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ABSTRACT 

Lobatto elements are high-order or spectral elements featured by non-equispaced Lobatto nodes and 

the Lobatto nodal quadrature. The tensor product nature of the element interpolation allows the 

derivatives at the node be computed thru the derivatives along the nodal line which involve only 1D 

interpolations. In this paper, generic schemes for formulating assumed natural strain (ANS) and 

stabilized Lobatto Lagrange C0 plate/shell elements of order ≥ 2 are presented. Two ANS schemes 

are devised. Both schemes sample the normal membrane and transverse shear natural strain 

components at the 1D reduced-order Gaussian quadrature points along the nodal lines. The difference 

is that the first and second schemes sample the membrane shear natural strain component at the 

Lobatto nodes and the 2D reduced-order Gaussian quadrature points, respectively. Meanwhile, all the 

other natural strain components in both schemes can be obtained by 1D interpolation along the nodal 

lines. In the stabilization scheme for reduced-integrated elements, only five stabilization vectors are 

required regardless of the element order. The new elements outperform the standard Lobatto element 

except when membrane-dominated curved thin shell problems with strong boundary layer effect are 

considered by coarse meshes.  
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1. Introduction 

For clarity, the abbreviations to be used repeatedly are first introduced: ANS for assumed natural 

strain [1-3], dofs for degrees of freedom, FGQ for full order Gaussian quadrature (namely, the (nL+1)-

point rule for nL-th order element), FI for full integration by FGQ, LBQ for Lobatto quadrature [4], 

LB for the standard Lobatto element which is evaluated by LBQ, mixed interpolation of tensorial 

components (MITC) [5-9], RGQ for reduced order Gaussian quadrature (the nL-point rule for nL-th 

order element), RI for reduced-integration by RGQ, and ZEM for zero energy modes.  

      Low- and high-order elements have their own pros and cons. High-order elements are more 

promising in accuracy and convergence yet computationally more expensive than the low-order 

elements on the per node basis. If the domain geometry is not excessively complicated for mesh 

preparation, high-order elements can often offer a more appealing alternative than low-order elements. 

Lockings are pathological behaviours in which the element and thus the element assemblage are 

excessively stiff as if they were locked. When the element thickness drops, C0 plate and flat shell 

elements may be plagued by shear locking whilst C0 curved shell elements may also be plagued by 

membrane locking. To subdue lockings, advanced formulations including reduced and selectively 

reduced integration (SRI) [10-12], hybrid/mixed formulation [13-17], discrete Kirchhoff formulation 

[18, 19], stabilization method [14-17, 20, 21], ANS [1-3, 22], MITC [5-9] , method of substituted 

strain [23, 24], assumed natural deviatoric strain formulation (ANDES) [22, 25], discrete shear gap 

method (DSG) [26], enhanced assumed strain method (EAS) [22, 27-29], etc., have been proposed. 

In particular, ANS, MITC, method of substituted strain, ANDES and DSG are closely related. Besides 

DSG, the other four methods interpolate the natural strains at selected sampling points which are less 

in number than that of the FGQ. For simplicity, they would be collectively referred to as ANS. They 

manoeuvre the number of penalty-type constraints brought forward by the zero transverse shear and 

membrane strain conditions. Edge transverse shear and normal membrane natural strain samples are 

commonly used which are identical for the two elements sharing the same element edge. They are 

effective to reduce the number of independent constraints in the global level. While there are 

numerous first and second order advanced C0 plate/shell elements, high-order advanced elements are 

relative rare. Some of the exceptions are third order stabilized elements [14, 15], third order MITC 

elements [6] and SRI elements [12], among others.  

 Lobatto elements are featured by their non-equispaced Lobatto nodes and Lobatto nodal 

integration rules LBQ [4]. The latter leads to a diagonal mass matrix which is important for explicit 

time integration and explains the widespread acceptance of the Lobatto elements in solving transient 

dynamics problems including those in acoustics, statics and dynamics, damage detection, structural 

health monitoring, seismology, medical imaging, computation fluid dynamics [4, 30-42]. 

Furthermore, the tensor product nature of the element interpolation allows the derivatives at the node 
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be computed thru the derivatives along the nodal line by using the differentiation matrix for the 1D 

interpolation.  

  In this paper, two ANS and a stabilized schemes for formulating Lobatto Lagrange C0 plate/shell 

elements of order ≥ 2 are presented. In the first ANS scheme, all the natural strain samples employed 

are computed either along the nodal lines or at the nodes. Thus, they can be computed efficiently from 

1D interpolations. To determine the strain sampling stations, 1D RGQ points are identified to be the 

superconvergent or Barlow points [43] for Lobatto but not equispaced nodes. For instance, the 

superconvergent points for the third order with equispaced nodes are (0,5/3) [44] whilst the RGQ 

points are (0, (3/5)). Our tests using third order C0 beam elements also revealed that the predicted 

nodal deflections of the element with equispaced nodes are erroneous regardless whether the 

transverse shear strain is sampled at the superconvergent or RGQ points. Meanwhile, the predicted 

nodal deflections of the Lobatto element with the transverse shear strain sampled at RGQ points are 

much more accurate. In this light, the natural transverse shear and membrane normal strains would 

be sampled at the RGQ points along the nodal lines of the Lobatto element whilst all other strain 

components are sampled at the LBQ. The second ANS scheme only differs from the first one by 

sampling the natural membrane shear strain at the 2D RGQ points. The strain needs to go through a 

2D interpolation for the value at the LBQ points. Thus, the second scheme is not as efficient as the 

first one. In the stabilization scheme for the reduced-integrated elements, only five stabilization 

vectors are required regardless of the element order. By generalizing the hybrid-stabilization method 

[16, 45] derived for the quadratic element, the vectors can be derived as explicit linear functions of 

the nodal dofs and geometric data. The stabilization can be formed more efficiently if sub-parametric 

geometry is employed. The new elements outperform the standard Lobatto element except when 

coarse meshes are employed in modelling membrane-dominated curved thin shell problems with 

strong boundary layer effect.  

The rest of this paper is organized as follows. Section 2 introduces the Lobatto node and LBQ. 

Section 3 reviews how the conventional C0 shell element can be formulated. Sections 4, 5 and 6 detail 

the two ANS schemes and the stabilization scheme. Section 7 presents the numerical examples and 

Section 8 is the concluding section. Throughout this paper, 1D and 2D arrays are underlined and 

double-underlined, respectively.  

 

 

2. Lobatto Node and Lobatto Quadrature  

Introduction to Lobatto nodes, LBQ and the nodal differentiation matrix can be found in [4]. A brief 

introduction is here presented for completeness. The set of nL+1 Lobatto nodes bounded by -1 and +1 
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are the roots of the following equation:  

 2(1 ) ( ) 0
LnP     (1) 

in which 
LnP  is the degree-nL Legendre polynomial. Using Lagrange interpolation, the degree-nL 

interpolation function for the node at  = li is  
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The Lobatto nodes are also the sampling points of LBQ which is exact for integrands up to degree-

(2nL-1). The weighting factors for li are  
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If LBQ is employed to evaluate the mass matrix of the element, the coincidence of the nodes and 

quadrature points leads to a positive-definite diagonal matrix. The integrand leading to the mass 

matrix of a geometric regular element is of degree-2nL. Thus, LBQ cannot exactly evaluate the matrix. 

Nevertheless, the minute inaccuracy does not affect the popularity of LB in explicit dynamic 

computations.  

