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Liver disease, involving a wide range of liver pathologies from fatty liver, hepatitis, and fibrosis to cirrhosis and hepatocellular
carcinoma, is a serious health problem worldwide. In recent years, many natural foods and herbs with abundant phytochemicals
have been proposed as health supplementation for patients with hepatic disorders. As an important category of phytochemicals,
natural polyphenols have attracted increasing attention as potential agents for the prevention and treatment of liver diseases.
The striking capacities in remitting oxidative stress, lipid metabolism, insulin resistance, and inflammation put polyphenols in
the spotlight for the therapies of liver diseases. It has been reported that many polyphenols from a wide range of foods and
herbs exert therapeutic effects on liver injuries via complicated mechanisms. Therefore, it is necessary to have a systematical
review to sort out current researches to help better understand the potentials of polyphenols in liver diseases. In this review, we
aim to summarize and update the existing evidence of natural polyphenols in the treatment of various liver diseases by in vitro,
in vivo, and clinical studies, while special attention is paid to the action mechanisms.

1. Introduction

Liver diseases, containing a wide range of hepatic pathologies
from steatosis, hepatitis, and cirrhosis to hepatocellular
carcinoma (HCC), are leading causes of morbidity and
mortality worldwide and have caused huge socioeconomic
burdens [1]. The main etiologies of liver diseases are alcohol
abuse, hepatitis virus infections, and metabolic syndrome [1].
The most important pathological processes of liver diseases
are oxidative stress, lipid peroxidation, inflammation, and
immune response disruption [2]. In response to hepatic
injury, a cascade of molecular and cellular reactions would
be generated with the aims of restraining damage, repairing
damaged cells and tissues, defensing against further infec-
tion, and regeneration. Inflammation in the hepatic injury,
the primary response, may initiate myofibroblast differentia-
tion and activation that produce fibrous tissue and induce
parenchymal cell proliferation, resulting in fibrosis and
ultimately cirrhosis, the platform on which HCC and deadly
hepatic failure develop [3]. As a matter of fact, most of the

unresolved challenges in hepatology could be attributed to
an imbalance of inflammatory processes [4, 5]. On one hand,
chronic hepatic inflammation promotes the progression of
liver diseases, for example, from fatty liver to steatohepatitis.
On the other hand, insufficient antimicrobial responses,
inadequate tumor clearance, and/or suppression of antitu-
mor immunity in the liver of patients with end-stage cirrho-
sis would lead to life-threatening bacterial infections and
HCC development [4]. More importantly, oxidative stress,
lipid peroxidation, and immune disorder have a close
relationship with hepatic inflammation, which leads to an
extremely complex network involved in the pathogenesis of
liver diseases. The multiple pathways involved in the patho-
genesis have provided extensive therapeutic targets for
potential treatments [6].

Natural polyphenols are secondary metabolites of
plants, which become noticeable as potential agents for
prevention and treatment of several diseases, such as
cancer, cardiovascular diseases, diabetes mellitus, aging,
and neurodegenerative diseases [7]. They usually have

Hindawi
Oxidative Medicine and Cellular Longevity
Volume 2018, Article ID 8394818, 25 pages
https://doi.org/10.1155/2018/8394818

http://orcid.org/0000-0002-9338-2495
http://orcid.org/0000-0003-1410-329X
http://orcid.org/0000-0003-3989-8543
http://orcid.org/0000-0002-0241-670X
https://doi.org/10.1155/2018/8394818


subtle effects on multiple targets that eventually result in
significant health benefits. Strikingly, polyphenols have
been found to possess a variety of pharmacological effects
on oxidative stress, lipid metabolism, insulin resistance,
and inflammation, which are the most important patho-
logical processes in the etiology of liver diseases [7, 8].
This puts polyphenols under spotlight for the therapy of
liver diseases. In this review, we summarize the distribu-
tion of polyphenols in natural products to offer guidance
for drug/health product development and dietary supple-
mentation and focus on updating the existing animal and
clinical trial results for the use of polyphenols in the
treatment of liver diseases in different stages.

2. Polyphenols in Natural Products

Natural polyphenols is a large group of plant secondary
metabolites ranging from small molecules to highly polymer-
ized compounds, having at least one aromatic ring with one
or more hydroxyl functional groups attached [9]. Based on
chemical structures, natural polyphenols can be chemically
divided into several classes, including flavonoids, phenolic
acids, lignans, stilbenes, and other polyphenols [9, 10].
Among them, flavonoids and phenolic acids account for
about 60% and 30% of all natural polyphenols, respectively.
Natural polyphenols are ubiquitously present in nature and
particularly have been found in high quantities in many
foods and plants, such as vegetables, fruits, cereals, spices,
mushrooms, tea, microalgae, medical plants, wild fruits,
and flowers [7]. The representative members and major
dietary sources of each class are briefly summarized in
Figure 1. A variety of factors, including but not limited to
environmental condition, genotype, cultivar, harvest time,
storage, and processing, could affect the levels of polyphenols
in foods and plants, while species is still considered to be the
primary factor resulting in different quantities in different
products. By comparing the contents of polyphenols in a
great deal of natural product through our studies and litera-
ture retrieval, several representative species with relatively
high quantities of polyphenols in different kinds of natural
products are listed in Table 1. In general, spices, medicinal
plants, and fruit peels contain comparatively abundant poly-
phenols, which deserve special attention for further extrac-
tion, separation, and identification of phenolic compounds.

3. The Potential and Mechanism of Action of
Polyphenols in the Treatment of
Liver Diseases

3.1. Liver Injury Induced by Toxins and Drugs. Liver is a cen-
tral organ responsible for the metabolism of drugs and toxic
chemicals, and thus it is the primary target organ for various
exogenous toxins, such as alcohol, organic solvents, heavy
metals, and drugs [1]. As the main pathogenic mechanisms
responsible for those toxic damages are oxidative stress,
inflammation, dysfunction of cytochrome P450, and mito-
chondrial dysfunction [22], the application of flavonoids in
attenuating liver injury induced by these toxins has been
extensively studied. A wide spectrum of flavonoids showed

promising therapeutic effects on liver injury induced by
various toxins using animal models. The underlying mecha-
nisms mainly involve enhancing antioxidative defense
enzymes via mediating nuclear factor erythroid 2-related
factor 2 (Nrf2)/cytochrome P450 2E1 (CYP2E1) expression,
alleviating inflammation by inactivation of mitogen-
activated protein kinase (MAPK)/nuclear factor kappaB
(NF-κB) signaling pathways and reducing apoptosis through
regulating B-cell lymphoma 2 (Bcl-2)/protein kinase B
(AKT)/caspase expression.

