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Abstract

This paper develops a new method to test for the existence of random effects
in the error component model with incomplete panels. Based on the difference of
variance estimators of the idiosyncratic errors at different levels, two statistics are
constructed to test for the existence of individual and time effects, respectively.
Some variants of the two statistics and joint tests for both the two effects are also
discussed. Their asymptotic properties are obtained under some mild conditions.
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sample properties than the competitors in the existing literature at many aspects.
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1 Introduction

In the econometric analysis of panel data, one usually focus on statistical modeling
analysis for complete data. In practice, however, it is common to encounter the miss-
ing observations in the collected data set. For example, in labor economics, some data
on individual income may be dropped out after some time periods due to the retire-
ment. Throughout this paper, the focused panel data sets can be allowed to be incom-
plete/unbalanced, that is, some data may be not observed in some time periods for some
individuals. Actually, most panels encountered in practice are of the incomplete kinds
(see, e.g, Baltagi (2008) or Baltagi and Song (2006)). And then statistical modeling
analysis for incomplete panels has received more and more attention recently (see, e.g,
Baltagi (2008)). Note that, misspecification of the existence of random effects in the er-
ror component will lead to seriously biased standard errors and even inefficient statistical
inference, which is completely similar to that of complete panels. So, it is important and
necessary to test for the existence of random effects in the error component regression
models with incomplete panels.

Different from most of the existing literature, in this paper we focus mainly on testing

for random effects in the error component model with incomplete panels as follows,
Vi = o+ X0+ wig,  wi = i + e+ Vig, i=1,....n,t=1,...,T;, (1)

where « is a scalar, X;; is the it-th observations on K observable regressors, 3 is the vector
of coefficients of the regressors, and wu;; is the error component including the two random
effects p; and n; and the idiosyncratic errors v;;. The random effects p; and 7, are used
to capture the heterogeneity of individual and time periods, respectively. Further, the
individual effect yu; is assumed to be independent and identically distributed with mean
zero and finite variance ai, and the idiosyncratic error v;; is assumed to be independent
and identically distributed with mean zero and finite variance o?2.

Till now, there are many relevant literature on testing for the existence of random
effects in the error component regression model with incomplete panel data. In the
following we give a simple reviews for some main literatures. Baltagi and Li (1990)
extended the Breusch and Pagan (1980) LM test to the error component model with

incomplete panels. Since these variance components can not be negative, the two-sided



alternative hypotheses seem to be unreasonable. Moulton (1987) extended the uniformly
mostly powerful test (UMPT) of Honda (1985) to the incomplete one-way error com-
ponent model and illustrated this method by a hedonic housing price incomplete panel
data model. However, as Moulton and Randolph (1989) argued, using the asymptotic
critical values for the test of Moulton (1987) can lead to incorrect inference, especially
when there is high correlations among the regressors or the number of regressors is very
large. And then Moulton and Randolph (1989) suggested a standardized lagrange mul-
tiplier (SLM) test which had better critical value approximations. Some test statistics
were similarly suggested for time effects, see, e.g, Baltagi et al. (1998), Honda (1985)
and Moulton and Randolph (1989). However, these tests are based on the one-way error
component models, i.e. the null hypotheses correspond to the case without any effects,
and the sizes may be distorted due to the presence of the time (individual) effect when
the individual (time) effect is tested (see, e.g, Wu and Li (2014)). Besides, although these
LM-based methods have a simple form, all of them require the assumption of normality
of idiosyncratic errors and independence among the regressors, the random effects and
the idiosyncratic errors, which can not be guaranteed in practice. Wu and Li (2014)
proposed several moment-based test statistics for the existence of random effects, which
are shown to have many desired properties such as the simplicity, the robustness to the
distribution assumptions and the possible dependency among the regressors, random ef-
fects and the idiosyncratic errors. However, their methods are only available for the case
with complete panels.

The main purpose of this paper is to extend the moment-based test methods of Wu
and Li (2014) to the case with incomplete panels. In Section 2, we outline the different
forms of the original model and obtain an robust estimator of the coefficients § which
is asymptotically normally distributed under some regular conditions. In Section 3, we
construct the test for the individual effect. We first derive two estimators of the variance
of the idiosyncratic error. One is the robust estimator which is consistent no matter of the
existence of the random effects, and another one is consistent when the individual effect
does not exist while inconsistent under the presence of the individual effect. Based on
the difference of the two estimators, we construct the test statistic for individual effects,

which can be shown to asymptotically normally distributed. And we can show our test



statistic is more powerful than the traditional ANOVA F' test when the regressors are
correlated with the individual effect. In Section 4, we use the same method to construct
statistics for testing time effects and study their asymptotic properties. In Section 5,
we construct several joint test statistics for both the two random effects and study their
asymptotic properties. Monte Carlo simulations are given in Section 6. Section 7 applies
our methods to a real data example. Section 8 gives some conclusions and discussions.
All proofs are provided in the Appendix.

For the sake of statements, we first introduce some notations as follows. We denote by
A’ the transpose of matrix A, by A~! the inverse of matrix A, and by [|A|| = [tr(A’A)]z
the norm of matrix A. A ® B is the Kronecker product of matrices A and B, and
diagr(A;) is a block diagonal matrix with the diagonal elements A, Ay, ..., A;. The
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symbol “ =" stands for weak convergence. a, = 0,(b,) means that a, /b, converges to
zero in probability, and a,, = O,(b,) means that a, /b, is bounded in probability. EX or

E(X) stands for the mathematical expectation of the random variable X.

2 Model and notations

We assume that there are L disjoint subsets N1, Ns, ..., N of {1,2,...,n} such that the
observed time length is identical for each ¢ € N; with [ = 1,2,..., L. The subjects with
individuals in A form a balanced panel data set with the same time length 7;. And we
denote the number of individuals in group N; by n;. For each group N;, model (1) can

be rewritten into the vector form as
yii = oy, + XuB + pitr, v, 1€ M, (2)

where ¢, is a vector of ones with dimension k, yi; = (i1, Yui2, - - -, Yury)', Xu and v; are
defined similarly, and n, = (1, mi2, - - -, imy)'-

For each group N, we first eliminate the time effect by centering each term in model
(2),
i = XuB + gy, + 7, i €N, (3)

