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Abstract. Prediction of runout distance and deposit morphology is of

great importance in hazard mitigation of geophysical flows, including viscoplas-

tic mudflows. The major rheological parameters of mudflows, namely, yield

stress and viscosity, are crucial factors in controlling the runout and depo-

sition processes. However, the roles of the two parameters, especially in mud-

flows with high inertia, remain poorly understood, and are not accounted

for in runout scaling relations with source volume. Here we investigate the

effects of flow rheology on runout scaling and deposit morphology using small-

scale laboratory experiments and three-dimensional numerical simulations.

We find that yield stress and viscosity both influence flow velocity gained

during downslope propagation of mudflows, which is strongly correlated with

the runout distance; the role of yield stress is more significant than viscos-

ity. High yield stress and low viscosity lead to an elongated deposit, where

longitudinal propagation is more significant than lateral spreading. In con-

trast, high viscosity promotes the dominance of lateral spreading of the de-

posit, while low yield stress and moderate viscosity produce an initial elon-

gate deposit, followed by a secondary surge that spreads laterally near the

head of the deposit. Following appropriate scaling relations for viscosity and
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yield stress, a general scaling function is proposed to incorporate flow prop-

erties in the well-known correlation of runout distance and source volume.

Our findings regarding the inertia effects and the roles of yield stress and vis-

cosity enhance our understanding of mudflows, muddy debris flows, and other

viscoplastic geophysical flows.

Keypoints:

• Experiments and simulations reveal the role of inertia and rheology (yield

stress and viscosity) in the runout behavior of rapid mudflows

• Different combinations of rheological parameters are found to give rise

to distinct deposit morphology

• A generalized runout scaling relation is proposed incorporating rheolog-

ical parameters
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1. Introduction

Geophysical flows, such as landslides, avalanches, debris flows, mudflows and lava flows,

are common phenomena at the surface of the Earth. These processes of mass transport

and deposition are geomorphically important and contribute to shaping the landscape

[Delannay et al., 2017]. Their long runout distance and large deposit area also cause

substantial loss of human life, destruction of houses and facilities, and interruption of key

transportation corridors. Better understanding of the depositional behavior of geophysical

flows is of great value to the design of protective and mitigative measures in downslope

areas [Rickenmann, 2005].

Despite the large variation of compositions and flow regimes, most geophysical flows can

be described as a viscoplastic fluid as a first approximation [Coussot et al., 1998]. They

behave like a solid until submitted to a stress higher than a yield threshold; upon yielding,

they start to flow like a viscous liquid [Coussot , 2014]. A viscoplastic fluid is commonly

idealized by the Bingham model or the Herschel–Bulkley model, where a constant yield

stress is used to control the transition between solid- and liquid-like behaviors [Jeong et al.,

2009; Balmforth et al., 2014]. This idealization applies to flows of saturated plastic soil

with a high content of water and fines, which are known as mudflows [Hungr et al., 2014].

It is also relevant to muddy debris flows [Takahashi , 1981; Kaitna et al., 2016], snow

avalanches [Kern et al., 2004; Ancey and Bain, 2015], lahars and lava flows [Sakimoto

and Gregg , 2001], which exhibit a similar macroscopic behavior except for a different

temperature dependency of viscosity [Griffiths , 2000; Balmforth et al., 2014]. Submarine

landslides with mainly saturated fine materials, where the ambient fluid is the same as
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the interstitial fluid, also fall into this category [Zakeri et al., 2008, 2009]. By contrast,

for coarser granular materials where the effects of particle friction and collision dominate,

the Coulomb friction law [Iverson, 1997; Pudasaini , 2012] and the so-called µ(I)-rheology

[Jop et al., 2006; Lacaze and Kerswell , 2009] become more relevant; they are viscoplastic

models with pressure-dependent yield strength [Forterre and Pouliquen, 2008].

This work addresses mudflows that tend to deposit over open areas after a rapid evo-

lution down steep inclined channels (Figure 1a), which are commonly miniaturized as an

inclined flume connected to a horizontal deposition plain (Figures 1b–e). Most previ-

ous studies regarding deposition and runout focus on the well-known correlation between

runout distance and source volume, or the fall height of the initial mass [Legros , 2002;

Issler et al., 2005; Staron and Hinch, 2007; Staron, 2008; Staron and Lajeunesse, 2009;

Roche et al., 2011; Johnson et al., 2012; Lucas et al., 2014; Parez and Aharonov , 2015;

de Haas et al., 2015]. This correlation, as merely a dimensional argument, does not con-

sider other important parameters including the rheological properties. For Bingham fluids,

it has been revealed in slumping tests over a horizontal plane that yield stress controls the

runout behavior [Staron et al., 2013]. At the limit of small inertia, this is expected because

the yield stress represents the internal strength that counterbalances gravity [Liu et al.,

2016]. However, in the fast propagation and deposition of mudflows, where the inertia

effect becomes relevant, the relative role of viscosity and yield stress remains unclear, espe-

cially with an inclined flow configuration. Moreover, event-specific variation of rheological

characteristics may result in different deposit morphologies observed in both natural mud-

flows and laboratory experiments [Balmforth et al., 2006; Martinez , 2009; Parsons et al.,

2001; Hürlimann et al., 2015; Ancey and Cochard , 2009; Cochard and Ancey , 2009]. Some
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experimental deposits with a similar flume geometry are given in Figures 1b–e, where

clearly different deposit shapes are observed (e.g., semi-circular, hill-shape, elongated) for

a variety of materials. It is interesting to understand how material properties modify

the deposit morphology. Since the flow rheology involves both yield stress and viscosity,

which increase simultaneously with the particle concentration for most materials [Kaitna

et al., 2007; Ancey and Cochard , 2009], it is difficult to separate the effects of the two

parameters in laboratory experiments. This suggests the need for numerical modeling,

which is the major focus of this study.

In this study, we perform both numerical and physical modeling to explore the effects of

rheological parameters on the runout scaling and deposit morphology of mudflows. The

adopted numerical scheme solves full three-dimensional equations of viscoplastic mudflows

over slopes, details of which are elaborated in Sec. 2. In Sec. 3, our experimental setup

and slurry rheometry are presented. Experimental and numerical results are shown in

Sec. 4, where the effects of yield stress and viscosity on the runout distance and deposit

shape are studied. In Sec. 5, runout scaling with a variety of flow properties is discussed

following a dimensional analysis.