Carbon tetrachloride- (CCl4-) induced hepatotoxicity has
been widely investigated in hepatology. Covalent binding of
the CCl3

∗ radical to cell components inhibits lipoprotein
secretion and thus initiates steatosis, whereas reaction with
oxygen to form CCl3-OO

∗, introduces lipid peroxidation
which in consequence results in apoptosis and cell death.
Quercetin, a natural flavonoid with many beneficial effects,
significantly protected liver from CCl4-induced injury via
antioxidative stress and anti-inflammation. The underlying
mechanism was ascribed to the inhibition of Toll-like recep-
tor 2 (TLR2) and Toll-like receptor 4 (TLR4) activations and
MAPK phosphorylation, leading to inactivation of NF-κB
and in turn reduced hepatic inflammatory cytokines [23].
Puerarin, a natural flavonoid that has been reported to have
various medicinal properties, also remarkably attenuated
CCl4-induced hepatotoxicity by reducing ROS production,
renewing the antioxidant enzyme system and regulating
expression of hepatic lipid biosynthesis and metabolism
genes. It could restore total antioxidant capacity and GSH
levels and significantly inhibit hyperlipidemia via regulating
the expression of phosphorylated Jun N-terminal kinases
(JNK), phosphorylated c-Jun protein, and cholesterol 7a-
hydroxylase (CYP7A1) in the liver of mice receiving CCl4
[24]. Additionally, a marine polyphenol, dieckol, was found
to be against CCl4-induced liver damage in mice via mediat-
ing apoptosis-regulating genes including downregulation of
Bax and upregulation of Bcl-xl protein expressions [25]. In
another study, isorhamnetin-3-O-galactoside, a flavonoid
glycoside isolated from Artemisia capillaris Thunberg,
showed protection on CCl4-induced hepatic injury through
decreasing the level of phosphorylated c-JNK, extracellular
signal-regulated kinase (ERK), and p38MAPK. It diminished
the increases of NF-κB and c-Jun nuclear translocation
whereas enhanced the nuclear level of Nrf2, indicating its role
in enhancing antioxidative defense system and reducing
inflammation [26]. The flavonoid fraction from Rosa laevi-
gata Michx fruit acted against CCl4-induced acute liver
injury in mice through downregulating the expression of
CYP2E1, inducible nitric oxide synthases (iNOS), NF-κB,
Bal, and Caspase-3, which was related to signaling pathways
of oxidative stress, inflammation, and apoptosis [27].

Drug-induced liver injury is an important clinical issue.
More than 900 drugs affect the liver directly or through
mediating an immune response. Acetaminophen (AAP) is a
classic example of a known intrinsic hepatotoxin at
supertherapeutic dose. Baicalin, a well-known flavonoid of
Scutellariae radix, can effectively relieve AAP-induced liver
injury mainly through downregulating the ERK signaling
pathway and its downstream effectors of inflammatory
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responses [28]. Polyphenol-enriched fraction from the leaves
of Microcos paniculata L. showed hepatoprotective effect
against AAP-induced liver damage via dual regulation of
reactive oxygen species (ROS)/MAPKs/apoptosis axis and
Nrf2-mediated antioxidant response [29]. A polyphenol
extract of Hibiscus sabdariffa L. could ameliorate AAP-
induced liver steatosis accompanied by a reduced hepatic
expression of apoptosis-inducing factor (AIF), Bax, Bid,
and p-JNK, suggesting it may exert hepatoprotective effect
through attenuating the mitochondrial dysfunction [30].

The protective effects of several polyphenols on other
toxins such as lipopolysaccharide (LPS) and thioacetamide
(TAA) have also been extensively demonstrated, majorly
via antioxidative stress and anti-inflammation. Here, we
selected several studies that showed the effects of compounds
with well-identified action mechanisms to discuss. Nobiletin,
an O-methylated flavone, which is found in rich in the peel of
citrus fruits, was able to protect the liver from LPS/D-galac-
tosamine-induced injury through activating the Nrf2 antiox-
idant pathway and subsequent inhibiting NF-κB-mediated
cytokine production [31]. Curcumin, a natural plant pheno-
lic food additive, was found to significantly attenuate LPS-
caused liver failure. It decreased serum ALT, AST, and ALP
levels, improved antioxidant enzyme levels, and inhibited
activation of the mitogen-activated protein kinases/c-Jun
NH2-terminal kinase (P38/JNK) cascade in the livers of rats

with LPS administration. Furthermore, it reduced serum
cytokines such as IL-6, IL-1β, and tumor necrosis factor-α
(TNF-α) and improved liver apoptosis via suppression of
phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)
signaling pathway and inhibition of cyclic AMP-responsive
element-binding protein (CREB)/caspase expression. In
addition, it regulated oxidative stress-associated signaling
pathway in LPS-treated mice, as indicated by downregulated
CYP2E1/Nrf2/ROS protein expression. Thus, curcumin may
serve as a promising candidate to inhibit inflammation and
apoptosis signaling for the treatment of endotoxemia-
induced liver failure [32]. Silymarin, a mixture of flavono-
lignans extracted from Silybum marianum Gaertneri showed
the ability to diminish hepatic lesions and inflammation
caused by bisphenol A in mice [33]. Resveratrol, a naturally
occurring polyphenol that possesses a variety of pharmaco-
logical activities, showed significant hepatoprotective effects
on TAA-induced liver injury. It inhibited inflammation and
oxidative stress by downregulating NF-κB and CYP2E1
expression and enhanced apoptosis of necrotic hepatocytes
through enhancing the activity of caspase-3 [34].

3.2. Alcoholic Liver Disease. Alcoholic liver disease (ALD) is
one of the most important causes of liver-related death.
Although the understanding about the progression and path-
ogenesis of ALD has been advanced, there are no universally
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Figure 1: The classification and major dietary source of natural polyphenols. The four dark blue rectangles represent four major categories of
polyphenols, while light blue rectangles are subcategories within the major classifications. The orange rectangles are representative
polyphenols for each subcategory, and gray rectangles are major dietary sources for the corresponding representative polyphenols.
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accepted therapies to treat this disease in human at present
[1]. The direct consequences of ethanol metabolism are
related to ROS production, mitochondrial injury, and hepatic
steatosis, which are the common features of acute and
chronic alcohol exposures [35]. Alcoholic fatty liver is a
reversible condition, but it can potentiate the development
of alcoholic hepatitis and cirrhosis by promoting free radical
generation. A great deal of polyphenols has been found to be
beneficial for alcoholic liver injury associating with hepatic
lipid metabolism regulation and antioxidative stress. Total
flavonoids from Litsea coreana showed therapeutic effects
on alcoholic fatty liver via suppression of hepatic adipose
differentiation-related protein (ADRP) [36]. The supplemen-
tation of a novel flavonoid, fisetin, in the diet at 10mg/kg/day

Table 1: The representative species with relatively high quantities of
polyphenols in foods and plants.

Names
Content of polyphenols

(mg GAE/g)
References

Vegetables

Chinese toon bud 23.27

[11]

Perilla leaf 14.37

Loosestrife 13.13

Soybean (green) 12.39

Pepper leaf 12.14

Fruits

Chinese date 5.86

[12]

Sweetsop 4.05

Guava 1.94

Pomegranate 1.47

Chinese wampee 1.16

Cereals

Black rice 9.47

[13]

Organic black rice 6.95

Purple rice 4.85

Buckwheat 4.48

Red rice 4.43

Spices

Clove 143.8

[14]

Cinnamon stick 119.0

Oregano 101.7

Cinnamon 63.4

Sage 53.2

Mushrooms

Thelephora ganbajun zang 44.84

[15]

Boletus edulis Bull 14.15

Volvariella volvacea Sing 13.91

Boletus regius Krombh 10.17

Suillus bovinus Kuntze 9.19

Tea

Fu’andabai 223.7

[16]

Shuyong number 1 221.6

Sichuanxiaoye 215.0

Shuyong number 2 215.0

Menghaidayi 215.0

Microalgae

Nostoc ellipsosporum
CCAP 1453/17

60.35

[17]

Chlorella protothecoides
number 7

19.03

Chlorella pyrenoidosa
number 3

17.24

Schizochytrium sp.
number 5

15.94

Chlorella pyrenoidosa
number 2

15.11

Table 1: Continued.

