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Speed Acquisition

Abstract

Speed has become a salient feature of modern financial markets. This paper studies investors’
endogenous speed acquisition, alongside their information acquisition. In equilibrium, speed
heterogeneity endogenously arises across investors, temporally fragmenting the price discovery
process. A deterioration in the long-run price informativeness ensues. Various crowding-out
effects drive speed and information to be either substitutes or complements. The model cautions the
possible dysfunction of price discovery: An advancing information technology might complement
speed acquisition, which fragments the price discovery process, thus hurting price informativeness.
Novel predictions are discussed regarding investor composition, fund performance, and trading
volume.
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1 Introduction

Price discovery is a fundamental function of financial markets. It involves two steps. First, investors

acquire information about the asset. Second, via trading, such information is incorporated into

price. The first step determines the amount of information that the price can eventually reflect,

i.e. the magnitude of price discovery. The second step is about the process of how the acquired

information aggregates into price. Speed is an intrinsic characteristic underlying the price discovery

process: Investors race to be the first to reap the information rent.

To date, the literature has mainly emphasized information acquisition, following the pioneering

works by Grossman and Stiglitz (1980) and Verrecchia (1982). This paper complements this canon-

ical perspective with an enriched price discovery process, by studying investors’ speed acquisition

alongside their information acquisition.

The notion of speed roots in the course of financial securities trading. There are three aspects:

First, investors can reach the same trading strategy sooner, by hiring a larger analyst team or buying

more computers to process acquired data. Second, before execution, a trading order needs to

journey through the back office for risk management, due diligence, and compliance. The tightening

regulatory environment in recent years has encumbered this aspect, slowing down trading, and the

associated expenses have been increasing accordingly (Thomson-Reuters, 2017). Third, from

trading desks and onward, the order execution speed depends on investments in computational

hardware and connection to exchange servers. This last aspect has progressed drastically in the last

decade, evidenced by the rise of algorithmic and high-frequency trading technologies.

A set of questions arises regarding the above aspects of trading speed: How much speed

technology should different investors acquire? Is investment in speed favored over information?

Which securities attract more fast investors? What are the implications for the overall quality of

price discovery?

This paper develops a model to address these questions. The model studies an economy
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populated with atomless investors, who first invest in both speed and information technology

and then trade a risky asset. The information technology determines an investor’s private signal

precision about the asset value, while the speed technology allows him to trade ahead of his

peers.1 The rent-seeking investors in the model have incentive to acquire both technologies.

The information technology directly adds to one’s information rent. Indirectly via the speed

technology, the sooner one trades, the less price discovery has already occurred and the more rent

can he extract—a “first-mover advantage”. The equilibrium is found where each investor optimally

acquires the technologies to maximize his information rent, taking into account the investment costs

and the competition from others.

A driving feature of the model is the “temporal fragmentation” effect of the speed technology.

Though all investors want to acquire speed to enjoy the “first-mover advantage”, not everyone

will be equally fast, for otherwise there is no “first-mover” and some will stay slow to save the

speed acquisition cost. Speed heterogeneity thus endogenously arises in equilibrium, with investors

trading at different times. Accordingly, the price discovery process also temporally splits into parts,

e.g., an early fragment with fast investors and a late fragment with the slow.

The fragmented price discovery process delivers novel insights. First, the speed technology

inflicts a nonmonotonic impact on price informativeness. With a more advanced (cheaper) speed

technology, more investors become fast, boosting the early fragment of price discovery. At the

same time, fewer investors remain slow and the late fragment shrinks. The market’s eventual price

informativeness, therefore, can be either improved or hurt, depending on whether the boost (early)

overcomes the decay (late). This result holds even when information acquisition is shut down.

Second, speed and information can be either substitutes or complements. Consider, for example,

1 To fix the idea, consider a hedge fund for example. Its information acquisition involves, e.g., sending analysts for
firm visits, buying various datasets, or developing valuation models. These investments determine the amount and the
quality of the data (signal precision). The speed acquisition covers different aspects: The fund can invest in equipment
or staff to speed up data processing (reaching the same trading strategy sooner), to streamline the back office, and
to expedite order execution at the trading desk. These later investments reduce the time needed to implement trades,
improving trading speed but not affecting the quality of the acquired data (or the implied trading strategies).
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a positive shock in the information technology, upon which all investors acquire more information.

How is the demand for speed affected? The answer depends on the relative change between fast and

slow investors’ rents. As everyone acquires more information, competition intensifies, attenuating

the rents for both the fast and the slow. In addition, the increased early price discovery crowds out

the slow investors (if the fast have done all the price discovery, no rent will be left for the slow.)

Netting these competition effects, if the fast (the slow) are hurt more, some of them are better off

staying slow (becoming fast) instead, in which case speed substitutes (complements) information.

Due to such forces, each technology has a nonmonotonic effect on the demand for the other.

Third, an advancement in information technology can still hurt the long-run price informative-

ness. The key mechanisms at work, as taught by the model, are the temporal fragmentation by the

speed technology and its endogenous complementarity with information. Due to complementarity,

an improving information technology stimulates demand for both information and speed. While

the former improves price informativeness, the latter invokes the temporal fragmentation effect,

whereby the early fragment of price discovery improves but the late fragment deteriorates. When

the decay in the slow fragment dominates, the overall price informativeness is hurt.

The last result above cautions the dysfunction of information aggregation in financial markets.

The “information technology” in the model can be interpreted broadly. For example, recent years

have seen strengthened transparency and disclosure requirements by regulators. Policies like

Sarbanes-Oxley, Regulation Fair Disclosure, and Rule 10b5-1 have arguably reduced the cost of

information acquisition. There is evidence of speed acquisition complementing the accessibility of

information. Du (2015) finds that high-frequency traders are constantly crawling the website of U.S.

SEC in order to trade on the information in latest company filings. Through such a complementarity

channel, this paper argues that transparency and disclosure policies might generate unintended

negative impact on price informativeness.

Some recent empirical evidence echoes this view. Weller (2016) shows that algorithmic trading

has risen at the cost of long-run price discovery. Gider, Schmickler, and Westheide (2016) shows
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how high-frequency trading hurts the predictability of earnings in the far future. To emphasize,

the mechanism put forward in this paper is new. For example, the argument by Weller (2016), and

via equilibrium models by Dugast and Foucault (2017) and by Kendall (2017), is that short-run

(early) price discovery can crowd out the acquisition of more precise information in the long-

run (late)—a substitution effect. In contrast, the mechanism revealed by this paper emphasizes

the endogenous complementarity between information and speed acquisition. As the information

technology advances and incentivizes more investors to acquire speed, the price discovery process

fragments at the cost of the (long-run) magnitude.

Different financial assets are exposed to different levels of information and speed technology.

The model thus also offers cross-sectional predictions of how technology advancement might affect

different assets (e.g., stocks) differently. Bai, Philippon, and Savov (2016) finds a rising trend of the

price informativeness of S&P 500 nonfinancial firms in a half-century sample period starting from

the 1960s. The finding for firms beyond the S&P 500, however, is the opposite. Farboodi, Matray,

and Veldkamp (2017) reproduce the patterns and explain these phenomena through investors’

attention-constrained information acquisition. This paper adds to the discussion that the distinction

in different technologies—speed v.s. information—is important in determining individual stocks’

respective price informativeness over the years.

The model further yields predictions on investor composition across assets. Some assets have

lower information acquisition costs (e.g., higher media exposure and analyst coverage) than others,

thus attracting investors of different speed. For example, heavily regulated mutual funds and

pension funds arguably trade more slowly—due to the time spent on compliance, due diligence,

etc.—than lightly regulated hedge funds and proprietary trading firms.2 This view of hedge funds

being faster than mutual funds is consistent with the evidence of information acquisition timing

2 Hedge funds and proprietary trading firms are also known to invest more in the other two aspects of speed. In
terms of information processing, one most salient trend recently is hedge funds’ massive investment in machine learning
and artificial intelligence; see, e.g., “The Massive Hedge Fund Betting on AI”, September 27, 2017, Bloomberg. In
terms of trading technology, it is well known that many of the high-frequency traders are hedge funds and proprietary
trading firms (SEC, 2010, IV.B).
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shown in Swem (2017). Thus, the model details which assets will attract more hedge funds (fast)

than mutual funds (slow). Specifically, the model predicts that hedge funds’ activity (relative

to mutual funds’) in small, medium, and large stocks has a nonmonotonic pattern, matching the

empirical finding by Griffin and Xu (2009). These results further shed light on the implication of

technology advancements on trading volume and fund performance.

The rest of the paper is organized as follows. Section 2 discusses the related literature. Section 3

sets up the model and Section 4 derives its equilibrium. Section 5 then explores the model

implications on investors’ technology acquisition and on price informativeness. Discussions on

model assumptions, robustness, and extensions are collated in Section 6. Section 7 then concludes.

2 Related literature

This paper builds on a number of models featuring (two) sequential trading rounds: Grundy and

McNichols (1989), Froot, Scharfstein, and Stein (1992), Hirshleifer, Subrahmanyam, and Titman

(1994), Holden and Subrahmanyam (1996, 2002), Brunnermeier (2005), Cespa (2008), Banerjee,

Davis, and Gondhi (2017), and Dugast and Foucault (2017). A distinguishing feature of the current

model is that investors are allowed to engage in costly speed acquisition, separately from the

conventional information acquisition. To compare, in the above, investors either cannot choose

their speed at all or do not invest in speed separately from information:

• In Grundy and McNichols (1989), Brunnermeier (2005), and Cespa (2008), all investors

trade in both rounds. Hence, there is no speed.

• Investors’ speed are exogenously assigned in Froot, Scharfstein, and Stein (1992); Hirshleifer,

Subrahmanyam, and Titman (1994); and Banerjee, Davis, and Gondhi (2017).

• In Holden and Subrahmanyam (1996) and Dugast and Foucault (2017), the notion of speed

appears as a by-product of, hence not separable from, investors’ choice of different information

(short- v.s. long-horizon in the former; and raw v.s. processed signals in the latter).
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• Section IV of Holden and Subrahmanyam (2002) directly models speed by letting investors

choose at a cost to observe and trade on a signal early. However, investors cannot separately

invest in information, as the signal is common across investors and across time (in the current

paper, this is a special case studied in Section 5.2).

With the separation of speed from information, this paper contributes to the literature by identifying

endogenous complementarity or substitution between the two technologies.

This paper highlights that lowering information cost can hurt price informativeness, in an

environment with a single information source.3 A number of the aforementioned papers share

a similar prediction due to some form of “substitution” in different types/sources of information.

For example, in Brunnermeier (2005), the existence of an insider who monopolizes the short-run

information curbs other analysts’ long-run trading aggressiveness; in Dugast and Foucault (2017),

a cheaper raw signal can crowd out investment in the processed signal; in Banerjee, Davis, and

Gondhi (2017), a public disclosure pushes investors to instead learn about others’ beliefs, no longer

about fundamentals. Such substitution does not exist in the current model as there is only one

information source. Instead, it is the (endogenous) complementarity between information and

speed that hurts price informativeness (Section 5.3).4

This paper further contributes to three themes of the literature. First, the literature on costly

information acquisition largely focuses on the magnitude aspect of price discovery, following the

seminal works by Grossman and Stiglitz (1980) and Verrecchia (1982). Recent studies explore

other dimensions. To name a few, Peress (2004, 2011) studies the wealth effect on information

acquisition. Van Nieuwerburgh and Veldkamp (2009, 2010) analyze information acquisition under

3 “A single information source” means that there is no public information (Brunnermeier, 2005; Banerjee, Davis,
and Gondhi, 2017), no independent fundamentals (Froot, Scharfstein, and Stein, 1992), no short- v.s. long-term
information (Holden and Subrahmanyam, 1996), no learning about others’ beliefs (Banerjee, Davis, and Gondhi, 2017)
or about noise (Froot, Scharfstein, and Stein, 1992), or raw v.s. processed signals (Dugast and Foucault, 2017), etc.

4 Hirshleifer, Subrahmanyam, and Titman (1994) and Holden and Subrahmanyam (2002) also have a sole informa-
tion source in their model. While not explicitly studied, cheaper information acquisition cost in those settings would
always lead to higher price informativeness. This is precisely because there is no separate investment in speed and
information, hence no complementarity.
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limited attention. Goldstein and Yang (2015) explore the implication of information diversity. To

compare, the above literature assumes that the market always clears with all investors trading at the

same time—they have the same speed. With endogenous speed acquisition, this paper allows to

study the process of price discovery with investors arriving and trading asynchronously.

Second, the temporal fragmentation (due to speed technology) in this paper differs from the

existing literature on spatial market fragmentation.5 Regarding the focus on price discovery, an

important feature of temporal fragmentation is that information revealed early naturally carries

over to the future—the market never forgets. Such natural accumulation of information over time

is critical in determining the complementarity or substitution between the two technologies. In

a model of multiple venues (spatial fragmentation), there is no naturally directional “flow” of

information from one venue to another (more fundamentally, the notion of speed does not apply to

a spatial setting). Speed therefore touches upon a novel angle of market fragmentation.

Third, this paper lends equilibrium support to the literature with endogenous bundling of speed

and information acquisition. The model predicts that fast investors always acquire more information

than the slow. This is because price discovery always accumulates over time and the same piece

of information has higher marginal benefit the sooner it is traded. This insight justifies a popular

connotation for fast traders that they are also more informed. See, e.g., models by Hoffmann

(2014), Biais, Foucault, and Moinas (2015), and Budish, Cramton, and Shim (2015); evidence by

Brogaard, Hendershott, and Riordan (2014) and Shkilko and Sokolov (2016); and surveys by Biais

and Foucault (2014), O’Hara (2015), and Menkveld (2016).

In a different line, investors’ speed choice has been studied in limit order models with discrete

prices. Examples include Yao and Ye (2017) and Wang and Ye (2017). The main driving feature

5 For example, Admati (1985), Pasquariello (2007), Boulatov, Hendershott, and Livdan (2013), Goldstein, Li,
and Yang (2014), Cespa and Foucault (2014), among many others, study information and cross-market learning of
correlated assets. Pagano (1989), Chowdhry and Nanda (1991), and Baruch, Karolyi, and Lemmon (2007) study
trading of the same asset on different venues (e.g., dual-listed stocks). More recently, market fragmentation has been
theorized in the context of dark v.s. lit trading mechanisms, as in Ye (2011), Zhu (2014), Brolley (2016), and Buti,
Rindi, and Werner (2017). Finally, Chao, Yao, and Ye (2017a,b) study the competition among exchanges by zooming
in on fee structure and tick size.
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is the binding tick size which limits investors’ competition on price and as a result they turn to

speed competition. The current paper focuses on investors’ incentive to acquire speed due to the

transitory nature of information advantage.