2. Simulation Methodology

2.1. Modeling viscoplastic mudflows

One popular strategy of debris-flow modeling is to use the depth-averaged thin layer

models [Savage and Hutter , 1989; Iverson, 1997, 2005], which have been applied to the

study of the spreading and stoppage of viscoplastic flows [Huang and Garcia, 1997, 1998;

Balmforth et al., 2002, 2006; Ancey and Cochard , 2009]. In these models, the flows are

assumed to be shallow and slow, with relatively small (i.e., order-one or lower) Reynolds
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number [Balmforth et al., 2006]. The assumptions may be violated in certain situations,

such as the initial collapse stage of the event (where material thickness may be consider-

able), the rapid evolution of fast-moving flows on steep slopes, and the sudden change of

topology at runout. The inertia effects encountered in the fast propagation of a mudflow

also pose challenges for theoretical modeling based on thin layer models. To capture these

processes, which are crucial for the understanding of mudflow runout and deposition in

the current work, it is necessary to consider the full solutions to the governing equations

without reducing their dimensions.

Recently, numerical models that do not involve a depth-averaging process have been

applied in the modeling of yield-stress flows. For instance, Zakeri et al. [2009] simulated

submarine slurry flows with a power-law rheology using a computation fluid dynamics

(CFD) solver. Domnik and Pudasaini [2012] proposed a non-depth-averaged flow model

with the Bingham yield stress; they pointed out the importance of basal sliding by incor-

porating a Coulomb-like sliding law at boundaries, which is more applicable for granular

flows. von Boetticher et al. [2016] developed a three-dimensional multiphase solver for

debris flows, which treats the mixture of fines and water as a Herschel–Bulkley fluid,

while the coarser granular phase is treated as a Coulomb-type flow. Similar attempts

of non-depth-averaged approaches have been reported with the Coulomb-type model and

µ(I)-rheology [Lagrée et al., 2011; Martin et al., 2017; Chauchat and Médale, 2014]. In

general, these models can reproduce all typical stages involved in a dam-break-like event,

from the quick acceleration to a maximum velocity, to the deceleration toward a halt. An

additional challenge posed by non-depth-averaged models is the treatment of a free fluid

surface [Scardovelli and Zaleski , 1999]. One way to tackle this is to track the free surface
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using the volume of fluid (VOF) method, which defines a secondary air phase above the

surface of the primary fluid phase; the values of phase fraction can be used to reconstruct

the interface position. This method has been successfully used by Zakeri et al. [2009],

Lagrée et al. [2011], Staron et al. [2013], Liu et al. [2016], and Jing et al. [2016].

In this work, we use a VOF solver interFoam from the open-source CFD toolbox

OpenFOAM [OpenCFD , 2016]. The governing equations and constitutive models for

a theoretical mudflow are presented with two important schemes: (i) the regularization

of viscoplastic models, and (ii) the tracking of the dynamic free fluid surface.

2.2. Governing equations

The Navier-Stokes equation for conservation of momentum and mass provides the gov-

erning equations for a continuum viscoplastic flow:

∂

∂t

(
ρu
)

+∇ ·
(
ρuu

)
= −∇p+∇ ·T + ρg (1a)

∇ · u = 0, (1b)

where u is velocity, ρ is density, p is pressure, T is the extra-stress tensor, and g is

gravitational acceleration vector. The stress tensor T is defined by a constitutive model.

A generalized constitutive description of viscoplastic fluids is the Herschel–Bulkley model,

which defines T (or D) as:

T =
(τc
γ̇

+ 2nKγ̇n−1
)
D, τ > τc (2a)

D = 0, otherwise (2b)
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where τc is the critical stress (yield stress), K is consistency, and n is a power index;

τ =
√
−TII is shear stress, and TII = 1

2
[(trT)2 − tr(T)2] is the second invariant of the

extra-stress tensor T; shear rate γ̇ =
√
−DII , in which DII = 1

2
[(trD)2 − tr(D)2] is the

second invariant of the strain rate tensor D, and D = 1
2
(∇u +∇uT).

A simpler model for viscoplastic fluids is the Bingham model:

T =
(τy
γ̇

+ µB

)
D, τ > τy (3a)

D = 0, otherwise (3b)

where τy is yield stress and µB is Bingham viscosity. Different notation is used to distin-

guish from that of the Herschel–Bulkley model.

The rheological parameters (e.g., yield stress and viscosity) can be measured in a one-

dimensional flow configuration, where the above three-dimensional expressions are reduced

to

τ = τc +Kγ̇n (4)

for the Herschel–Bulkley model, and

τ = τy + µBγ̇ (5)

for the Bingham model, respectively.

2.3. Regularized viscoplasticity

The constitutive models presented above are regularized in numerical implementations

to avoid the divergence of viscosity at zero rate of strain [Frigaard and Nouar , 2005].
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For brevity, here the Bingham model for one-dimensional simple flow (equation (5)) is

shown for example. The same regularization method is applied for the Herschel–Bulkley

model. Several approaches for regularization have been proposed, amongst which are

Tanner’s bi-viscosity model [O’Donovan and Tanner , 1984], which is used in this work, and

Papanastasiou’s exponential model [Papanastasiou and Boudouvis , 1997]. As illustrated in

Figure 2a, a critical shear rate γ̇c is used to separate the flow curve into two segments: the

first one has a high viscosity µ0, while the second one is identical to the original Bingham

model, with a viscosity µB. It has been found in Poiseuille flows that an optimal choice of

the critical shear rate is γ̇c = 0.001 s−1 [Mitsoulis , 2007; Jeong , 2013]. We have tested the

choice of γ̇c and its effect becomes negligible when γ̇c is as low as 0.001 s−1. We attribute

this to the fact that our study examines inertia flows having a typical shear rate of several

hundred reciprocal seconds, and the low-shear rate regions contribute little to the overall

flow behavior. Therefore, γ̇c = 0.001 s−1 is consistently adopted in the current work.

However, this choice may warrant further investigation if adopted for a study focusing on

a creeping regime where the shear rate is mainly small.

2.4. Free-surface tracking technique

Since the geometric configuration of a mudflow evolves continuously in the spatial and

temporal dimensions, special treatments are required to track the position of its free

surface: the flow is represented by a two-fluid mixture, which includes a primary fluid

(here, a viscoplastic fluid) and a secondary fluid (typically, air). The bulk properties of

the two-fluid mixture are weighted averages according to the volume fractions [Berberović

et al., 2009]. Specifically, we have bulk density ρ = α1ρ1 + α2ρ2, and bulk viscosity
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µ = α1µ1+α2µ2, where α is volume fraction with subscripts 1 and 2 denoting the primary

and secondary fluid phases, respectively.