L > s X, j; and 7y; are defined similarly. Using the similar

where §i; = yu — o

methods of Wu and Li (2014), we find a matrix @; such that (\L/LTLZ,QZ) isaT xT
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orthogonal matrix. Premultiplying the model (3) with the matrix @ yields,
Qi = Qi XuB + Q. (4)
The model (1) can be rewritten into the matrix form by stacking the observation of

the L groups as
y=oy+XB+Zu+ Zymn+v,

where y = (Y1, ¥s, -, yz) With yi = (Y1, Yigs - - -5 Up,)s X 1, m and v are defined sim-
ilarly. Moreover, denote N = Zle w1y, Z, = diagr{Z,,} with Z;,, = I,, ® ¢r,, and
Z, = diagr{Z,} with Z;,, = 1,, ® Ir,, where the symbol “®” is the Kronecker product
operator and Iy is an identity matrix of dimension k. From (3) and (4), we can show

that
Qy=QXS5+ Qu, (5)

where @ = Qz,Qz,, Qz, = diag{Q}} and Qz, = diagi{Qz,} with Qz, = I —
Ziy(Zy, %)~ 21, Based on model (5), we can obtain a robust ordinary least squares

estimator of § as follows,
L mny L

ng
=0 XX Y0 X

=1 i=1 =1 i=1

where P, = Ir

D — T%JTZ with J; denoting a k& x k£ matrix of ones. Under some mild

assumptions, we can show that

V(B — B) = N(0, 5755,
where ¥, = S0 my[E(X),PX;;) — EX;, BEX,;] and ¥y = 31 myE[(Xy; — EXy) Py,
(X — EX};)]. The asymptotic results in this paper are based on the setting that the

individual number n goes to infinity and the time lengths 7T; are fixed. Besides we assume

that lim ™ = m; > 0, which is a commonly-used setting in the literature, see, e.g, Shao
n—oo

et al. (2011) and Chowdhury (1991).

3 Testing for individual effect

In this section, we consider to construct a statistic to test for individual effects in model
(1). The hypotheses of the individual effects test can be formalized as

HY: 02 =0 VS HY: o2 >0, (6)

2
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where ai is the variance of the individual effects p;. Denote the j-th column vector of

the matrix ¢); by ¢, =1,...,L,j=1,...,7; — 1, and then we have

L mn n T;—
ZZEHQHDHHZ ZZZE QlJVlz =10,
=1 =1 =1 i=1 j=1

where ¢; = ZZL:I ¢y with ¢;; = (ng — 1)(T; — 1). And then we obtain a feasible estimator

of the variance of the idiosyncratic error,

:_ZZHQMZW ZZIIQ, i — Xuf)|. (7)

=1 i=1 =1 i=1
Under some regular conditions, 62, can be shown to be a consistent estimator of o2 no
matter of the existence of the two random effects p; and 7.

Similarly, it holds that

ny

L T,-1
Z Z Z E(q;7i)" = ey + cacs(0?)?,

I=1 i=1 j=1
where 72 = Ev}, is the fourth-order moment of v,

L -1 T

2= Y > dig(m —1)(nf =3 +3)/nj,

=1 j=1 t=1
and

s =053y 3(m —1)*(T—1)/n — 3.

Therefore we can obtain an estimator of v* by solving the above equation and using the
empirical version of the solution as follows,
L ny Tl—l L n l 1
4_ -1 2 4 o A4 A2 12
T = G ZZ Z(%ljyli) —¢c3(65,)" = ¢ ZZ Z qu G — XuB)]" — es3(6q,)"
=1 i=1 j=1 =1 i=1 j=1
And we can show that 42 is a consistent estimator of v under some mild conditions no
matter of the existence of the two random effects p; and ;.
When we do have the information on the absence of individual effects, that is, under

the null hypothesis without individual effect, model (2) turns out
yi = aur, + Xy +m+ v, i €N
And then we only need to eliminate the time effect by the centering transformation,

Ui = XuB + .



It holds that
L ny
> Elil? = cuor,
=1 i=1
where ¢, = YO ¢y with ¢y = (n; — 1)T;. Similarly with equation (7), we can obtain
another estimator of o2,

01 = — ZZHWZHQ ZZHyzz XuB|*.

=1 i=1 =1 =1

Under some regular conditions and the null hypothesis of H{', 6%, can be shown to

be a consistent estimator of o2. However, ¢, is not consistent anymore under the
alternative hypotheses of H{. Therefore, a Hausman-type test (e.g, Hausman (1978))
can be proposed by the statistically significant difference between 62, and 6%, to test for

the individual effect. The test statistic can be constructed as follows,
_1
T,C = wn*Va(6t, — 63,), (8)

where the scalar w,, = a,y% + b,(62,)? is used to standardize the statistic with

LSl +om+ -2 -2 m-)

ll 4 T C1C4
and
_ 1y L T RLAe S0 S AP S S
= E;”’[E (T — )+c—%(z— )(1+Tl— )_E(l_ ).

Below, we state some assumptions for the study of the asymptotic properties of the
proposed test statistics.

Assumption A: The individual effect p; is independent and identically distributed with
mean zero and variance o7, = n~202 with a constant o2 > 0.

Assumption B: E(pvy) = 0, n2E(u2v2) < oo, E(nt Xy ) < oo, fori=1,... n,t=
1,...,T;.

Theorem 1. For model (1), suppose that Evj, < oo, |%| > 0, EXj, < oo, and
E(Xixvis) = 0, fori =1,....nt = 1,...,T;;k = 1,...,K. If Assumptions A and
B hold, we have that

TIC = &720% + N(0,1),

where ® = av? + b(c2)? with a = lim a, and b = lim b,.

n—oo n—oo



Under the null hypothesis of Hj', we may find another consistent estimator as follows,

ol = — Z}]m X,

=1 =1

where

Similarly with equation (8), we can obtain another test statistic as follows,

T, = wa* (51, - 63,),
where w, is defined as in equation (8). Denote X3 = Zz TmiE[(Xy —EXG) (X —EXG)].
Corollary 1. Suppose |S3| > 0 and the conditions of Theorem 1 hold. For model (1),
under Assumptions A and B, we have that

TIC* = @72(0? — 7) + N(0,1),
where 7 = &2 i Q) = S B (X )

Zlel my T} 1= 1=1"4 i)ty -
Actually, we can obtain the ANOVA F' test for the individual effect,

o (cdl, —add)/ S (n—1)
103, [Zl (g = 1)(T = 1) — K]

Denote

) ~2
ICsx 2% 1 01y — Ogu
T, =0,072 (—A2 ).