3 Model

Assets. There is a risky asset and a risk-free numéraire. At the end of the game, each unit of

the risky asset will pay off a normally distributed random amount V units of the numéraire. The

unconditional expectation EV is normalized to 0 and let varV = τ−1
0 (> 0).

Investors. There is a unity continuum of atomless investors, indexed by i ∈ [0, 1]. They have

constant absolute risk-aversion (CARA) preference with the same risk-aversion coefficient γ (> 0).

There is no endowment or initial inventory position.

Speed technology. An investor i can invest in a speed technology to affect his trading time ti

(see “Timeline” below). Without investing in speed, all investors are slow, trading at ti = 2. One

can instead become fast and trade at ti = 1 by paying 1/дt units of the numéraire. The exogenous

parameter дt (> 0) measures the level of speed technology. The larger is дt , the more advanced

(cheaper) is the technology.

Information technology. Before trading, each investor i observes a private signal Si about the

payoffV . Specifically, Si = V +εi , where εi is normally distributed with zero mean and variance h−1
i

(> 0), independent ofV and any other εj,i . The investor i can spendmi (≥ 0) units of the numéraire

on an information technology to improve his private signal precision:

hi = дhkh(mi),

where kh(·) is twice-differentiable, concave, and strictly monotone increasing; and дh (≥ 0) is a

parameter measuring the marginal productivity of this information technology. Without investing

in this technology, the investor gets no signal; i.e. kh(0) = 0.
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Due to the monotonicity of kh(·), an investor’s information acquisition can be referred to as

either hi (the precision) or mi (the cost) interchangeably: There exists a weakly convex, monotone

increasing information acquisition cost function c(·), so that ∀hi ≥ 0,

mi = c(hi) := kh−1(hi/дh).

To ensure that there is always some information in the market, let Ûc(0) = 0; equivalently, Ûkh(0) → ∞.

Timeline. There are four dates in the model: t ∈ {0, 1, 2, 3}, illustrated in Figure 1. At t = 0,

all investors independently invest in technologies ti and hi . Time t ∈ {1, 2} are trading rounds.

The set of investors {i | ti = t } arrive at t together and they independently submit demand sched-

ules {xi(pt ; ·)} to trade the risky asset, based on his information set—private signal si and the public

history of past prices. Specifically, at t = 1 only fast investors arrive and trade. Finally, at t = 3,

the risky asset liquidates at V and all investors consume their terminal wealth.

Trading. In each trading round t ∈ {1, 2} there is noise demand Ut , which is independent of all

other random variables and is i.i.d. normally distributed with zero mean and variance τ−1
U (> 0).

The aggregate demand at t is

Lt (p) =
∫
i∈[0,1]

xi(p; ·)1{ti=t}di +Ut .(1)

t = 2t = 0t = −1

Invest in speed
and information

Submit demand
schedule to trade

t = 1

Trading rounds Consume ter-
minal wealth

Figure 1: Timeline of the game. The model has four dates: t ∈ {0, 1, 2, 3}. At t = 0, all investors invest
in technology; at t ∈ {1, 2}, investors arrive in the market at the time according to their speed technology
and submit their demand schedules to trade the risky asset; finally, at t = 3 the risky asset liquidates and all
investors consume their terminal wealth.
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There is a competitive market maker, who clears the market at all times at the efficient price given

all historical public information (as in Kyle, 1985). Thus, the trading price in each round t is

Pt = E
[
V
�� {Lr (·)}r≤t ] .(2)

This setup is consistent with, among many others, Hirshleifer, Subrahmanyam, and Titman (1994);

Vives (1995); Holden and Subrahmanyam (1996); and Cespa (2008).

Strategy and equilibrium definition. To sum up, each investor maximizes his expected utility

over the final wealth by optimizing his demand xi(·) upon trading; and, backwardly, by choosing

his technology pair (ti ,hi) ∈ {1, 2} × [0,∞) at t = 0.6

Denote by π (ti ,hi) the investor i’s ex ante certainty equivalent (whose functional form will be

derived below). Define P := {(ti ,hi)}i∈[0,1] as the collection of all investors’ investment policies.

A Nash equilibrium is a collection P, such that for any investor i ∈ [0, 1], fixing P\(ti ,hi), he has

π (ti ,hi) ≥ π (t ,h), ∀(t ,h) ∈ {1, 2} × [0,∞).

Remarks regarding the model setup:

Remark 1 (Interpreting speed). The speed technology is fairly stylized in the model, as it only

generates two relative speed tiers, t ∈ {1, 2}. The time differential (between t = 1 and t = 2)

can be interpreted according to any one of the following three real-world speed levels.

• High-frequency speed (in subseconds to minutes). An investor (institution) can improve his

high-frequency speed by investing in the trading desk—algorithms, colocation to exchange

servers, optic-fibre cables, and microwave towers.

• Medium-frequency speed (in hours to days). When implementing a trading idea, analysts

and managers in an institution are subject to due diligence and regulatory compliance, which

can take hours if not days, especially when the trading order is large. This process can be

expedited by staffing additional personnel in the back office.

6 An investor can in fact mix between ti ∈ {1, 2} by choosing probability µi ∈ [0, 1] to acquire speed (become fast
and trade at ti = 1). Hence, equivalently, an investor’s investment decision can be written as (µi ,hi ) ∈ [0, 1] × [0,∞).
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• Low-frequency speed (in days to weeks). Processing raw data to form a trading idea takes

time. For example, a firm’s announcement might affect the projections of future cash flows.

It can take teams of analysts days or weeks to update such fundamentals. Recruiting more

analysts or investing in more advanced computers can speed up this process.

Remark 2 (Who is fast). Based on the above three frequencies of speed, this paper argues that

hedge funds fit the fast investors in the model, while the slow investors can be mutual funds or

pension funds. Hedge funds’ high-frequency speed advantage arises from their investment in

trading technology. SEC (2010) defines high-frequency traders as proprietary trading firms or

hedge funds. The medium-frequency speed differential can be attributed to different regulatory

requirement. Mutual funds are registered with the U.S. Securities and Exchanges Commission

(SEC) and are subject to time-consuming regulatory compliance, risk control, and bookkeeping.

Hedge funds, on the other hand, are not under such regulatory scrutiny, thus able to expeditiously

trade on their signals. Under the low-frequency interpretation, the fast investors process

information sooner than the slow and should lead subsequent returns. Swem (2017) documents

that hedge funds acquire information ahead of sell-side analysts, who are then followed by other

buy-side institutions.

Remark 3 (Modeling choices). Three assumptions are highlighted here: (1) fast investors only

trading at t = 1; (2) the fixed population size; and (3) the competitive market maker. These

assumptions are made purposefully to, and only to, pinpoint the novel economic mechanisms

as the analysis proceeds. In Section 6, three extensions relax these assumptions respectively:

(1) to allow fast investors trade also more frequently; (2) to endogenize investor participation;

(2) to replace the competitive market maker with a fringe of uninformed investors. Both the key

mechanisms and the main results of the paper are shown to stand robust to these extensions.

Remark 4 (Orthogonal technologies). The model assumes that the information technology is or-

thogonal to the speed technology (дt and дh are exogenous parameters, independent of each

other). This is an intentional choice, so that the comparative static analyses will help isolate
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the effect of one technology against the other. In reality, the two technologies will likely affect

each other. Section 6.4 studies such interdependence and its implications.

Remark 5 (The amount of noise trading). The amount of noise trading at t ∈ {1, 2} is assumed

to be the same (i.i.d. {Ut }). Depending on the interpretation of “speed”, it is possible that the

noise trading size changes over time. Section 6.5 accounts for time-varying noise trading and

demonstrates the robustness of the results.

4 Equilibrium analysis

Investors’ optimal trading is first derived in Section 4.1 and then their technology acquisition

studied in Section 4.2. Two benchmarks, respectively with only information and only speed, are

also discussed in Section 4.3.

4.1 Optimal trading

Fix all other investors’ strategies and consider an investor i with technology (ti ,hi). At t = ti , he

chooses his demand schedule xi to maximize his expected utility over final wealth:

xi ∈ arg max
xi
E
[
−e−γ ·(V−Pt )xi |V + εi = si , Pt , Pt−1, ...

]
where Pt is given by the market maker’s efficient pricing as in Equation (2). Note that the investor

also observes the price history {Pt−1, ...} (with P0 = EV = 0). Standard conjecture-and-verify

analysis as in Vives (1995) yields the following lemma.

Lemma 1 (Trading under “pure speed differential”). For any technology pair (ti ,hi), an

investor i with signal si submits the optimal linear demand schedule at t = ti:

xi =
hi
γ

(
si − pti

)
.
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His certainty equivalent at the time of technology investment (t = 0) is

π (ti ,hi) =
1
2γ

ln
(
1 +

hi
τti

)
− c(hi) −

2 − ti
дt
,(3)

where the price informativeness τt := var[V | {Lr (·)}∀r≤t ]−1 satisfies the recursion of

∆τt = τt − τt−1 =

(∫
{tj=t}

hj

γ
dj

)2

τU(4)

with the initial value τ0 = (varV )−1. The equilibrium price Pt satisfies the recursion of

∆Pt = Pt − Pt−1 =
∆τt
τt

©«V + γUt∫
{tj=t} hjdj

− Pt−1
ª®¬(5)

with initial value P0 = EV (= 0).

An investor’s demand xi scales with the difference between his private signal and the trading price

(si − Pti ), where the scaling factor hi/γ—his trading aggressiveness—increases with the precision

of his signal and decreases with his risk-aversion. His certainty equivalent has three components:

The first term represents the information rent due to his private information, while the second and

the third term correspond to the cost of information and speed acquisition, respectively.

Note that slow investors (ti = 2) do not (directly) trade on the fast round price p1, thanks to

the competitive market maker who sets p2 while recalling the information from t = 1 trading. As

such, from a slow investor’s perspective, observing only p2 is as good as observing both p1 and p2.

This Markov feature inherits from Vives (1995) and dates back to Kyle (1985), where the dynamic

equilibrium only uses the contemporaneous price pt as a state variable, not the entire price history.

4.2 Optimal technology acquisition

The next step is to find investors’ optimal technology investment. Consider first the information

acquisition hi by an investor i whose speed is given at ti = t . Since an investor is atomlessly small,

his individual information acquisition hi does not affect the price informativeness τt . To maximize

his certainty equivalent, he takes τt as given and chooses his information precision hi according to
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the first-order condition of Equation (3):

1
2γ

1
τt + hi

− Ûc(hi) = 0,(6)

which has a unique solution h(τti ), satisfying the second-order condition, thanks to the convexity

of the cost c(·); see the “Information technology” paragraph in Section 3. By symmetry, therefore,

all investors of the same speed ti = t ∈ {1, 2} acquire the same amount of information: hF = h(τ1)

for the fast and hS = h(τ2) for the slow.

The investor’s speed acquisition then boils down to comparing the ex ante certainty equivalents:

πF =
1
2γ

ln
(
1 +

hF

τ1

)
− c(hF) −

1
дt

;

πS =
1
2γ

ln
(
1 +

hS

τ2

)
− c(hS).

(7)

If πF > πS, all investors will acquire speed and become fast (a corner solution); and vice versa. In

an interior equilibrium, the break-even condition πF = πS must hold so that no investor has incentive

to change his speed.

To investigate how πF ≶ πS is affected by investors’ speed acquisition, define

µF :=
∫
i∈[0,1]

1{ti=1}di and µS :=
∫
i∈[0,1]

1{ti=2}di

as the population sizes for the fast and the slow, respectively. By construction, µF + µS = 1. The

price informativeness τt recursion (Equation 4) can then be rewritten as

∆τ1 =
τU

γ 2h
2
Fµ

2
F and ∆τ2 =

τU

γ 2h
2
Sµ

2
S.(8)

These increments, ∆τ1 and ∆τ2, are referred to as the “early fragment” and the “late fragment” of

price discovery, respectively. In contrast, τ1 and τ2 are cumulative and are called the “short-run”

and the “long-run price informativeness”, respectively.7 The certainty equivalents (3) are therefore

affected by the sizes of fast and slow investors.

There are four equilibrium objects: investors’ (aggregate) speed acquisition µF and µS; and their
7 The labels of “short-run” v.s. “long-run” are only in a relative sense that t = 2 occurs after t = 1. See the high-,

medium-, and low-frequency interpretations of speed in Remark 1.
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information acquisition hF and hS. The following proposition states the result.

Proposition 1 (Equilibrium under “pure speed differential”). There exists a unique equilib-

rium P, depending on the speed technology дt relative to a threshold д̂t (> 0, see the proof):

Case 1 (corner). When дt ≤ д̂t , all investors invest in (ti ,hi) = (2,hS), where hS and τ2

uniquely solve the first-order condition (6) and the recursion (8) with µF = 0 and µS = 1.

Case 2 (interior). When дt > д̂t , a mass µF ∈ (0, 1) of investors invest in (ti ,hi) = (1,hF),

while the rest µ2 investors invest in (ti ,hi) = (2,hS), such that {hF,hS, µF, µS} uniquely solve the

following equation system:

Optimal information acquisition:
1
2γ

1
τ1 + hF

− Ûc(hF) =
1
2γ

1
τ2 + hS

− Ûc(hS) = 0;

Indifference in speed: πF = πS;

Population size identity: µF + µS = 1;

where the expressions of τ and π are given by Equations (7) and (8).

The equilibrium depends on the level of speed technology: When дt ≤ д̂t , investing in speed is too

costly for any investor and nobody acquires speed in equilibrium. Only for sufficiently advanced

speed technology (дt > д̂t ) will there be some investors acquiring speed.8 In fact, this same intuition

holds in the other way:

Corollary 1. Fixing the speed technology дt , there exists a threshold д̂h such that the equilibrium

is interior if and only if дh ≥ д̂h.

That is, when the information technology is too poor, the benefit in information rent of becoming

fast is not sufficient to compensate for the cost of acquiring speed. As such, all investors stay slow.