The interface between the two fluids is solved using the spatial distribution of their

volume fractions, which is referred to as the volume of fluid (VOF) method [Rusche,

2002; Berberović et al., 2009]. The basic idea of the VOF method is shown in Figure 2b.

Numerical cells with α1 = 1 represent pure fluid while α1 = 0 indicates air. The precise

position of the interface is located by taking weighted average for the elevation of each

cell. The evolution of the free surface is governed by a transport equation:

∂α1

∂t
+∇ ·

(
α1u

)
+∇ ·

(
α1(1− α1)ur

)
= 0, (6)

where ur is the liquid–air relative velocity. The third term is used to compress the interface

to a sharper region [Berberović et al., 2009]. The first two terms on the left-hand side

have the same advection form as the continuity equation in standard mixture theory,

indicating the fact that in an incompressible fluid the conservation of mass is equivalent

to the conservation of volume, hence the volume fraction.

3. Small-scale Experiments and Rheometry

3.1. Experimental setup

The experimental setup consists of a Plexiglas channel with adjustable inclinations,

a tank with a removable gate, and a horizontal deposition plain. Notation and local

coordinates for different scenarios are shown in Figure 3. The flume is 1 m long and 0.2 m

wide, the tank is 0.4 m long, and the deposition plain is a 1m × 1m square (Figure 3a).

Before the start of an experiment, the channel is inclined to a designated slope angle, θ,
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which is in a range from 10◦ to 20◦. The well-mixed slurry (Sec. 3.2) of volume V is

gently poured into the tank and the top surface is flattened; V ranges from 2 L to 4.5 L.

During an experiment, the gate is removed rapidly to release the fluid in a dam-break

fashion. The flow traveling down the slope is recorded by a video camera (Sony HDR-

XR100E) until eventual deposition is achieved (Figure 3b). The video is postprocessed

with an OpticalFlow program (Matlab Computer Vision System ToolboxTM), which an-

alyzes the velocity distributions of objects in each image. It can sharply delineate the

free surface of the mudflow. Typical results from the postprocessing include evolution of

flow-depth profile, front position and frontal velocity of the mudflow; an example is given

in Sec. 4.2. After the flow becomes stationary, deposit runout length (Lr) and maximum

width (Wm) are measured (Figure 3c). Note that Lr is the distance from the toe of the

slope. On the deposition plain, deposit-depth contours are measured at a set of 5 cm-by-

5 cm grid points using a ruler with a precision of 1 mm. Repeatability has been verified

by conducting identical flume tests under the same temperature and humidity conditions

(see Figure S1 in the supporting information).

3.2. Slurry rheometry

The slurry used is water–kaolin mixtures at different volume concentrations (Cv). The

slurry rheology is measured on a Brookfield rheometer (R/S SST200), which has a coaxial

cylinder measurement geometry. The fluid container has vertical ribs to avoid slippage

during the measurement. Typically, 10 specimens are prepared from the same mixture to

determine a master flow curve. Figure 4a shows the flow curves for five concentrations

with error bars representing the standard deviation of measurements. The error bars are

generally smaller than the symbols.
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Two rheological models for a simple shear flow (i.e., the Herschel–Bulkley model (equa-

tion (4)) and Bingham model (equation (5))) are adopted to fit the rheometrical data.

As seen in Figure 4a, the Herschel–Bulkley model closely describes the flow behavior in

the full range of shear rate, while the Bingham fitting is obtained for a specific range

(200 − 800 s−1), according to the typical values of shear rate estimated by considering

the typical flow velocity and flow thickness in our flume tests. Although this range may

not apply to all locations within the flow, it does represent the majority of the flow. The

obtained “yield stress” is then the intersection of the fitted line with the vertical axis,

which represents a phenomenological parameter rather than the real yield stress of the

material; to find the real yield stress is a more complicated task that lies beyond the scope

of this work [Balmforth et al., 2014]. In fact, we stress that all rheological parameters

in the Bingham and Herschel–Bulkely models are fitting parameters of the flow curves,

rather than actual material properties. Note also that in a Bingham fitting the omitted

data at lower shear rates does not affect the results significantly because the stoppage

phase is very rapid in our inertia flows. It is confirmed in Sec. 4.2 that using the Bingham

model yields nearly identical results with the Herschel–Bulkley model in the current flow

configuration.

Table 1 lists the fitting parameters for all measured concentrations, based on equa-

tion (4) and equation (5); the parameters are adopted as direct input for our numerical

modeling. Since our major interest is to understand the effects of yield stress and viscos-

ity, for simplicity, we mainly adopt the Bingham model in the subsequent analysis. Note

that yield stress (τy) and viscosity (µB) in the rest of this paper refer to the parameters

determined by Bingham fittings. In Figures 4b and c, τy and µB are plotted against Cv,
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respectively. It can be seen that both yield stress and viscosity increase exponentially

with volume concentration.

4. Experimental and Numerical Results

4.1. Summarized results of different experimental series

Table 2 summarizes the observed deposit geometry (runout length and maximum width)

for different imposed volume concentrations, slope angles and mudflow volumes. The

series of reference cases contains four major experiments with varying concentrations

(Cv = 18%, 19%, 20%, 21.1%) and a fixed combination of volume and slope angle (V = 3 L

and θ = 14◦). One of the reference cases is used to demonstrate the typical experimental

results and the validation of numerical models in Sec. 4.2, following which the effects of

varying concentration are discussed in Sec. 4.3. Then, the roles of viscosity and yield

stress are studied in detail with numerical simulations in Sec. 4.4. In other series, volume

and slope angle are varied for different concentrations, respectively. The effects of these

variations on runout distance are discussed in Sec. 4.5.

4.2. Typical experimental results and model validation

The experiment with V = 3 L, θ = 14◦, Cv = 20% is employed to illustrate typical

experimental results and to validate our numerical models. The accuracy of other nu-

merical simulations is similar across all experimental cases (a comparison of the predicted

and experimental deposit morphology for different volume concentrations can be found

later in Figure 9). In numerical simulations, the input rheological parameters for both

Bingham and Herschel–Bulkley models follow those listed in Table 1, and no calibration

or inverse analysis for these parameters is needed. A no-slip boundary condition is im-
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posed in the numerical simulations, which matches our observations of no slip during the

flume tests. We have verified this by covering the Plexiglas with sandpaper, which has

a negligible influence on the results (see Figure S2 in the supporting information). The

minimum time step used in the simulations is 10−3 s, which ensures numerical stability.

The mesh size used in the simulations is generally 5 mm; the computation converges at

this resolution. A numerical simulation is considered complete when the outer edge of a

deposit does not expand with time, and then the final runout distance and deposit mor-

phology are obtained. Turbulence is not considered due to the viscous effect of mudflows.