Names
Content of polyphenols

(mg GAE/g)
References

Medical plants

Salvia miltiorrhiza Bge 101.33

[18]

Sargentodoxa cuneata
Rehd et Wils

65.28

Prunus persica (Linn)
Batsch

55.23

Fraxinus rhynchophylla
Hance

52.31

Rhodiola sacra Fu 51.06

Picrorhiza scrophulariflora
Pennell

47.28

Scutellaria baicalensis
Ceorgi

46.31

Polygonum multiflorum
Thunb (stem)

45.24

Tussilago farfara L. 34.50

Polygonum multiflorum
Thunb (root)

31.87

Wild fruits

Eucalyptus robusta 54.8

[19]

Eurya nitida 35.0

Melaleuca leucadendron 25.6

Gordonia axillaris 24.6

Melastoma sanguineum 23.3

Edible and wild flowers

Rosa hybrida 35.84

[20]

Limonium sinuatum 34.17

Pelargonium hortorum 25.68

Jatropha integerrima 17.22

Osmanthus fragrans 16.00

Fruit wastes

Grape seed 22.95

[21]

Mango peel 22.95

Sweetsop peel 17.77

Longan seed 13.58

Chinese olive peel 13.16
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also showed remarkable beneficial effect on alcohol-induced
liver injury. Hepatic NADPH oxidase 4 levels along with
plasma hydrogen peroxide and hepatic superoxide and
4-hydroxynonenal levels increased by alcohol consumption
were reduced by fisetin supplementation. Fisetin attenuated
liver steatosis through enhancing plasma adiponectin levels
and hepatic protein expressions of p-AMPK, acyl-CoA
oxidase 1 (ACOX1), cytochrome P450 4A (CYP4A), and
microsomal triglyceride transfer protein (MTTP) [37]. In a
binge drinking mouse model, a polymethoxy flavonoid-rich
Citrus aurantium extract alleviated alcohol-induced liver
injury through activating lipid metabolism-related signals
and regulating AMPK and Nrf2-related pathway signaling
[38]. In mice model with chronic plus binge alcohol feeding,
luteolin attenuated the liver injury via downregulation of
lipogenic genes including sterol regulatory element-binding
protein 1c (SREBP-1c), fatty acid synthase (FASN), acetyl-
CoA carboxylase (ACC), and stearoyl-CoA desaturase
(SCD1), suggesting its significant effect on alleviating liver
steatosis [39]. In another study, oligomeric proanthocyani-
dins, a set of bioflavonoid complexes having strong free
radical scavenging ability, protected liver from alcohol-
induced injury and steatosis through decreasing the
expressions of lipid synthesis genes and inflammation genes
including SREBP-1c, SREBP2, interleukin 1 beta (IL-1β),
IL-6, and TNF-α, indicating that AMPK activation might
be involved in the underlying mechanism [40].

During the metabolic processes of alcohol in the liver via
dehydrogenase system and microsomal ethanol oxidizing
system (MEOS), NADH or NADP+ are generated in bulk,
with the consequence of increased ROS, eventually resulting
in cellular and tissue injury [1]. With better understanding
of the role of oxidative stress in the initiation and advance-
ment of ALD, therapies targeting on enhancing antioxidant
defense have been considered promising. In an in vitro study,
it was found that Ecklonia cava polyphenol served as a prom-
ising candidate for inhibiting alcohol-induced hepatic dam-
age via regulating alcohol metabolic enzymes including
CYP2E1 and ADH in a cyclic AMP-dependent manner
[41]. Two ellagitannins, geraniin and amariin, which belong
to a type of polyphenol formed mainly from the oxidative
linkage of galloyl groups in 1,2,3,4,6-pentagalloyl glucose,
were isolated from Phyllanthus amarus. It was found that
both of them could protect mouse liver from alcoholic
cytotoxicity through restoring antioxidant enzymes, inhi-
biting oxidation of lipid and protein, ceasing formation
of 8-hydroxy-2-deoxyguanosine, and modulating Bcl-2-
associated X (Bax)/Bcl2 ratio against apoptosis [42].

Regarding action mechanisms of polyphenols in ALD, in
addition to regulating hepatic steatosis and antioxidative
stress, several other mechanisms have also been proposed.
For example, it was demonstrated that polyphenols could
suppress the expression of genes related to cell stress and
upregulate genes involved in bile acid synthesis, unsaturated
fatty acid elongation, and tetrahydrofolate synthesis [43].
Liver iron overload has long been considered as pathogenic
factors of ALD. Iron is involved in the Fenton pathway, and
it accumulates during chronic hepatic inflammation and cat-
alyzes hydroxyl radical-mediated oxidative injury [44]. The

deposition of iron in the liver may increase the risk of death
in patients with ALD [44]. Therefore, removal of iron repre-
sents an important therapeutic strategy for ALD treatment.
In a study, epigallocatechin-3-gallate (EGCG) has been
demonstrated to ameliorate alcoholic liver injuries associated
with its iron-chelating property. It affected hepatic iron
uptake and inhibited iron absorption in the small intestinal
via upregulating hepcidin mRNA levels and transferrin as
well as hepatic transferrin receptor protein levels, thus reduc-
ing serum and hepatic iron levels [45].

3.3. NAFLD. Nonalcoholic fatty liver disease (NAFLD),
defined as genetic-environmental-metabolic stress-related
disease with a spectrum of liver disorders, affects 10% to
24% of the population worldwide, and the prevalence has
even been up to 75% in obese people [46]. Currently, no
evidence-based pharmacological therapy is available for
NAFLD. A multitude of pathways implicated in the etiology
of NAFLD makes the treatment challenging. Ideally, the
treatment should address all these pathways [47]. Free fatty
acids, oxidative stress, and inflammation that cause insulin
resistance, hepatocyte fat accumulation, and cellular injury
are the major processes involved in the progression of
NAFLD [47]. Reasonably, polyphenols with remarkable
ability in metabolism regulation, antioxidant, and anti-
inflammation have been considered as promising therapies
of NAFLD. The mechanisms underlying beneficial effects
of many polyphenols on NAFLD have been extensively
studied in recent years. In addition to regulation of classi-
cal intracellular signaling transduction, some of them were
demonstrated to exert therapeutic effects via emerging
mechanisms such as mediating microRNAs and gut
microbiota regulation.

3.3.1. Intracellular Signaling Transduction. Signaling
pathways are associated with insulin resistance, oxidative
stress, and inflammation include NF-κB, AMPK, Janus
kinase/signal transducers and activators of transcription
(JAK/STAT), peroxisome proliferator-activated receptors
(PPARs), SREBP-1c, phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt), and TLR [5]. Blocking the transmission
of above pathways within the liver cells would be effective for
the prevention and treatment of NAFLD. Polyphenols may
prevent hepatocyte injury associated with NAFLD through
several signaling pathways: (1) suppressing activation of NF-
κB pathway to inhibit inflammation; (2) increasing β-fatty
acid oxidation by upregulating PPARα; (3) inhibiting lipogen-
esis viadownregulationof SREBP-1cbyactivatingAMPK; and
(4) enhancing antioxidant defense through Nrf2 pathway, as
shown in Figure 2.