Several immediate features of this equilibrium are worth highlighting. First, the convexity of

the information acquisition cost c(·) implies that h(τ ) is decreasing in τ (implicit function theorem
8 However, there are always non-zero mass of investors staying slow (µS > 0). To see the reason, suppose there is

an equilibrium where all investors are fast, i.e., µF = 1 and µS = 0. In this case there is no price discovery in the late
fragment, i.e., τ1 = τ2. Equation (7) then suggests that the marginal fast investor is strictly better off if he instead does
not invest in the speed technology, saving the speed acquisition cost 1/дt . Hence, some fast investors will deviate to
staying slow.
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applied to Equation 6). As such, fast investors always acquire more information than the slow:

hF ≥ hS.(9)

This is because the price discovery process is always cumulative: τ2 ≥ τ1, as the market never

forgets whatever has been revealed (∆τt ≥ 0 by Equation 8). The earlier an investor can trade,

the less price discovery the market has seen and the more valuable is his private information. To

take this advantage, fast investors always have stronger incentive to acquire more information. This

equilibrium result supports a popular connotation for fast traders that they are also more informed;

see Menkveld (2016) for a survey of both theory and evidence.

Second, note that the price discovery ∆τ is nonlinear in the population size µ of the trading

round. Under the current parametrization, fixing hF and hS, ∆τ is convexly increasing in µ. Such

convexity, inherent from Grossman and Stiglitz (1980) and Verrecchia (1982), suggests that price

discovery has increasing returns to scale: Each marginal informed investor’s trading resolves

increasingly more uncertainty (from noise trading).

Finally, the population size pair µF and µS has an alternative interpretation: Investors’ ex ante

probability mix between becoming fast or staying slow. At t = 0, each investor independently

chooses to acquire (ti ,hi) = (1,hF) with probability µF or to acquire (2,hS) with probability µS =

1 − µF. Under this interpretation, µF ∈ [0, 1] is an individual investor’s demand for speed, while

µFhF + µShS is his demand for information.

4.3 Two benchmarks

In order to provide a clear contrast of the results, Section 5 will begin with two constrained versions

of the model, where the acquisition of one of the two technologies is shut down. The following two

corollaries provide the existence and the uniqueness of equilibrium in these two benchmarks. As

both are special cases of Proposition 1, for brevity, their proofs are omitted.
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Corollary 2 (Benchmark 1: exogenous speed). Fix each investor’s speed ti with exogenous µF

and µS (= 1 − µF). Then there exists a unique equilibrium in which fast and slow investors’

information acquisition, hF and hS, solve the first-order conditions (6).

When the speed technology is not available, only the interior case of Proposition 1 is relevant.

Further, since the investors cannot choose speed, the indifference condition πF = πS becomes

irrelevant. Only the “optimal information acquisition” condition remains.

Corollary 3 (Benchmark 2: exogenous information). Fix fast and slow investors’ information

acquisition at hF and hS, respectively. Then there exists a unique equilibrium, depending on the

speed technology дt relative to a threshold д̂t (> 0):

Case 1 (corner). When дt ≤ д̂t , all investors stay slow with µF = 0 and µS = 1.

Case 2 (interior). When дt > д̂t , a mass µF ∈ (0, 1) of investors acquire speed and become

fast, while the rest µS stay slow. The equilibrium population sizes {µF, µS} uniquely solve πF = πS

and µF + µS = 1.

Corollary 3 is also a special case of Proposition 1, where the “optimal information acquisition”

condition is dropped in the interior equilibrium as investors’ signal precision are exogenously fixed.

5 Equilibrium properties and implications

This section studies investors’ endogenous technology acquisition and the effects on market quality.

Three issues stand out: How does an advancement in one technology affect 1) investors’ investment

in it, 2) investors’ investment in the other technology, and 3) the overall price informativeness.

In order to isolate the different implications of the two technologies, the analysis begins by

exploring the two benchmarks: Section 5.1 switches off speed acquisition and Section 5.2 infor-

mation. Section 5.3 then studies the joint effects. As a preview, the results are summarized in

Table 1. The shaded cells highlight the key findings: [1] the temporal fragmentation of speed
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(1) Information acquisition (2) Speed acquisition (3) Price informativeness

hF hS
∫ 1
0 hidi µF µS

∫ 1
0 1{ti=1}di τ1 τ2

(a) Exogenous speed and endogenous information (Section 5.1)

дh: ↗ ↗ ↗ ↗ ↗

(b) Exogenous information and endogenous speed (Section 5.2)

дt : ↗ ↘ ↗ ↗ ↘↗[1]

(c) Endogenous speed and endogenous information (Section 5.3)

дh: ↗ ↗ ↗ ↗↘ ↘↗ ↗↘[2] ↗ ↘↗[3]

дt : ↘ ↗↘ ↗↘[2] ↗ ↘ ↗ ↗ ↘↗

Table 1: Summary of effects of technology shocks. This table summarizes how technology affects the
market in terms of (1) investors’ information acquisition; (2) speed acquisition; and (3) price informativeness.
Both the short-run (hF, µF, and τ1) and the long-run (hS, µS, and τ2) effects are shown, together with investors’
aggregate demand for information (

∫ 1
0 hidi) and for speed (

∫ 1
0 1{ti=1}di). Three settings are considered:

investors (a) have exogenous speed but can endogenously acquire information; (b) have exogenous information
but can endogenously acquire speed; and (c) can endogenously acquire both speed and information. Each
row represents a positive shock in the respective technology, дh for information andдt for speed. A monotone
increasing (decreasing) response to the shock is indicated by ↗ (↘), while a hump-shape (U-shape) by
↗↘ (↘↗). Shaded cells highlight the key findings.

(Proposition 4); [2] the complementarity and substitution between speed and information (Propo-

sition 5); and [3] the non-monotone effect of information technology on price informativeness

(Proposition 6). A number of model applications are then discussed in Section 5.3.4 in the context

of empirical predictions and existing evidence.

5.1 Information acquisition with exogenous speed

This subsection sets the benchmark where investors with fixed speed can only acquire information.

The equilibrium corresponds to Corollary 2. That is, there is a fixed mass µF ∈ [0, 1] of investors

who are fast (ti = 1) and the rest µS = 1 − µF investors slow (ti = 2). All results are with respect to
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the information technology дh (see Panel (a) of Table 1).

Proposition 2 (Information technology and information acquisition). Fix the fast and the

slow investors’ sizes µF and µS. As the information technology дh increases, both the fast and the

slow investors individually acquire more information: ∂hi/∂дh > 0 for i ∈ {F, S}.

The result is not surprising. As дh increases, each investor can acquire more precise information at

the same expense. That is, information becomes relatively cheaper and all investors, fast or slow,

acquire more of it. Panel (a) of Figure 2 illustrates this effect. The red-dashed line also plots the

total information acquisition in the economy,
∫
i∈[0,1] hidi = µFhF + µShS.

As all investors acquire more information, the price becomes more efficient as well:

Corollary 4 (Information technology and price informativeness). Fix the fast and the slow

investors’ sizes µF and µS. As the information technology дh increases, both the short-run and

the long-run price informativeness improve. Mathematically, ∂τ1/∂дh > 0 and ∂τ2/∂дh > 0.

Recall from Equation (8) that ∆τ = τUh
2µ2/γ 2. Because the population sizes {µF, µS} are exoge-

nously fixed and because information acquisition hi monotonically increases with дh, so does the

price discovery ∆τ . Panel (b) of Figure 2 graphically illustrates the corollary.

5.2 Speed acquisition with exogenous information

This subsection sets the other benchmark, where investors have endowed signals with fixed precision

hi = h◦ (> 0) but can endogenously acquire speed. The equilibrium corresponds to Corollary 3.

All results, summarized in Panel (b) of Table 1, are with respect to the speed technology дt .

A better speed technology дt reduces investors’ cost to be fast. The usual price effect applies

and the demand for speed increases accordingly, as illustrated in Panel (a) of Figure 3.

Proposition 3 (Speed technology and speed acquisition). Fix all investors’ signal precision

at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances, more investors

acquire speed: ∂µF/∂дt > 0.
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Figure 2: Varying information technology with fixed speed. Panel (a) shows how information tech-
nology дh affects individual investors’ information acquisition hi and Panel (b) price informativeness τt .
The red-dashed line in Panel (a) plots the aggregate demand for information

∫
i ∈[0,1] hidi. The primitive

parameters used are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √
m. The fast investor’s population size is

fixed at µF = 0.4; and, hence, µS = 0.6.
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Figure 3: Varying speed technology with fixed information. Panel (a) shows how speed technology дt
affects individual investors’ speed acquisition ti and Panel (b) price informativeness τt . To the right of the
vertical dashed line, the equilibrium is interior (with both fast and slow investors). The primitive parameters
are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. The common signal precision is fixed at h◦ = 0.1.
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As more investors acquire speed, the short-run price informativeness τ1 increases. However,

the speed technology exerts a non-monotone effect on the long-run τ2, as shown in Panel (b) of

Figure 3. This is because the speed technology temporally fragments price discovery. When the

speed technology is affordable (beyond the threshold д̂t ), a fraction µF of the investors become fast

and trade at t = 1, while the rest µS (= 1 − µF) stay slow and trade at t = 2. The price discovery

process accordingly fragments into an early ∆τ1 and a late ∆τ2. From Equation (8), the early

fragment increases with дt :

∆τ1 =
τU

γ 2h
2
◦µ

2
F,

as µF is increasing with дt (Proposition 3). However, the late fragment drops:

∆τ2 =
τU

γ 2h
2
◦µ

2
S =

τU

γ 2h
2
◦ · (1 − µF)2.

The long-run τ2 = τ0 + ∆τ1 + ∆τ2 is subject to the joint force of both fragments of price discovery

and, therefore, exhibits a nonmonotonic trend in the speed technology дt . This result is highlighted

in “[1]” in Table 1 and formally stated below.

Proposition 4 (Speed technology and price informativeness). Fix all investors’ signal preci-

sion at hi = h◦ (> 0). In the interior equilibrium, as the speed technology дt advances, the

short-run price informativeness τ1 monotonically increases, while the long-run τ2 first decreases

and then increases. Mathematically, ∂τ1/∂дt > 0; and ∂τ2/∂дt < 0 (> 0) for small (large) дt .

In particular, Proposition 4 describes that the long-run price informativeness τ2 as U-shape inдt .

This U-shape arises from the fact that each fragment of price discovery, ∆τ , is a convex function in

the population size µ. That is, price discovery has increasing returns to scale, consistent with, e.g.,

Grossman and Stiglitz (1980), Hellwig (1980), and Verrecchia (1982). Therefore, the impact of a

marginal change in µ (due to speed technology) on τ depends on the initial level of µ. For example,

when µF close to zero and µS to one (when дt ↓ д̂t ), a small increase in speed dдt prompts a small

population dµF to move from slow to fast. The resulting loss in the late fragment ∆τ2 is much larger
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than the gain in the early ∆τ1:

dτ2 =
∂τ2
∂µF

dµF =

(
∂∆τ1
∂µF

+
∂∆τ2
∂µF

)
dµF =

τU

γ 2h
2
◦
∂

∂µF

(
µ2

F + µ
2
S

)
︸           ︷︷           ︸

=2(2µF−1)<0 for µF close to 0

dµF < 0.(10)

The reverse holds true when µF is close to one and µS close to zero.

To sum up, Proposition 4 builds on three robust elements. First, price discovery has increasing

returns to scale, i.e., ∆τt being convex in µt , which is a generic feature in the rational expectations

equilibrium literature. Second, the fast investors only contribute to the early fragment ∆τ1, not the

late ∆τ2. Section 6.1 shows that this separation does not depend on the assumption that the fast

only trade at t = 1. Even when allowed to trade at both dates, they still only trade on private signals

at t = 1 (and uninformatively rebalance at t = 2). The intuition is that hoarding information in

a competitive setting is suboptimal as the value of the signal is eroded overtime. Third, when µF

increases, µS drops. This is by construction in the current setting as the population size is fixed.

Section 6.2 shows this is robust even when investor participation is endogenous (free entry).

Section IV of Holden and Subrahmanyam (2002) studies a similar model to this benchmark. The

temporal fragmentation effect exists in their setting as well but is unflagged (they do not study price

informativeness). Compared to the setup in Section 3, the key difference is that investors’ speed

acquisition is fixed and bundled with information in their setting. The separation of information

and speed is key in this paper and generates novel implications, as explored in Section 5.3 below.

5.3 Interaction between speed and information technology

Both speed and information are now made available to investors, and Proposition 1 holds together

with Corollary 1. Suppose there is an advancement in one technology. The discussion below

focuses three effects: 1) investors’ acquisition in this technology; 2) investors’ acquisition in the

other technology; and 3) the price discovery function of the financial market.
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5.3.1 Own-price effect: Acquisition in the advancing technology

When a technology advances (cheaper), the first-order effect is its own-price effect: increased

demand responding to a lower price, consistent with Proposition 2 and 3.

Proposition 2 (continued). Whether investors’ speed acquisition is exogenous or endogenous,

in the interior equilibrium, investors’ information acquisition monotonically increases with the

information technology: ∂hi/∂дh > 0 for i ∈ {F, S}.

Proposition 3 (continued). Whether investors’ information acquisition is exogenous or endoge-

nous, in the interior equilibrium, as the speed technology advances, more investors acquire

speed: ∂µF/∂дt > 0.

Panel (a) and (b) of Figure 4 illustrate this intuitive own-price effect of the speed and the information

technology. The patterns are qualitatively similar with Panel (a) in Figure 2 and in 3.

5.3.2 Cross-price effect: Are speed and information substitutes or complements?

The cross-price effects are graphed in Panel (c) and (d) in Figure 4. In both panels, it can be seen

that the aggregate demand for one technology is first increasing but eventually decreasing when the

other improves: The technologies can be either complements or substitutes.

Proposition 5 (Complementarity and substitution between speed and information). In the

interior equilibrium, as one technology increases, fixing the other, investors’ aggregate speed and

information acquisition are initially complements but eventually substitutes. Mathematically,

∂µF/∂дh > 0 (< 0) for small (large) дh; and ∂(µFhF + µShS)/∂дt > 0 (< 0) for small (large) дt .

In addition, ∂hF/∂дt < 0; but ∂hS/∂дt > 0 (< 0) for small (large) дt .