      Nodal interpolation functions for 2D Lobatto or Lobatto Lagrange elements can be formed by the 

simple product rule. Using the two-index nodal notation as shown in Figure 1(a) and taking the plane 

element as an example, the interpolated coordinate vector X and displacement vector U are 
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Their derivatives with respect to the natural coordinates of the element (,)[-1,+1] at node-(p,q) 

can be expressed as 
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in which Li(lj) = ij is invoked. They are the differential quadrature rules for the interpolated variables 

at the Lobatto nodes and ( )i jL l  defines the nodal differentiation matrix. It can be seen that all the 2D 

natural strain components at the LBQ point and, thus, the element stiffness matrix can be obtained by 

the 1D nodal differentiation matrix. That constitutes the other reason for the popularity of the LB 

element in addition to the diagonal mass matrix.  
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3. Conventional Formulation for C0 Shell Elements 

Although the conventional, standard or displacement-based formulation for C0 shell elements can be 

easily found in the literature, it is presented here for completeness. Using the element in Figure 2 as 

an example, the global coordinates X along the nodal normal 
n

ijX  of node-(i,j) at 
o

ijX  can be expressed 

as: 

 
o n

ij ij ijX X X    (6) 

where [-1,+1] is the transverse natural coordinate and |
n

ijX | equals half of the nodal thickness at 

the node-(i,j), i.e. tij/2. The displacement along the same nodal normal is described as: 
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in which 
o

ijU  is the nodal displacement; fij’s and 
n

ijX  are mutually perpendicular vectors; ϕ’s are the 

rotations about fij’s as shown in Figure 2; and 
n

ijU  is self-defined. The choices of fij’s are not unique. 

Unless specified otherwise, they are taken to be  
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By interpolation, the coordinates and displacement at any point inside the element can be obtained 

as: 
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where Xo, Xn, Uo and Un are self-defined and they are functions of the inplane natural coordinates 

(,). The natural strain which is the covariant strain defined with respect to the natural coordinates 

(,,) is  
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With the second and first order -terms in respectively the inplane and the transverse shear natural 

strain components discarded, they become  
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where 
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In the above expressions, superscripts “0” and “1” denote the zeroth and first order -terms in the 

strain components, respectively. Let (x,y,z) be the local Cartesian coordinates for defining the material 

properties. With x and y tangential to the mid-surface defined by Xo and Xn assumed to be orthogonal 

to the mid-surface, the physical strain defined with respect to (x,y,z) can be obtained from the 

following transformations 
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The entries in the two strain transformation matrices can be obtained as: 

 

1

1

, , , , , ,

, , , , , , ( , , , )

, , , , , ,

T

xx y z

T

yx y z

T
x y z z

ex x x

y y y e X X X

z z z e

  

     

  

  

  

  





    
    

         
    

     

  (13) 

It can be seen that T and T are functions of . By expanding T about  = 0, i.e. T = 
0

T

+

1
T
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and retaining only the constant and linear -terms in physical inplane strain, (12a) becomes 
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in which the self-defined m and b are the vectors of membrane and bending strain components, 

respectively. On the other hand, the physical transverse shear strain in (12b) is kept independent of  

by using 
0

0

T T T
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 . Symbolically, the inplane strain  and the transverse shear strain 
s  can 

be expressed as: 
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in which Bs are independent of  and d is the element displacement vector embracing all the nodal 

translations and rotations of the element. With the Jacobian determinant J = |[X,  X,  X,]| 

approximated by Jo = J| = 0 = |[Xo,  Xo,  X
n]|, the potential energy functional of the element can be 

manipulated as  

 

1 1 1

1 1 1

1
[( ) ( ) ( ) )]

2

m b m b s se T T e

P s oC C J d d d P          
  

  

          (16) 

where Pe is the load potential for the element. For isotropic materials, the material elasticity matrices 

are 
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in which E is the elastic modulus,  is the Poisson’s ratio, G = E/2/(1+) is the shear modulus and k 

is the shear correction factor commonly taken to be 5/6. After integrating over ζ, Eq.(16) becomes 
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By invoking Eq.(15), the potential energy functional of the element can be written as 
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where the term between the two ds is the element stiffness matrix.  

      When the stiffness matrix of Lobatto element is evaluated by LBQ, the resulting element model 

will be termed as LB element. It is trivial to show that the integrands at node ij depend only on the 

coordinates and dofs of nodes im and mj where m = 1,…,nL+1. This tensor product feature has been 

well-explored by computational mathematicians and is effective to reduce the computational cost of 

the LB element, see [12, 46, 47], among others.  

 

 

4. First Assumed Natural Strain Scheme 

When the element stiffness matrix is evaluated by numerical integration, each of the sampled 
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transverse shear and membrane strain components becomes a constraint penalized by the length-to-

thickness ratio of the element. If the number of independent constraints in the global level is 

excessive, the element assembly would behave as if it was locked. The lower order assumed strain 

and ANS elements alleviate shear locking by sampling the natural transverse shear strains along the 

element edge [5, 24, 44]. Since there are fewer sampling points compared with FGQ and the “edge” 

strain samples are also identical for the two elements sharing the common element edge, the number 

of independent constraints is reduced in the global level yet the element is not rank deficient. Edge 

transverse shear and edge inplane normal strain samples are used in nearly all 9-node ANS elements 

[2, 23]. An exception is an early version of MITC9 9-node element [6, 48]. However, improved 

versions of MITC9 turned to edge transverse shear strain samples which better alleviate shear locking 

[7]. One of them also employs edge inplane normal strain and becomes rather similar to other ANS 

9-node elements [2, 23], see Figure 3(a). On the other hand, the 16-node MITC16 element samples 

all its strain components away from the element boundary as portrayed in Figure 4(a) with the number 

of strain samples less than that used in the FGQ.  

      ANS often uses super-convergent points as the strain sampling points. Obviously, the function in 

(2) can interpolate exactly up to Ln . Following how super-convergent or Barlow points are identified 

[3, 43], 
1Ln 
 is interpolated at the Lobatto node thru (2). Thus, the interpolation error is 
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It is trivial that the nL+1 Lobatto nodes are the roots of E(). By virtue of (1), E() can be expressed 

as: 
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where a is a constant. From the Legendre differential equation, i.e. 

 2(1 ) ( ) ( 1) ( ) 0
L Ln L L n

d
P n n P

d
  


      , 

the derivative of E(ξ) in (20) can be expressed as 

 2( ) (1 ) ( ) ( 1) ( )
L Ln L L n

d
E a P a n n P

d
   


         .  

E  and 
LnP  share the same set of roots which are the RGQ points {gi, i=1,..,nL}. It should be remarked 

that if the interpolation function is based on equispaced nodes, the minimization of the interpolation 

error will result in another set of super-convergent points. For instance, the sampling points for third 

order equispaced nodes are {±√5/3, 0}  [44] which are different from the RGQ points {±√(3/5), 0}. 

Figure 5 shows the relative positions of the Lobatto nodes, equispaced nodes and RGQ points for the 
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6th and 7th order interpolations. The former is the highest order interpolation in which there is only 

one RGQ point between each pair of adjacent equispaced nodes. When the order goes up, there can 

be zero and more than one RGQ points between each pair of adjacent equispaced nodes. On the other 

hand, there is always one and only one RGQ point at roughly the midpoint of each pair of adjacent 

Lobatto nodes. Lobatto nodes appear to be the more natural choice of nodes than the equispaced if 

strains are sampled at RGQ points. 

      Next, a thin beam problem with the left end clamped and the right end pinned is considered. The 

cantilever has a rectangular cross section with unit width. Its length to thickness L/t ratio is 100. The 

ratio of the elastic modulus to shear modulus is 2.5. It is loaded by the uniform transverse load qo per 

unit length. The thin beam solution for the deflection is fourth order in x, i.e. 