NF-κB pathway regulates a variety of cytokines involved
in inflammation. As a matter of fact, the anti-inflammatory
effects of polyphenols have been generally subscribed to the
inhibition of canonical NF-κB pathway. The canonical
NF-κB pathway is activated by proinflammatory signals,
causing the degradation of IκB kinase (IKK) complex to
release NF-κB into the nucleus, with the consequence of
inflammatory response [46]. It was reported that kaempferol
inhibited the phosphorylation of insulin receptor substrate 1
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(IRS-1), IKKα, and IKKβ, accompanied with reduction of
NF-κB in nucleus and cytoplasm and further reduced TNF-
α and IL-6 levels in mice with insulin resistance and type
2 diabetes mellitus [48]. Other polyphenols such as curcu-
min [49], morin [50], oligonol [51], and quercetin [52]
also have been indicated to inhibit NF-κB pathway in
NAFLD. MAPK, a class of serine/threonine protein kinase
widely expressed in mammalian cells including extracellu-
lar signal-regulated kinases (ERKs), JNK, and p38MAPK,
is also closely associated with inflammation. Regulating
MAPK, in particular with JNK and p38MAPK, has been
regarded as the potential action mechanism of some poly-
phenols for the treatment of NAFLD. For example, cocoa
flavonoids and apple polyphenols showed beneficial effects
on redox balance and insulin resistance by targeting MAPKs
in the context of NAFLD [53, 54].

PPAR, a group of nuclear receptors that play a role in
lipid and glucose metabolism, is one of the promising targets
in terms of regulating metabolic process [46]. Among the
three types of PPARs that have been identified, PPARα and
PPARγ have been highlighted for their involvement in the
pathogenesis of NAFLD [47]. PPARα is highly expressed
in the liver to regulate free fatty acid (FFA) transport
and stimulates enzymes participated in β-oxidation.

Furthermore, it attenuates inflammation by inhibition of
NF-κB and C-reactive protein expression [46]. Therefore,
stimulation of PPARα is expected to relieve steatosis and
hepatic inflammation. A great deal of study has demon-
strated that many polyphenols can stimulate PPARα. Some
of them act as ligands and agonists of PPARα [55, 56],
while others, such as kaempferol [57], naringenin [58],
tiliroside [59], and glabridin [60], can upregulate PPARα
gene and/or protein expression. Flavonoid-enriched extract
from Hippophae rhamnoides seed decreases high-fat diet-
(HFD-) induced obesity, hypertriglyceridemia, and hepatic
triglyceride accumulation via regulation of PPARα and
PPARγ gene expression and suppression of adipose tissue
inflammation [61]. Compared with other drugs, such as
glitazones, polyphenols have an advantage of partial acti-
vation of PPARs. This significantly reduces the risk of seri-
ous side effects by the use of full agonists, suggesting the
great potency of polyphenols for the prevention and treat-
ment of NAFLD. Another identified target in terms of
metabolic regulation for the treatment of NAFLD is
SREBP-1c, a transcription factor that regulates de novo
lipogenesis through mediation of lipogenic enzymes and
genes [46]. The increased expression of hepatic SREBP-
1c promotes the progression of steatosis. A variety of
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polyphenols, such as genistein [62], luteolin [63], rutin
[64], and prunetin [65], have been demonstrated to inhibit
SREBP-1c, mainly via directly downregulation of SREBP-
1c protein and gene expression, activation of AMPK, or
inhibition of liver X receptor α (LXRα) that controls
SREBP-1c transcription. In addition, as hyperinsulinemia
stimulates SREBP-1c transcription, polyphenols might also
decrease SREBP-1c by improving insulin sensitivity and
controlling insulin levels. Furthermore, it has been pro-
posed that polyphenols could inhibit SREBP-1c through
inhibition of ER stress [66].

AMPK, a heterologous trimeric protein kinase that is
formed by α, β, and γ subunits, is a vital regulator of cellular
energy homeostasis [46]. It controls fatty acid metabolism
through mediating the fatty acid biosynthetic pathway. In
the pathogenesis of NAFLD, AMPK is closely related with
insulin resistance and hepatic lipid accumulation [47].
AMPK activation inhibits the expression of ACC and FAS
by downregulating SREBP-1c, thus reducing synthesis of
fatty acids, cholesterol, and triglycerides and promoting fatty
acid uptake and β-oxidation [46]. There is a great deal of
polyphenols that serves as AMPK activators to protect
hepatocytes against damage, such as resveratrol [67] and
curcumin [49]. Hawthorn leaf flavonoids alleviated NAFLD
by enhancing the adiponectin/AMPK pathway to regulate
SREBP-1c, PPARα, and related downstream targets [68].
Liquiritigenin protected hepatocytes against oxidative
hepatic injury and mitochondrial dysfunction via AMPK
activation by liver kinase B1 (LKB1) pathway as well as
Farnesoid X receptor (FXR) induction [69].

3.3.2. Other Emerging Mechanisms. MicroRNAs (miRNAs)
are small noncoding RNAs that regulate gene expression at
the posttranscriptional level. The role of miRNAs in NAFLD
has been revealed and emphasized in recent years. A study
measured circulating miRNAs in 84 nonalcoholic steatohe-
patitis (NASH) patients found that miR-122, miR-192,
miR-19a, miR-19b, miR-125b, and miR-375 were signifi-
cantly upregulated. Furthermore, the expression of miR-
122, miR-192, and miR-375 correlated with disease severity.
Increasing evidences claim that these circulating miRNAs
not only serve as biomarkers for diagnosis but also play
important roles in the intercellular communication and
disease progression, which makes them attractive therapeutic
targets. Exogenous factors such as polyphenols are suspected
to affect miRNA concentrations to treat NAFLD. For
example, miR-33 and miR-122, serving as major regulators
of lipid metabolism in liver, were decreased in HFD-
induced obese rats. It has been demonstrated that reduction
of miR-122 induces IR, which can be reversed by licorice
flavonoid [70]. Long-term supplementation with a low dose
of proanthocyanidins could normalize liver miR-33a and
miR-122 levels [71]. Plant-derived polyphenols were
demonstrated to mediate the expression of miRNA paralogs
miR-103/107 and miR-122 to attenuate NAFLD in hyperlip-
idemic mice [72]. Lychee pulp phenolics, mainly including
quercetin 3-O-rutinoside-7-O-alpha-L-rhamnosidase (quer-
cetin 3-rut-7-rha), rutin, and (−)-epicatechin, ameliorated
liver lipid accumulation by reducing miR-33, which directly

modulated adenosine triphosphate- (ATP-) binding cassette
transporters ABCA1 and carnitine palmitoyltransferase 1
(CPT1) as well as miR-122 expression and indirectly
regulated FAS, in mice with HFD [73].

Gut microbiota has been intensively researched due to its
vital role in maintaining human health [74]. It is believed to
be involved in obesity, metabolic syndrome, and the develop-
ment of NAFLD [74]. A study has indicated that quercetin
possessed ability of modulating intestinal microbiota imbal-
ance and related gut-liver axis activation. Dysbiosis induced
by HFD was accompanied by endotoxemia, intestinal barrier
dysfunction, and gut-liver axis alteration, which could
regulate TLR-4-NF-κB signaling pathway activation, result-
ing in inflammasome initiation response and reticulum stress
pathway induction [52]. Quercetin could revert gut microbi-
ota imbalance and TLR-4 pathway induction, resulting in the
blockage of deregulation of lipid metabolism genes. The
striking benefits of polyphenols on NAFLD in mediating
gut microbiota should be explored more in future studies,
which might offer a new direction in understanding their
action mechanisms.