Such non-monotone cross-price effects are driven by various crowding-out forces—an increase

in price informativeness τt hurts the certainty equivalent of whoever trades at or after t (Equation 7;

Grossman and Stiglitz, 1980). Consider Panel (c) for example. An advancement in information дh
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Figure 4: Technology acquisition. This figure illustrates how investors’ technology acquisition (demand
for speed and for information) are affected differently by levels of technologies. Panel (a) and (b) show
the technologies’ own-price effect. Panel (c) and (d) show the cross-price effect. The vertical dashed lines
indicate the thresholds of the corresponding technology, below which all investors stay slow. The red-dashed
lines in Panel (a) and (d) are the aggregate demand for information in the economy,

∫
i ∈[0,1] hidi. The

primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √
m.

For Panel (b) and (d), дh = 0.2. For Panel (a) and (c), дt = 10.0.
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stimulates all investors to acquire more information (Proposition 2). Three crowding-out effects

arise: (1) intratemporally the fast at t = 1 crowd out each other; (1) similarly the slow at t = 2

crowd out each other; and (3) intertemporally the fast crowd out the slow. The first effect hurts

fast investors’ rent πF, making them less willing to acquire speed—reducing demand for speed.

The second and the third effects hurt the slow, pushing them to compete with the fast at t = 1

instead—raising demand for speed. It is these countervailing crowding-out effects that drive the

net demand for the two technologies.9

This is the second contribution of the model, highlighted in “[2]” in Table 1. It reveals that

the intrinsic complementarity and substitution between the two technologies are driven by various

crowding-out effects, both intratemporal and interteporal.

5.3.3 Technology and price discovery

The effects of the technologies on price informativeness τt are illustrated in Figure 5. The patterns

shown in Panel (a) are qualitatively similar to those shown in Panel (b) of Figure 3.

Proposition 4 (continued). Whether investors’ information acquisition is exogenous or endoge-

nous, in the interior equilibrium, as the speed technology дt advances, the short-run price

informativeness τ1 monotonically increases, while the long-run τ2 initially decreases but even-

tually increases. Mathematically, ∂τ1/∂дt > 0; and ∂τ2/∂дt < 0 (> 0) for small (large) дt .

This suggests that even with endogenous information acquisition, the speed technology’s temporal

fragmentation effect dominates.

Turning to the information technology, Panel (b) of Figure 5 contrasts Panel (b) of Figure 2.

Notably, information technology can hurt overall price informativeness τ2.
9 When the information technology дh is low (close to д̂h), there are very few fast investors (µF close to zero).

Therefore, Effect (2) dominates, stimulating slow investors to acquire speed and move to t = 1. As more investors
have acquired speed, Effect (3) strengthens and the remaining slow investors have growing incentive to become fast.
These two forces result in complementarity between speed and information. However, when there are too many fast
investors, Effect (1) dominates: Each individual fast investor’s rent is hurt too much by advancement in дh . When it is
no longer profitable to acquire speed, information substitutes speed, as shown in Panel (c). Panel (d) can be explained
with these three crowding-out effects similarly.
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Figure 5: Price informativeness. This figure illustrates how the aggregate price informativeness τt is
affected differently by different technologies. Panel (a) shows the response to varying speed technology дt
and Panel (b) to information technologyдh . To manifest the patterns, only the range with interior equilibrium
is shown; i.e. дt > д̂t in Panel (a) and дh > д̂h in Panel (b). Further, the vertical axis in Panel (b) is split into
two ranges, respectively, for the long-run and the short-run price informativeness. The primitive parameters
used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a), дh = 0.2.
For Panel (b), дt = 10.0.

Proposition 6 (Information technology and price informativeness). In the interior equilib-

rium, advancement in the information technology always improves short-run informativeness τ1.

However, with endogenous speed acquisition, long-run informativeness τ2 is initially hurt but

eventually improved. Mathematically, ∂τ1/∂дh > 0; and ∂τ2/∂дh < 0 (> 0) for small (large) дh.

To see how information technology can hurt price informativeness, recall: [1] that speed technology

temporally fragments price discovery; and [2] that the two technologies can exhibit complementarity

(дh close to the threshold д̂h). Therefore, when дh improves from д̂h, due to the complementarity,

investors acquire both speed and information. The temporal fragmentation of the price discovery

process ensues, hurting the long-run price informativeness τ2.
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To see the above intuition mathematically, decompose τ2 into

τ2 = τ0 + ∆τ1 + ∆τ2 = τ0 +
τU

γ 2

(
µ2

Fh
2
F + µ

2
Sh

2
S

)
.

There are four equilibrium objects affected by a (positive) shock in дh: {hF,hS, µF, µS}. The direct

effects on information acquisition are ∂hF
∂дh
> 0 and ∂hS

∂дh
> 0, as shown in Panel (a) of Figure 4

(Proposition 2). Indirectly, speed acquisition complements information when дh is close to д̂h, i.e.,
∂µF
∂дh
> 0 and ∂µS

∂дh
< 0, as shown in Panel (c) of Figure 4 (Proposition 5). It turns out that the

dominating effect is the the drop in µS:

∂τ2
∂дh

≈ ∂τ2
∂µF

∂µF

∂дh
+
∂τ2
∂µS

∂µS

∂дh
=

2τU

γ 2 h2
F µF
∂µF

∂дh︸ ︷︷ ︸
↓0

+
2τU

γ 2 h2
S µS
∂µS

∂дh︸ ︷︷ ︸
<0

< 0,

as when дh is close to д̂h, µF close to zero and µS to one. Note that the above is essentially the same

temporal fragmentation effect analyzed in Equation (10).

This is the third key finding of the model, highlighted in “[3]” in Table 1. It cautions against

how information technology might negatively impact price informativeness, through the channel

of speed acquisition. A number of recent studies share qualitatively similar caveats. For example,

Dugast and Foucault (2017) and Kendall (2017) show that the acquisition of raw information

can crowd out processed information, thus hurting the overall price informativeness. Banerjee,

Davis, and Gondhi (2017) show that a public announcement could worsen price informativeness,

because investors would switch to learning about others’ beliefs instead of the fundamental. Both

mechanisms feature some substitution between information of different sources. To compare, the

novel mechanism revealed here is due to the joint effect of the endogenous complementarity between

information and speed (Proposition 5) and the temporal fragmentation of speed (Proposition 4).

Note that the effect does not exist if speed acquisition is shutdown; c.f. Panel (a) of Table 1 and

Panel (b) of Figure 2.
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5.3.4 Applications

The propositions developed above yield a number of applied results. The applications build on the

interpretation (Remark 1 and 2) that the fast investors can be thought of as hedge funds, who trade

on information sooner than mutual funds at various frequencies.

Investor composition. The contrast between Panel (b) and (c) of Figure 4 produces testable

predictions on investor composition—hedge funds’ participation in different securities’ trading. In

the equity market, for example, some stocks have higher analyst coverage and more media exposure

than others. Investors’ information acquisition cost in these stocks should be relatively lower. An

empiricist can sort stocks according to their analyst coverage or media exposure. The proportion of

fast investors (hedge funds or proprietary trading firms) should exhibit a hump-shape, similar to the

pattern outlined in Panel (c). To the extent that large stocks have higher analyst coverage and media

exposure, the predicted hump-shape exactly matches the empirical finding by Griffin and Xu (2009,

Figure 3). Following speed technology boosts (e.g., the democratization of microwave transmission

in late 2012; see Shkilko and Sokolov, 2016), one should see holdings by fast investors, by and

large, increase as shown in Panel (b).

Investment in information. Similarly, the comparison between Panel (a) and (d) of Figure 4

yields predictions on investors’ information acquisition. Notably, upon a speed technology shock,

fast investors like hedge funds reduce their individual information acquisition, while slow ones

like mutual funds’ responses are uncertain. This prediction complements the literature in two

ways. First, it specifically establishes an endogenous link between speed and investors’ information

acquisition (the two technologies are by construction orthogonal; Remark 4). To compare, for

example, Holden and Subrahmanyam (2002) bundle speed and information, while Dugast and

Foucault (2017) assume an exogenous tradeoff between raw (fast) and processed information

(slow). Second, it looks at an investor’s individual signal precision, conditional on his speed. For

example, in Holden and Subrahmanyam (1996, 2002), investors learn precisely about the asset
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payoff by paying a fixed cost, rather than choosing the amount of information to affect signal

precision. Similarly, in Dugast and Foucault (2017), neither a fast or a slow investor can invest

more to acquire higher precision.

To test this prediction, an empiricist should focus on an exogenous speed shock and needs to

observe investors’ individual information acquisition before and after. Under the high-frequency

interpretation of speed, for example, a speed technology shock can be the technology upgrade

by an exchange. While directly observing institutions’ information acquisition expenditure might

be difficult, the profit and loss can serve as a rough proxy as presumably there is a monotone

relationship between information precision and trading profit.

Fund performance. The model predicts that hedge fund (fast) and mutual fund (slow) perfor-

mances are affected differently by technologies. An investor’s (a fund’s) trading performance can

be measured as

E[(V − P1)xi(si , P1)] =
hF

γτ1
, if i is fast (ti = 1);

E[(V − P2)xi(si , P2)] =
hS

γτ2
, if i is slow (ti = 2).

Note that the performance can be equivalently interpreted as the return predictability of funds’

holdings: cov[V − Pt ,xi] = E[(V − Pt )xi]. Intuitively, a fund’s performance (information rent) is

higher if and only if it predicts future return more precisely.

Panel (a) of Figure 6 shows that the speed technology monotonically hurts fast funds ’ perfor-

mance. That is, the return predictability of their holdings lowers with the speed technology. This is

due to the intensified crowding out effect among the fast at t = 1. Instead, slow funds’ performance

is non-monotonically affected: The initial increase is due to the reduced competition at t = 2 (as

some investors have acquired speed and traded early). The eventual decrease is because there have

been too many fast trading, extracting most of the informational rent, and by the time the slow

investors trade there is not much rent left.

Panel (b) shows that both fast and slow investors’ performance exhibit hump-shapes in infor-
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Figure 6: Fund performance. This figure illustrates fast and slow funds’ performance. The level of the
speed technologyдt varies in Panel (a), while the level of the information technologyдh varies in Panel (b). In
each panel, the blue-solid (the red-dashed) line shows the expected trading profit for the fast (the slow). The
primitive parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m.
For Panel (a), дh = 0.2. For Panel (b), дt = 10.0.

mation technology дh. Due to the initial complementarity, more traders acquire both speed and

information. This reduces the intratemporal competition among the slow, improving their perfor-

mance. In the meantime, the increasing information technology overcomes the mild competition

among the fast, also improving their performance. However, as all traders acquire more and more

information, prices become very revealing, eventually crowding out everyone’s rent. Both the fast

and the slow funds’ performance worsens.

Trading volume. The aggregate trading volume across investors of speed-t is given by∫
i∈[0,1]

1{ti=t} |x(si ,pt )|di = µFE

����htγ (si − pt )
���� = µtht

γ

√
2

(τt + ht )π
,

where µt and ht are the population size and the individual information acquisition of speed-t

investors. Figure 7 below shows how the aggregate trading volume is affected by technologies.
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(a) Varying speed technology дt
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(b) Varying information technology дh
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Figure 7: Trading volume and technologies. This figure illustrates how trading volume is affected
differently by different technologies. The level of the speed technology дt varies in Panel (a), while the
level of the information technology дh varies in Panel (b). Fast and slow investors’ aggregate volume are
separately plotted in each panel. The primitive parameters used in this numerical illustration are: τ0 = 1.0,
τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a), дh = 0.2. For Panel (b), дt = 10.0.

As either technology improves, hedge funds’ (fast) total trading volume monotonically increases.

The main driver is the fast population size µF. In the case of an increasing дt , this is a direct

effect of cheaper speed technology. In the case of an increasing дh, µF grows initially due to the

complementarity. While eventually information starts to substitute speed (µF starts to decrease

with дh), each fast investors’ trading aggressiveness hF/γ increases and dominates.

The pattern, however, differs for mutual funds’ (slow) total trading volume. As speed tech-

nology дt increases, more investors become fast and fewer remain slow, reducing the total trading

volume. As information technology дh increases, mutual funds’ volume is first increasing, then

decreasing, and finally increasing again. The increasing ranges—when дh < д̂h and eventually дh

sufficiently large—are due to improved signal precision hS, which make each individual investor

trade more aggressively. The decreasing range is due to the complementarity between information
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and speed: Better information prompts more investors to acquire speed and become fast.

6 Discussion and robustness

This section studies some model extensions (Remark 3) and demonstrates robustness of the results.

Section 6.1 allows the fast investors to trade more frequently. Section 6.2 endogenizes population

size. Section 6.3 replaces the competitive market maker with a fringe of uninformed investors.

Section 6.4 studies the interdependence between the two technologies. Section 6.5 considers

time-varying noise trading.

6.1 Frequent fast trading

There are two aspects of being fast: to trade early and to trade frequently. The baseline model

focuses on trading early, restricting the fast to trade only at t = 1. This appears to be critical for the

temporal fragmentation effect (Section 5.2): If the fast trade at t ∈ {1, 2} (more frequently), will

they contribute to price discovery “smoothly” overtime, overturning the fragmentation effect?

The answer is no. Section A in Supplementary Material studies such an extension, keeping all

other model structure as in the baseline. It is shown that all results regarding investors’ trading

stated in Lemma 1 remain the same. Notably, an investor’s cumulative demand in round t holds

in the same form of xit =
hi
γ (si − p2); that is, he is trading on the signal-price difference and

amplifies/dampens this difference with his risk-aversion adjusted signal precision. As such, a fast

investor’s net demand at t = 2 isxi2−xi1 = hi
γ (p1−p2), which does not depend on his private signal si .

He simply rebalances his position based on the new price p2 and reveals no new information at

t = 2. Intuitively, hoarding information in a competitive setting is suboptimal, as the value of

the signal is eroded overtime. As a result, the recursions of price informativeness τt and of the

price pt remain exactly the same as in Equation (4) and (5). The temporal fragmentation effect

(Proposition 4) still holds.
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In fact, the only difference this extension creates lies in the fast investors’ certainty equivalent:

πF =
1
2γ

ln

(
1 +

hF

τ1
+
h2

F

τ 2
2

∆τ2
τ1

)
− c(hF) −

1
дt
.(11)

Compared to Equation (7), there arises an extra term inside the ln(·) operator. This positive

term represents fast investors’ additional information rent from trading again at t = 2. This only

difference does not alter any of the key intuition in the baseline. All results studied in Section 5

go through this extension. Figure 8 graphically demonstrate the main results (corresponding to the

highlighted ones in Table 1).