 

4
2 2( ) [3 5 2( ) ]

48

o
thin

q L x x x
w

EI L L L
       for   0  x  L (21) 

One 4-node or cubic C0 beam element, which cannot reproduce the thin beam solution, is employed 

to model the problem. The combinations of nodes and ANS sampling stations for the transverse shear 

strain  include Lobatto nodes with  sampled at RGQ points (LB_R), equispaced nodes with   

sampled at RGQ points (EQ_R) and equispaced nodes with  sampled at superconvergent points 

(EQ_C). Figures 6(a), (b), (c) and (d) plot the normalized (wthin,thin), w
h - wthin, h - thin and h, 

respectively, where h stands for finite element prediction,  is the rotation and thin = d(wthin)/dx. The 

predictions of LB_R and EQ_R are identical. Recalling that the interior Lobatto and equispaced nodes 

are at   ±0.447 and ±0.333, respectively, it can be seen that wh from LB_R and EQ_R is 

exceptionally close to wthin at the interior Lobatto nodes but is erroneous at the interior equispaced 

nodes. The deflection of EQ_C are not accurate at neither the interior equispaced nor Lobatto nodes. 

While the rotations of LB_R and EQ_R is high accurate, that of EQ_C is erroneous. The predicted 

transverse shear strain are practically zero at the respective ANS sampling points at which the 

transverse shear constraints are enforced.  

In view of the higher accuracy for the nodal deflection as well as the coincidence of the RGQ and 

super-convergent points, the ANS scheme to be presented is devised with respect to the LB element. 

In the scheme, the natural transverse shear and membrane normal strain components are sampled and 

interpolated at the 1D RGQ points {gk, k = 1,…, nL} of the nodal lines whilst all other natural strain 

components are directly evaluated at LB nodes or, equivalently, LBQ points. The scheme is 

considerably different from that of the MITC16 [6, 48] in terms of the nodal and ANS sampling 

positions. With reference to Figures 3(b) and 4(b), 0

  in Eq. (11a) along  = lj and at (gk, lj) are  
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1
0

, 1

[( ) ] ( ) ( )( )
L

j

j

o o n
o oT T

pj qjp ql
p ql

X U
L L X U 



  
 






 
  

 
 , 

1
0

,
, 1

( ) ( )( )
L

k j

n
o oT

pj qjp k q kg l
p q

L g L g X U  




 


    

  (22) 

The assumed 0

  is obtained by 1D interpolation at the 1D RGQ points and can be expressed as  

 
1

0 0

( , )
1 , 1

( ) ( )( )
L L

j k j

n n
o oT

pjk pq qjl g l
k p q

G X U   
   



  
 

   R   (23) 

where  

1 1 1

1 1 1

( ) ( )( ) ( )
( )

( ) ( )( ) ( )

L

L

k k n

k

i i i i i i n

g g g g
G

g g g g g g g g

   


 

 

   


   
  and  

1

( ) ( ) ( ) ( )
Ln

pq k p k q k

k

G L g L g 


 R .  

At node-(i, j), 

 
1 1

0

( , )
, 1 , 1

( ) ( ) ( )
L L

i j

n n
o o o oT T

pj pjpq i pqiqj qjl l
p q p q

l X U X U  


 

 
 

    R R  (24) 

in which Rpqi is self-defined. Similarly, the assumed   at node-(i, j) can be derived to be  

 
1

0

( , )
, 1

[ ( ) ( ) ]
L

i j

n
n o nT T

pj pjqpi pqiqj qjl l
p q

X U X U  




 


    S S   (25) 

where  

1

( ) ( ) ( )
Ln

pqi k i p k q k

k

G l L g L g


S . 

The values of Rpqi and Spqi can be precomputed and stored for efficient computation of the element 

stiffness matrix. Similarly, 0

  and   at node-(i, j) can be obtained. 

     The remaining natural strain components are directly evaluated at LB nodes by using the 

differential quadrature rule introduced in (5). In particular, 

 
1

0

,
, 1

( ) ( )[( ) ( ) ]
L

i j

n
o o o oT T

pj iqp i q j iq pjl l
p q

L l L l X U X U  




 


   . (26) 

 

 

5. Second Assumed Natural Strain Scheme 

The second ANS scheme only differs from the first one by sampling the natural membrane shear 

strain at the 2D RGQ points. This practice is also used in the MITC9 and MITC16 elements [6, 48] 

but not the other ANS elements. Similar to (24) and (25), the assumed natural membrane shear strain 
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at the LB points in this scheme can be derived to be 

 
1

0 0

, ( , )
1 1 , , , 1

( ) ( ) ( )( )
L L L

i j a b

n n n
o oT

pqa i b j pri sqj rpi qsj rsl l g g
a b p q r s

G l G l X U    
 



   
  

     S S S S  (27) 

Comparing (26) with (27), the former involves only two summation indices and thus are more 

efficient. 

 

 

6. Stabilization for Reduced-Integrated Element 

The computational efficiency and accuracy of the RI element had been known since 1970’s. The 

drawback of the RI element is the existence of compatible ZEM which leads to the well-known 

hourglass instability. While stabilized first and second order RI C0 shell elements based on the 

derivation of stabilization vectors can be found in the literature [16, 49, 50], their extensions to higher 

order elements are seldom, if not never, seen. Recently, the authors have generalized the hybrid-

stabilization method previously derived for 9-node Lagrange C0 shell elements [16, 45] to higher 

order plane and axisymmetric elements [41]. Here, the method would further be generalized to high-

order C0 shell elements.   

      For a square 22 flat nL-th order RI element where nL2, the compatible ZEM can be identified 

to be 

 

1

5

0 0 0

0 0 0

0 0 0 0

u c

u

cu











      
    

      
        

  (28) 

where ( ) ( )
L Ln nP P    and c’s are coefficients. They lead to the following strain modes 

 1 3

2 4

, 0 , 0

0 , 0 ,

2 , , , ,

c c

c c

  

  

    



 



      
        

           
                

 , 

3

4

5

2 0 ,

2 0 ,

c

c

c

 

 





 
      

    
      

 

  (29) 

The hybrid-stabilization method starts with Hellinger-Reissner hybrid functional. With reference to 

Eq.(18), the functional can be written as: 

 
1

, ,

1
( ) ( ) ( )

2

e T T e e

HR

m b s

D P
   



   



        (30) 

in which the vectors of stress components  is the energy conjugates of . By partitioning the stress 

into orthogonal lower order “L” and higher order “H” modes, i.e. 

 L H

  
        and   1( ) ( ) 0T e

L HD
      , (31) 
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the functional becomes: 

 
1 1

, ,

1 1
( ) ( ) ( ) ( ) ( ) ( )

2 2

e T T T T e e

L L L H H HHR

m b s

D D P
        



        



          (32) 

We shall take 

 
, 1

( ) ( )
Ln

m m

L iji j

i j

G G   


  , 
, 1

( ) ( )
Ln

b b

L iji j

i j

G G   


  , 
, 1

( ) ( )
Ln

s s

L iji j

i j

G G   


   (33) 

where Gi has been defined in (23) and Gij = ij ; 
m

ij , 
b

ij and 
s

ij  are the vector with coefficients for 

the lower order membrane, bending and shear stress components, respectively. As Gi is a degree nL-

1 polynomial, the first two integrands in (32) are up to degrees 2nL-1 in ξ and η for regular elements. 

They can be evaluated by RI using which the first two integrals become 

 1 1

1 1

1 1
( ) ( ) ( ) [ ( ) ( ) ( ) ]

2 2

L Ln n
T T T T

L L L pq pq pqRGQ p q pq pq

p q

D w w J D B d
               

 

        (34) 

in which wp is the weight factor for gp; Jpq and pqB
 denote Jo and B at (gp, gq), respectively. 