The immune system is extensively implicated in the
pathogenesis of NAFLD. Autophagy was recently identified
as a critical protective mechanism during NAFLD develop-
ment [75]. Lipophagy, defective autophagy of lipid droplets
in hepatocytes, has recently been identified as a possible
pathophysiological mechanism of NAFLD. Bergamot poly-
phenol fraction treatment (50mg/kg/day supplemented with
drinking water for 3 months) potently counteracted the
increase of serum triglycerides, which was accompanied with
increased levels of LC3 and Beclin 1 and reduced SQSTM1/
p62, suggesting autophagy stimulation [76]. The develop-
ment of a preventive treatment targeting circulating mono-
cytes and hepatic macrophages as well as other immune
cells such as CD4+ cells has been getting increased attention.
Curcumin, possessing remarkable ability to prevent HFD-
induced hepatic injury and metabolic derangements, was
found to regulate intrahepatic CD4+ cell accumulation and
inhibit inflammatory and oxidative damage caused by
linoleic acid and leptin on mouse liver macrophages [77].
Activated macrophages/Kupffer cells promote the progres-
sion of hepatic fibrogenesis and aggravate metabolic
disorders such as insulin resistance. Dietary quercetin sup-
plementation to obesity mice decreased levels of TNF-α and
IL-6,while it increased the level of anti-inflammatory cytokine
IL-10 in the livers, accompanied by macrophage phenotype
switching, as evidenced by upregulated anti-inflammatory
M2 macrophage marker genes arginase 1 and Mannose
receptor C (Mrc1), and downregulated proinflammatory M1
macrophage marker genes TNF-α and nitric oxide synthase 2
(NOS2). The beneficial effect of quercetin on NAFLD might
be associated with promoting hepatic macrophage polariza-
tion in favor of the M2 phenotype via Nrf2-mediated heme
oxygenase-1 (HO-1) induction [78].

Furthermore, accumulating evidence revealed the critical
role of endoplasmic reticulum (ER) in NAFLD [47]. ER is the
site of triglyceride synthesis and nascent lipid droplet forma-
tion with function in synthesizing, folding, and transporting
proteins [47]. The accumulation of misfolding proteins in
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the ER lumen causes unfolded protein response (UPR) via
the activation of the ER stress sensor proteins including
PERK, inositol-requiring enzyme 1 (IRE1), and activating
transcription factor 6 (ATF6). Sustained unfolded protein
response (UPR) induces ER stress and metabolic disruptions,
facilitating inflammation and insulin resistance in adipo-
cytes. Lipolysis in response to ER stress is triggered via
cAMP/protein kinase A (PKA) and ERK1/2 signaling. Cur-
cumin treatment inhibited adipose tissue ER stress by
dephosphorylation of inositol-requiring enzyme 1α and
eukaryotic initiation factor 2α and reduced cAMP accumula-
tion by preserving phosphodiesterase 3B induction, with the
consequence of blockage of PKA/hormone-sensitive lipase
lipolysis signaling, and thereby decreased glycerol and FFA
release from adipose tissue [79]. Glycycoumarin, a represen-
tative of coumarin compounds isolated from licorice, showed
inhibition of hepatocyte lipoapoptosis via suppressing ER
stress-mediated JNK activation [80]. Furthermore,
researches have reported that polyphenol extraction of grape
[81] and its major bioactive compound resveratrol showed
benefit for NAFLD partly through attenuating ER stress.

In addition, compelling evidence in recent years has dem-
onstrated a significant link between NAFLD and cardiovas-
cular disease (CVD) including coronary heart disease and
stroke [82]. The likely of mechanisms underlying this associ-
ation has been proposed involving genetic predisposition,
insulin resistance, oxidative stress, chronic inflammation,
atherogenic dyslipidemia, decreased adiponectin, and altered
generation of pro- and anticoagulant factors [83]. In particu-
lar, among mechanisms linking CVD risk with hepatic stea-
tosis, the most prominent factors are considered to be
insulin resistance, chronic inflammation, oxidative stress,
and atherogenic dyslipidemia [84]. The oxidative stress in
NAFLD may induce alterations in endothelial function
resulting in formation and deposition of oxidized low-
density lipoprotein (LDL) in the subintimal space [82].
Therefore, therapeutic strategies targeting oxidative stress
reduction in NAFLD patients for lowering CVD risk have
been proposed. As an important category of antioxidants,
polyphenols, such as resveratrol and silybin, have been
attempted to reduce CVD risk in the setting of NAFLD
[82]. Resveratrol, due to its potent effects on oxidative stress
and inflammation, has become one of the most interesting
candidates [84]. The effect of resveratrol on CVD protection
has been demonstrated as evidenced by an improvement of
CVD risk markers, such as endothelial function, echocardio-
graphic parameters, and cytokine expression [85]. Studies,
particularly long-term randomized clinical trials, evaluating
the anticardiovascular effects of antioxidant treatment in
patients with NAFLD are needed.

3.4. Viral Hepatitis. There are five well-characterized hepato-
tropic viruses, termed hepatitis A to hepatitis E. Among
them, hepatitis B virus (HBV) and hepatitis C virus (HCV)
are the most common types. In particular, HBV is a major
cause of liver cirrhosis and HCC [86]. Though there is oppor-
tunity to prevent and treat viral hepatitis, all the currently
approved antiviral drugs have their limitations [86]. For
example, interferon has limited efficacy with a high incidence

of adverse effects in some patients. As an alternative
approach, natural products have provided great promises as
potentially effective antiviral drugs. A broad spectrum of
phytochemicals including flavonoids such as wogonin and
polyphenolics such as geraniin has been isolated and
investigated for antihepatitis virus activities in vitro as well
as in vivo [87, 88]. The underlying action mechanisms have
been proposed mainly as prevention of virus entry, inhibition
of viral antigen secretion, and suppression of DNA
replication [89].

Several flavonoids have been identified as inhibitor of
HCV and HBV entry. A potent inhibitor of hepatitis virus
is EGCG, a well-known polyphenol in green tea. EGCG
inhibited entry of HBV into hepatocytes via induction of
clathrin-dependent endocytosis of sodium taurocholate
cotransporting polypeptide from the plasma membrane
followed by protein degradation and inhibited the clathrin-
mediated endocytosis of transferrin, without effect on HBV
genome replication or virion secretion [90]. It can also
potently inhibit HCV entry into hepatoma cell lines and
primary human hepatocytes [91, 92]. Delphinidin, a plant
pigment in flavonoid family that is responsible for the
blue-purple color of flowers and berries, induced a bulging
of the viral envelope to inhibit HCV attachment to the cell
surface [93]. Tannic acid could inhibit HCV entry into
Huh7.5 cells [94].