Indeed, all flume tests exhibit a laminar behavior according to our observations. A more

quantitative discussion of the laminar behavior can be found in Sec. 5.2. A sample script

of this validation case is provided in the supporting information.

Figure 5 validates the simulations with the flow-depth profiles detected using Opti-

calFlow. Note that in Figures 5, the line segments without markers represent conditions

where no motion is detected at a specific moment. For these segments, the past free

surface is patched to the present profile, due to the fact that slurry tends to attach to

the sidewalls. The affected area is mostly close to the region of initial release, while our

primary concern is the flow front. As seen in Figures 5d–f, the agreement between exper-

imental and numerical results is generally good. Note that the sharp peaks behind the

front in numerical simulations result from the shape of the initial mass, while such struc-

tures are smeared in the experimental images due to gate removal and the attachment of

slurry on the sidewall.

In Figures 6a and b, the measured front position (xf ) and front velocity (uf ) of the

mudflow along the channel are plotted as a function of travel time (t) and xf , respectively,
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and the numerical predictions are shown to agree with the experimental results. It takes

less than 1 s for the slurry to reach the toe of the slope, and three stages can be identified,

namely, a sudden acceleration to the peak velocity (umax), a plateau where velocity varies

less significantly, and a tendency to decelerate toward stoppage. Deceleration occurs as

the slurry stretches; the shear forces provided by walls, as well as the yield strength of

slurry, tend to balance the driving forces provided by gravity. The front velocity remains

high (∼ 1 m/s) right before runout occurs (Figure 6b). The velocity at runout, however,

can be rapidly dissipated as the flow spreads and deposits over the deposition plain.

On the deposition plain, numerical simulations produce good results of the final deposit;

both the outer-most profile (Figure 6c) and deposit depth (Figures 6d and e) agree well

with the experimental measurements. Key features of the slurry deposit are captured: (i)

the deposit shape is elongated, due to the rapid arrest, with a slightly wider lobe behind

the tip; (ii) the lobe area has a flat surface off the edge (the contour of 11 mm); (iii) steep

depth gradients are found near the edge.

4.3. Effects of volume concentration

The results of the four reference cases are presented to study the effects of concentration

on front propagation and final deposition, with Cv varying from 18% to 21.1%. As Cv

increases, yield stress and viscosity increase simultaneously (Table 1 and Figure 4).

Figure 7 shows the flow kinetics on the channel. It can be seen that when t < 0.2 s,

the evolution of the front position is independent of flow properties (Figure 7a). This

corresponds to the first stage (xf < 0.18 m) identified in Figure 7b, where uf rises above

1 m/s in the first 0.18 m traveled. These results indicate that at the initial collapse

triggered by gravity, the frontal motion does not depend on rheological properties. After
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the initial stage, a higher concentration tends to hinder the propagation of the frontal

wave (Figure 7a). The second stage in Figure 7b, where the velocity evolves steadily,

is shortened as the concentration increases. At the same time, higher concentrations

lower the peak velocity that marks the mobility gained through acceleration, leading to a

longer flow duration. As the flow stretches to a certain length, the driving component of

gravity down slope cannot overcome the internal flow strength and the drag provided by

walls. This length, at which the flow starts to decelerate, decreases with the increasing

concentration (Figure 7b). Indeed, a more concentrated slurry tends to counterbalance

gravity more efficiently. Note that the result for the 20% case deviates slightly from

the overall trend, which stems from the fluctuation of material properties observed in

Figure 4c (i.e., the measured µB for the 20% slurry is close to the 19% slurry).

Figure 8 shows the final deposits of the four experiments. The profile of an experimental

deposit is less elongated as Cv increases (Figure 8a). However, the maximum deposit

width remains similar. When Cv = 21.1%, the runout distance is the shortest, and the

maximum lateral spreading occurs near the outlet of the channel. When Cv = 18%, the

deposit exhibits a waist-like region around x = 0.2 m, beyond which the width increases

slightly and the maximum is reached at around x = 0.62 m. Figure 8b presents the depth

profiles at the centerline of the deposition plain (z = 0). As the deposit is elongated at

lower concentrations, its depth is lower. The top surface at the center section for all cases

is generally flat. Slurries are accumulated at the toe of the slope (x = 0). Near the front

edge, the flow depth drops rapidly to zero.

The understanding of deposit morphology can be further enhanced by numerical sim-

ulations. Photos of the final deposits taken after the experiments (overlaid by measured
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depth contours), together with the contour plots and three-dimensional mesh plots ob-

tained from numerical simulations, are shown in Figure 9. It can be seen that good

agreement is achieved for all cases, as pointed out in Sec. 4.2, without any calibration of

simulation parameters. The numerical results show that the deposit lobe is generally flat

and wide followed by an elongated ‘waist’ near the outlet of the flume (which becomes less

obvious when Cv = 21.1%). Since the slurries come to a halt very rapidly (within 2 s),

the lateral spreading right after runout is not significant, while the deposition takes place

mainly along the streamwise direction. The steep edge is a key feature of viscoplastic

fluids, which is attributed to the effect of yield stress [Coussot , 1997]. Indeed, as con-

centration increases, yield stress increases and the depth gradient is steeper at the front

edge. In fact, at higher concentrations, more of the slurry remains on the channel and the

volume of the deposit on the deposition plain is small. Therefore, the yield stress plays an

essential role in the depositional behavior of slurries. Meanwhile, the increase of viscosity

also reduces flow mobility and thus hinders runout. The roles of viscosity and yield stress

are elaborated in the next section.

4.4. Roles of viscosity and yield stress

It should be noted that if a slurry is released gently (e.g., on a horizontal plane), the

final deposit shape is known a priori from theory and essentially depends on the yield

stress of the material; the viscosity should not play a role during the creeping stoppage of

the flow [Coussot and Proust , 1996; Balmforth et al., 2006; Liu et al., 2016]. However, a

major difference in our current inclined configuration is that the flow gains a high kinetic

energy on the steep channel and stops rapidly after its runout on the deposition plain. In
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this case, the flow inertia has a major impact on the flow characteristics and deposition

behaviors. The inertia effect is expected to depend on both yield stress and viscosity.