Oov

It then follows from the Slutsky’s theorem that Tﬁc* and Tic** have identical asymptotic

distribution, where
T, = 0,F,° — oy,

with

o = 23 YPA L)y agepvilaze)
C4(Cl K) Cy

Therefore T/“** is a simple affine transformation of F/¢. A test based on T/“** (or
Tﬁc*) and the critical value from the standard normal distribution is asymptotically
equivalent to the ANOVA F test. It holds that 0 < 7 < o7 and © = 0 if and only if
E(u; X)) = 0. We may conclude that our test Tﬁo will be asymptotically more powerful

than the ANOVA F test when the individual effect is correlated with regressors.
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4 Testing for time effect

In this section, we consider to construct test statistics to test for time effects in model

(1). The hypotheses of the time effects test can be formalized as
Hy: var(m)=---=var(ny) =0  vs  H: at least one of them is nonzero. (9)
Under the null hypothesis of H{, model (2) turns out
yi = oury, + XuB + puilr, + v, 1 € N (10)

We only need to eliminate the individual effect by premultiplying the model (10) with

matrix @)},
Qi = Q1 XuB + Q.
It holds that

L
> ) ENQwul® = esor,

=1 =1

where ¢; = Y21, m(T; — 1). Similarly, we use the empirical version to replace the
population one to obtain the estimator of o2 as follows,

L n L mn
. 1 R 1 .
G5, = . E E 1Q12||* = p E E Q) (i — XuBB) |-

=1 i=1 I=1 i=1

Note that 62, is consistent under the null hypothesis H of no time effect and inconsistent
under the alternative hypotheses of H{. Based on the difference between 63, and 63,

we can construct a test statistic as follows,

L
Cs5 /. A
T = =5 (03, = 65,) + D _(Ti = 1). (11)
Ov =1

Below, we state some additional assumptions to study the asymptotic behavior of the
proposed test T/
Assumption C: The time effect 7, = n_%nm, where 7, is a random variable with mean

zero and finite variance En2, > 0.
Theorem 2. For model (1), suppose that Evj, < oo, [¥i] > 0, EX;, < oo, and
E(Xixvis) =0, fori=1,....nt = 1,.... T3k = 1,..., K. If Assumption C holds,

we have that

L
TIC = || 0, Qini 1, + N (0, Ir,—1 — 0,Se) 1%,
=1



where 771 T, = (771, N 777Tz)/7 EGZ = 251 + 2/5l — 241 'U}’Lth 241 = leEEXhZflEQEflEXZ’ZQl
and 251 = leEE[VZiVZ/iB(XZi — EleL)]El_lEXl’le

It is not difficult to obtain that g = JZITZ,I if EX;; is independent of ¢. Under
the null hypothesis of no time effect, we can show that the asymptotic distribution of

Téo is the chi-square distribution with Zle(Tl — 1) degrees of freedom, XQZ T In
=1 -

application, we need first to center the regressor Xj; for each group N, resulting in X,

and then perform the test T, with p-values or critical values calculated from Xzz L n1y
=1\

Under the null hypothesis of no time effect, we may find another consistent estimator

as follows,
Gy, = _ZZ 1Q (i — X1252)|| )
=1 i=1
where
) L L
Py = ZZX,’ZPZXIZ 122)@3%
=1 i=1 =1 i=1

Similarly with equation (11), we can obtain another test statistic as follows,

L

ic« _ G5 ~2 § :

Tn ) 2v UOV + E_l
=1

001/
Corollary 2. For model (1), suppose that Ev;, < oo, |X4| > 0, EX}, , < 00, B(Xixis) =
0, EX;; is independent of t, fori=1,... n;t =1,.... Tk =1,... K. If Assumption
C' holds, we have that

L
T, =Y llo, Qi + N0, In—) |-

1=1
Similarly, we can obtain the ANOVA F test for the time effect,

Ic _ (055%1/ - Cl&gu)/ ZZL:1(TZ —1)
162,/[Y s (= 1)(Th = 1) — K’
1)

and we can further show that TIC* = FICKJ with Kk = %

From the above
corollary, unlike the counterpart in the previous section, the test Tf;c is not significantly

more powerful than the ANOVA F test due to the small time length.

10



5 Test jointly for both individual and time effects

In this section we consider the joint test for individual and time effects. The hypotheses

can be formalized as follows,

HY": o7 =var(m) = --- = var(np) =0 vs H{" : at least one of them is nonzero.

(12)
Under the null hypotheses of H}", model (2) turns out
yi = ouy, + XuB + v, 1 €N

It holds that
L mny L
> ) Elwl* =D nmTio} = No.
=1 =1 =1

and we can obtain an estimator of o2 as follows,

U3V=—ZZ||% aur, — Xuf|)?,

=1 =1

where
1 L ny
Ay — N ZZL’TZ(MZ - Xlzﬁ)
I=1 i=1
Clearly, 62, is consistent under the null hypothesis of Hf" and inconsistent under the
alternative hypotheses of H!". Based on the difference between 62, and 63, we can

construct a test statistic as follows,

Tlllgl = Wn 2 \/_(O-?w UOV)

where w, is defined as in equation (8).

Denote that
L 1
S =Y mEX)X;) - = Z mEX]ur,) Z mEX]ur,),
=1 ERY e =1
and

L
z : /
QQ = mlEXlz'LTz .
=1

11



Theorem 3. For model (1), suppose that Evj, < co, [¥1] > 0, [¥7] > 0, EX}}, < oo,
and BE( X pvis) =0, fori=1,...,n5t =1,..., T3k =1,..., K. If Assumptions A—C
hold, we have that

Tﬁ%} — P~ zaf + N(0,1),

where ® = ay? + b(0?)?.

Under the null hypothesis of Hj", we may find another consistent estimator as,

03, = ~ ZZHZJM aser, — Xuils||?,

llzl

where
L

ny
(a3, B) = argming, g > > |y — vy, — Xpf||*.

=1 i=1

We may consider another test statistic
1Cx*
T =wn . Vn(a3, — 63,).

Corollary 3. For model (1), suppose that Ev;, < oo, |¥1] >0, |[%7] > 0, EX}, < oo,
and BE( X pvis) =0, fori=1,...,n5t =1,...,T;;k =1,..., K. If Assumptions A—C
hold, we have that

TIC* — @73 (02 — \) + N(0, 1),

where \ = —9’2_191 +

Zl 1Ty

—(Zl ) (QQZ 1Q1)2.

And we can obtain the ANOVA F test for both individual and time effects,

FIC _ (NG5, — c163,)/ Zle(nz + 1 — 2)
M a6l (o (= 1)(T - 1) — K)

Denote

~2
0' — 0y
g = gtat e Ty

Oov

and then we have that
IC**x e
T;m - 92Fun — Vs,

with

; V(g + T = 2)e

T —1
b= ooty mtTi-1)
-

N

L
B

12



Furthermore, it follows from the Slutsky’s theorem that ng* and ng** have the same

asymptotic distribution. And then a test based on Tﬁf;* with the critical value from the
standard normal distribution is asymptotically equivalent to the ANOVA F test F{g

As Wu and Li (2014) argued, T;S, and T/S* fail asymptotically to detect the pres-

ence of the time effect. From the proof of Theorem 2, test statistics TZLC and Téo are
asymptotically independent if {1;} is independent of { X;}. Following the similar method

of Wu and Li (2014), we propose a weighted test statistic as follows,

Tﬁg‘Q = w(Tfﬁ)? + (1 - w)T{f/’,

where w € [0, 1] can be specified by practitioners. Under the null hypothesis of H}", if
/EX;; = 0 holds and {»;} is independent of {X;}, then