Plenty of studies have reported polyphenols with remark-
able antihepatitis virus through inhibiting virus replication
via different mechanisms. Silibinin served as direct inhibitor
of HCV RNA-dependent RNA polymerase [95]. Epicate-
chins, one of the phenolic in green tea, can inhibit HCV
replication via cycloxygenase-2 and relieve inflammation
induced by virus [96]. The flavonoid apigenin inhibited
HCV replication by decreasing mature miRNA122 levels,
which was a liver-specific miRNA for positive regulation of
HCV replication [97]. Curcumin suppressed HBV via
downregulation of the metabolic coactivator PGC-1α, a
starvation-induced protein that has been shown to robustly
coactivate HBV transcription [98]. The flavonoid prescrip-
tion baicalin-linarin-icariin-notoginsenoside R1 had curative
effect on duck virus hepatitis caused by duck hepatitis A virus
type 1 (DHAV-1), which could inhibit DHAV-1 reproduc-
tion by destroying its adsorption and release [99]. Quercetin
significantly reduced the viral genome replication, the
production of infectious HCV particles, and the specific
infectivity of the newly produced viral particles [100]. Non-
structural protein 3 (NS3) encoded by HCV genome has been
regarded as a potential anti-HCV drug target as it is vital for
viral replication. Several anthracyclines with hydroxyanthra-
quinone moiety structure were found to inhibit NS3 helicase.
And mitoxantrone, a hydroxyanthraquinone analogue, was
also known to be inhibitor of NS3 helicase [101]. Addition-
ally, quercetin suppressed HCV via inhibition of NS3
protease activity [102]. Another target for HCV, nonstruc-
tural protein 5B (NS5B), could be inhibited by EGCG
[103]. Other compounds showing antiviral activities includ-
ing kaempferol 8-methyl ether, quercetin 3-methyl ether,
kaempferol [104], chlorogenic acid analogues, isoliquiriti-
genin, glycycoumarin, [105], glycyrin, glycyrol, liquiritigenin,
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isoliquiritigenin, licochalcone A, and glabridin chlorogenic
acid analogues [106] identified from natural products such
as tea and medicinal plants would also be good candidates
for development of antivirals against hepatitis virus.

3.5. Liver Fibrosis and Cirrhosis. Liver fibrosis is a wound-
healing response to hepatic injury. It is characterized by the
accumulation of extracellular matrix (ECM), which leads to
a progressive substitution of liver parenchyma by scar tissue
[3]. Sustained fibrogenesis would result in cirrhosis, the
consequence of progressive fibrosis with a poor outcome
and high mortality, characterized by a distortion of the liver
parenchyma and vascular architecture. Due to the vital role
of ECM in fibrogenesis, matrix-expressing cells have been
considered as the vital cellular basis of liver fibrogenesis [3].
Among them, hepatic stellate cells (HSCs), the major cell
type responsible for ECM deposition, have been extensively
studied. Upon chronic liver injury, quiescent HSCs undergo
morphological and phenotypical transdifferentiation into
contractile and highly proliferative myofibroblasts with
collagen-producing ability. Plenty of polyphenols were found
to protect liver from fibrosis via suppression of the activation
of HSCs such as apigenin, EGCG, quercetin, icaritin, curcu-
min, and resveratrol [107–113]. The mechanisms underlying
the inhibition of activated HSCs have been ascribed to upreg-
ulation of C1QTNF2, MMPs, or miR-221 to accelerate
osteopontin degradation and downregulation of PPARγ or
membrane translocation and gene expression of GLUT2.
Polyphenols such as hyperoside, morin, gallic acid, and quer-
cetin have been revealed that they exert antifibrosis effect via
promoting apoptosis of activated HSCs, primarily associated
with NF-κB and TNF-α signaling [114, 115]. Furthermore,
there is mounting evidence indicated that many flavonoids
could decrease proliferation of HSCs and inhibit expression
of profibrogenesis-related genes in HSCs. For example, chry-
sin and tricin inhibited proliferation of HSCs via suppressing
TGF-β1/Smad pathway and blocking tyrosine phosphoryla-
tion of platelet-derived growth factor (PDGF) receptor,
respectively [116, 117]. Chlorogenic acid suppressed profi-
brotic action of HSCs via inhibition of NOX/ROS/MAPK
pathway, while resveratrol can suppress the activation of
NF-κB and Akt, reducing expression of related profibrogen-
esis genes in activated HSCs [118, 119]. EGCG and wogono-
side regulate profibrogenic/antifibrogenic balance via
inhibition of PI3K/Akt/Smad pathway and PI3K/Akt/
mTOR/ribosomal protein S6 kinase 70 kDa (p70S6K),
respectively [120, 121]. We summarized the major action
mechanisms of a variety of polyphenols on HSCs in
Figure 3. In addition to action on HSCs, several polyphenols
such as morin, chlorogenic acid, and curcumin also showed
antifibrotic capacities through attenuating oxidative stress
and inflammation response via different mechanisms includ-
ing inhibition of TLR4/MyD88/NF-κB signaling pathway,
suppressing the advanced glycation end- (AGE-) mediated
induction of receptor for advanced glycation end (RAGE)
gene expression by increasing PPARγ and stimulating gluta-
thione (GSH), and regulating PPAR signal pathway and the
interaction with FXR [122–124]. In summary, the potential
mechanisms of some polyphenols with remarkable

antifibrotic ability in vivo and in vitro have been listed in
Table 2. The promising antifibrotic efficiencies of these com-
pounds from food and plants with well-recognized action
mechanisms make them deserve further exploration in a clin-
ical study in the future.

3.6. Liver Cancer. Liver cancer, the sixth most common can-
cer with high mortality worldwide, represents a major inter-
national health problem. Increasing epidemiological
evidence indicated that a diet rich in fruits and vegetables
could lower the risk of certain cancers, including liver cancer,
which has been partly attributed to natural polyphenols con-
tained [128]. A variety of natural polyphenols have been
studied for the prevention and treatment of liver cancer
[129]. Potential mechanisms have been proposed as proa-
poptosis and antiproliferation effect to liver cancer cells, anti-
angiogenesis, inhibition of invasion, and metastasis, as well as
other modulation of multiple molecular events involved in
carcinogenesis.

A plenty of polyphenols showed remarkable properties of
promoting apoptosis and suppressing proliferation of liver
cancer cells via various pathways [130–133]. Many flavones,
a class of flavonoids based on the backbone of 2-phenylchro-
men-4-one, such as vitexin, luteolin, chrysin, isoorientin,
oroxylin A, wogonin, and baicalein, have been found to
induce apoptosis and inhibit proliferation of a variety of
HCC cell lines by different or overlapped mechanisms.
UPR pathway, mTOR pathway, ROS pathway, JNK path-
ways, caspase-dependent, and caspase-independent apopto-
tic signaling pathways have been extensively proposed for
anticancer ability of these flavones. Flavanones including
eriodictyol and hesperidin induce HepG2 cell apoptosis
mainly via regulation of apoptotic proteins such as Bax and
Bcl-2, mitochondrial pathway, and death receptor pathway.
Other flavonoids including flavanols, flavanonol, flavonol,
and isoflavones, which have been demonstrated to induce
apoptosis of liver cancer cells in vivo and in vitro, are summa-
rized in Table 3. Nonflavonoids, such as gigantol, chlorogenic
acid, and gallic acid, mediate the apoptosis of HCC cells prin-
cipally through induction of ER stress and regulating
mitochondrial-mediated pathways. As a matter of fact, most
polyphenols induce apoptosis and inhibit proliferation of
HCC cells via multiple targets and pathways. For example,
baicalein caused HepG2 cell apoptosis via inhibiting the
PKB/mTOR pathway or blocking MEK-ERK signaling [134,
135] while another flavone compound oroxylin A suppressed
PI3K-PTEN-Akt-mTOR signaling pathway and activated the
PERK-eIF2α-ATF4-CHOP branch of the UPR pathway [136,
137] to mediate apoptosis. EGCG, a famous flavanol in tea,
showed remarkable ability to induce apoptosis of a variety
of liver cancer cells such as SMMC7721, SK-hep1, HLE,
HepG2, HuH-7, and PLC/PPF/5 cells [132]. Its underlying
mechanisms have been revealed as inhibition of receptor
tyrosine kinase, downregulation of PI3K/AKT activity,
downregulation of Bcl-2α, and Bcl-xl by inactivation of NF-
κB [138–140]. Additionally, fisetin, a common flavonoid
found in many fruits and vegetables, suppressed proliferation
of liver cancer cells via modulation of multiple signaling
pathways including CDK5 signaling, Nrf2-mediated
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oxidative stress response, glucocorticoid signaling, and ERK/
MAPK signaling [141]. The character of modulation of mul-
tiple targets and pathways makes them more promising in
application of developing anticancer drugs or dietary supple-
ments for HCC patients.