Since viscosity and yield stress increase simultaneously with volume concentration (Fig-

ure 4), it is difficult to isolate the effects of the two rheological parameters. In numerical

simulations, this can be achieved by examining different combinations of τy and µB within

the range observed in prior studies (Figure 10). The parameter space of our simulations is

shown as the rectangular zone in Figure 10, where τy varies from 10 Pa to 50 Pa, and µB

ranges between 0.01 Pa · s and 1 Pa · s. The lowest value of µB is chosen to be close to our

18% slurry; in our experiments the 17% mudflow runs out of the depositional plain. The

parameter space is considered to be realistic because it encompasses the characteristics of

several kinds of slurries, including the one used in our experiments (Table 1) and those

reported in the literature [Coussot , 1997; Martinez , 2009; Kaitna et al., 2007]. Note that

the initial volume (V = 3 L) and slope angle (θ = 14◦) remain unaltered in these cases.

Figures 11a and b show the effects of these two parameters (i.e., yield stress and viscos-

ity) on the runout distance. In general, the increase of both parameters tends to hinder

the runout distance, and the trends are similar for any given value of µB or τy. Intuitively,

viscosity controls the time scale of front propagation, while yield stress takes effect mainly

where shear rate is low (e.g., near the free surface). However, the results show that both

parameters contribute similarly to the final runout distance. A similar effect can be found

on the flow mobility (i.e., the peak frontal velocity umax on the channel) that both yield

stress and viscosity reduce the mobility of a mudflow (Figures 11c and d). This may

explain the aforementioned effect of the two parameters on Lr, since the mobility of a

flow has a first-order impact on the maximum distance it can reach after runout. Indeed,
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a strong correlation is found between umax and Lr in Figure 11e, indicating that in the

current configuration viscosity or yield stress affects the runout by modifying the flow

mobility, which is clearly an inertia effect.

Since the plots in Figures 11a and b show a similarity in shape, one can collapse the

data into a single empirical relation, such that Lr is correlated with τyµ
0.35
B (Figure 11f).

It indicates that although both µB and τy contribute to the runout distance of mudflows,

the role played by τy is more significant. The relation between umax and τyµB is similar to

Figure 11f (not shown for brevity), since umax is linearly related to Lr (Figure 11e). Such

a conclusion is consistent with the results of slumping tests on a horizontal plane, which

revealed that yield stress has a more profound influence on runout distance [Staron et al.,

2013].

On the other hand, Figure 12 shows how yield stress and viscosity are predicted to

control the deposit morphology of viscoplastic fluids. In general, low viscosity (µB =

0.01 ∼ 0.1 Pa · s) and high yield stress (20 ∼ 30 Pa) can produce deposits that are similar

to our laboratory slurries and those in Figures 1d and e, which tend to be elongated with

little lateral spreading. In these cases, the deposition process is fast (µB is low), so that

no subsequent surges smear the initial deposit. The initial shape can be retained owing to

the high internal strength (high τy), and a part of the flow remains stuck on the slope and

sidewalls. The hill-shape deposit (similar to Figure 1c) observed in the top-middle zone

of Figure 12 is a result of the slow motion of secondary surges. While the first surge can

reach a longer runout distance, the rest of the flow reaches the outlet and starts to spread

laterally with very low velocity (since µB is high). When µB further increases (i.e., at

the top-right corner of Figure 12), the lateral spreading dominates over the longitudinal
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runout, which leads to a semi-circular deposit shape similar to Figure 1b. When both

µB and τy are high (the bottom-right corner), the entire flow is slow. Deposition occurs

during the course of flow, such that not much of the flow runs out of the channel onto

the deposition plain. When the two rheological parameters are small (toward the top-left

corner), the flow tends to rapidly spread across the deposition plain (becoming similar to

water).

4.5. Effects of volume and slope angle

In the previous discussion, volume V and slope angle θ are not varied, since the focus

is on how rheological parameters influence the depositional behavior. As two major geo-

metric factors, the effects of V and θ are relatively straightforward for mudflows, unless a

change of flow regime emerges (e.g., roll-wave instability may be observed when V > 4L

and θ > 15◦; not discussed in this research). In Figure 13, both experimental and numer-

ical results with varying V and θ are presented. The scenarios for these experiments can

be found in Table 2. In general, Lr increases linearly when V increases from 2 L to 4 L

with θ = 14◦, and when θ increases from 12◦ to 16◦ with V = 3 L.

In the literature, different mechanisms have been proposed to explain the increase of

Lr with V , such as the sliding and spreading mechanism by Staron and Lajeunesse [2009]

and the frictional velocity-weakening mechanism by Lucas et al. [2014]. The frictional

velocity weakening is more relevant to granular avalanches. In our mudflows, the linear

correlation between Lr and V is mainly due to a geometric effect. Since the slurries tend

to spread over a constant base area of the channel, the runout length should grow at first

order as V 1/3, thus the linear correlation. This geometric effect is similar to the spreading

mechanism proposed by Staron and Lajeunesse [2009].
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5. Scaling from Lab-scale to Field-scale

Experimental results from small scales can have direct geotechnical and geological rel-

evance to field responses only if appropriate scaling is considered. Iverson [2015] pointed

out in a dimensional analysis that miniaturized debris flows exhibit disproportionately

large effects of viscous shear resistance and small effects of excess pore-fluid pressure.

This warrants the necessity of conducting debris flow experiments at the largest possible

scale. Nevertheless, since mudflows are considered as homogeneous and the interstitial

effect is negligible in the current context, a perfect scaling may be established mathe-

matically for this particular flow type. In the following, we first establish a correlation

between runout distance and source volume using selected data from the literature, to-

gether with our experimental and numerical results. Then, scaling laws for mudflows are

derived and verified with numerical simulations. Finally, the runout scaling relation with

source volume is refined by incorporating the two rheological parameters (i.e., yield stress

and viscosity) into a general scaling function.

5.1. Correlation between runout distance and source volume

The data we collect from the literature involve mainly slurries or Bingham-type natural

debris flows, which include small-scale experiments with kaolin–water slurries [Martinez ,

2009], laboratory flume tests with debris flow materials from the Tsing Shan landslide,

Hong Kong [Chan, 2001], in-situ data of the Tsing Shan landslide [Sham, 2015], and

natural volcanic landslides [Legros , 2002]. In all these studies, the Bingham model was

reported to be used for fitting flow properties, which indicates that these flows exhibit a

similar viscoplastic behavior as the slurry flows in the present study. Together with our

experimental results, all data points exhibit an excellent linear correlation between L̂r
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and V (Figure 14a). Note that the overall horizontal distance (L̂r, defined in Figure 3c) is

used to account for the fact that the slope angle and channel length may vary in different

flume systems and natural hillsides. Note also that in this section we use cubic meters as

the unit of volume for generality, in contrast to the conventional unit of liters used in the

previous sections when experimental data are described. The squares in Figure 14a are

numerical simulations to be discussed later.