Variations of (32) with respect to pq


 s yield pq pqD B d

     and  

 1

1 1

1 1 1
( ) ( ) ( ) ( ) ( )

2 2 2

L Ln n
T TT T T

L L L RGQ p q pq pq pq pq RI

p q

D d w w J B D B d d K d
          

 

       (35) 

where 
, ,

( )T

RI RGQ

m b s

K B D B  



    is the RI stiffness matrix of the element. Thus, (32) becomes 

 
1

, ,

1 1
( ) ( ) ( )

2 2

Te T T e e

H H HHR RI

m b s

d K d D P
   



   



         (36) 

      To fulfill the orthogonality requirement in (31) and be able to stabilize the compatible spurious 

ZEMs of the RI element, the following H


 s are chosen: 

   
0

, 0
1

( ) 0 ,

0 0

m mT

H

o

T
J



  

 
 

 
 
  

 , 
0

, 0
1

( ) 0 ,

0 0

b bT

H

o

T
J



  

 
 

 
 
  

, 0
,1

( )
,

s sT

H

o

T
J






 
 

  
 

  (37) 

in which βs are the coefficient vectors for the higher order stress modes. By incorporating (14) and 

(37) into (36),  

 
, ,

1 1
[ ( ) ( ) ]

2 2

Te T T e

HR RI

m b s

d K d H G d P    



  


        (38) 

where H’s and G’s are the flexibility and leverage matrices, respectively. Moreover,  
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 0 1 1 0

2

, 0 , 0
1

0 , ( ) ( ) ( ) 0 ,

0 0 0 0

T

T e

o

H T D T
J

 

 

   

  
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   

    
   
      

    for   = m, b;  

 0 1 1 0

2

, ,1
( ) ( ) ( )

, ,

T

s s T e

o

H T D T
J

 

 

 

  
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     
    

  (39) 

and 
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 
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    
  

     
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1 1

1 1

[ , ( ) , ( ) , ( ) , ( ) ]

o o o o
n n n ns T T T TU U X X

G d X X U U d d     
   

 

 

   
    

      . (40) 

It should be remarked that the contribution of 0 to b has been disregarded in calculating Gb for 

simplicity. Using (9) and (28), the above expressions can be written as: 
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in which 

1
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1
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It can be seen that Gij’s are independent of the element geometry and can be precomputed whilst the 

leverage matrices can be formed by multiplying Gij’s with the nodal vectors 
n

ijX ’s and 
n

ijX ’s. If the 

sub-parametric formulation which is popular in high order elements is employed for better 

computational efficiency, the range of the first index in Gij’s can be reduced.  

      On the other hand, the flexibility matrix can be approximately computed without compromising 

the patch test fulfillment [16, 45]. Besides the derivatives of , all terms in the integrands leading to 

the flexibility matrix are approximated by their counterparts at the element origin. Thus, 

1 1
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   for   = m, b, 
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where 
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It can be seen that the chosen approximations exempt the use of high order numerical integration. By 

condensing β’s thru H G d    , the functional in (36) becomes  

 
1

, ,

1
[ ( ) ( ) ]

2

Te T e

HR RI

i m b s

d K G H G d P  



      (43) 

The element stiffness matrix is within the square brackets. For better computational efficiency, KRI 

can be computed by 1D operations with respect to the set of auxiliary nodes (li,gj) and (gi,lj), see 

Figure 1(b) for the case of cubic element. The coordinates and displacements of the auxiliary nodes 

are obtained from those of the 2D Lobatto nodes by 1D interpolations. The required KRI, defined with 

respect to the 2D Lobatto nodes, can then be obtained by transformation. The same technique has 

also been used in the previous stabilized Lobatto plane and axisymmetric elements [41].  

 

 

7. Numerical Examples 

In this section, most of the numerical examples are conducted to compare the following Lobatto 

element models:  

 LB: the Lobatto element evaluated by LBQ, see Section 3 for details; 

 ANS: the ANS Lobatto element, see Section 4 for details;  

 ANS*: it is essentially the same as ANS except that the natural membrane shear strain are 

sampled at the 2D RGQ, see Section 5 for details;  

 Stab: the stabilized RI Lobatto element, see Section 6 for details.  

 

Section 7.8 will compare LB with the Lagrange elements using equi-spaced and Chebyshev nodes. 

The following relative errors would be employed to quantify the element accuracy:  
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 relative displacement error = 
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where ϕ = {ϕ1, ϕ2}T and the superscript “ref” denotes the reference solutions used to quantify the 

errors. As nodes and RGQ are often regarded as the super-convergent points for the nodal variables 

and stress/strain, they are employed to integrate the displacement/rotation and energy errors, 

respectively. Alternate integration rules are also adopted to evaluate the errors which are supportive 

to the aforementioned super-convergent features. Furthermore, ANS and ANS* are identical in plate 

problems. Their predictions are graphically indistinguishable in some shell examples wherein their 

predictions would not be separately presented.  

Analytical solutions would be employed as the reference solutions for square plate and cylindrical 

shell problems in Sections 6.1 to 6.5. For the hyperbolic shell problem in Section 6.6, highly-

converged solution obtained by 1D finite element discretization would be used. The procedures for 

deriving the reference solutions can be seen in Appendices A to C.  

 

7.1 Hard-simply supported square plate 

      A 2L×2L square plate with all its edges hard-simply supported (i.e. w = θn = 0 where θn is the 

rotation about the outward normal of the pertinent edge) is considered. The transverse loading is q = 

cos(x) sin(x) wherein  = π/(2L). Owing to symmetry, only a quarter of the plate is analyzed as 

shown in Figure 7. The domain is meshed into m×m elements where m = 2, 4, 8 and 16. The 

parameters are E = 106,  = 0.3 and t = 0.1 or 0.001. The analytical solution for this problem is [51]: 

 
4 2

1 1
( )cos( )cos( )
4 2

exactw x y
D C

 
 

   ,  
3

sin( )cos( )1

cos( )sin( )4

exact

x

y

x y

x yD

  

  

   
   

  
  (44) 

where  
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Figure 8(a), (b) and (c) plot result for elements of order nL = 2, 3 and 4, respectively. It can be seen 

that ANS and Stab are 10 to 5000 times more accurate than LB. Moreoever, when t/L changes from 

0.1 to 0.001, both the accuracy and convergence rate of LB deteriorate. On the other hand, the 

accuracy and convergent rate of ANS and Stab are virtually unaffected by the value of t/L.  

 

7.2 Hard-simply supported square plate with distorted mesh 

In this section, the previous example is re-analyzed with distorted mesh as shown in Figure 9. The 

ratio of the element edges is L1: L2: L3: … Lm = 1: 2: 3: …m [9]. Figure 10(a), (b) and (c) plot the 

result for elements of nL = 2, 3 and 4, respectively. From Figure 10(a) and (b) for nL = 2 and 3, it can 

be seen that the displacement errors of ANS and Stab are close when t/L = 0.1. In all other cases, the 

ANS is more accurate than Stab and LB in turn. ANS is virtually unaffected by the value of t/L but 

the predictions of Stab and LB deteriorate when t/L changes from 0.1 to 0.001. Owing to the mesh 

distortion, the relative errors in Figure 10 are typically one order lager than those in Figure 8. Though 

the accuracy of Stab deterioates with the mesh distortion, it is still more accurate than LB in all cases. 