TIC

2 2
un2 = wx) + (1 - w)XZzL:1

(1-1)"
Ic
un2o

Ic
Hn2

As Wu and Li (2014) argued, if we have no preference about the weight in T',, we can

simply set w = 0.5 in practice. And then the asymptotic distribution of T %, can be

0.5X22L (1)1 under the null hypothesis.
=1 -

6 Simulation study

In this section, we conduct several Monte Carlo simulation experiments to evaluate the

e TIC

s Lo ). Several commonly-

performance of the proposed test statistics (TLC,T{F,T
used tests are also given to compare the finite sample properties with our test statis-
tics. They are Breusch and Pagan (1980)’s tests (BP!‘ZC,BP?,BPI{S), Honda (1985)’s
tests (HZC,HIC, HIC), Moulton and Randolph (1989)s tests (SLM.“, SLM!“, SLM/")
and ANOVA F’s tests (F,ﬂc, F,I]C, Fﬁg), respectively. The empirical sizes and powers of
these test statistics are obtained based on 1000 replications.

The first experiment is to check the performance of the test statistic Tﬁc. The data

generating process is
?Jit:0-5+Xit1+2Xz‘t2+ﬂi+77t+Vita i:1727"'7n7t:172a"'7ﬂu (13)

where the numbers of time length T;’s are randomly taken from three different time

periods 4, 8 and 12, X;;; follow the normal distributions with mean zero and var(X;;) =

13



1, Xy " N(0,1), S o, N(0,1), m R 0,N(0,1). Besides, we let corr(X;, ;) = p

and corr (X, Xis1) = p? fort # s. Clearly, p = 0 means that X;;; and y; are uncorrelated
with each other. And we choose n = 50, 100, 200 to observe the change of the performance
of these statistics as the number of the individuals increases. Moreover, o, = 0 or > 0
corresponds repectively to the absence or the presence of the time effect, and o, = 0 or

> (0 the size or the power. We compare these test statistics on the case of two different

iid . id.d. \/%(X% _ 1)7 where X% means the

distributions of v;: (i) vz ~" N(0,1) and (ii): vy ~
chi-square distribution with 1 degree of freedom.

We first compare these test statistics for the existence of individual effects in the case
with p = 0. When the time effect is not present, all of these tests perform well although
they still have some small difference. The test HIIF has a distorted empirical size even
when the number of individual is large enough, which was also illustrated by Moulton
and Randolph (1989). The power of BPLC is smaller than those of the other tests as
the alternative hypotheses of BP{LC test are two-sided. We can see that these tests are
robust to the distributions of the idiosyncratic error even though the distributions of the
test statistics BP{F, Hic, SLM/{C and F{F are inferred under assumption of normality.
When the time effect is present, the performances of BP{LC, Hﬁc and SLMZLC are worse
since their empirical sizes are distorted, however, Fﬁc and T,ﬂc are comparable and both
keep the desired performance. The details on the simulation results for the case with

p = 0 are listed in Tables 1-2 as follows.
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Table 1: Empirical sizes and powers of the test T,ﬂc and other four tests in case of

vit ~ N(0,1) and p = 0. The nominal level is 5%.

n o oy BP/ H/C SLM; FIC TIC
0.0 0.0 0.056 0.109 0.056 0.041 0.058

0.1 0.072 0.139 0.124 0.092  0.118

0.2 0.264 0.397 0.423 0.366  0.425

0.3 0.678 0.833 0.851 0.802  0.817

50 05 0.0 0.056 0.044 0.004 0.057  0.068
0.1 0.043 0.144 0.070 0.103  0.130

0.2 0.093 0.185 0.366 0.382  0.379

0.3 0.413 0.529 0.787 0.791 0.803

1.0 0.0 0.348 0.592 0.001 0.052  0.066

0.1 0.263 0.537 0.005 0.095  0.111

0.2 0.106 0.306 0.026 0.347  0.401

0.3 0.132 0.214 0.176 0.792  0.801

0.0 0.0 0.044 0.108 0.047 0.050  0.055

0.1 0.090 0.153 0.156 0.136  0.144

0.2 0.445 0.624 0.639 0.569  0.585

0.3 0.931 0.967 0.980 0.959  0.965

100 05 0.0 0.111 0.266 0.043 0.050  0.044
0.1 0.067 0.185 0.097 0.120  0.144

0.2 0.145 0.264 0.518 0.561 0.602

0.3 0.639 0.784 0.950 0.965  0.964

1.0 0.0 0.625 0.797 0.002 0.049  0.058

0.1 0.492 0.706 0.003 0.125  0.145

0.2 0.269 0.431 0.021 0.565  0.601

0.3 0.198 0.344 0.219 0.961 0.970

0.0 0.0 0.065 0.094 0.048 0.060  0.043

0.1 0.103 0.212 0.220 0.189  0.184

0.2 0.749 0.873 0.866 0.839  0.836

0.3 0.997 0.999 0.999 0.999 1.000

200 05 0.0 0.248 0.429 0.025 0.050  0.044
0.1 0.134 0.282 0.118 0.183  0.185

0.2 0.234 0.391 0.760 0.848  0.816

0.3 0.873 1.000 0.834 1.000 1.000

1.0 0.0 0.813 0.904 0.001 0.047  0.049

0.1 0.719 0.840 0.003 0176 0.202

0.2 0.428 0.573 0.046 0.825  0.821

0.3 0.332 0.459 0.279 1.000  0.999

15



Table 2: Empirical sizes and powers of the test T,ﬂc and other four tests in case of

Vit ~ \/g(xf — 1) and p = 0. The nominal level is 5%.