5.2. Verification of mudflow scaling

Although the linear correlation between Lr and V has been extensively reported, and V

seems to be a sole first-order factor of the runout distance, the runout behavior is expected

to depend also on flow properties [Legros , 2002; Issler et al., 2005; Staron and Hinch, 2007;

Staron, 2008; Staron and Lajeunesse, 2009; Roche et al., 2011; Johnson et al., 2012; Lucas

et al., 2014; Parez and Aharonov , 2015; de Haas et al., 2015]. On one hand, the relevant

parameters differ among different types of debris flows, a good example being the dry rock

avalanche whose overall flow mobility (or, effective coefficient of friction) is a function of

inter-grain friction [Staron and Hinch, 2007]. On the other hand, across a wide range

of length scales, flow properties (e.g., yield stress and viscosity) need to be appropriately

scaled to accurately describe the behavior of natural debris flows. For instance, the energy

expenditure necessary to overcome a yield strength at a small thickness (e.g., 0.01 m in our

flume system) may be largely irrelevant at the real scale of 1 ∼ 10 m thickness [Iverson,

2015].

To understand how the properties of a viscoplastic debris flow can be appropriately

scaled, a dimensional analysis is performed (Appendix A), showing that a proper scaling

with the length scale H can be achieved with the following rules being respected:
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µB1

µB2

=
(H1

H2

) 3
2
,
τy1
τy2

=
H1

H2

, (7)

where subscripts 1 and 2 represent two arbitrary length scales. These rules are to be

verified with numerical simulations at different scales.

Let the initial flow depth at the gate, hg, be the characteristic height at our laboratory

scale, where scale number N = 1. In numerical simulations, the flume is scaled up to

N = 10, 100, 1000, 10000, 100000, so that the characteristic height becomes Nhg, and the

source volume is scaled by N3. To maintain dynamic similitude, yield stress and viscosity

are scaled by N3/2 and N , respectively, according to equation (7). The dimensionless

viscosity, M = µB/ρ
√
gh3g, and dimensionless yield stress, T = τy/ρghg, can be calculated

as M = 0.00014, 0.00018, 0.00020, 0.00028 and T = 0.061, 0.078, 0.099, 0.13, respectively.

Good dynamic similarities are achieved in the numerical simulations across different scales.

As shown in Figure 15, both the runout distance, Lr, and the maximum width of the

deposits, Wm, are well scaled by N .

This scaling test shows that our dimensionless flow properties control the dynamic

similarity of mudflows. Alternatively, they can be interpreted in terms of the Reynolds

number (Re) and Bingham number (Bi) as presented in Appendix A. In fact, if
√
ghg is

chosen as the characteristic flow velocity in our inertia flows, we have

Re =
ρ

µB

√
gh3g, Bi =

τy
µB

√
hg
g
, (8)

leading to Re = 1/M and Bi = T/M . Therefore, we can estimate the ranges of char-

acteristic Re and Bi as 3000 ∼ 7000 and 400 ∼ 500, respectively. The high value of Re

reflects the rapid propagation and high inertia of our mudflows. Note that the range of
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Re (thus the flow regime) matches with those reported in previous experiments, such as

the 2.3× 104 ∼ 1.4× 105 for small-scale flume tests [de Haas et al., 2015] and 3× 103 for

large-scale USGS flume tests [Iverson et al., 2010]. Meanwhile, turbulence is not relevant

in our cases because of the high Bingham number [Malin, 1997]. According to Malin

[1997], when the Hedstrom number (He = Re ·Bi) has an order of magnitude value of 106,

the critical Re for laminar-turbulent transition is beyond 104.

5.3. A general scaling function

Numerical simulations at various scales allow the refinement of the correlation found in

Figure 14a. In Figure 14b, we correlate Lr with V 1/3 to propose a general scaling function.

Note that V 1/3 is used such that the prefactor and exponent of the power-law function

are dimensionless (see equation (9)).

Different straight lines are fitted for the four combinations of M and T , which are almost

parallel with a slope of 1.00 ± 0.01 (Figure 14b). To show how the lines are affected by

M and T , we define L1
r as the runout distance (from the toe of the slope) corresponding

to V 1/3 = 1 m, thus L1
r = 6.446, 4.752, 3.231, 1.708 m for increasing M and T . Noting

that for a given geometry, µB and τy are roughly correlated for commonly encountered

slurries (Figure 10), T is employed as the only factor of L1
r to reduce the complexity of

this analysis. As shown in the inset of Figure 14b, L1
r decreases linearly with T (i.e.,

L1
r = L(T ) = 10.48 − 70.79T ), so that we can write Lr as a function of T and V (i.e.,

Lr = L(T )V 1/3).

In a more general sense, let P represent the properties of a geophysical flow, which can

be the yield stress and viscosity of a mudflow, or the internal friction angle of a granular

avalanche. One can write
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Lr = F1(P )
(
V

1
3

)F2(P )

, (9)

where F1 and F2 are unknown functions of P . In this work (Figure 14b), we have F1 =

L1
r = 10.48 − 70.79T and F2 = 1. In Staron et al. [2013], a similar analysis on the

slumping of Bingham fluids found that F1 = F1(T,M
−0.2) and F2 = F2(T

−1,M−1),

which also reveals that T has a more profound effect on the runout behavior than M . For

other types of landslides, Staron and Hinch [2007] found F1 = F1(µp) for rock avalanches

using discrete element modeling, where µp is the inter-particle coefficient of friction.

For debris flows involving both a muddy fluid phase and a particulate phase (i.e., grains),

a scaling law similar to equation (9) is expected but the two functions, F1 and F2, may be

more complicated with more unknown physical properties. Scaling of such complicated

flows based on small-scale experiments is non-trivial, due to the disproportionately small

effects of excess pore-fluid pressure noted by Iverson [2015]. Alternatively, full-scale nu-

merical simulations, as employed in this work, may be a productive means for exploring

the deposition and runout behaviors of these complicated debris flows. The numerical

modeling of pure viscoplastic muddy flows presented here is a first step toward this goal.

It provides a basis for the multi-phase modeling of debris flows, where the fluid phase is

modeled by simulation techniques, such as computational fluid dynamics (CFD) and the

lattice-Boltzmann method (LBM), while the granular phase is captured by the discrete

element method (DEM). Recent progress has been made in applying the LBM-DEM sys-

tem for modeling debris flows, where the muddy fluid phase is modeled by a Bingham

fluid [Leonardi et al., 2015, 2016]. A CFD–DEM framework for the modeling of debris
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flows has been discussed in Jing et al. [2016], to which the knowledge gained in the current

study using CFD can be readily applied.