 

7.3 Square plate with boundary layer effect  

The square plate to be considered is shown in Figure 11 [51]. The edges at x = 0 and L are hard-

simply supported. The edges at y = ±L/2 are either clamped or free. The applied transverse loading is 

q = q0 sin(x/L). Other parameters are E = 106, ν = 0.3, L = 1 and t = 0.1 or 0.01. Along y = ±L/2, the 

plate will exhibit boundary layer effect and the layer width is in the order of the thickness [52]. Owing 

to symmetry, only a quarter of the plate is analyzed and meshed into m×2m elements, see Figure 

11(b). To better capture the boundary layer effect, b is taken to be 0.2 and 0.04 for t = 0.1 and 0.01, 

respectively. The analytical shear force Qx and twisting moment Mxy along x = 0 in Appendix A are 

plotted in Figure 12 and 13 when the edges at y = ±L/2 are clamped and free, respectively. The sharp 

changes in Qx and/or Mxy at the points close to y = ±L/2 illustrate the boundary layer effect.  

The plate with clamped edges is first considered. Figure 14(a), (b) and (c) show the results for 

element orders nL = 2, 3 and 4, respectively. The predictions of ANS and Stab are close. They are 

markedly more accurate than those of LB for lower nL and smaller thickness. Also, they are less 

sensitive to the thickness change. The plate with free edges is then considered. Figure 15(a), (b) and 

(c) show the results for element orders nL = 2, 3 and 4, respectively. The observations are similar to 

those of the plate with clamped edges. However, the error of LB is less affected by the thickness 

change. This is well expected as the plate with free edges is less constrained than the plate with 
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clamped edges. Shear locking is less serious.  

  

7.4 Cylindrical shell under pressure 

      In this example, the cylindrical shell of radius R, length 2L and thickness t as shown in Figure 16 

is subjected to pressure loading p = p0 cos(2) wherein p0 = 1 [9, 53, 54]. Other parameters include E 

= 2105, ν = 1/3, R = L = 1 and t = 0.01 and 0.0001. The cases in which the two ends of the shell are 

both clamped and both free are considered. Based on the loading and boundary conditions, the 

displacements and rotations assume the following parametric forms: 
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  (46) 

After integrating with respect to θ, the total potential depends only on X and the analytical solution 

can be derived, see Appendix B. The analytical membrane and bending strains along  = 0 at t = 0.01 

and 0.0001 for clamped ends are shown in Figure 17 whilst those for free ends are shown in Figure 

18. The ratios of the membrane to bending energy are given below: 

For t = 0.01, the ratios are 50.6 and 2.18×10-3 for clamped and free ends, respectively; 

For t = 0.0001, the ratios are 1.23×103 and 0.218×10-3 for clamped and free ends, respectively. 

Thus, the clamped-ends and free-ends cases are dominated by membrane and bending energies, 

respectively. The boundary zone of width in the order of √t is strongly affected by the boundary layer 

effect [53, 54]. This fact is well-echoed in Figures 17 and 18 in which the two strains go up abruptly 

at around 0.1 and 0.01 from the cylinder end. Owing to symmetry, only one eighth of the cylinder is 

modelled by m×m elements where m = 4, 8, 16 and 32. To capture the boundary layer effect, half of 

the elements are employed to model the region of width b next to the cylinder end, see Figure 16(b), 

whilst b is taken to be 0.2 and 0.05 for t = 0.01 and t = 0.0001, respectively.  

     For the shell with clamped ends, the error plots for elements of order nL = 2, 3 and 4 are given in 

Figure 19. When t = 0.01, it can be seen that the ANS, ANS* and Stab yield close results which are 

much more accurate than those of LB. When t = 0.0001, the displacement and rotation errors of Stab 

and ANS* are larger than those of LB under coarse meshes. For nL = 2, the accuracy of ANS is 

slightly better and worse than ANS* and LB, respectively, under coarse meshes. For nL = 3 and 4, 

ANS is most accurate in nearly all error measures. The deterioration in ANS, ANS* and Stab is caused 

by the oscillation in the predicted displacement/rotations. Figure 20 illustrates the oscillation for the 

3rd order ANS* for m = 4 and t = 0.0001. However, the oscillation diminishes at higher mesh density 

whereat the displacement and rotation predictions of ANS, ANS* and Stab catch up with those of 
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LB. On the other hand, the energy predictions of Stab and ANS improve much faster than the 

displacement and rotation predictions.  

For the shell with free ends, the errors plots for elements of order nL = 2, 3 and 4 are given in 

Figure 21. Figure 21(a) shows that the quadratic LB element locks severely. As the element order 

goes up, the result of LB improves. On the other hand, the predictions of Stab and ANS are much 

better than that of LB and they are less sensitive to the change in thickness. From Figures 21(b) and 

(c) for element order nL = 3 and 4, Stab produces more accurate displacement result than ANS while 

ANS is slightly more accurate than Stab in rotation and energy for t = 0.01. When t = 0.0001, the 

results of ANS and Stab are close. The accuracy of ANS and Stab at t = 0.0001 are better than those 

at t = 0.01. However, one should also recall that the meshes at the two thicknesses are different (i.e. 

b = 0.2 and 0.05 for t = 0.01 and 0.0001, respectively) and the boundary layer effect is also thickness 

dependent. Predictions of ANS* are graphically indistinguishable from those of ANS and, thus, are 

not shown separately.  

 

7.5 Cylindrical shell with distorted mesh 

      In this section, the cylindrical shell problem subjected to the same pressure loading is employed 

to study the element performance under distorted mesh. To avoid the interplay of the thickness-

dependent boundary layer effect with the element distortion, the two ends of the cylindrical shell are 

prescribed with symmetric boundary conditions, i.e. 0

XU  and ϕ1 shown in Figure 16 are restrained. 

The analytical solutions for the non-zero displacement and rotation components are 
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which are independent of X. Both regular and distorted elements are set up. Following the practice of 

Reference [9], the distorted m×m mesh shown in Figure 22 with L1: L2: L3: … Lm = 1: 2: 3: …m is 

employed. In this problem, the analytical membrane energy is zero regardless of the thickness.  

      The result based on the regular mesh is first presented. The result for nL = 2 is shown in Figure 

23(a). Predications of ANS and Stab are several order more accurate than LB in all the error measures. 

The accuracy of LB deteriorates severely when the thickness changes from 0.01 to 0.0001 while those 

of ANS and Stab remain virtually intact. Besides, the predictions of ANS and Stab are close. Similar 

trend is observed in Figures 23(b) and (c) for nL = 3 and 4, respectively. 

Next, the result based on the distorted mesh is considered. Figures 24(a), (b) and (c) plot the errors 

for nL = 2, 3 and 4, respectively. Overall speaking, ANS* is close to but marginally more accurate 

than Stab. ANS is considerable and marginally more accurate than LB for t = 0.01 and t = 0.0001, 



19 

respectively. The predications of all elements deteriorate when thickness changes from t = 0.01 to t 

= 0.0001.  

 

7.6 Hyperbolic shell under pressure 

The hyperbolic shell in Figure 25 with mid-surface given by X2 + Z2 = 1+ Y2 is loaded by the 

harmonic pressure p() = p0 cos(2) [7, 9, 55]. Owing to symmetry, one-eighth of the shell (-1  Y  

0; 0  θ  π/2) is meshed into m×m elements where m = 4, 8, 16 and 32. Symmetric boundary 

conditions are applied along the edges AB, BC and CD, see Figure 25(b). To better capture the 

boundary effect, half of the elements are used to model the regions within 6√t and 0.5√t from the 

clamped and free AD, respectively [7, 9]. Regarding the reference solution, the following parametric 

forms can be assumed as a result of the loading and the boundary conditions: 
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 (48) 

After integrating with respect to θ, the potential energy functional is Y-dependent. Though analytical 

solution cannot be derived, highly converged reference solutions can be obtained very efficiently by 

1D finite element discretization, see Appendix C. The solutions are here obtained by 64 sixth order 

1D elements with, again, half of the elements employed in the regions within 6√t and 0.5√t from the 

clamped and free AD, respectively. The membrane and bending shear strains in the reference 

solutions are plotted in Figures 26 and 27 for clamped and free ends, respectively. The ratios of the 

membrane to bending energy are given below: 

For t = 0.01, the ratios are 23.1 and 8.39×10-3 for clamped and free ends, respectively; 

For t = 0.0001, the ratios are 285 and 1.50×10-6 for clamped and free ends, respectively. 