n o, o,  BP)C HIC SLM,© FIC TiC
0.0 0.0 0057  0.091 0.053 0.060  0.061

0.1 0085  0.117 0.116 0.109  0.061

02 0249  0.426 0.454 0.389  0.389

03 0701  0.837 0.842 0.777  0.772

50 05 00 0051  0.169 0.034 0.070  0.049
0.1 0.05 0.137 0.087 0.121  0.113

02 0098 0179 0.390 0.370  0.387

0.3 0405  0.575 0.779 0.772  0.809

10 00 0365  0.613 0.005 0.058  0.048

0.1 0252  0.550 0.005 0.113  0.111

02 0125  0.308 0.032 0389 0.375

03 0111  0.237 0.156 0.778 0779

0.0 0.0 0048  0.09 0.054 0.074  0.062

0.1 0091  0.156 0.139 0.161  0.132

02 0465  0.622 0.658 0.560  0.547

03 0938  0.973 0.980 0.953  0.952

100 05 00 0115  0.260 0.034 0.062  0.062
0.1 0065  0.170 0.105 0.153  0.127

02 0160  0.265 0.550 0549  0.555

0.3 0644  0.808 0.944 0.951  0.955

L0 00 0625  0.776 0.002 0.061  0.054

0.1 0540  0.682 0.007 0.137  0.147

02 0257  0.433 0.029 0.577 057

03 0189  0.328 0.218 0.961  0.949

0.0 0.0 0040  0.091 0.050 0.074  0.057

0.1 0122  0.183 0.212 0.184 0178

02 073  0.859 0.875 0.826  0.796

03 0998  1.000 0.999 1000 0.998

200 05 00 0228 0422 0.027 0.059  0.056
0.1 0119  0.246 0.098 0.181  0.180

02 0203  0.376 0.740 0.811  0.800

03 0869  0.935 0.997 1000 0.998

L0 00 0816  0.912 0.002 0.061  0.055

0.1 0721 0815 0.006 0.184  0.185

02 0439 0579 0.027 0.821  0.782

0.3 0337 0.473 0.275 0.998  0.997

And we let p > 0 to observe the performance of the test statistics when the regressors
are related to the individual effects. Here we only consider the case with v "N (0,1)

and the number of individuals n = 200. The results show further that our test Tic has

FIC

better performance than the competitors including the ANOVA F test F 7,

see more

details in the following table.
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Table 3: Empirical powers of the test T/ and other four tests in case of vy ~ N(0,1)

and p > 0. The nominal level is 5%.

p o, o,  BP)C HIC SLM;/ FIC TIC
00 01 0104 0174 0.156 0.147  0.205

02 0453  0.658 0.678 0.719  0.843

0.3 0968  0.988 0.990 0.999  0.999

04 05 01 0051  0.110 0.088 0.159  0.202
02 0318  0.458 0.527 0.690 0816

03 0904  0.974 0.970 0.996  0.999

L0 01 0759  0.855 0.002 0.153  0.178

02 0527  0.659 0.015 0.730  0.823

03 0201 0411 0.125 0.998  1.000

0.0 01 0073  0.101 0.109 0.119 0210

02 0165  0.332 0.345 0.533  0.808

0.3 0681  0.838 0.868 0.965  1.000

06 05 01 0048 0124 0.049 0122 0.203
02 0100 0214 0.209 0.557  0.814

0.3 0489  0.682 0.688 0.966  0.996

L0 01 0764 0836 0.002 0123  0.193

02 0645  0.769 0.006 0.533  0.809

03 0454  0.583 0.027 0.969  0.997

0.0 01 0052  0.084 0.065 0.097  0.236

02 0072  0.140 0.103 0.266  0.791

0.3 0114  0.203 0.242 0.691  0.995

08 05 01 0065  0.134 0.028 0.082  0.231
02 0051  0.105 0.056 0272 0.804

03 0073  0.132 0.125 0.715  0.995

L0 01 0825 0888 0.002 0.094  0.255

02 0785  0.852 0.002 0.254  0.790

03 0701 0815 0.002 0.700  0.995

The second experiment is to check the performance of the test statistic Tf?C. The

data generating process is the same as equation (13) with n = 200 and p = 0. We

also consider two different kinds of the distributions of v;: (i) vy "N (0,1) and (i4):
Vit 9 %(X% — 1), and the corresponding results are as follows.
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Table 4: Empirical sizes and powers of the test TéC and other four tests in case of

p = 0. The nominal level is 5%.

ou o,  BP)C HIC SLM;“ FIC TIC

0.0 00 0046  0.057 0.051 0.045  0.048

02 0092 0123 0.160 0.093  0.102

04 0923 0.947 0.947 0.943  0.927

vie ~ N(0,1) 05 0.0 0032  0.060 0.030 0.047  0.048
02 0052  0.079 0.078 0.094  0.088

04 0805  0.862 0.912 0.936  0.935

L0 00 0011 0127 0.001 0.053  0.053

02 0014  0.072 0.020 0.108  0.105

04 0560  0.639 0.715 0934 0941

0.0 00 0045  0.066 0.060 0.054  0.044

02 0100  0.148 0.164 0.103  0.104

04 0923  0.933 0.950 0912 0.943

vie~y/303-1) 05 00 0021 0.052 0.017 0.050  0.048
02 0051  0.070 0.079 0.092  0.108

04 0799  0.869 0.918 0913 0.937

L0 00 0008  0.136 0.003 0.055  0.052

02 0012  0.086 0.013 0.088  0.122

04 0530  0.639 0.684 0.936  0.943

From Table 4, we can see that, when the individual effect is present, the empirical
sizes of BP;C, HfIC and SLM;C are all distorted, and in contrast, the empirical sizes and
powers of Ff;c and Tf]C are comparable and desired. In the experiment we also compare
our test with the competitors in the case that the regressors are related to the focused
random effects. The unreported results show that our test statistics have slightly higher
power than the competitors including the robust ANOVA F test statistics. We guess
that one main reason is that the time length in this paper is set to be fixed and not
large.

The third experiment is to check the performance of the joint tests. We consider the
same data generating process as equation (13). And we let vy “EEN (0,1). The number
of the individuals is set to n = 100 or n = 200. Besides, we also consider the case p =0

and the case p = 0.6. The results are listed in Table 5.

18



Table 5: Empirical sizes and powers of the tests Tﬁ%, ngQ and other four tests. The

nominal level is 5%.

R v A U U A v R v
n = 100

0.0 0.0 0.042 0.164 0.056 0.058 0.060 0.055

0.1 0.068 0.225 0.117 0.143 0.148 0.068

0.2 0.358 0.656 0.451 0.578 0.588 0.206

0.3 0.900 0.968 0.914 0.956 0.959 0.678

0 0.2 0.0 0.064 0.174 0.094 0.086 0.089 0.086
0.1 0.067 0.216 0.161 0.143 0.147 0.084

0.2 0.366 0.644 0.487 0.578 0.593 0.221

0.3 0.900 0.962 0.917 0.962 0.963 0.708

0.4 0.0 0.248 0.433 0.660 0.326 0.335 0.635

0.1 0.265 0.462 0.709 0.487 0.491 0.682

0.2 0.518 0.753 0.906 0.838 0.840 0.773

0.3 0.921 0.982 0.992 0.993 0.994 0.950

0.0 0.1 0.042 0.165 0.076 0.103 0.172 0.064

0.2 0.083 0.285 0.159 0.326 0.552 0.195

0.3 0.300 0.590 0.425 0.783 0.945 0.686

0.6 0.2 0.1 0.047 0.173 0.120 0.112 0.171 0.104
0.2 0.094 0.256 0.215 0.363 0.577 0.250