6.2 Endogenous population size

In the baseline model, the population size is fixed at µF + µS = 1. This appears to “mechanically”

create the temporal fragmentation effect: As the speed technology prompts investors to acquire

speed, a higher µF implies a lower µS, thus temporally fragmenting price discovery.

An extension in Section B in Supplementary Material studies the robustness of the results by

endogenizing total investor population size. The analysis is briefly summarized here. Compared to

the baseline, the only modification is the set of investors: There is a continuum of investors indexed

on i ∈ [0,∞), and following the literature (see, e.g., Bolton, Santos, and Scheinkman, 2016),

they are sorted according to their reservation value R(i) for not trading. Specifically, if investor i

chooses not to trade, he obtains a certainty equivalent of R(i), which is monotone increasing in i.

Equivalently, R(i) can be interpreted as investor i’s entry cost and ∀i < j, investor i has higher

comparative advantage in trading. To ensure participation, normalize R(0) = 0.

As no other model assumptions are changed, investors trade just like in the baseline and Lemma 1

holds. Further, the (interior) equilibrium is pinned down by conditions similar to those stated in

Proposition 1. Each investor optimizes his signal precision according to first-order conditions

∂πF/∂hF = ∂πS/∂hS = 0; and should be indifferent between fast or slow: πF − R(i) = πS − R(i).
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The condition that determines the total population size is

R(µF + µS) = πF = πS,

which says that the marginal investor is indifferent between trading or not. Equivalently, if the

monotonicity of R(·) is strict, µF + µS = R−1(πF) = R−1(πS). To compare, the population size

condition under the baseline is µF + µS = 1.

Consider a speed technology shock in дt , after which µF increases (more fast investors). To

illustrate intuition clearly, assume information acquisition is exogenous as in Section 5.2. More fast

investors imply more price discovery in the short-run; i.e., ∆τ1 increases. This crowds out slow

investors because τ2 = τ0 + ∆τ1 + ∆τ2. Having resolved more price discovery at t = 1, there is less

information rent left for the slow. Therefore, there will be fewer slow investors, µS decreases—the

temporal fragmentation effect.10

The key intuition behind the robustness of temporal fragmentation is simply that the fast and

the slow compete for the same piece of pie. When the speed technology benefits the fast, some of

the slow are hurt (relative to the fast) and therefore must be crowded out from t = 2. Either they

become fast as in the benchmark where the total population is fixed, or they stay out of trading

under endogenous entry. Figure 9 graphically reproduces the main results of the baseline model.

6.3 The market clearing mechanism

Investors’ demand schedules are cleared by a competitive market maker, who can take any position

at the efficient price. The purpose of having such a market maker is that he helps ensure the trading

price pt is always semi-strong efficient (as in Kyle, 1985; and Vives, 1995) and this suits the focus

on price informativeness of this study.

10 More rigorously, the result can be proved by contradiction. Suppose µS (weakly) also increases with дt . Then the
marginal investors’ certainty equivalent πS = πF = R(µF + µS) must increase to support the additional entry. Notably,
a higher πS can only be achieved with a lower τ2 (less price discovery, hence more information rent left; Equation 7).
But this leads to a contradiction as the increasing µF and µS imply a higher τ2: more informed investors, more price
discovery. Thus, a higher µF must be accompanied by a lower µS.
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A market maker is not the only way to facilitate trading. An alternative is to determine the

pricept by market clearing, as in Grossman and Stiglitz (1980) and Verrecchia (1982). An extension

in Section C of Supplementary Material re-examines the model with the competitive market maker

replaced by a fringe of uninformed investors of mass n. All other model specifications remain the

same as in Section 3. It is shown that an informed investor i’s cumulative demand at round t always

has the well-known form

xit =
hi
γ
(si −mt ) − ait · (pt −mt )

where pt is the market clearing price,mt := E[V | pt ,pt−1, ... ] is the semi-strong efficient price, and

ai,t is some constant up to investor i and time t . Note that this generalizes the baseline demand,

because when the competitive market maker exists and sets pt =mt , the above demand reduces to

xit =
hi
γ (si − pt ) as seen in Lemma 1.

It turns out that under this setup all results studied in Section 5 remain robust. Figure 10

graphically illustrate the main ones. Notably, as investors still trade on private signals si with the

same aggressiveness as in the baseline, the price discovery recursion of ∆τt remains the same as

stated in Equation (8). It should be emphasized that allowing frequent fast trading in this setting

still does not affect price discovery. This is because fast investors’ net demand at t = 2, xF2 − xF1,

does not depend on the private signal si—they only contribute to the early fragment of price

discovery ∆τ1. This is consistent with Section 6.1: At t = 2, a fast investor trades again only to

rebalance his holding according to the new price p2, not to recycle his private information.

6.4 Dependence between the two technologies

In the model, the acquisition of one technology does not affect the cost of the other (Remark 4).

Such independence need not necessarily be the case. The two can complement each other, for

example, because both technologies require common hardware (CPUs, cables, and optical fiber,

etc.). Having invested for one technology can reduce the cost for the other (e.g., дh increases in дt ).
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Figure 8: Robustness: Main results under frequent fast trading. This figure demonstrates that under
frequent fast trading, the three key results stand robust: Panel (a) and (b) replicate Panel (c)d and (d) of
Figure 4 and show that the two technologies can be either complements or substitutes. Panel (c) and (d)
replicate Figure 5, showing that both technologies can hurt price informativeness. The primitive parameters
used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m. For Panel (a) and (c),
дh = 0.2. For Panel (b) and (d), дt = 10.0.
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Figure 9: Robustness: Main results under endogenous population size. This figure demonstrates that
under endogenous population size, the three key results stand robust: Panel (a) and (b) replicate Panel (c)d
and (d) of Figure 4 and show that the two technologies can be either complements or substitutes. Panel (c)
and (d) replicate Figure 5, showing that both technologies can hurt price informativeness. The primitive
parameters used in this numerical illustration are: τ0 = 1.0, τU = 4.0, γ = 0.1, kh(m) = √

m, and R(i) = i.
For Panel (a) and (c), дh = 0.2. For Panel (b) and (d), дt = 10.0.
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Figure 10: Robustness: Main results with uninformed investors replacing the competitive market
maker. This figure demonstrates that with uninformed investors replacing the competitive market maker, the
three key results stand robust: Panel (a) and (b) replicate Panel (c)d and (d) of Figure 4 and show that the two
technologies can be either complements or substitutes. Panel (c) and (d) replicate Figure 5, showing that both
technologies can hurt price informativeness. The primitive parameters used in this numerical illustration
are: τ0 = 1.0, τU = 4.0, γ = 0.1, kh(m) = √

m, and n = 1.0. For Panel (a) and (c), дh = 0.2. For Panel (b)
and (d), дt = 10.0.
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This feature is often seen in the algorithmic and high-frequency trading literature, where investors

pay for a “bundled” advantage in both information and speed (see Menkveld, 2016 for a review).

Substitution between the two is also possible. Dugast and Foucault (2017) argue that because

processing information takes time, investors trading on “processed” information are intrinsically

slower than those trading on “raw” information. That is, investing in one technology might increase

the (marginal) cost for the other (e.g., дh decreases in дt ).

Exactly how speed and information technologies interfere with each other is perhaps a ques-

tion of engineering and computer science. The current model sets a baseline with independent

technologies—an agnostic view. The outcomes of the model, therefore, offer a clean set of pre-

dictions on investors’ endogenous demand for the two technologies, as opposed to the exogenous,

built-in substitution/complementarity.

One can use the current model as a starting point to study implications of built-in substitution

or complementarity between the two technologies. Figure 11 plots price informativeness τ1 (blue-

solid line) and τ2 (red-dashed line) on a contour of (дt ,дh).11 When there is complementarity, the

effect of an increase in one technology can be examined by, e.g., the left (green) arrow in the figure

(дh increases from 0.15 to 0.16, while дt increases from about 10 to 100). If instead the substitution

of the technologies dominates, the effect can be seen from, e.g., the right (blue) arrow (дh mildly

increases from 0.125 to 0.135, while дt drops sharply from about 4,000 to 50). In both examples,

note that the long-run price informativeness τ2 (blue-solid contour lines) drops. Note that the right

(blue) arrow is consistent with Dugast and Foucault (2017) and Kendall (2017), who show that

when processing information takes time, better information might hurt price informativeness.

11 Note the pattern shown is consistent with Figure 5: Moving right on a horizontal cut of Figure 11, the information
technology дh is fixed and as the speed technology дt improves, the short-run price informativeness τ1 monotonically
increases, while the long-run price informativeness τ2 first decreases and then increases. Moving upward on a vertical
cut, дt is fixed and as дh increases, τ1 monotonically increases but τ2 first decreases and then increases.
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Figure 11: Price informativeness plotted against both technologies. This contour graph plots how the
long-run price informativeness τ2, in blue-solid line, and the short-run price informativeness τ1, in red-
dashed line, vary with the two technologies, дt and дh . The two arrows illustrates the different effects of
an information technology advancement. The left arrow (green) shows complementarity between the two,
while the right arrow (blue) shows substitution. The primitive parameters used in this numerical illustration
are: τ0 = 1.0, τU = 4.0, γ = 0.1, and kh(m) = √

m.

6.5 The amount of noise trading

Introducing noise trading Ut in each round is a standard practice to avoid a fully revealing equi-

librium. The current setup assumes the same magnitude for both noises: var[Ut ] = τ−1
U for

all t ∈ {1, 2}. It is straightforward to account for time-varying noise trading by allowing time-

dependent var[Ut ] = τU
−1
t . The key economic insights of the model are unaffected. First, irre-

spective of noise trading sizes, the speed technology creates “temporal fragmentation”: Adapting

the price informativeness recursion (Equation 8) yields τ2 = τ0 +
τU1
γ 2 µ

2
Fh

2
F +

τU2
γ 2 µ

2
Sh

2
S. The price

discovery process is still fragmented into the early and the late parts, but with time-varying τU in

each. Second, the complementarity and substitution between the technologies depend only on the
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Figure 12: Time varying noise trading. This figure illustrates how different amount of noise trading τU1
and τU2 affects the long-run price discovery, τ2, when the information technology varies. Three levels of
noise trading are illustrated: τUt ∈ {2.0, 4.0, 6.0}. Panel (a) varies τU1 while fixing τU2 = 4.0. Panel (b)
varies τU2 while fixing τU1 = 4.0. The other primitive parameters used in this numerical illustration are:
τ0 = 1.0, γ = 0.1, and kh(m) = √

m.

relative strength of various crowding-out effects. Having different sizes of noises only affects the

thresholds of when and which effect dominates. Indeed, all analyses in Section 5 qualitatively go

through. For example, Figure 12 illustrates that the qualitative predictions of 6 remain robust about

the long-run informativeness τ2. (Other results are omitted for brevity.)

The underlying assumption for such (possibly time-varying) exogenous noise trading is that

some investors in the economy (unmodeled) have no flexibility at all in terms of how much and

when to trade. Endogenizing such “noise trading”, making such “noise” demand either price-elastic

or timing sensitive, will lead to richer predictions. For example, the noise may arise from investors’

hedging demand (Diamond and Verrecchia, 1981). Such extensions are are left for future research.
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7 Conclusion

There are two aspects of price discovery: the magnitude and the process. The magnitude aspect

(investors’ information acquisition) has been a key focus of the extant literature. This paper studies

a model with investors’ endogenous speed acquisition, alongside their information acquisition.

The focus is turned to the process of price discovery, i.e., the process through which acquired

information is incorporated into price.

The analysis reveals that these two aspects of price discovery are intrinsically connected via in-

vestors’ competition. There are two key mechanisms at work: First, investors endogenously acquire

heterogeneous speed and participate in the market at different times. The price discovery process

is accordingly fragmented over time. Second, investors’ information and speed acquisition can be

either complements or substitutes of each other, depending on the relative strengths of competition

effects (crowding-out forces). Based on the interaction of these two mechanisms, the model gener-

ates testable implications for how technologies could affect various market quality. Most notably,

when either the speed or the information technology improves, the price informativeness can be

hurt. This provides a cautionary tale of the disruptive effects of how technological advancement,

as seen in recent years, might negatively affect the price discovery function of financial markets.
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Appendix

Proofs

For notation simplicity, the proofs will often use µ1 = µF, µ2 = µS, h1 = hF, h2 = hS, π1 = πF,
and π2 = πS. This way, the subscript t = 1 can handily refer to both the time t = 1 and the “F”ast
investors; and similarly, t = 2 refers to both the time t = 2 and the “S”low investors.

Lemma 1

Proof. The proof proceeds by conjecture-and-verify (as in Vives, 1995). Conjecture that a fast
investor i’s demand schedule is xi = ai,1si − bi,1p1 and that a slow investor i’s demand schedule is
xi = ai,2si − bi,2p1 − ci,2p2. At t = 1, with only the fast investors, the aggregate demand is

L1(p1) =
∫
i∈[0,1]

xi(p1, si)1{ti=1}di +U1 =

(∫
ti=1

ai,1di
)
V −

(∫
ti=1

bi,1di
)
p1 +U1,

where the convention
∫
εidi = 0 is used. From the market maker’s perspective, the sufficient

summary statistic, therefore, is the intercept of the above linear demand, which can be transformed
into z1 := V +U1/

(∫
ti=1 ai,1di

)
. Therefore, using standard property of normal distribution,

τ1 = var[V | L1(·) ]−1 = τ0 +

(∫
ti=1

ai,1di
)2
τU.(12)

The incremental price discovery is ∆τ1 =
(∫

ti=1 ai,1di
)2
τU. The maker maker sets the efficient price

p1 = E[V | L1(·) ] = E[V | | z1 ] =
τ0
τ1
p0 +

∆τ1
τ1

z1.(13)

As such, the trading price p1 is an equivalent statistic of z1. From a fast investor’s perspective,
var[V | si ,p1 ]−1 = var[V | si , z1 ]−1 = hi+τ1 andE[V | si ,p1 ] = E[V | si , z1 ] = (τ0p0+hisi+∆τ1z1)/(τ1+

hi). Using the above, a CARA fast investor i’s optimal demand is

xi =
E[V | si ,p1 ] − p1

γvar[s1,p1]
=

1
γ
(hisi + ∆τ1z1 − (τ0 + hi + ∆τ1)p1) =

hi
γ
(si − p1).