Same as the cylindrical shell in Section 6.4, the problem is dominated by membrane and bending 

energies when the two ends are clamped and free, respectively. For the case with clamped ends, the 

error plots for nL = 2, 3 and 4 are given in Figures 28(a), (b) and (c), respectively. The predictions of 

ANS and ANS* almost overlap except for the displacement and rotation errors under t = 0.0001 and 

nL = 2 and 3. The predictions of quartic ANS and ANS* are graphically indistinguishable. For 

thickness t = 0.01, ANS/ANS* and Stab yield similar result in displacement and energy while the 

rotation error of ANS/ANS* gradually becomes lower than that of Stab after mesh refinement. 

Oscillations similar to but less severe than those of the cylindrical shell with clamped ends are 

observed for Stab and ANS/ANS* under coarse mesh when t = 0.0001. Among the advanced models, 

Stab is least accurate in this example. Overall speaking, ANS is marginally more accurate than ANS*.  

For the case with free ends, the error plots for nL = 2, 3 and 4 are presented in Figures 29(a), (b) 
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and (c), respectively. At t = 0.0001, the problem is highly dominated by bending energy which is 

nearly 1 million times larger than the membrane energy. The relative accuracy of the elements are 

similar to that of the cylinder shell problem under symmetric end conditions, wherein the membrane 

energy is zero, and modelled by distorted mesh in Section 7.5. Stab and ANS* are markedly more 

accurate than ANS. The quadratic LB suffers from locking which is relieved to some extent by 

increasing element order to 3 and 4.  

 

7.7 Eigen Frequencies of a Free Cylindrical Shell Panel 

     Eigen frequencies for the cylinder shell panel which is geometrically the same as ABCD in Figure 

16(a) are computed. The panel is free, i.e., none of the nodal dofs is restrained. The material 

parameters are E = 200×103, ν = 1/3 and ρ = 1. The problem domain is meshed uniformly into 4×4 

quadratic elements or 2×2 quartic elements. Thus, the number of nodes is kept at 9 nodes along each 

side of the domain. The element mass matrix is  

( )T e

LBQM N mN       with    3 3.{ , , , /12, /12}m diag t t t t t     . 

Recalling that LBQ is a nodal integration, the assembled mass matrix is diagonal. The eigen 

frequencies predicted by 4×4 sixth order LB elements are also computed for reference. Figure 30 

plots the lowest 20 non-zero eigen frequencies in increasing order. The predictions of Stab and ANS* 

are close to the reference solution. Those of LB and ANS are respectively much and slightly higher 

than the reference solution, indicating that they are too stiff. On the other hand, the maximum eigen 

frequencies of all elements are very close. In other words, the advanced formulation can soften the 

element stiffness but do not enable a large stable time increment in explicit time integration.  

 

7.8 Comparisons with other Lagrange Elements 

     This subsection will compare LB with Lagrange elements EQ and CB which use equi-spaced and 

Chebyshev nodes, respectively, and integrated by FGQ. Figure 31 shows the errors of the third order 

elements in the hard-simply supported square plate problems considered in Sections 7.1 and 7.2. 

Figure 32 shows the errors of the third order elements in the cylindrical shell problem with symmetry 

end conditions considered in Section 7.5. At t = 0.1, EQ and CB are slightly more accurate than LB 

regardless whether regular or distorted meshes are used. At t = 0.001, the accuracy of EQ and CB are 

still close to but not necessarily slightly higher than that of LB.  By contrasting Figures 31(a), 31(b), 

32(a) and 32(b) with respectively Figures 8(b), 10(b), 23(b) and 24(b), one can see that EQ and CB 

are far less accurate than some of the proposed elements. As a matter of fact, when the third order LB 

element is also evaluated by FGQ, its predictions are identical to that of EQ and CB. This point is not 

surprising as all LB (evaluated by FGQ), EQ and CB employ the same solution basis and integration 
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rule. They should yield the same prediction before the Runge phenomenon [4] occurs. However, LB 

enjoys higher popularity because it is considerably more efficient than EQ and CB by virtue of the 

tensor product feature of the nodal interpolation at the LBQ points.  The aforementioned observations 

on the relative accuracy of LB, EQ and CB on cubic elements also applicable to the fourth order 

elements.  

 

 

8. Closure 

In this paper, assumed natural strain (ANS) and stabilization schemes are developed for quadrilateral 

Lobatto C0 plate/shell problems. It is noted that the reduced order Gaussian quadrature (RGQ) points 

are the super-convergent points of the Lobatto (LB) nodes. Two ANS schemes are devised. Both the 

schemes sample and interpolate the natural membrane normal and transverse shear strain components 

at the 1D RGQ points along the nodal lines whilst all the bending strain components are directly 

sampled at the nodes. In the first ANS scheme, the natural membrane shear strain is also sampled at 

the LB nodes. In the second ANS scheme, the natural membrane shear strain is sampled at the 2D 

RGQ. Hence, the first scheme only requires 1D operations. The stabilization scheme is generalized 

from the hybrid-stabilization method for reduced-integrated elements. It is based on the Hellinger-

Reissner functional with orthogonal lower and higher order stress-resultant modes. Regardless of the 

element order, five higher order stress-resultant modes are sufficient to suppress all the compatible 

spurious zero energy modes. The stabilization vectors can be pre-derived in terms of the element 

nodal information for better computational efficiency. Though all the three schemes are developed 

with respect to LB elements, they are equally applicable to other quadrilateral Lagrange elements. 

      For plate and moderately thick-shell problems, the three schemes yield similar results which are 

considerably more accurate than those yielded by the conventional LB elements. For thin-shell 

problems dominated by bending energy and modelled, or needed to be modelled, by geometrically 

complicated meshes, the second ANS and the stabilization schemes are close in accuracy and 

significantly more accurate than the first ANS scheme and the conventional Lobatto elements. For 

the thin-shell problems dominated by membrane energy and exhibiting boundary effect, oscillations 

occur in the predictions of the advanced elements when coarse meshes are employed. At finer meshes, 

the oscillations disappear and the advanced elements often become more accurate than the 

conventional LB. Similar oscillations also occur in other advanced models [8, 54]. While the first 

ANS scheme is least accurate in bending-dominated thin-shell problems among the three scheme, it 

is essentially the most accurate one in problems dominated by membrane energy and exhibiting 

boundary effect.  
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 The three schemes can readily be used in solid-shell elements. Their predictions are essentially 

identical to those of the present C0 shell elements and are not repeated here. 
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Appendix A: Analytical solutions for C0 square plate problems 

In this appendix, the analytical solution for the square plate with one pair of opposite edges hard-

simply supported is presented. The boundary conditions on other pair of edges are given arbitrarily. 