0.3 0.275 0.547 0.433 0.782 0.936 0.694

04 0.1 0.242 0.458 0.680 0.411 0.498 0.672

0.2 0.283 0.509 0.756 0.738 0.852 0.799

0.3 0.415 0.693 0.898 0.943 0.990 0.950

n = 200

0.0 0.0 0.039 0.167 0.055 0.047 0.045 0.046

0.1 0.082 0.250 0.145 0.189 0.186 0.067

0.2 0.659 0.849 0.699 0.835 0.829 0.338

0.3 0.996 0.998 0.997 1.000 1.000 0.941

0 0.2 0.0 0.065 0.174 0.116 0.067 0.062 0.105
0.1 0.089 0.273 0.239 0.211 0.204 0.120

0.2 0.647 0.864 0.777 0.853 0.844 0.432

0.3 0.996 0.998 0.995 0.999 0.999 0.964

0.4 0.0 0.548 0.707 0.887 0.519 0.507 0.913

0.1 0.583 0.728 0.935 0.718 0.706 0.935

0.2 0.837 0.952 0.994 0.979 0.977 0.974

0.3 0.997 1.000 1.000 1.000 1.000 1.000

0.0 0.1 0.056 0.204 0.091 0.125 0.197 0.065

0.2 0.157 0.383 0.229 0.523 0.779 0.358

0.3 0.554 0.825 0.616 0.964 0.996 0.931

0.6 0.2 0.1 0.065 0.199 0.166 0.171 0.243 0.134
0.2 0.170 0.420 0.335 0.605 0.830 0.451

0.3 0.562 0.827 0.723 0.969 0.999 0.941

0.4 0.1 0.553 0.728 0.911 0.646 0.711 0.926

0.2 0.637 0.817 0.961 0.917 0.971 0.978

0.3 0.825 0.947 0.989 0.995 1.000 0.998
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Table 5 gives the empirical sizes and powers of these tests. Clearly, the tests T;{%

and Tﬁ% are immune to the correlations between the possible individual effects and the

e

regressors. Moreover, the powers of Tﬁ% are larger than those of T, as the time effect

IC
Hn2

c

um as the time effect is

is not present, in contrast, T'%, seems more powerful than T

present.

7 A real example

In this section we apply the proposed tests to a data set which was used by Munnell
(1990) and Baltagi and Pinnoi (1995). To investigate the productivity of public capital
in private production, Munnell (1990) proposed the following Cobb-Douglas production

function,
InY = a+ f1InKy + BolnKs + B3Inl + ByUnemp + u,

where Y is gross state product, K is public capital which includes highways and streets,
water and sewer facilities and other public buildings and structures, K5 is the private
capital stock based on the Bureau of Economic Analysis national stock estimates, L is
labor input measured as employment in nonagricultural payrolls, Unemp is the state
unemployment rate included to capture business cycle effects. This panel data consists
of annual observations of 48 contiguous states covering the period 1970-1986. In order
to illustrate our method clearly, we choose three subsets of this data set as follows:
Data (1) contains 16 states observed over 2 years, 16 states observed over 4 years and
the other 16 states observed over 6 years, simply denoted by, 16(2), 16(4) and 16(6),
respectively. Similarly, Data 2 has 16(6), 16(8) and 16(10). Finally, Data 3 has 16(10),
16(12) and 16(14). And then we use the artificially incomplete panel to demonstrate the

performances of our tests. And the other tests are also performed for comparisons.

Table 6: Values of several statistics for individual effects.

ic c c c Ic
BP/ H, SLM/, F] T/
Data 1 20314  14.25 15.24 8712 3115.14
Data 2 91342 30.22 31.82 104.37  633.73
Data 3 2214.94 4706 49.40 116.60  643.37

Table 6 gives the values of the test statistics for the individual effects, and the cor-

rersponding p-values are all less than 0.0001 for the three data sets. Clearly, for the
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three data sets, all the tests mentioned above are verified that the individual effect is
present. However, with no information of whether the time effect is present, the infer-

ences made from BP{F, Hﬁc and SLMIIF can not be convinced.

Table 7: Values of several statistics for time effects.

BP/“ HIC SLM;“ FIC TIC
Data 1 0.03 (0.49) 0.18 (0.43) 0.61 (0.27) 11.52 (0.00) 718.43 (0.00)
Data 2 6.29 (0.00) 251 (0.006)  3.12 (0.0009) 4.19 (0.00) 1717.84 (0.00)
Data 3 0.43 (0.33) 0.66 (0.25) 0.97 (0.17) 3.22 (0.00) 2127.01 (0.00)

Note: The values in the parentheses (-) are the p-values of the corresponding test statistics.
Table 7 gives the results of the tests for the time effects. Clearly, for the three data
sets, the null hypothesis is rejected by Féo and Téc, and their p-values are all very
small for the three data sets. However except for Data 2, the null hypothesis can not be
rejected by BPéC7 Héc and SLM;C even as the significant size is 0.05. It may be caused
by the fact that the individual effect is present and this affects the inferences by BP;;C,
H,ﬂc and SLMiC. Finally, we also consider the joint tests for the presence of both effects.

The corresponding p-values of these tests are all less than 0.0001 for the three data sets

mentioned above.

Table 8: Values of several statistics for both the two effects.

IC ic IC IC IC IC

BP H,m SLMM Fym Ty T2
Data 1 203.18 10.21 12.02 77.50 3044.41 9704789.00
Data 2 919.70 23.14 25.79 77.49 611.52 403335.30
Data 3 2215.37 33.74 36.56 71.02 621.48 416053.90

8 Conclusion and discussion

In this paper, we develop some methods to test for the existence of random effects
in the error component regression models with incomplete panels. Some asymptotic
properties are obtained under some mild conditions. Comparing with the work in the
existing literature, the test statistics in this paper have the desired properties as follows.
They are simple and easy to compute; they are robust to the misspecification of the
distribution assumptions; they are robust to the misspecification of another effects while
testing for one effects; they have desired performance when there are dependency among

the regressors, random effects and the idiosyncratic errors.
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In this paper, we adopt the same setting in missing form of data as Shao et al. (2011)
and Chowdhury (1991) and then obtain the asymptotic properties. However, the missing
data in practice may be more general than the setting in this paper. So, how to handle

the more general missing data deserves further study.

Appendix

This appendix contains the proofs of theorems in the previous sections. Before that, we

also state several lemmas which will be used in the process of the proofs.

Lemma 1. Suppose that Evj, < oo, |1 > 0, EX}, < oo, and E(Xirvis) = 0, for
i=1,....nyt=1,...,T;;k=1,..., K, B s a \/n consistent estimator of the parameter

3.