(Recall the normalization p0 = 0.) The conjectured linear demand xi = ai,1si − bi,1p1 for fast
investors has thus been verified with coefficients ai,1 = bi,1 = h/γ .

43



At t = 2, only slow investors trade and the aggregate demand is

L2(p2;p1) =
∫
i∈[0,1]

xi(p2, si ;p1)1{ti=2}di +U2

=

(∫
ti=2

ai,2di
)
V −

(∫
ti=2

bi,2di
)
p1 −

(∫
ti=2

ci,2di
)
p2 +U2,

Recallingp1, the market maker updates his information set to {p1, z2}, wherez2 := V+U2/
(∫

ti=2 ai,2di
)

summarizes the new information in L2(·). Then,

τ2 = var[V | p1,L2(·) ]−1 = var[V | z1, z2 ]−1 = τ1 +

(∫
ti=2

ai,2di
)2
τU,(14)

where the incremental price discovery ∆τ2 =
(∫

ti=2 ai,2di
)2
τU. The market maker then sets the

efficient price

p2 = E[V | p1,L2(·) ] = E[V | z1, z2 ] =
τ0
τ2
p0 +

∆τ1
τ2

z1 +
∆τ2
τ2

z2.(15)

A slow investor updates var[V | si ,p1,p2 ]−1 = var[V | si , z1, z2 ]−1 = h1 + τ2 and E[V | si ,p1,p2 ] =
E[V | si , z1, z2 ] = (τ0p0 +∆τ1z1 +∆τ2z2 +hisi)/(τ2 +hi). Solving a quadratic optimization problem,
a CARA slow investor’s optimal demand is

xi =
E[V | si ,p1,p2 ] − p2

γvar[s1,p1,p2]
=

1
γ
(hisi + ∆τ1z1 + ∆τ2z2 − (τ0 + ∆τ1 + ∆τ2 + hi)p2) =

hi
γ
(si − p2).

Thus the conjectured linear demand for slow investors is also verified with coefficients ai,2 = ci,2 =
hi/γ and bi,2 = 0. That is, the slow investor’s demand is independent of p1.

The analysis so far has proved the investors’ optimal demand as stated in the lemma. In the
meantime, Equations (12) through (15) verify the recursion systems of pt and ∆τt . It remains to
compute the investors’ ex ante certainty equivalent. Consider a fast investor. Before accounting
for the technology acquisition cost, his expected utility at t = 0 is −E

[
exp

{
− [E[V | si,p1 ]−p1]2

2var[V | si,p1 ]
}]
. The

expressions derived earlier yield the following: E[V | si ,p1 ] − p1 =
hi

τ1+hi

(
τ0
τ1
V + εi − ∆τ1

τ1

U1∫
tj=1(hj/γ )dj

)
and var[V | si ,p1 ]−1 = τ1 + hi . Plug the above into the t = 0 expected utility for a fast investor,
simplify, and the resulting ex ante certainty equivalent before technology acquisition costs is
1
2γ ln

(
1 + hi

τ1

)
. Subtracting the information acquisition cost and the speed acquisition cost gives

the expression stated in the lemma. The calculation for slow investors repeats the above and is
omitted. □
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Proposition 1

Proof. The proof begins by writing investors’ certainty equivalent π1 and π2 as functions of the fast
population size µ1 in [0, 1]. To do this, first note that from the first-order condition (6), investors’
endogenous choice of hi can be written as a monotone function of τti . By Lemma 1, τ1 = τ0 + ∆τ1

and τ2 = τ0 + ∆τ2, where ∆τt = τUµ
2
t h

2
t /γ 2. Hence, τ1 is effectively a function of µ1, while τ2

of both µ1 and µ2. Finally, note that µ2 = 1 − µ1. As such, investors’ certainty equivalent πt are
functions of µ1. Then, depending on µ1, there are three cases.
Case 1: First, suppose µ1 = 1 and µ2 = 0; i.e. all investors pay the speed technology cost 1/дt

and become fast. If this is the case, then in equilibrium π1 ≥ π2 must hold. Consider
an investor i’s unilateral deviation to not investing in the speed technology, saving the
cost of 1/дt and becomes slow. By Equation (4), the price informativeness remains the
same, τ1 = τ2, because a single investor’s deviation has zero population measure. Then i’s
optimal technology investmenthi , by the first-order condition (6), remains the same as if he
were fast: hi = h(τ2) = h(τ1) = h1. As a result, his certainty equivalent π2 = π1+1/дt > π1

and he indeed will deviate. Such a case of µ1 = 1 and µ2 = 0, therefore, can never be an
equilibrium.

Case2: Second, consider the case of µ1 = 0 and µ2 = 1. (This will correspond to the corner
equilibrium stated in the proposition.) If this is an equilibrium, it has to be the case
that π1 ≤ π2, i.e., all investors stay slow. The argument below shows that fixing all
other exogenous parameters, π1 ≤ π2 holds if and only if дt < д̂t , for some threshold д̂t .
At µ1 = 0, τ1 = τ0 < τ2 and thus a slow investor’s unilateral deviation to fast yields
π1 |µ1=0 =

1
2γ ln

(
1 + h1

τ0

)
− Ûc(h1) − 1

дt
, where h1 is the unique solution implied by the first-

order condition (6) with τ1 = τ0. By envelope theorem, ∂π1/∂дt = 1/д2
t > 0. Therefore,

π1 |µ1=0 is monotone increasing in дt with limits limдt↓0 π1 = −∞ < 0 < π2 < limдt↑∞ π1.
(Note that π2 |µ1=0 is a finite number unaffected by дt .) By continuity, therefore, there exists
a unique д̂t such that π1 = π2 when µ1 = 0. As such, π1 ≤ π2, supporting µ1 = 0 and
µ2 = 1, if and only if дt ≤ д̂t . When instead дt > д̂t , this corner equilibrium does not exist.

Case3: Third, consider the interior case of µ1 ∈ (0, 1), implying π1 = π2. The key is to show
the following result: The difference π1 − π2 strictly decreases in µ1. Evaluate the partial
derivative of π1 − π2 with respect to µ1 and after some simplification,

∂(π1 − π2)
∂µ1

· 2γ =
[
h2/τ2
τ2 + h2

− h1/τ1
τ1 + h1

]
∂τ1
∂µ1
+

h2/τ2
τ2 + h2

∂∆τ2
∂µ1
.

Note that the term in the square-brackets is non-positive, because τ2 ≥ τ1 by construction
and because ht = h(τt ) decreases in τt as implied by the first-order condition (6).
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One still needs to sign both ∂τ1/∂µ1 and ∂∆τ2/∂µ1. To do so, rearrange the first-order condi-
tion (6) for t = 1 as (τ0 + ∆τ1 + дhkh(m1))/ Ûkh(m1) = дh/(2γ )with ∆τ1 = µ2

1д
2
h
kh(m1)2τU/γ 2

following Equation (4). It can then immediately be concluded that m1 strictly decreases
in µ1, as otherwise the left-hand side of the above equation is always increasing in µ1,
unable to maintain the equality. (Recall that kh(·) is concavely increasing.) Similarly, it
is also known that τ1 (= τ0 + ∆τ1) decreases in m1. Hence, τ1 (and ∆τ1) increases in µ1.
For t = 2, (τ0 + ∆τ1 + ∆τ2 + h2)/ Ûkh(m2) = дh/(2γ ) with ∆τ2 = (1 − µ1)2д2

h
kh(m2)2τU/γ 2.

Note that ∂∆τ2
∂µ1
=

(
−2(1 − µ1)h2

2 + 2(2 − µ1)2h2
∂h2
∂µ1

)
τU
γ 2 . As such, if ∆τ2 increases in µ1, then

it has to be the case that ∂h2/∂µ1 > 0. Because h2 = дhkh(m2),m2 is also increasing in µ1.
It then follows that the left-hand side of the above equation strictly increases in µ1—∆τ1,
∆τ2, and m2 all increase with µ1, invalidating the equality. Therefore, it must be ∆τ2

decreases in µ1.
As τ1 increases in µ1 but ∆τ2 decreases in µ1, one can conclude from the above partial
derivative that the difference π1 − π2 indeed strictly decreases in µ1.

To sum up, recall from the first cases that at µ1 = 1, π1 < π2. From the second case, at µ1 = 0,
π1 > π2 if and only if дt > д̂t . Hence, when дt ≤ д̂t , the equilibrium with interior µ1 does not exist
due to the above monotonicity of π1 −π2 in µ1. When дt > д̂t , there exists a unique µ1 ∈ (0, 1) such
that π1 = π2, sustaining this equilibrium. This completes the proof of this proposition. □

Proposition 2 and Corollary 4

Proof. First, the following shows that ht is monotonically increasing in дh for both t = 1 and t = 2.
The first-order condition (6) can be written as Ûkh(mt )/(2γ ) −kh(mt ) = τt/дh, which uniquely solves
mt . Holding дh (and γ ) constant,

∂mt

∂τt
=

1
дh

( Ükh(mt )
2γ

− Ûkh(mt )
)−1

≤ 0(16)

where the inequality follows the concavity of kh(m). (Note that this also implies that m1 ≥ m2

because τ2 ≥ τ1.) In addition,

∂mt

∂дh
= − τt

д2
h

( Ükh(mt )
2γ

− Ûkh(mt )
)−1

= − τt
дh

∂mt

∂τt
≥ 0.(17)

From the definition of ht = дhkh(mt ), ∂ht/∂дh = kh(mt )+дh Ûkh(mt )∂mt/∂дh ≥ 0. Therefore, in any
case, the equilibrium ht is increasing in the information technology дh.

The rest of this proof only deals with the case of exogenous speed acquisition, i.e., with fixed µ1
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and µ2. The proof for the case of endogenous µt is deferred to proof of Proposition 6. Consider the
short-run of t = 1. While дh increases, h1 increases to satisfy the first-order condition, as shown
above. It then follows that ∂τ1/∂дh > 0 because τ1 = τ0 + τUh

2
1µ

2
1/γ 2 with µ1 exogenous.

Consider the long-run of t = 2 now. Suppose the opposite, ∂τ2/∂дh < 0, is true. Then h2

should be decreasing with дh because τ2 = τ1 + τUh
2
2µ

2
2/γ 2 with τ1 is increasing in дh. However, the

transformation of first-order condition 6, дh/(2γ ) = (τ2+h2)kh−1(h2/дh), shows that it is impossible
for both τ2 and h2 to be decreasing with дh at the same time. Thus, the assumed inequality is wrong
and τ2 increases with дh. □

Proposition 3

Proof. To avoid repetition, the proof only considers the full equilibrium where the information
acquisition is available. A similar argument can be constructed for the special case where all
investors have the same exogenous information h◦. In the interior equilibrium, π1 − π2 = 0 and,
following the proof of Proposition 1, the equality implies an implicit function of µ1 in terms of the
speed technology дt , which implies: dµ1

dдt = − ∂π1/∂дt
∂(π1−π2)/∂µ1

, where the denominator of the fraction is
negative as shown in Case 3 of the proof for Proposition 1. The numerator equals 1/д2

t > 0 by
envelope theorem. Therefore, µ1 increases in дt . □

Proposition 4

Proof. This proof deals with two cases. The first case is where all investors’ information precision
is exogenously given at h◦. The second case is where investors endogenously acquire information.

In the first case, as shown in the proof of Proposition 3, µ1 is increasing with дt , which directly
implies that τ1 is increasing with дt . For the long-run informativeness τ2, by the implicit function
theorem, ∂τ2/∂µ1 = 2τUh

2
oµ1/γ 2−2τUh

2
oµ2/γ 2, or ∂τ2/∂дt = 2(τUh

2
oµ1/γ 2−2τUh

2
oµ2/γ 2)(∂дt/∂µ1).

It is clear that ∂τ2/∂дt < 0 when µ1 is close to zero and µ2 close to one (i.e., дt is small), and
∂τ2/∂дt > 0 when µ1 is close to one and µ2 close to zero (i.e., дt is large).

For the second case, two steps are involved. The first step is to prove that ∂τ1/∂дt > 0. In the
interior equilibrium, the first-order condition (6) for t = 1, together withτ1 = τ0+τUh

2
1µ

2
1/γ 2, implies

an implicit function ofh1 = дhkh(m1) and µ1, from which ∂h1/∂µ1 = − 2τUµ1h
2
1/γ

2

2τUµ2
1h1/γ 2+1−Ükh (m1)/ Ûkh (m1)

< 0,
where the inequality follows because kh(·) is concavely increasing. From the effect of speed
technology and population of sizes, ∂µ1/∂дt > 0. Therefore, by chain rule, ∂h1/∂дt < 0. The
first-order condition (6) also implies that τ1 decreases with m1 and, hence, also with h1, yielding
∂τ1/∂дt > 0.
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The second step is to prove that τ2 first decreases and then increases with дt . In the interior
equilibrium, the first-order condition (6) for t = 2 always holds. Recall τ2 = τ0 + τUτ

2
1 µ

2
1/γ 2 +

τUτ
2
2 µ

2
2/γ 2. By implicit function theorem, it implies

∂h2
∂µ2
= −4τU

γ

µ2h
2
2 − µ1h

2
1 − µ2

1h1∂h1/∂µ1

−Ükh(m2)/ Ûkh(m2) + 2γ + 4τUµ
2
2τ2/γ

.

As done in the proof of step 1, the idea is to first sign the above partial derivative and then
sign ∂h2/∂дt using chain rule: ∂h2

∂дt
=
∂h2
∂µ2

∂µ2
∂µ1

∂µ1
∂дt
, where ∂µ2/∂µ1 = −1 following the identity µ1 +

µ2 = 1 and ∂µ1/∂дt > 0. In particular, consider the limits of ∂h2/∂µ2 as дt ↑ ∞ and дt ↓ д̂t ,
respectively. To evaluate these limits, one needs to show that h1, h2, and ∂h1/∂µ1 are have finite
bounds.