The displacement components for the C0 plate can be expressed as  

 ( , ) , ( , ) , ( , )x yu z x y v z x y w w x y    .  (A1) 

For isotropic C0 plate under transverse loading, the deflection and rotations satisfying the equilibrium 

equations can be expressed as [56]:  

 2 , ,x y

D F f F f
w F F

C x y y x
 

   
        

   
  (A2) 

In the relations, D and C have been defined in (45) whilst F and f satisfy 

 
4D F q   ,  

2
2 0

12

t
f f

k
    (A3) 

where q is the transverse loading and k is the shear corrector factor, see (17). With q = qo sin(x) and 

 = π/L, F and f can be expressed as: 

 ( )sin( )F Y y x  , ( ) cos( )f Q y x .  (A4) 

using which the boundary conditions w = ϕy = Mx = 0 at x = 0, L are satisfied. Substitution of (A4) 

into (A3) gives  

 

2 4
4 2 0

2 4
2

qd Y d Y
Y

dy dy D
     ,  

2
2

2
0t

d Q
Q

dy
  . (A5) 

where 
2 212 /t k t   . The solutions of Y and Q are 

  0
1 2 3 44
exp( ) exp( ) exp( ) exp( )

q
Y A y A y y A y A y

D
   


        , 

 5 6exp( ) exp( )t tQ A y A y      (A6) 

in which Ai’s are unknown coefficients. Using the six boundary conditions (w = ϕx = ϕy = 0 for clamped 

edges; My = Mxy = Qy = 0 for free edges) at y = ±L/2, the coefficients Ais and, thus, the analytical 

solution can be solved.  

 The expansion of exp(ty) about y = +L/2 up to the linear term of y is exp(tL/2)[1-t(L/2-y)]. 

The expression equals zero as L/2-y = 1/t. For small thickness, 1/t  t/(12k) which indicates that 

the characteristic length of the boundary layer is in the order of thickness.  

 Interested readers may contact the senior author for the Matlab code leading to the reference 

solution. 
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Appendix B: Analytical Solutions for Cylindrical Shell Problems 

In this appendix, the analytical solution for the cylinder shell in Figure 16 under the harmonic pressure  

 0( ) cos( )p p a    (B1) 

where a = 2 will be derived for the C0 shell formulation introduced in Section 3. The solution was 

constructed based on the classical 2D shell models using the exact geometry [53]. More recently, the 

2D shell models underlying the degenerate shell formulations has been investigated [57, 58]. In the 

following, the physical strains for the cylindrical shell will be derived in line with the formulations in 

Section 3 and the analytical solutions arise from the variation of the total potential. Using X and θ to 

describe the geometry of the shell, we have 

 

0

sin( ) , sin( )
2

cos( ) cos( )

o n

X
t

X R X
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 
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   
   

    
   
   

 . (B2) 

From the applied loading and the supporting conditions, the mid-surface displacement and rotation 

components with respect to the cylindrical coordinates can be expressed as [53]: 
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( )sin( )
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  
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.  (B3) 

Thus, 

 
o

X rX rU u e u e u e    ,  
2 2

n

XX

t t
U e e     (B4) 

in which  

 {1,0,0} , {0,cos , sin } , {0,sin ,cos }T T T

X re e e         (B5) 

are the unit base vectors of the cylindrical coordinates. By taking  = X and  =  in (11a-e), covariant 

strain components with respect to (X,,) can be derived as: 

 
0 0 0cos( ) , ( ) cos( ) , ( )sin( )XX Xu a R w av a au Rv a             ,   

 1 1 1cos( ) , ( )cos( ) , ( )sin( )
2 2 2

XX X

t t t
a av w aR a v a R a                   ,   

 ( )cos( ) , ( )sin( )
2 2
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t t
w a v aw R a             .  (B6) 

Let (x, y, z) be the local Cartesian coordinates with its base vectors (eX, eθ, er) thus 

 , 1; , ; ,
2 2

 



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

T

X

X t t
x y e R z    and  0 0

( , , , )
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   
 Y

t
J x y z R  (B7) 

Since the coordinates are orthogonal, 
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and the strain transformation matrixes are 
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2

1 1
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Though (12a,b), the physical strains can be derived to be 
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Comparing with the physical strains in the R-model [53], it can be shown that the strains are almost 

the same despite the difference in the bending strains b

yy  and b

xy . The total potential for the cylinder 

is 
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         (B11) 

After integrating with respect to θ, the total potential only depends on X and can be expressed as 

 11 10 00
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2 2

L L
T TT T

cylinder

L L

q q dX q K q q K q q K q F q dX
 

         L   (B12) 

in which q = {u, v, w, α, β}T, q’ = dq/dX and ( , )q qL  is self-defined and the Ks and F are 
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0{0,0, ,0,0}TF p R  . 

The Euler equation for (B12) is 

 ( ) 0
d

q dX q

 
 

 

L L
  (B13) 

or 

 11 10 10 00( ) 0TK q K K q K q F        (B14) 

The second order equation can be cast into the following first order equation:  
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  (B15) 

where {( ) , }
T T TV q q . The general solution for V is 
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exp( )i i i p

i

V c X V 


     (B16) 

in which cis are constants determined by the boundary conditions at X = ±L, λis and φis are eigenvalues 

and eigenvectors of the system: 
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  (B17) 

Moreover, Vp is the particular solution which can be derived to be 

 {( ) , }T T T

p o oV q q   

where 

2 2 2 2
1 2 20

0 00 3
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q K F R R R
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 
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 
. 

The particular solution is independent of the axial coordinate X. It represents the deformation of an 

infinitely long cylinder or cylinder with symmetric boundary conditions at its two ends. It should be 

noted that cis, λis and φis are complex in general. The characteristic equation for (B17) is obtained 

from the following determinant: 
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The eigenvalues are roots of the characteristic equation. Taking the parameters (k = 5/6, υ = 1/3), the 

characteristic equation is  
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Through the Puiseux expansion, the roots are 
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where i = √-1 and the overbar refers to the complex conjugate of the quantity below. Recalling that 

the general solutions are linear combinations of exp(-λiX), the eigenvalues λ1 ~ λ4 are associated with 

the smooth part of the solution. In addition, the leading terms in λ5 ~ λ8 and λ9 ~ λ10 indicate that they 

are associated with the boundary layers of √t-scale and t-scale, respectively [53]. Comparing the 

eigenvalues in (B19) with that of the R-model in [53], it can be noted that the leading terms of λ1 

through λ8 are the same. This echoes the fact that the present formulation and the R-model deviates 

only slightly from each other in considering the bending strains.  

Interested readers may contact the senior author for the Matlab code leading to the reference 

solution. 
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Appendix C: Reference Solutions for the Hyperbolic Shell Problems 

In this appendix, procedures for obtaining the reference solutions for the hyperbolic shell problems 

is presented for the C0 shell formulation introduced in Section 3. The mid-surface of the hyperbolic 

shell is given by the following equation [7, 55]: 

 2 2 21X Z Y     (C1) 

The two ends are either both clamped or free. The coordinate parameters Y and θ are chosen to 

describe the shell geometry, see Figure 25. The shell mid-surface is  

  cos( ), , sin( )
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which are parallel to the following unit vectors  
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where 
21 2B Y  . The surface unit normal and Xn are  
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The cylindrical coordinate is defined by introducing another two unit vectors to eθ 

 {0,1,0}T

Ye    and  {cos( ),0,sin( )}T

re    (C6) 

From the applied loading 0( ) cos( )p p a   and the supporting conditions, the mid-surface 

displacements and rotations can be expressed as [55]: 
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  (C7) 

where (uY, u, ur) are mid-surface displacement components in the cylindrical coordinate; ϕx and ϕθ 

are rotations defined with respect to the tangential base vectors ex and eθ. Thus 
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By taking ξ = Y and  = θ in (11a-e), the covariant strain components with respect to (Y,θ,) are 

 0 0 0 21
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Let (x, y, z) be the local Cartesian coordinates and their unit base vectors are (ex, eθ, en), then 
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Since the coordinates are orthogonal, 
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The transformation matrixes are 
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Through (12a,b), the physical strains are 
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The total potential for the half hyperboloid (-1 ≤ Y ≤ 0) is 
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After integrating with respect to θ, the total potential only depends on Y. The stationary conditions of 

the potential lead to a system of ODE’s which do not appear to be solvable analytically. However, 

highly-converged reference solution can be obtained efficiently by 1D finite element discretization. 