The proof of Lemma 1. Since the sequences {X);} and {v;} are both i.i.d. for each
[=1,2,...,L and the conditions Ev < oo and IEXftyk < 00 hold, it gives

ny

\/L_ Z (Xy — EXy) = — Z vy =

And we can show

L n
%ZZXZ/iPIXZi = ZMZZXZZ——ZX& PZXIZ——ZXIZ

=1 i=1
= Z mu[E(X); P .X) — EX[PEX] + 0,(1)

= 21 + Op(]'>7

and

\/‘ZZX“PM’ = ;\/E\/_Z Xlz__ZXlz Pth__ZVlz

=1 i=1

= Z \/_ Z Xlz EXlz) PlVlz + 0p<1)

\/_

Since >, Xl’iPlDli, [ =1,2,..., L, are independent,

NG Z Z X[, P, = N(0,%,),

=1 =1
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where Yy = Zle miE[(Xy; — EXy) Py, P (X — EXy;)]. Therefore

V(B —B8) = Z Z X[ PiXii)~ f Z Z X[, Pitn;)

l 1 =1 =1 =1
= N(0,37'5.21),

and then 8 — 3 = Op(n_%). The proof of Lemma 1 is completed. 0O

Lemma 2. Suppose that Evj; < oo, |%| > 0, EX},; < oo, and E(Xyxvis) = 0, for
i=1,....nt=1,....T;;k=1,...,K, 63, is a consistent estimator of o2 and %} is a

consistent estimator of ..

The proof of Lemma 2. From Lemma 1, we can show

A2 .
Opy = _E :E I/lzljlyll
C1

=1 i=1

1 L

= C—l ZZ Vlz Xlz ﬁ ﬁ)] PZ[VI'L Xll(ﬁ 5)]
=1 i=1
L

= C%ZZVMPIV“ + 0,(1)

=1 =1

- z zumuh+op<1>

= o2+ op(l).

To study the consistence of 4%, we first note that,

n Ti— n; Ty—
ZZZ dsi)t =3 ZZZ{% 7 — Xu(B - B
=1 i=1 j=1 =1 i=1 j=1
ng Ty— ny
- ZZZ qlJV“ —4ey! ZZZ qlJVlZ qlJXlz B 5)"‘%(5 B)
=1 i=1 j=1 =1 i=1 j=1
L n
= Z Z ql]Vlz +Op )
=1 i=1 j=1
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Hence,

n Tp—

B o= _1222 a;0)* = es(63,)°

ll'Lljl
n T;—

= ZZZ qlgl/ll - UOV) + 0p(1)

ll'Lljl
n Tj—

= ZZZ%% — ¢3(62,)> + 0,(1)

=1 i=1 j=1
n; Tj—1

L
- 262;22 quyll - UOV) +0p(1)
Jj=1

=1 =1

1~

- Z%E[Z(QZM@'W c (O’OV) + 0,(1)

-1 T L -1 T

L L
- Z"lzzqm RS —327’”22%‘;
j=1 =1

C c
2 t=1 2 =1 =1

Since

-1 T

JE{}OZ ZZqét

]1t1

and

L -1 7

L
IO SCTURIEI 33 9) SRR
=1

c
2 j=1 t=1

¢3(65,)" + 0p(1).

together with the consistence of 63, we obtain 4% = ~2 + 0,(1). The proof of Lemma 2

is completed.
The proof of Theorem 1. From Lemma 1, we can show that

Vnog, = ZZHQZ il

=1 =1

\/_
= Py i P X,
o >3 7R3~ )

=1 i=1 =1 =1

- fzzﬁmm« +o,(1)

=1 =1

L
= USSR+l

=1 i=1
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and

n
Vnot, = ZZI%H2

=1 =1

- V_ Z Z 1 + fustr, — Xu(B — B)|1%.

=1 i=1
Besides, it holds that

= N(0,%,), (14)

where ¥, = Zle #E[(Xli —EX})'vv;, (X — EX);)]. Under Assumption B and

L:1 m;T})?

the condition EX7 , < oo hold, it gives

n4— ZZ%MZMTZ Op(1),

=1 =1
—ZZXuXu s+ 0,(1),
=1 i=1 Zl:l myT;
1
n4— Xh,ullLT =W+ op(1), (15)
;; l Zl Ty

where ¥3 = S5 mE[(X; —EX,) (X —EXy)] and Qp = S3F  myniE(X}, ;) vr;. Under

Assumption A and from equations (14-15), we can show that

\/_gly = ZZDZIZDZZ—I—_ZZ/MZT}_{—OP

=1 =1 =1 i=1
- fzzygiyﬁgﬂop(n.
=1 =1
Hence
Vn(6t, - 65,) = Z Z Vi — ~— Z Z Vi P + 0t + 0p(1)

I=1 i=1 =1 i=1

= ZZflz‘i‘Ul‘i‘Op 1).

\/_l 1 =1
where &; = il/l’iyh—%yl’iﬂy”. Note that &;, 1 =1,2,..., L, 1 =1,2,...,n;, are mutually

independent, and it then holds that
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and

L n
1
lim =3 > E(6:)* = ay) +b(0))* = @,

=1 i=1
where
I I Z 2T+n2(T+1 o) = 2% g 1y,
a = lim a, = lim n — —2) - —(1; —
n—00 n—oo M, l02 ! 1 ! T C1Co :
and
n? 3 2n?
b = limb,=1 TT—l + =T -DT+=-2)——(T; -1
Pl nggonznl (Ti=1)+ c%(l )(l+7} )clcz(l 7l

Note that lim Y "  E&, — oo and Evf, < oo hold, and the Liapounov condition is
n—o0

satisfied. Therefore ®~2/n(6%,—62,) — N(0,1)+®~20?. From the Slutsky’s theorem

and Lemma 2, we can easily complete the proof of Theorem 1. 0O

The proof of C’orollary 1. Tt holds that

B = Z Z XZZXZ’L Z Z Xlzylz

=1 i=1 =1 i=1
L n L

= B+ (Z Z X5 Xa) Z Z Xt + (> XiX) QY Kisduen)-

=1 i=1 =1 i=1 =1 i=1 I=1 i=1
From (14)—(15) we can show that

ZZXII'LXM ZZXl/zﬂll -

=1 i=1 =1 i=1

%

and

L mn L mn
W0 S XK Y Ken)

=1 i=1 =1 i=1

L mn L ny
1 Sy N1, 3 S~
= (2D XXy Y Kijuer)
=1 i=1 =1 i=1
L L
1
= [ mBXu — EX) (Xi — EXi)] 7 Y min E(X i) ] + op(1)
= =1
=: 25191 + Op<1).

By the proof of Theorem 1, it gives

ny
Vnot, = ZZH%HZ

=1 i=1

S Sl + e — Kl AP

=1 =1

= ZZM (B — BYX[:Xu(B — B) — 2(8 — B) Xpsiuier, + Tufii] + 0p(1).