The finite bounds for ht can be easily established by noting from the first-order condition (6)
that τt in equilibrium is monotone decreasing in τt . From the model setting, it is known that τt has
strictly positive lower bound τ0. Therefore, both h1 and h2 have finite upper bounds. (They also
have lower bounds of zero by construction.) Finally, from the expression of ∂h1/∂µ1 derived in the
proof of the previous step, it can be seen that µ1 · (∂h1/∂µ1) = − 2τUµ2

1h1/γ 2

2τUµ2
1τ1/γ 2+1−Ükh (m1)/ Ûkh (m1)

h1 > −h1

is also bounded.
Now the limits can be evaluated. When speed technology дt ↑ ∞, almost all investors become

fast and µ2 ↓ 0 and limµ2↓0( ∂h2
∂µ2

) = −4τU
γ

−µ1h
2
1−µ

2
1h1∂h1/∂µ1

−Ükh (m2)/ Ûkh (m2)+2γ > 0. Similarly, when speed technologyдt ↓

д̂t , almost all investors stay slow, µ1 ↓ 0, and limµ1↓0( ∂h2
∂µ2

) = −4τU
γ

µ2h
2
2

−Ükh (m2)/ Ûkh (m2)+2γ+4τUµ2
2h2/γ

< 0. As
the above shows, for sufficiently large (low) дt , h2 increases (decreases) in µ2 and hence decreases
(increases) in дt by the chain rule expression above. The first-order condition (6) implies that τ2

decreases with τ2 and the stated results are proved. □

Proposition 5

Proof. Fixing дt , дh increases from д̂h to ∞. The aggregate demand for speed in the economy
is

∫
[0,1] 1{ti=1}di = µ1. From ∆τ1 = τUh

2
1µ

2
1/γ 2, by implicit function theorem,

∂µ1

∂дh
=

γ 2

2τUµ1h
2
1

(
∂∆τ1
∂дh

−
2τUµ

2
1h1

γ 2
∂h1
∂дh

)
.(18)

Hence, the sign of ∂µ1/∂дh depends on the difference between the two terms in the brackets.
Consider first the case of a very small дh. Corollary 1 establishes the existence of a lower bound д̂h
for дh, such that the equilibrium is interior if and only if дh ≥ д̂h. In particular, when дh ↓ д̂h,
the marginal investor is just indifferent between becoming fast or not, implying µ1 ↓ 0. The first-
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order condition (6) at this limit gives 1/(2(τ0 + h1)γ ) − Ûc(h1) = 0, which has interior solution of
0 < h1 < ∞, thanks to the assumption of Ûc(0) = 0. By differentiability, therefore, ∂h1/∂дh is finite
in this limit as well. Taken together, the second term in the above brackets has limit zero as µ1 ↓ 0,
when дh ↓ д̂h. The remaining term is ∂∆τ1/∂дh, which is shown by Proposition 6 to be strictly
positive. Thus, ∂µ1/∂дh is positive in the case of a very small дh, close to the lower bound of д̂h.

Consider next the case of a very large дh, i.e. дh ↑ ∞. First, there exists an upper bound for
investors’ expense on information acquisition,mt . To see this, note from the first-order condition (6):

1
2γ

Ûkh(mt ) >
1
2γ

Ûkh(mt ) −
1
дh
τt = kh(mt ) ≥ kh(0) +mt

Ûkh(mt ) =mt
Ûkh(mt )(19)

where the first inequality holds because τt ≥ τ0 > 0 and the last inequality holds by concavity
of kh(·) and by kh(0) = 0. Therefore, for t ∈ {1, 2}, there exists an upper bound formt ≤ 1/(2γ ), an
upper bound for kh(mt ) ≤ kh(1/(2γ )), and a lower bound for Ûkh(mt ) ≥ Ûkh(1/(2γ )) > 0. Second, in
the limit of дh ↑ ∞, the equilibrium is always interior (following Corollary 1). Hence, the limit of
the fast investor’s ex ante certainty equivalent limдh↑∞ π1 =

1
2γ limдh↑∞ ln

(
1 + h1

τ1

)
− limдh↑∞m1 − 1

дt

exists and must be nonnegative to sustain the interior equilibrium. Sincem1 is bounded from above,
it follows that limдh↑∞(h1/τ1) also exists and is strictly positive. That is, there exists some a ∈ (0,∞),
such that limдh↑∞(τ1/h1) = a. Equivalently, as τ0 is a finite constant, limдh↑∞(∆τ1/h1) = a. Further,
a fast investor’s first-order condition (6) can be rewritten as 1

2γ
дh

τ1+h1
− Ûc(h1/дh) = 0. Since the above

holds under дh ↑ ∞, it follows that h1 ∼ дh; or limдh↑∞(h1/дh) = b ∈ (0,∞). (If h1 is of higher
magnitude than дh, the limit of the first term above falls to zero, while the limit of the second term
is strictly positive as c(·) is strictly convex. If instead h1 is of lower magnitude than дh, the limit of
the first term approaches infinity, while the second term falls to zero.) Now consider the limit of
the difference in the brackets of Equation (18):

lim
дh↑∞

(
∂∆τ1
∂дh

− 2
τUµ

2
1h1

γ 2
∂h1
∂дh

)
= lim

дh↑∞

(
∂∆τ1
∂дh

− 2
∆τ1
h1

∂h1
∂дh

)
= (ab − 2ab) < 0

where the last equality follows L’Hôpital’s rule. Therefore, in the limit of дh ↑ ∞, ∂µ1/∂дh < 0.
Finally, consider the value of µ1 in this limit. Note that ∆τ1 = τ0 + τUµ

2
1h

2
1/γ 2. Therefore, in order

for limдh↑∞(∆τ1/h1) = a ∈ (0,∞) to hold, it must be such that limдh↑∞(µ2
1h1) = c ∈ (0,∞), i.e., µ1

in this limit is of magnitude h−1/2
1 . As h1 ↑ ∞, this also implies that µ1 ↓ 0 in this limit.

Fixing дh, дt increases from д̂t to ∞. The aggregate demand for information is h̄ := µ1h1 + µ2h2.
Since µ1 is monotone in дt (Proposition 3), it is sufficient to examine the partial derivative of the
above aggregate demand with respect to µ1: ∂h̄/∂µ1 = h1 − h2 + µ1 · (∂h1/∂µ1) − µ2 · (∂h2/∂µ2).
At the initial extreme of дt ↓ д̂t , the proof of Proposition 4 has shown that 1) µ1 ↓ 0, 2) µ1 · ∂h1/∂µ1
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is bounded, and 3) ∂h2/∂µ2 < 0. Taking these into the above partial derivative yields ∂h̄/∂µ1 →
h1 − h2 − µ2 · (∂h2/∂µ2) > 0, recalling that h1 ≥ h2 from Equation (9). At the eventual extreme
of дt ↑ ∞, the proof of Proposition 4 has shown that 1) µ2 ↓ 0, 2) ∂h1/∂µ1 < 0, and 3) ∂h2/∂µ2 > 0.
In addition, since µ2 ↓ 0, ∆τ2 = µ2

2h
2
2τU/γ 2 ↓ 0 (h2 is bounded), implying τ2 ↓ τ1 and 4) h2 ↑ h1.

Taking the above into h̄ yields ∂h̄/∂µ1 → µ1 · (∂h1/∂µ1) − µ2 · (∂h2/∂µ2) < 0. □

Proposition 6

Proof. By construction, τ1 = τ0+∆τ 1 and τ2 = τ0+∆τ 1+∆τ 2. The first-order condition implicitly
has m1 and m2 as functions of m1(∆τ1) and m2(∆τ1,∆τ2). Further, ∆τt = τUд

2
h
kh(mt )2µ2

t /γ 2, or
µt =

γ√
τU

√
∆τt

дhkh (mt ) . Therefore, the unconstrained equilibrium (with endogenous acquisition of both
speed and information) is pinned down by a two-equation, two-unknown system: π1 − π2 = 0 and
µ1 + µ2 − 1 = 0; or, equivalently, with a vector function F (∆τ1,∆τ2;дh),

F =


(

1
2γ ln

(
1 + дhkh (m1)

τ1

)
−m1 − 1

дt

)
−

(
1
2γ ln

(
1 + дhkh (m2)

τ2

)
−m2

)
√
∆τ1

kh (m1) +
√
∆τ2

kh (m2) −
√
τU
γ дh

 =
[
0
0

]
,(20)

where {mt }t∈{1,2} are functions of ∆τ1 and ∆τ2 following the first-order condition (6), which can be
rewritten as Ûkh(mt )/(2γ ) − kh(mt ) = τt/дh.

Take total derivatives with respect toдh on the equilibrium condition F = 0 to get

[
F11 F12

F21 F22

] [
d∆τ1

d∆τ2

]
+[

F1д

F2д

]
dдh =

[
0
0

]
. One can easily evaluate, using envelope theorem,

F1д =
1
2γ

kh(m1)
τ1 + дhkh(m1)

− 1
2γ

kh(m2)
τ2 + дhkh(m2)

=
1
дh

(
kh(m1)
Ûkh(m1)

− kh(m2)
Ûkh(m2)

)
> 0,

where the second equality follows the first-order condition (6), while the last inequality follows the
concavity of kh(m), knowing thatm1 > m2. Also,

F2д = −
√
∆τ1

kh(m1)2
Ûkh(m1)

∂m1
∂дh

−
√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂дh

−
√
τU

γ

= −
√
τU

γ
µ1дh

Ûkh(m1)
kh(m1)

∂m1
∂дh

−
√
τU

γ
µ2дh

Ûkh(m2)
kh(m2)

∂m2
∂дh

−
√
τU

γ
< −

√
τU

γ
< 0,

where the equality uses the expression of µt and the inequality holds because ∂mt/∂дh is derived
earlier to be positive (inequality 17).
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The elements in the Jacobian matrix can also be evaluated. Using envelope theorem,

F11 = − kh(m1)
Ûkh(m1)τ1

+
kh(m2)
Ûkh(m2)τ2

≤ 0

where the inequality holds because kh(m1)/ Ûkh(m1) ≥ kh(m2)/ Ûkh(m2) (concavity) and τ1 ≤ τ2.
Similarly,

F12 =
kh(m2)
Ûkh(m2)τ2

> 0.

Now consider the partial derivatives with respect to F2:

F21 =
1

2
√
∆τ1kh(m1)

−
√
∆τ1

kh(m1)2
Ûkh(m1)

∂m1
∂τ1 �

�
�∂τ1

∂∆τ1
−

√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂τ2 �

��
τ2
∆τ1

=
1

2
√
∆τ1kh(m1)

−
√
τU

γ
µ1дh

Ûkh(m1)
kh(m1)

∂m1
∂τ1

−
√
τU

γ
µ2дh

Ûkh(m2)
kh(m2)

∂m2
∂τ2
> 0

where the equality follows the expression of µt and the inequality holds because ∂mt/∂τt ≤ 0 as
shown before (inequality 16). Similarly,

F22 =
1

2
√
∆τ2kh(m2)

−
√
∆τ2

kh(m2)2
Ûkh(m2)

∂m2
∂τ2 �

�
�∂τ2

∂∆τ2
> 0.

By Cramer’s rule,

∂∆τ1
∂дh

=

�����−F1д F12

−F2д F22

����������F11 F12

F21 F22

�����
and

∂∆τ2
∂дh

=

�����F11 −F1д

F21 −F2д

����������F11 F12

F21 F22

�����
.

The the denominator is easy to sign: F11F22 − F12F21 < 0. It remains to examine the numerators.
For τ1, it can be seen that −F1дF22 + F12F2д < 0; hence ∂τ1/∂дh = ∂∆τ1/∂дh > 0.

To sign ∂τ2/∂дh is equivalent to signing the sum of the numerators of ∂∆τ1/∂дh and ∂∆τ2/∂дh:

(−F1дF22 + F12F2д) + (−F11F2д + F1дF21) = (F21 − F22)F1д + (F12 − F11)F2д .

To prove the statement made in the proposition, the objective is to show that under the limits of
дh ↑ ∞ and of дh ↓ д̂h, the sign of the above term is negative and positive, respectively (recall that
the determinant for the denominator is negative). The proof of Proposition 5 shows that in the
upper limit, µ1 ↓ 0 and µ2 ↑ 1. The proof of Corollary 1 shows that in the lower limit, investors are
just indifferent between acquiring the speed or not, implying again µ1 ↓ 0 and µ2 ↑ 1. Using these
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limiting values of µ1 and µ2, the above simplifies to(
1

2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д,(21)

where, simplifying the notation, kh(·) and Ûkh(·) are replaced by subscripts of t ∈ {1, 2}.
Consider the limit of дh ↑ ∞ first. Equation (21) satisfies the following inequality:(

1
2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д <
F1д

2
√
∆τ1kh1

because F1д > 0 and F2д < −√τU/γ < 0. The proof of Proposition 5 establishes that ∆τ1 → ∞ .
In addition, the inequality (19) establishes that in equilibrium, both m1 and m2 have finite upper
and lower bounds, implying that both kh1 and F1д is also finite (since kh(·) is twice-differentiable).
Therefore, limдh↑∞(F1д/(2

√
∆τ1kh1) = 0 and

lim
дh↑∞

[(
1

2
√
∆τ1kh1

− 1
2
√
∆τ2kh2

)
F1д +

kh1
Ûkh1τ1

F2д

]
< lim

дh↑∞

F1д

2
√
∆τ1kh1

= 0.

This proves that in this upper limit, τ2 is increasing with дh.
Finally, consider the limit of дh ↓ д̂h. As дh ↓ д̂h, clearly F1д and F2д are finite. However,

µ1 ↓ 0, ∆τ1 ↓ 0, and the first term of Equation (21) approaches +∞. The sum of numerators above
therefore has a positive sign. Given the negative sign of the denominator, it can be concluded that
∂τ2/∂дh < 0 in the limit of дh ↓ д̂h. □

Corollary 1

Proof. Consider the threshold д̂t , at which the benefit of investing in speed to trade at t = 1 is
small enough, so that the marginal investor is just willing to stay slow. Therefore, at this threshold
µ1 = 0 and µ2 = 1, implying π1 =

1
2γ ln

(
1 + дhkh (m1)

τ0

)
−m1 − 1

д̂t
and π2 =

1
2γ ln

(
1 + дhkh (m2)

τ2

)
−m2,

where τ2 = τ0 +τUд
2
h
kh(m2)2/γ 2. In equilibrium, it has to be such that π1 = π2 = π ∗, which implies

τ2/(τ2+дhkh(m2)) > τ0/(τ0+дhkh(m1)) becausem1+1/д̂t > m1 > m2. Subtract by 1 on both sides
and rearrange to get kh(m2)/(τ2 + дhkh(m2)) < kh(m1)/(τ0 + дhkh(m1)).