6. Conclusions

In this study, small-scale laboratory flume experiments and three-dimensional simula-

tions are carried out to study the depositional mechanism of clay–water mixtures, which

is relevant to mudflows or other muddy-type geophysical flows in nature. The effects of

rheological parameters, slope angle, and volume are investigated, with a major focus on

the different roles played by the two main rheological parameters, namely, viscosity and

yield stress. It has been found that the increase of both parameters tends to hinder the

runout distance, while the yield stress dominates the processes of runout and deposition.

The deposition of slurry-like materials is rapid due to its relatively low viscosity, thus

exhibiting an elongated shape, where longitudinal spreading is more significant than its

lateral counterpart. The deposit typically exhibits sharp edges, and a substantial amount

of material remains in the source channel due to the effect of high yield stress. Different

combinations of yield stress and viscosity give rise to different deposit morphology, such

as hill-like and semi-circular shapes.

To upscale the laboratory findings, numerical simulations are first validated against

flume tests, and then carried out across a wide range of length scales. A linear corre-

lation is found between runout distance and source volume, using data collected from

documented laboratory experiments and field investigations. To achieve relevant results

at different length scales in numerical simulations, a dimensional analysis is performed

to establish appropriate scaling relations for viscosity and yield stress. The relations are

verified by numerical results that exhibit an excellent similarity from lab-scale to field-
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scale. Based on the simulations, a general scaling function is proposed to incorporate flow

properties in the well-known correlation of runout distance and source volume. Although

the specific numbers reported in our general law depends on the specific configuration of

our experiments, the basic form that correlates runout and volume, with flow properties

considered, should apply to other debris flow-related problems in future investigations.

Appendix A: Dimensional analysis of viscoplastic debris flow

Here we first present a dimensional analysis following the Buckingham π-theorem, which

yields the dimensionless form of yield stress and viscosity in a viscoplastic flow, and

then show alternatively the dimensionless governing equations where these dimensionless

parameters appear.

For a viscoplastic mudflow, basic physical properties include its density ρ, viscosity µ,

and yield strength τy. Fluid compressibility is neglected. Pore pressure, permeability,

gain properties, and stress induced by the particulate phase are considered as irrelevant

since pore-scale mechanisms do not dominate in the propagation of mudflows. However,

we note that pore pressure can be a key factor in other debris flows with notable particle

interactions [Iverson, 2015]. Together with length L, height H, gravitational acceleration

g, slope angle θ, time t, and fluid stress σ, one can write the average velocity u as a

function of these listed variables,

u = f1(g, L,H, t, θ, ρ, σ, µ, τy), (A1)

where f1 is an unknown function. Excluding the dimensionless variable θ, a generic form

can be postulated as

u = κgaLbHcρdσeµfτ gy , (A2)
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where superscripts a, b, c, d, e, f and g are unknown and κ is a dimensionless proportion-

ality factor. Recasting the dimensions of all above variables into combinations of mass

[M ], length [L], and time [T ], we have

[L]

[T ]
=

(
[L]

[T ]2

)a

[L]b[L]c[T ]d
(

[M ]

[L]3

)e(
[M ]

[L][T ]2

)f(
[M ]

[L][T ]

)g(
[M ]

[L][T ]2

)h

(A3)

Eliminating a, b, e based on the dimensional harmony of [M ], [L] and [T ], we regroup

equation (A2) as

u =
√
gL

(
h

L

)c(
t√
L/g

)d(
σ

ρgL

)f(
µ

ρ
√
gL3

)g(
τy
ρgL

)h

(A4)

Note that in gravity-driven mudflows, it is appropriate to scale stress-related terms by

H rather than L. Dividing equation (A4) by
√
gL and reintroducing θ, we have

u√
gL

= f2

(h
L
,

t√
L/g

,
σ

ρgH
,

µ

ρ
√
gH3

,
τy
ρgH

, θ
)
, (A5)

where f2 is an unknown function for the dimensionless variables. The scaling relations for

the two key fluid properties are defined as

M =
µ

ρ
√
gH3

, T =
τy
ρgH

, (A6)

where M and T are dimensionless viscosity and yield stress, respectively. If we omit the

variation of fluid density at different scales and consider g as constant, the scaling of

viscosity and yield stress can be simplified to

µ1

µ2

=
(H1

H2

) 3
2
,
τy1
τy2

=
H1

H2

, (A7)

where subscripts 1 and 2 represent two arbitrary length scales.

Alternatively, the dimensionless governing equations for a Bingham fluid flow can be

derived from
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∂

∂t

(
ρu
)

+∇ ·
(
ρuu

)
= −∇p+∇ ·

(τy
γ̇

+ µ
)
D + ρg (A8a)

∇ · u = 0, (A8b)

with D = 0 if τ < τy, to

∂u∗

∂t∗
+∇∗ ·

(
u∗u∗

)
= −∇∗p∗ +∇∗ ·

( τy
ρgH

1

γ̇∗
+

µ

ρH
√
gH

)
D∗ + g/g (A9a)

∇∗ · u∗ = 0, (A9b)

with D∗ = 0 if τ ∗ < τy/ρgH, by applying the following scalings:

u∗ =
u√
gH

, t∗ =
t√
H/g

, p∗ =
p

ρgH
,D∗ =

D√
g/H

, γ̇∗ =
γ̇√
g/H

, τ ∗ =
τ

ρgH
,∇∗ =

∇
1/H

(A10)

Note that in the stress term, τy/ρgH and µ/ρH
√
gH are exactly the dimensionless

parameters, T and M , obtained from the previous dimensional analysis. In fact, such a

consistency is due to the choices of velocity scale
√
gH and length scale H. Note also

that the Bingham number, Bi, does not appear in the current dimensionless governing

equations, which is in contrast to the case for creeping flows where a different velocity

scale, ρgH2/µ, is generally used (e.g., Liu et al. [2016]). Nevertheless, applying the velocity

scale U =
√
gH we have

Re =
ρHU

µ
=
ρ

µ

√
gH3, Bi =

τyH

µU
=
τy
µ

√
H

g
, (A11)

leading to Re = 1/M and Bi = T/M , respectively.
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Table 1. Rheological parameters of slurries.