=1 =1
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Since

€4 =1 =1
1 L n ~
= ni(B=BY D > KiKuni (B - 5)
=1 i=1
= 7+ o0,(1),
and
n L ny B 5
- Z (8 = B) Xysfuitr,
Rt
L n
1, ~ 1 ~, .
= ni(f— @)/Z ZnZXl/i:uli//Tl
=1 i=1
= 7T+0P(1)7
/ 1
where ™ = > lszQ 25 €);. Hence

\/ﬁ(&%u UOV) = N(O (I)) + 0-1 - .

From the Slutsky’s theorem, we can easily complete the proof of Corollary 1.

The proof of Theorem 2. We first note that

L mny
ZZIZIZPH;ZZ ZZVlzPlVlz Z || ZQlVl%HQ'

=1 =1 =1 =1

For each | =1,2,..., L, we can show
1 & A
ZQMZ = 7 > Qv — Qi Xu(B — B))
i=1

= \/Ln_l Z Q;Vli Z Qlez ﬁ 5 Z anl'
=1

Since

ZQlylZ:>NO o2l 1),

and
1 & v 4 il .
\/—n—l ; QXu(B-B) = Eln_l Z Qi Xiivn(B — B)

= VmuQEXySy ZF

- N(O, 281)7

\/_
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where g = le;]EXhEl’lZQZflEXl’in. Together with the fact that

Z Qi [V QIEX Sy Z NT—

= ml@z [VliVZi]Dl(Xli_EXli)]EflEXzin

\/_ Z Xlz EXZZ) PlVlz] }

= 25l7
we have
1 &
— > Qi - Z QiXu(B — B) = N(0, ),
where Yg = 02I7,_1 + Xy — X5 — 2f;. Therefore

ZQlVlz — N(0,361) + Q-

Hence
TS = o ZH—ZQMHQ
01/ l 1
= Z | N(0,0,%Sa) + o, ' Qi |1
Note that

1 ny L 1 ny
cov( = Z Z i 7= > Qivts + VIQIEX T, Z V= Z(Xh» — EX.i) Pv)
i=1 i

=1 i=1

= E \/—ZZ&z \/TL_ZQ;WZ +]E \/—ZZ&Z \/_QZEXZZE Z\/_

=1 =1 =1 =1

¢_ Z (X — EXy;) Pwy).

And if {;} is independent of {X;}, then it holds that

\/— Z Zflz N ;ini) — 0,

=1 =1

and

IZZ&Z (VIQEX; Sy ZF fz Xy — EXy) Pwis) — 0.

=1 i=1

when 7 tends to infinity. Hence, under the hypothesis of no individual and time effects,

Tﬁc and Tgc are asymptotically independent. The proof of Theorem 2 is completed.

28



The proof of Corollary 2. Since the condition Q;EXM = 0 holds, it gives

V(B —p) = Z ZXthXzz (7 Z Z X! P

=1 i=1 =1 =1

= [Z sz(X{Z»Plez‘)]_l(Z \/ﬁ% zl: X, Pv) + op(1)

1=1
= 0,(1).
It holds that
) L L L L
B—B8 = (O ZXhPth O ZXMPMI > ZXthXu O mem .
=1 i=1 =1 i=1 =1 i=1 =1 =1
So, we have that
~ L 1 L n
n(By — = my X)) T (—= itivii) + Op
V(B2 = B) D miE(XGP X)) nZZX'P )+ 0p(1)
=1 1=1 i=1
= Op(l)v
and
n(By—B) = [32—5—(/3’—5)]
L L
= ZmﬂE (X PXa)] M) Z XiiP+ Z (XA — Z vii) + 0p(1
=1 =1 i=1 1=1 i=1
= 0,(1).
Using these results, we can show that
L ~
D> Qi — XuB)|®
=1 i=1
L mn . ~ A
= D ) Qi — XuB) — Qi Xu(B - B)II?
=1 i=1
L ng . L ny _ R L L N ~ N
= Z Z 1Qi (i — XuB)|I* + Z Z 1QiXu(B — B — 22 Z(yli — XuB) PXyu(B - B)
I=1 i=1 =1 i=1 =1 i=1
L .
= ) D @i — XuB)|I” + 0p(1).
=1 i=1
Following the proof of Theorem 2, we finish the proof of Corollary 2. 0O
The proof of Theorem 3. It holds that
L n;
A ny 1 ny
Vn(a—a) = ———— > i Xu/n(B - B)+ \V o 1
;Zflnlﬂnl;ﬂ ZZl W Z
L
[Tu
= L \/_77 + L Vig
2211 T E Zz:l1anl ZTZ
= 0,(1).
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Hence
L

\/562 L M I/I/h—|—0 + 0,(1).
v li 1 P

=1 Zl 1l

Together with the proof of Theorem 1, we can easily complete the proof of Theorem 3.

[
The proof of Corollary 3. 1t holds that

ng
0 :%ZZLTZ (i — Xufs),

and
L n 1 L n L n
DI IETRES 3 SR ) LIS
=1 i=1 =1 i=1 =1 i=1
L n
(Z Z Xl/z‘?/li Z Z XZZLTZ Z Z LTZ?/lz
=1 i=1 =1 i=1 =1 i=1
Therefore
L n 1 L mn L mn
D) IRETRES 3 S 9) STEAR
=1 i=1 =1 i=1 =1 i=1
L n 1 L n L n
(Z ZXZIZ-MMLTI N Z ZXlliLTl Z ZTZMM
=1 i=1 1=1 i=1 =1 i=1
n;
+ Z Zlel N Z ZXZZLTZ Z >
=1 i=1 =1 i=1 =1 i=1
T Z ZXlZVlZ Z Z XZZLTZ Z Z LTlVlz
=1 =1 =1 i=1 =1 =1
and

L mn
- 1 ~
a3 —a =+ lg_l 2_1 (v, X06(B = B) + Tipus + vy =+ v i)

And it is not difficult to show that

MH

ni(Bs — B) = L7 + 0,(1),

and
ni(&g —a) = —%922;191 + 0,(1),
>z mTy
where
L
S =Y mE(X]X;) - ! Z mEX]ur,) Z mEX]ur,),
=1 Zl vty =1
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and

L
/
= g myEX ;.

Hence, we have

\/56-31/ - ZZ ”ylz aLﬂ Xl15||2

z1lle1z1

- Z n ZZH LTz Xli(B_ﬁ)‘i‘MliLTl+77l+l/liH2
1=1"" ll 1 =1

- TZZM|\2+01 A+ 0,(1).
ndy

ll =1 i=1

where A = >3 1mszQ X0 + A sz

orem 1, we derive the asymptotic dlstrlbutlon of ng* The proof of Corollary 3 is

~(Q:57101)2. Together with the proof of The-

completed. 0
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