Next, from the expression of π1, by envelope theorem, ∂π ∗

∂дh
= 1

2γ
kh (m1)

τ0+дhkh (m1) +
1
д̂2
t

∂д̂t
∂дh
. Simi-

larly, from the expression of π2, ∂π ∗

∂дh
= 1

2γ
1

τ2+дhkh (m2)

(
1 − 2hд2

hkh (m2)2
γ 2τ2

)
kh(m2) < 1

2γ
kh (m2)

τ2+дhkh (m2) <

1
2γ

kh (m1)
τ0+дhkh (m1) =

∂π ∗

∂дh
− 1

д̂2
t

∂д̂t
∂дh
. Therefore, ∂д̂t/∂дh < 0.

Further, consider the extremes of дh ↓ 0 and дh ↑ ∞. Toward the lower bound 0, from the
expression of π1 it can be seen that the first term in π1 drops down to zero. Since an investor
always has the option not to trade, π1 is bounded below by zero. This leads tom1 ↓ 0 and 1/д̂t ↓ 0,
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implying limдh↓0 д̂t = ∞. On the other hand, the first-order condition (6) applied to π1 implies 0 =
Ûkh (m1)

2γ −kh(m1)− τ0
дh
<

(
1
2γ −m1

)
Ûkh(m1),where the inequality follows becauseτ0/дh > 0 and because

kh(m) ≥ Ûkh(m)m by concavity. Hence,m1 is always bounded from above by 1/(2γ ). From the first-
order condition, with τ1 fixed at τ0, it follows the concavity of kh(·) that m1 monotone increases in
дh, and so does kh(m1). Taken together, limдh↑∞ π1 >

1
2γ limдh↑∞ ln

(
1 + дhkh (m1)

τ0

)
− 1

2γ − limдh↑∞
1
д̂t
.

If limдh↑∞ д̂t > 0, then the above limit of π1 shoots to infinity. In that case, the assumed equilibrium
will not hold, however, because all slow investors will have incentive to acquire speed by paying 1/д̂t
to earn infinite profit. Therefore, it has to be the case that limдh↑∞ д̂t = 0.

Finally, the above concludes that д̂t is a strictly decreasing function in дh, with д̂t (0) → ∞ and
д̂t (∞) → 0. As the strict monotonicity implies invertibility, there exists д̂h(дt ) for all дt ∈ (0,∞)
such that the equilibrium is interior if and only if дh ≥ д̂h(дt ). □
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Supplementary material for

“Speed Acquisition”

This note adds to the paper by studying three extensions and verifying the robustness of the

main results. The certainty equivalents and equilibrium conditions are characterized in this note to

help the numerical studies in the Section 6.

A Frequent fast trading

The main model restricts to “trading-early” feature of the speed technology, i.e., the fast investors

only trade at t = 1, sooner than slow investors at t = 2. This extension considers an alternative

setup of “frequent fast trading”, where fast investors can trade at both t ∈ {1, 2}. That is, the speed

technology in addition allows fast investors to trade more frequently. This is the only modification

to the main model. The equilibrium analysis proceeds in the following steps: (1) investors’ optimal

demand functions; (2) the recursion of {τt } and {pt }; (3) investors’ certainty equivalent expressions;

and (4) optimal technology acquisition and equilibrium conditions.

Consider investors’ demand at t = 2 first. All investors, i ∈ [0, 1], submit their demand

schedule xi2(·). Specifically, an arbitrary investor i solves

max
xi2

E
[
− exp{−γ · [(p2 − p1)xi1 + (V − p2)xi2]}

��xi1, si,p1,p2
]
,

or, equivalently,

max
xi2

exp{−γ · [(p2 − p1)xi1]}E
[
− exp{−γ · [(V − p2)xi2]}|si,p1,p2

]
.

(For a slow investor, who only trades at t = 2, xi1 = 0.) Hence, the optimization problem reduces

to the same one as the one faced by the slow investors in the main model. The same conjecture-



and-verify analysis as in Lemma 1 applies and gives the optimal linear cumulative demand,

xi2 =
hi
γ
(si − p2),

for both the fast and the slow investors.

It remains to solve for the fast investors trading at t = 1. A fast investor i’s terminal wealth

is (p2 − p1)xi1 + (V − p2)xi2, where xi1 is to be solved and xi2 follows the above optimal demand.

Recalling that p2 = E[V | p1,p2 ] (competitive market making), therefore, a fast investor’s t = 1

optimization becomes

max
xi1

[
− exp

{
−γ · (p2 − p1)xi1 −

h2
i

2(τ2 + hi)
(si − p2)2

}�� si,p1

]
,

or, equivalently,

max
xi1

[
− exp

{
γ · (si − p2)xi1 − γ (si − p1)xi1 −

h2
i

2(τ2 + hi)
(si − p2)2

}
|si,p1

]
.

To simplify notations, let zi = si − p2 and it follows:

E[zi | si ,p1 ] = si −
τ1
τ2
p1 −

∆τ2
τ2

(
hi

τ1 + hi
si +

τ1
τ1 + hi

p1

)
;

var[zi
�� si,p1 ] =

(
∆τ2
τ2

)2 ( 1
τ1 + hi

+
1
∆τ2

)
.

Denote also by

µ := E[zi
�� si,p1 ] =

(
1 − ∆τ2

τ2

hi
τ1 + hi

)
(si − p1);

β := var[zi
�� si,p1 ] =

(
∆τ2
τ2

)2 ( 1
τ1 + hi

+
1
∆τ2

)
.

The above t = 1 optimization problem reduces to:

max
xi1

−1√
1 + h2

i
(τ2+hi )var(zi |si,p1)

· exp
γ · µxi1 − γ (si − p1)xi1 −

h2
i

2(τ2 + hi)
µ2 +

1
2
(γxi1 −

h2
i

(τ2+hi )µ)
2β

1 + h2
i

(τ2+hi )β



2



or after some simplification,

max
xi1

−1√
1 + h2

i
(τ2+hi )var(zi |si,p1)

· exp
−γ (si − p1)xi,1 +

1
2
(γxi1)2β + 2γ · µxi1 −

h2
i

(τ2+hi )µ
2

1 + h2
i

(τ2+hi )β


The first-order condition with respect to xi,1 is

−(si − p1) +
xi1βγ + µ

1 + h2
i

(τ2+hi )β
= 0,

which uniquely pins down xi1. Substituting in µ and β and simplifying yield

xi1 =
hi
γ
(si − p1),

which is exactly the same form as in the main model.

Next consider the recursions of τt and pt . They can be found using the above optimal demand

functions. At t = 1, since the fast investors’ optimal demand is the same as shown in Lemma 1, the

same results hold: ∆τ1 = τ1 − τ0 =
(∫

{tj=1}
hj
γ dj

)2
τU and p1 = p0 +

∆τ1
τ1

(
V +

γU1∫
{tj=1} hjdj

)
. At t = 2,

the market maker observes the aggregate demand

L2(p2) =
∫
{tj=1}

(
xj2(sj ,p2) − xj1(sj ,p1)

)
dj +

∫
{tj=2}

xj2(sj ,p2)dj +U2

= p1

∫
{tj=1}

hj

γ
dj − p2

∫
∀j
hj

γ
dj +V

∫
{tj=2}

hj

γ
dj +U2,

where the second equality follows the optimal demand schedules derived earlier. Observe how

the fast investors’ signals are exactly offset, not contributing to the price discovery in the second

fragment (t = 2). The market maker then sets the price exactly the same as in Lemma 1 and the

resulting recursions hold: ∆τ2 = τ2 − τ1 =
(∫

{tj=2}
hj
γ dj

)2
τU and p2 = p1 +

∆τ2
τ2

(
V +

γU2∫
{tj=2} hjdj

− p1

)
.

Finally, consider investors’ ex ante certainty equivalent. Since slow investors only trade once

at t = 2, they expect the same certainty equivalent as solved in Lemma 1:

πS =
1
2γ

ln
(
1 +

hS

τ2

)
− c(hS).
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A fast investor i’s unconditional expected utility, before paying the technology cost, is

E[− exp{−γ · (p2 − p1)xi1 − γ · (V − p2)xi2}]

=E

[
− exp

{
−hi · (si − p1)2 + hi · (si − p2)(si − p1) −

h2
i

2(τ2 + hi)
(si − p2)2

}]
where the equality follows the optimal demand xi1(·) and xi2 derived above. Define Y :=

[si − p1; si − p2] as a bivariate normal (column) random vector, with

EY =


0

0

 and varY =


τ−1

1 + h
−1
i τ−1

2 + h
−1
i

τ−1
2 + h

−1
i τ−1

2 + h
−1
i

 .
Then the above expected utility can be rewritten as E[−eYTAY ] where the coefficient matrix A is

given by A = [−hi ,hi/2;hi/2,−h2
i /(2(τ2 + hi))]. Evaluating the expectation with the density of the

bivariate normal Y yields the expected utility of −τ1τ2/
√
τ1 · (hi + τ2)(−hiτ1 + (hi + τ1)τ2). Solving

the certainty equivalent yields

πF =
1
2γ

ln

(
1 +

hF

τ1
+
hF

τ 2
2

∆τ2
τ1

)
− c(hF) −

1
дt
.

Compared to the πF in the main model, it can be seen that there arises an extra term in the ln(·)

when the fast investors are allowed to trade more frequently at t = 2.

Considering investors’ ex-ante technology acquisition, the equilibrium are then characterized

by the following conditions:

Optimal information acquisition: ∂πF/∂hF = ∂πS/∂hS = 0;

Indifference in speed: πF = πS;

Population size identity: µF + µS = 1.

(It is easy to verify the second-order conditions for optimal information acquisition hold.) The

numerical illustrations in Section 6.1 in the main paper are constructed using these results.
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B Endogenous population size

The main model fixes the population size at µF + µS = 1. This extension studies the free entry of

investors. Let there be a continuum of investors indexed on i ∈ [0,∞), and following the literature

(see, e.g., Bolton, Santos, and Scheinkman, 2016), they are sorted according to their reservation

value R(i) for not trading. Specifically, if investor i chooses not to trade, he obtains a certainty

equivalent of R(i), which is monotone increasing in i. To ensure at least some participation,

normalize R(0) = 0.

As no other model assumptions are changed, investors trade just like in the baseline and Lemma 1

holds. Investors’ certainty equivalents are also in the same form as in Equations (7) in the main

paper. It only remains to stipulate the equilibrium conditions characterizing investors’ technology

acquisition:

Optimal information acquisition: ∂πF/∂hF = ∂πS/∂hS = 0;

Indifference in speed: πF = πS;

Indifference in entry R(µF + µS) = πF = πS.

Compared with Proposition 1, the only different condition is the last condition that determines the

population size. Under the main model, the population is fixed, hence µF + µS = 1. Here, due

to investors’ free entry, the marginal investor, i.e., the (µF + µS)-th investor, must be indifferent

from trading or not. The numerical analyses presented in Section 6.2 are built upon the above

characterization.

C The market clearing mechanism

In the main model, there is always a competitive market maker who clears the market at the efficient

price. This extension studies an alternative setting where market clears by a set of uninformed

investors, as in, e.g., Grossman and Stiglitz (1980). Specifically, the market maker is replaced
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by a continuum of uninformed investors in each period with mass n. All investor, informed and

uninformed, have the same constant absolute risk-aversion utility with a risk-aversion coefficient γ .

All other assumptions are the same as in the main model. In particular, all investors only trade once

(buy-and-hold investors). Note that in absence of the market maker, the trading price is determined

by the market clearing condition for each period:∫
i∈[0,1]

xi1{ti=t}di +Ut + nxUt = 0,

where xUt is the time-t uninformed investors’ demand.

This alternative setting is essentially a static version of Hellwig (1980). The equilibrium trading

therefore follows the analysis there. The prices and demand functions are characterized as follows:

p1 = a11z1, p2 = a21z1 + a22z2;

where z1 = V +
1∫

{tj=1}
hj
γ dj

U1, z2 = V +
1∫

{tj=2}
hj
γ dj

U2; and

a11 =

∫
{tj=1}

hj
γ dj + (µF + n)∆τ1∆τ1∫

{tj=1}
hj
γ dj + (µF + n)(τ0 + ∆τ1)

,

a21 =
(µS + n)∆τ1∫

{tj=2}
hj
γ dj + (µS + n)(τ0 + ∆τ1 + ∆τ2)

,a22 =

∫
{tj=2}

hj
γ dj + (µS + n)∆τ2∫

{tj=2}
hj
γ dj + (µS + n)(τ0 + ∆τ1 + ∆τ2)

.

The demand functions of different types of investors are:

fast informed: xi1 =
1
γ
[hisi + ∆τ1z1 − (τ0 + hi + ∆τ1)p1],

slow informed: xi2 =
1
γ
[hisi + ∆τ1z1 + ∆τ2z2 − (τ0 + hi + ∆τ1 + ∆τ2)p2],

fast uninformed: xU 1 =
1
γ
[∆τ1z1 − (τ0 + ∆τ1)p1],

slow uninformed: xU 2 =
1
γ
[∆τ1z1 + ∆τ2z2 − (τ0 + ∆τ1 + ∆τ2)p1].

where ∆τ1 =
(∫

{tj=1}
hj
γ dj

)2
τU and ∆τ2 =

(∫
{tj=2}

hj
γ dj

)2
τU. Brennan and Cao (1996) have studied
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investors’ expected utilities in such an environment. Following their Section 1, investors’ certainty

equivalents at the time of technology investment (t = 0) are

πF =
1
2γ

ln(τ1 + hF) +
1
2γ

ln(var[V − p1]) − c(hF) −
1
дt

;

πS =
1
2γ

ln(τ2 + hS) +
1
2γ

ln(var[V − p2]) − c(hS).

Compared to the main model, the difference lies in the second ln(·) term. When the asset price is set

by the market maker, pt = E[V | pt ,pt−1, ... ] and var[V −pt ] = 1/τt , under which the above certainty

equivalents reduce to those stated in the main paper (Equation 7). When such market maker is

replaced by uninformed liquidity providers, var[V − pt ] no longer takes such simple form and

investors certainty equivalents change accordingly. (Intuitively, as the price is no longer efficient,

informed investors acquire additional trading gains from providing liquidity to noise trading.)

Finally, the equilibrium conditions remain the same as before:

Optimal information acquisition: ∂πF/∂hF = ∂πS/∂hS = 0;

Indifference in speed: πF = πS;

Population size identity: µF + µS = 1.

The numerical results in Section 6.3 are constructed based on the above analysis.
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