Interested readers may contact the senior author for the Matlab code leading to the reference solution. 
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(a) (b) 

 

Figure 1. The third order Labotto element: (a) Designations for Lobatto nodes . (b) Reduced order 

Gaussian quadrature points  and auxiliary nodes .  

  

 

 

 

 

Figure 2. The quadratic C0 shell element. 
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(a) (b) 

Figure 3. The sampling points of (a) an improved version of MITC9 and (b) the first ANS scheme.  

denotes node,  denotes the sampling point for 
0

  and , × denotes the sampling point for 
0

 .  

1/3 are the second order Gaussian quadrature points.  

 

 

 

  
(a) (b) 

Figure 4. The sampling points of (a) MITC16 and (b) the first ANS scheme.  denotes node,  

denotes the sampling point for 
0

  and , × denotes the sampling point for 
0

 . (0, 0.6) and 

(0.339…, 0.861…) are the third and fourth order Gaussian quadrature points, respectively.  
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Figure 5. The Lobatto nodes , equispaced nodes * and reduced Gaussian points × for nL = 6 and 

7. 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. (a) Thin beam solution wthin c and thin c, (b) the deflection error (wh
  - wthin)c, (c) the rotation 

error (h - thin)c and (d) the transverse shear hc. The scaling factor c equals 240EI/(qoL4). 
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Figure 7. A quarter of the hard-simply supported square plate meshed into 4×4 regular elements. 
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(b) nL = 3 

 

 
(c) nL = 4 

 

Figure 8. Errors for the square plate problem in Figure 7. 
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Figure 9. The 4×4 distorted mesh for the hard-simply supported square plate problem. 
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(b) nL = 3 

 
(c) nL = 4 

 

Figure 10. Errors for the square plate problem in Figure 9.  

 

 

  
(a) geometry and boundary conditions (b) a graded 4×8 mesh 

 

Figure 11. Square plate with boundary layer effect, L = 1, and the 4×8 graded mesh. 

 

 

 

 

10
3

10
4

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Degrees of freedom

R
e
la

ti
v
e
 d

is
p
la

c
e
m

e
n
t 

e
rr

o
r

10
3

10
4

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Degrees of freedom

R
e
la

ti
v
e
 r

o
ta

ti
o
n
 e

rr
o
r

 

 

LB(t/L=0.1)

ANS(t/L=0.1)

Stab(t/L=0.1)

LB(t/L=0.001)

ANS(t/L=0.001)

Stab(t/L=0.001)

10
3

10
4

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Degrees of freedom

R
e
la

ti
v
e
 e

n
e
rg

y
 e

rr
o
r

x

y

B C

DA

L

L/2

L/2

w
=

ϕ
y
=

0

B C

DA

w
=

ϕ
y
=

0

b

x

y

ϕy

ϕx



40 

  

(a) shear force Qx/q0 (b) twisting moment Mxy/q0 

 

Figure 12. The analytical shear force Qx and twisting moment Mxy along x = 0 when the edges at y = 

L/2 of the square plate in Figure 11 are clamped. 

 

 

 

 

  

(a) shear force Qx/q0 (b) twisting moment Mxy/q0 

 

Figure 13. The analytical shear force Qx and twisting moment Mxy along x = 0 when the edges at y = 

L/2 of the square plate in Figure 11 are free.  
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(a) nL = 2 

 
(b) nL = 3 
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(c) nL = 4 

 

 

Figure 14. Errors for the square plate problem with boundary layer effect and clamped edges at y = 

L/2, see Figure 11.  
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(b) nL = 3 

 

 
(c) nL = 4 

 

 

Figure 15. Errors for the square plate problem with boundary layer effect and free edges at y = L/2, 

see Figure 11.  
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(a) (b) 

 

Figure 16. The cylindrical shell problem and the 8×8 graded mesh. R = L = 1. 
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Figure 17. The analytical axial membrane and bending strains along θ = 0 when the two ends of the 

cylindrical shell in Figure 16 are clamped.  
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Figure 18. The analytical axial membrane and bending strains along θ = 0 when the two ends of the 

cylindrical shell in Figure 16 are free.  
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(b) nL = 3 

 

 
(c) nL = 4 

 

Figure 19. Errors for the cylindrical shell problem in Figure 16 with clamped ends. 
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(a) displacement vector magnitude (b) rotation about the X-axis 

 

Figure 20. Contour of the displacement vector magnitude and rotation about the X-axis when the 

cylindrical shell problem in Figure 16 with clamped ends is modelled by 4×4 graded mesh and cubic 

ANS* element. Nodal lines which are not necessary the element boundaries are also shown. 
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(c) nL = 3 

 

 
(c) nL = 4 

 

Figure 21. Errors for the cylindrical shell problem in Figure 16 with free ends. 
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Figrue 22. Distorted meshes for cylindrical shell problem in Figure 16. 
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(b) nL = 3 

 

 
(a) nL = 4 

 

Figure 23. Errors for the cylindrical shell problem in Figure 16 with symmetric ends and modelled by 

uniform meshes. 
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(a) nL = 2 

 

 
(b) nL = 3 
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(c) nL = 4 

Figure 24. Errors for the cylindrical shell problem in Figure 16 with symmetric ends and modelled by 

distorted meshes illustrated in Figure 22.  
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Figure 25. (a) The hyperbolic shell geometry and (b) the 8×8 graded mesh. 
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(a) 0/m

xy Et p  (b) 
0/b

xy E t p   

 

Figure 26. The reference inplane shear strains along θ = π/4 when the two ends of the hyperbolic 

shell in Figure 25 are clamped. The results are obtained by 64 sixth order 1D elements. 
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Figure 27. The reference inplane shear strains along θ = π/4 when the two ends of the hyperbolic 

shell in Figure 25 are free. The results are obtained by 64 sixth order 1D elements. 
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(a) nL = 2 

 

 
(b) nL = 3 
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(c) nL = 4 

 

Figure 28. Errors for the hyperbolic shell problem in Figure 25 with both end clamped. 
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(b) nL = 3 

 

 
(c) nL = 4 

 

Figure 29. Errors for the hyperbolic shell problem in Figure 25 with both ends free. 
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(a) nL = 2, 4×4 mesh (b) nL = 4, 2×2 mesh 

 

Figure 30. The non-zero frequency parameters /R E   in increasing order for a free cylindrical 

shell panel with the same dimensions as ABCD in Figure 16(a). Uniform 4×4 and 2×2 meshes are 

employed for the quadratic and quartic elements.  
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(a) Regular mesh 

 

 

(b) Distorted mesh 

 

Figure 31. Errors of the third order Lagrange elements defined by Lobatto, equi-spaced “EQ” and 

Chebyshev “CB” nodes in the hard-simply supported square plate problem in Figure 7. (a) Regular 

mesh and (b) the distorted mesh in Figure 9 are employed.  
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(a) Regular mesh 

 

 

(b) Distorted mesh 

 

Figure 32. Errors of the third order Lagrange elements defined by Lobatto, equi-spaced “EQ” and 

Chebyshev “CB” nodes in the cylindrical shell problem in Figure 16 with symmetric ends. (a) Regular 

mesh and (b) the distorted mesh in Figure 22 are employed.  
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