with at least mB=0.53Me and at most ∼1Me, and an
additional S-type planet with at least 7MJup. This system has a
challenging architecture, since the secondary star orbits beyond
the planet orbit (ap=1.09 au) on a relatively close
(aB=13.6 au) and very eccentric (eB=0.73) orbit. As a
result, the binary periastron distance is only qB=3.7au,

leading to strong interactions with the planet and thus
challenging the system’s long-term stability.
In this paper, we performed a detailed orbital and stability

analysis of the HD59686 system via dynamical modeling of
RV data and long-term N-body integrations. We aimed to refine
the orbital parameters by stability constraints, which can
provide clues on the formation history. This is important, since
only a handful of S-type planetary candidates in compact
binary systems are known in the literature, and the HD59686
system illustrates how planets could form and remain stable in
an S-type orbit around a star under the strong gravitational
influence from a close stellar secondary.
Our global best fit with the lowest χν

2 suggests a triple-star
system with nearly polar orbits (Δi=92°.7±3°.3) instead of a
binary with an S-type planet. We have shown, however, that
such orbits quickly lead to instability due to the Lidov–Kozai
effect. Within only 600 yr, the Lidov–Kozai effect excites the
eccentricity of the inner object to a value that leads to collision
with the primary K-giant star. Orbital fits with parameters
similar to those of the near-polar global best fit are very
unstable and experience a similar fate, although they all have
lower χν

2 values compared to the fits corresponding to a
coplanar configuration. We conclude that the near-polar
configurations cannot represent the true system configuration,
and that their small χν

2 values are most likely a result of model
degeneracies, which come from the limited number and
accuracy of RV data points. These conclusions are supported
by our bootstrap statistical analysis.
We find that HD59686ʼs planet can only survive on nearly

coplanar, most likely retrograde orbits. We find that when the
system’s mutual inclination is Δi=180° (i.e., coplanar and
retrograde), the system is fully stable for a large set of orbital
solutions and companion masses. Long-term stability is also
preserved for nearly coplanar retrograde configurations with
145°Δi�180°.

Figure 10. Top panels: evolution of the binary (green) and planetary (red) semimajor axes and eccentricities of the best stable coplanar, edge-on, and prograde fits with
initial PB/Pp≈39.3. No notable changes can be seen in ap and aB. The binary eccentricity eB fluctuates with a very small amplitude around 0.73, while ep librates
with a larger amplitude between 0.04 and 0.11. Bottom panels: This fit is clearly locked in secular apsidal alignment, where the secular apsidal angle Δω=ωp−ωB

librates around 0° with a semi-amplitude of±37°, while the mean orbital period ratio is PB/Pp≈39.4.
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Although most of the coplanar prograde fits consistent with
HD59686ʼs RV data are unstable, we have demonstrated that
stable prograde fits do in fact exist. Our bootstrap and grid
search analysis shows that a fraction of prograde fits (mostly
within 1σ from the best fit) are stable for at least 10Myr. These
fits are located in narrow strips of the orbital period space
where the initial period ratio PB/Pp is not an integer number,
with the best chances of stability near PB/Pp≈38.4 and 39.4.
Therefore, the system can only survive between high-order
MMRs, while the MMRs themselves have a destabilizing effect
on the S-type planet. However, we find that the planetary ep
and ωp are also very important parameters that control the
planet stability. The stability results indicate that the planet
must be initially on a nearly aligned orbit with the binary
(Δω�10°) and have ep≈0.06. In such a configuration, long-
term stability is ensured by secular apsidal alignment between
the binary and planetary orbits, with Δω librating around 0°
with a relatively small amplitude.

The stable islands shrink when we assume lower inclinations
and more massive companions while keeping coplanarity.
Below i=45°, all prograde coplanar configurations are
unstable, which suggests that if the system is indeed prograde
and coplanar, then 90°�i�45°, with most stable fits at
i=90°. The orbital dynamics of these stable prograde fits with

larger masses similarly shows secular apsidal alignment where
Δω librates around 0°.
As a final discussion point, we note that there are arguments

in favor of and against both prograde and retrograde
configurations. For example, the retrograde stable region is
very large, and it can explain the RV data with great
confidence, but forming a retrograde planet requires some
exotic scenarios (see discussion in Ortiz et al. 2016). On top of
that, looking at the retrograde planet eccentricity evolution
(middle panel of Figure 3), we estimate that ∼18% of the time,
ep<0.1 (within 3σ of the best-fit value), and only ∼8% of the
time, e0.03 0.07p< < (within 1σ). If the system is indeed in a
retrograde configuration, then the Lick RVs must have been
obtained in a phase that has rather low probability when ep is as
low as ∼0.05. On the other hand, small ep is not a problem for
the prograde stable fits, where most of the time the planet
eccentricity is in the range e0.04 0.11p< < (Figure 10).
However, the stable prograde islands are very narrow, and
whether it is possible to form a massive planet in a narrow
stable region in secular apsidal alignment with the eccentric
close binary is a problem that deserves a closer look in the
future.

Figure 11. Mutually inclined grids for different ΔΩ covering (almost) all possible mutually inclined configurations. The black dashed contours are the initial mutual
inclination borders with steps ofΔi=30°. The stability is tested for 10 Myr, and the red filled contours show the grid areas where the orbits are stable. The HD59686
S-type companion is stable for a large set of dynamical masses only when it is on a nearly coplanar retrograde orbit with 145°Δi�180° with respect to the binary
plane.
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