Bingham Herschel–Bulkley

Slurry Cv (%) ρ (kg/m3) τy (Pa) µB (Pa · s) τc (Pa) K (Pa · sn) n

1 17 1298 12.32 0.0065 9.71 0.17 0.59
2 18 1324 18.80 0.0081 12.94 1.14 0.36
3 19 1332 23.95 0.011 15.18 2.15 0.31
4 20 1354 30.36 0.012 17.56 3.66 0.27
5 21.1 1368 39.09 0.017 21.26 5.68 0.25
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Table 2. Deposit runout length (Lr) and maximum width (Wm) for each experiment

Series Cv(%) θ(◦) V (L) Lr(m) Wm(m)

Reference cases 18 14 3.06 0.95 0.39
19 14 3.06 0.67 0.35
20 14 3.09 0.55 0.33

21.1 14 3.00 0.27 0.32
Different volumes 19 14 2.00 0.43 0.29

19 14 4.00 0.91 0.42
20 14 2.17 0.33 0.29
20 14 3.07 0.57 0.33

21.1 14 2.17 0.13 0.26
21.1 14 3.72 0.42 0.34
21.1 14 3.99 0.45 0.35
21.1 14 4.34 0.54 0.40

Different slope angles 19 16 2.98 0.78 0.35
20 16 3.01 0.60 0.34

21.1 16 3.00 0.50 0.34
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Figure 1. Mudflow deposits. (a) Lahar (dark deposit on snow) on Mount St. Helens after the

March 19, 1982, eruption (Photograph by Tom Casadevall, U.S. Geological Survey). (b) Semi-

circular deposit of a Carpobol solution (Photography by Environmental Hydraulics Laboratory,

EPFL) [Cochard and Ancey , 2009]. (c) Hill-shape deposit of a kaolin slurry [Martinez , 2009]. (d)

Elongated deposit of a mixture of water and fine particles (Photograph by Dingchen Zhang, The

University of Hong Kong). (e) Elongated deposit of a mixture of water, fine and coarse particles

(Photograph by Dingchen Zhang, The University of Hong Kong).
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Figure 2. Key numerical schemes. (a) Bi-viscosity regularization of Bingham model. (b)

Volume of fluid (VOF) method.
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Figure 3. Flume setup. (a) Initial configuration in side- and plan-views. (b) Flow measure-

ments by cameras looking through the sidewall of the flume and downward over the deposition

plain. Local coordinates down channel: x and y are, respectively, the longitudinal and vertical

directions along the inclined channel. (c) Final configuration, runout distance and deposit profile.

Local coordinates at runout: x, y, and z are, respectively, the longitudinal, vertical, and lateral

directions on the deposition plain, with an origin at the toe of the slope, where the mudflow exits

the channel. (d) Side-view photo of the flume.
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Figure 4. Rheology measurements. (a) Flow curves expressed as shear rate and applied shear

stress for different volume concentrations. Symbols are measured data, solid lines are fitted by

the Herschel–Bulkley model, while dashed lines are fitted by the Bingham model (see Table 1).

(b) Yield stress as a function of concentration. (c) Viscosity as a function of concentration.

c©2018 American Geophysical Union. All Rights Reserved.



Figure 5. Validation of side-view flow profiles on the channel (V = 3 L, θ = 14◦, Cv = 20%).

The coordinate system is shown in Figure 3b. (a–c) Experiment frames and the detection of flow-

depth profiles, for t ≈ 0.2, 0.4, 0.6 s, respectively. (d–e) Comparison of flow-depth profiles between

experiments and simulations, using Bingham and Herschel–Bulkley models, for t ≈ 0.2, 0.4, 0.6 s,

respectively.
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Figure 6. Validation of front propagation and final deposition (V = 3 L, θ = 14◦, Cv = 20%).

The coordinate systems of the upper and lower panels are shown in Figure 3b and Figure 3c,

respectively. (a) Front position as a function of time. (b) Frontal velocity at different travel

distances. (c) Contour plot of final deposits. Contour labels are depth in mm. Results from

the Herschel–Bulkley model are omitted in (c) for clarity. (d) Deposit depth at z = 0.1 m. (e)

Deposit depth at centerline (z = 0).
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Figure 7. Experimental results on the channel (V = 3 L, θ = 14◦, Cv = 18%, 19%, 20%, 21.1%).

(a) Front position as a function of time. (b) Frontal velocity at different travel distance.
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Figure 8. Experimental results at the deposition region. (a) Deposit shapes for different

concentrations. (b) Depth profiles at the centerline for different concentrations.
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Figure 9. Deposit morphology of the four experiments (Cv = 18%, 19%, 20%, 21.1%, respec-

tively, from top to bottom). (a–d) Experimental photos with contours of measured deposit depth.

The different shading of pixels is due to the reflection of light when photos are taken. Contour

labels are deposit depth in mm. (e–h) Contour plots from simulations. (i–l) Three-dimensional

mesh plots from simulations. The axis in the y-direction is exaggerated by 5 times.
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Figure 10. Parameter space for simulations (inside the rectangle) and the correlation between

µB and τy for slurries. SLURRY1 and SLURRY2 represent the kaolin–water slurries tested in

Coussot [1997] and Martinez [2009], respectively. SLURRY3 is the slurry made from debris flow

materials [Kaitna et al., 2007]. The slurry used in this work is also presented (the filled circles).
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Figure 11. Simulation results with different combinations of µB and τy. (a,b) Separate effects

of µB and τy on Lr. (c,d) Separate effects of µB and τy on umax. (e) Correlation between umax

and Lr. (f) Lr as a function of the combination τyµ
0.35
B .
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Figure 12. Predicted deposit morphology for different combinations of µB and τy. The vertical

axis of each contour plot is exaggerated by 5 times.
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Figure 13. Effects of V and θ on Lr in both experiments and simulations. (a) Varying V with

θ = 14◦. (b) Varying θ with V = 3 L.
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Figure 14. Runout scaling. (a) Comparison with literature data. Legend items LAB1 and

LAB2 represent laboratory data from Chan [2001] and Martinez [2009], respectively; FLD1

and FLD2 represent field data reported in Legros [2002] and Sham [2015], respectively. LAB

refers to all laboratory experiments done in our current study, while SIM denotes our numerical

simulations. (b) Correlation between Lr and V for different combinations of M and T . The two

numbers in each legend item are the values of M and T , respectively. Inset: L1
r as a function of

T , where L1
r is the fitted value of Lr at V 1/3 = 1 m.
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Figure 15. Verification of the scaling rules (equation (7)) for N = 10, 100, 1000, 10000, 100000.

The two numbers in each legend item are the values of M and T , respectively. (a) Runout

distance from simulations at different scales, Lsim
r , compared with the theoretical values, NLlab

r .

(b) The maximum deposit width from simulations at different scales, W sim
m , compared with the

theoretical values, NW lab
m .
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