Furthermore, several flavonoids have been demonstrated
to exert beneficial effects against liver cancer via antiangio-
genesis. Flavones including eupafolin and morusin showed
significant antiangiogenic abilities by in vitro and in vivo
studies. Eupafolin could block vascular endothelial growth
factor- (VEGF-) induced activation of vascular endothelial
growth factor receptor 2 (VEGFR2) in Akt activity in human
umbilical vascular endothelial cells and inhibit Akt activity
and VEGF secretion in HepG2 [142]. The other flavone,
morusin, inhibited angiogenesis in HepG2 xenograft mice
model via attenuation of the IL-6 and signal transducer and
activator of transcription 3 (STAT3) signaling pathway
[143]. Morin, a type of flavonol belonging to flavonoid,
inhibits tumor growth and angiogenesis in rats with diethyl-
nitrosamine- (DEN-) induced HCC through upregulation of
NF-κB-p65 and COX-2 and reducing MMPs [144]. Resvera-
trol also showed effects on suppressing angiogenesis in mice
with HCC xenograft. The mechanism underlying its
antiangiogenesis is through inhibiting VEGF expression by
a NF-κB-mediated pathway [145].

In addition to antiangiogenesis, increasing studies indi-
cated that a variety of polyphenols could inhibit invasion
and metastasis in liver cancer. Flavanones including hesperi-
din and naringenin, flavones including luteoloside and

wogonin, and other flavonoids such as galangin, EGCG,
and genistein have been reported by various studies for
reducing invasion and metastasis of liver cancer cells
in vivo and in vitro. It is interesting to note that hesperidin
and naringenin, two types of flavanone, inhibited invasion
and metastasis of liver cancer cells such as HepG2 via sim-
ilar mechanisms, reducing MMP-9 expression through the
inhibition of NF-κB and activator protein 1 (AP-1) activ-
ity, suggesting potential structure-activity relationship
might exist between flavanone and NF-κB/AP-1 pathways.
Additionally, phenolic compounds, theaflavins and (−)-oleo-
canthal suppressed the growth and metastasis through the
blockage of STAT3 pathway. Their structure-activity
relationship deserves to be further explored in the future.
Other flavonoids possessing anti-invasion or antimetastasis
effects by various pathways in HCC have also been sum-
marized in Table 3.

Recently, several polyphenols have been demonstrated to
reduce carcinogenesis. Curcumin treatment effectively
reduced the progression of NASH to HCC by suppressing
the protein expression of glypican-3, VEGF, and pro-
thrombin in the NASH liver [86]. The upregulation of
self-renewal Wnt/β-catenin, Hh/Gli1 pathways, and their
associated genes cyclin D1, cMyc, and epidermal growth
factor receptor (EGFR) along with downregulation of E-
cadherin during the carcinogenesis processes was found
to be modulated by EGCG/theaflavins [146, 147]. In addi-
tion, some emerging pathways have been proposed to be
involved in mechanisms of polyphenols’ anticancer effect.

Quiescent HSC

Activated HSC‐MFBs

HSC‐MFB sapoptosis

Inhibition of HSC

activation Inhibition of HSC pro‐
fibrogenesis function

Induction of

HSC apoptosis

PDGF

Oxidative stress

Hepatocyte apoptosis

LPS

FGF

VEGF
Proliferation PDGF

MCP‐1

HSC chemotaxis

TGF�훽1

TGFβ1

Leptin

fibrogenesis

TIMPs

MMPs

ECM

TLR4 ligands

Chemokines
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Figure 3: The major action mechanisms of a variety of polyphenols on HSCs. Apigenin, EGCG, icaritin, curcumin, and resveratrol could
inhibit the activation of HSCs; chrysin, tricin, chlorogenic acid, luteolin, resveratrol, EGCG, and wogonoside suppress the profibrogenesis
function of HSCs; hyperoside, morin, gallic acid, and quercetin can induce HSC apoptosis. PDGF: platelet-derived growth factor; FGF:
fibroblast growth factor; MCP-1: monocyte chemoattractant protein-1; TIMP1: TIMP metallopeptidase inhibitor 1.
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Glycycoumarin exerts antiliver cancer activity by directly
targeting oncogenic kinase T-LAK cell-originated protein
kinase (TOPK) [148]. Isoorientin possessed a notable
hepatoprotective effect in the context of liver cancer,
which might be mediated through the respiratory chain
complexes and phase II detoxifying enzyme activities

[149]. Flavonoids activated pregnane X receptor-mediated
CYP3A4 gene expression by inhibiting cyclin-dependent
kinases in HepG2 liver carcinoma cells [150]. Further-
more, chlorogenic acid and catechins have been
demonstrated to augment the antitumor effect of chemo-
therapeutic drugs for liver cancer. Chlorogenic acid could

Table 2: The potential antifibrotic mechanisms of some polyphenols.

Effects Polyphenol Model Mechanisms Ref.

Inhibition of HSC
activation

Apigenin In vitro HSCs Upregulating C1QTNF2 expression [107]

EGCG
In vitro HSCs & thioacetamide-

treated animal
Upregulating miR-221 to accelerate

osteopontin degradation
[108]

Quercetin Rats with CCl4-induced fibrosis
Activation of MMPs and regulating

profibrogenic/antifibrogenic molecules balance
[109]

Icaritin
In vitro HSC-T6 and LX-2 HSC

lines & rats with CCl4
or CBDL-induced fibrosis

Dependent on mitochondrial-activated
apoptosis

[110]

Curcumin In vitro HSCs & animal model

Suppressing membrane translocation
and gene expression of GLUT2; inhibiting

PPARγ via regulation of DLK1 protein partly
mediated by interruption of Shh signaling pathway

[111, 112]

Resveratrol
Rats with

N′-nitrosodimethylamine-
induced liver fibrosis

Relieving oxidative damage [113]

Induce HSC apoptosis

Hyperoside In vitro human LX-2 HSCs
Inhibiting the DNA-binding activity of

NF-κB and altered genes related to apoptosis
[125]

Morin In vitro HSCs Suppressing canonical NF-κB signaling

Gallic acid In vitro HSCs Regulating TNF-α signaling pathway [114]

Quercetin In vitro HSCs Dependent on activation of ER stress [115]

Inhibit proliferation and
profibrogenesis-related
genes in HSCs

Chrysin Mice with CCl4-induced fibrosis Suppressing TGF-β1/Smad pathway [116]

Tricin In vitro human HSC line LI90
Blocking tyrosine phosphorylation of PDGF

receptor
[117]

Chlorogenic
acid

In vitro HSCs & CCl4-treated
rats

Improving antioxidant capacity via activation of
Nrf2 pathway and suppressing profibrotic action via

inhibition of NOX/ROS/MAPK pathway
[118]

Luteolin
In vitro rat HSCs and HSC-T6
cells & rat models induced by

CCl4, DMN, and BDL

Increasing caspase 3 activity and p53 expression;
inducing G1 arrest with the decreased expression of
bcl-2, cyclin E, and p-Cdk-2; suppressing PDGF and

TGF1-simulated phosphorylation of AKT and
Smad pathway

[126]

Resveratrol
In vitro human LX-2 HSCs &

mice with CCl4-induced fibrosis
Suppressing the activation of NF-κB and Akt [119]

EGCG In vitro HSC LX-2 & BDL rats Inhibiting PI3K/Akt/Smad pathway [120]

Wogonoside
In vitro HSC T6 cells & mice
with CCl4-induced fibrosis

Inhibiting PI3K/Akt/mTOR/p70S6K [121]

Attenuate liver
injury and antifibrosis

Morin Rats with CCl4-induced fibrosis
Reducing oxidative stress, inflammatory

responses, and fibrogenic markers
[122]

Chlorogenic
acid

Rats with CCl4-induced fibrosis
Inhibition of TLR4/MyD88/NF-κB

signaling pathway
[123]

Curcumin
Mice with type 2 diabetes

mellitus

Suppressing the AGEs-mediated induction
of RAGE gene expression by increasing

PPARγ and stimulating GSH
[124]

Total
flavonoids
of Astmgali

Radix

Rats with fibrosis
Regulating PPAR signal pathway
and the interaction with FXR

[127]
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sensitize HCC cells to 5-fluorouracil treatment by inhibit-
ing ERK activation through the overproduction of ROS
[151]. Catechins enhanced the antitumor activity of doxo-
rubicin for liver cancer involving the suppression of
multidrug resistance protein 1 (MDR1) expression or
accumulation increase of intracellular doxorubicin [152].

4. Clinical Studies

As in vitro and in vivo animal studies have revealed the
promising preventive and therapeutic effects of polyphenols
in various liver diseases, translational studies are extremely
vital and indispensable for the application of polyphenols in
human with liver diseases. Although literatures in PubMed
database about clinical trials of polyphenols in liver diseases
are limited, encouraging beneficial effects of these polyphe-
nols have been demonstrated, particularly in NAFLD. In a
compliant, randomized, double-blind, placebo-controlled
pilot trial of purified anthocyanin in NAFLD patients,
supplementation of purified anthocyanin for 12 weeks signif-
icantly improved insulin resistance, liver injury, and clinical
evolution in those patients [193]. In another double-blind
clinical trial, dihydromyricetin, the main active ingredient
of Ampelopsis grossedentata, improved glucose and lipid
metabolism and showed anti-inflammatory effects in
NAFLD [194]. Intervention with green tea having high-
density catechins significantly enhanced liver function and
fat infiltration in NAFLD patients in a randomized double-
blind study [195]. In particular, resveratrol, which showed
extraordinary benefit for NAFLD in animal studies, has been
attempted by several clinical trials. In a double-blind,
randomized and placebo-controlled study, treatment with
2150mg resveratrol capsules twice daily for three months
significantly reduced the levels of TNF-α, cytokeratin 18
fragment, and fibroblast growth factor 21 (FGF-21) and
improved adiponectin level in NAFLD patients, suggesting
its beneficial role in NAFLD [196]. In another study, inter-
vention with resveratrol at the dose of 1000mg daily for week
1 followed by 2000mg daily for week 2 significantly reduced
intestinal and hepatic lipoprotein particle production in
overweight/obese men [197]. However, a study claimed that
resveratrol showed no benefit for patients with NAFLD. It
might be due to the dosage used or intervention duration
was not enough for resveratrol to exert hepatoprotective
effects [198]. Additionally, intervention of orange juice with
abundant flavonoids for HCV patients showed lower levels
of total cholesterol and LDL-cholesterol and increased anti-
oxidant capacity compared to that of the control group [199].

To learn about currently ongoing and unpublished
studies, we further looked up the related information of
clinical trials of a variety of representative polyphenols in
liver diseases at the database of U.S. National Library of
Medicine (http://www.ClinicalTrials.gov). The polyphenols
searched are anthocyanins including delphinidin, pelargoni-
din, cyanidin, and malvidin; flavanols including epicatechin,
epigallocatechin, EGCG, and procyanidins; flavanones
including hesperidin and naringenin; flavones including
apigenin, chrysin, luteolin, oroxylin A, wogonin baicalein,
and isoorientin; flavonols including quercetin, kaempferol,

myricetin, isorhamnetin, and galangin; isoflavonoids includ-
ing genistein and daidzein; phenolic acids including ellagic
acid, gallic acid, ferulic acid, and chlorogenic acid; other poly-
phenols including curcumin, sesamin, secoisolariciresinol
diglucoside; resveratrol; pterostilbene; and piceatannol.
Among them, only several compounds including curcumin,
chlorogenic acid, resveratrol, EGCG, quercetin, naringenin,
and catechin are found to be studied in NAFLD, HCV,
cirrhosis, and liver cancer, which are listed in Table 4. Other
polyphenols, which showed promising therapeutic effects on
liver diseases in animal studies, such as baicalein, wogonin,
kaempferol, and theaflavins, deserve to be translationally
studied by clinical trials in the future.

5. Conclusions and Prospects

As multitude of pathways is involved in the pathogenesis of
liver diseases, therapies targeting multiple factors are
expected to address these driving forces for liver disease pro-
gression. Natural polyphenols, widely existing in plants and
plant-based food, have attracted increasing attention as
potential agents for prevention and treatment of liver dis-
eases due to their outstanding effects on mediating pathways
involved in the pathogenic process. As a matter of fact, the
multiple regulations on oxidative stress, ER stress, inflamma-
tion, immune response, lipid metabolism, insulin resistance,
and gut microbiota by various polyphenols are the scientific
fundaments for the application of polyphenols in the preven-
tion and treatment of liver diseases. However, although ther-
apy by polyphenols for liver diseases has been proposed for
decades and encouraging efficiency has been obtained by
in vitro and in vivo studies, there is still a long way to go for
the use of polyphenols in human. Several difficulties in trans-
lational research are challenging ahead. For those studies in
which dose effect has been investigated, only certain polyphe-
nols showed dose-effect manner for attenuating liver injury,
suggesting the importance of determination of optimized
dosage to be used. The route of administration is also a vital
factor for absorption and bioavailability of polyphenols.
Actually, one of the key limitations relating to the use of poly-
phenols is their poor bioavailability. Improving bioavailabil-
ity via modification of delivery route or administration route
is of great importance for translational study of polyphenols.
In addition, as certain polyphenols may have side effects such
as carcinogenic/genotoxic effects or disordering thyroid
hormone biosynthesis, risks and safety of polyphenol con-
sumption in liver diseases should also be well noted. It is of
great importance to evaluate the doses at which these effects
occur. Therefore, future studies evaluating either beneficial
or adverse effects including relevant forms and doses of poly-
phenols should be performed. More importantly, further
clinical trials are needed to evaluate the exact effects of a
variety of polyphenols in patients with liver diseases, particu-
larly for those showing remarkable therapeutic efficiency in
animal study. In conclusion, a great deal of flavonoid and
phenols has been demonstrated to exert multifaceted actions
on various liver diseases by well-recognized mechanism,
indicating their great potential in the prevention and treat-
ment for liver diseases. In future study, the effective and safe
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dose, duration of treatment, absorption and bioavailability of
polyphenols should be thoroughly investigated from bench-
top and bedside.
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