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Abstract

This paper develops a new method to test for the existence of random effects

in the error component model with incomplete panels. Based on the difference of

variance estimators of the idiosyncratic errors at different levels, two statistics are

constructed to test for the existence of individual and time effects, respectively.

Some variants of the two statistics and joint tests for both the two effects are also

discussed. Their asymptotic properties are obtained under some mild conditions.

Monte Carlo simulation results show that our test statistics have better finite

sample properties than the competitors in the existing literature at many aspects.
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1 Introduction

In the econometric analysis of panel data, one usually focus on statistical modeling

analysis for complete data. In practice, however, it is common to encounter the miss-

ing observations in the collected data set. For example, in labor economics, some data

on individual income may be dropped out after some time periods due to the retire-

ment. Throughout this paper, the focused panel data sets can be allowed to be incom-

plete/unbalanced, that is, some data may be not observed in some time periods for some

individuals. Actually, most panels encountered in practice are of the incomplete kinds

(see, e.g, Baltagi (2008) or Baltagi and Song (2006)). And then statistical modeling

analysis for incomplete panels has received more and more attention recently (see, e.g,

Baltagi (2008)). Note that, misspecification of the existence of random effects in the er-

ror component will lead to seriously biased standard errors and even inefficient statistical

inference, which is completely similar to that of complete panels. So, it is important and

necessary to test for the existence of random effects in the error component regression

models with incomplete panels.

Different from most of the existing literature, in this paper we focus mainly on testing

for random effects in the error component model with incomplete panels as follows,

yit = α +X ′
itβ + uit, uit = µi + ηt + νit, i = 1, . . . , n, t = 1, . . . , Ti, (1)

where α is a scalar, Xit is the it-th observations onK observable regressors, β is the vector

of coefficients of the regressors, and uit is the error component including the two random

effects µi and ηt and the idiosyncratic errors νit. The random effects µi and ηt are used

to capture the heterogeneity of individual and time periods, respectively. Further, the

individual effect µi is assumed to be independent and identically distributed with mean

zero and finite variance σ2
µ, and the idiosyncratic error νit is assumed to be independent

and identically distributed with mean zero and finite variance σ2
ν .

Till now, there are many relevant literature on testing for the existence of random

effects in the error component regression model with incomplete panel data. In the

following we give a simple reviews for some main literatures. Baltagi and Li (1990)

extended the Breusch and Pagan (1980) LM test to the error component model with

incomplete panels. Since these variance components can not be negative, the two-sided
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alternative hypotheses seem to be unreasonable. Moulton (1987) extended the uniformly

mostly powerful test (UMPT) of Honda (1985) to the incomplete one-way error com-

ponent model and illustrated this method by a hedonic housing price incomplete panel

data model. However, as Moulton and Randolph (1989) argued, using the asymptotic

critical values for the test of Moulton (1987) can lead to incorrect inference, especially

when there is high correlations among the regressors or the number of regressors is very

large. And then Moulton and Randolph (1989) suggested a standardized lagrange mul-

tiplier (SLM) test which had better critical value approximations. Some test statistics

were similarly suggested for time effects, see, e.g, Baltagi et al. (1998), Honda (1985)

and Moulton and Randolph (1989). However, these tests are based on the one-way error

component models, i.e. the null hypotheses correspond to the case without any effects,

and the sizes may be distorted due to the presence of the time (individual) effect when

the individual (time) effect is tested (see, e.g, Wu and Li (2014)). Besides, although these

LM-based methods have a simple form, all of them require the assumption of normality

of idiosyncratic errors and independence among the regressors, the random effects and

the idiosyncratic errors, which can not be guaranteed in practice. Wu and Li (2014)

proposed several moment-based test statistics for the existence of random effects, which

are shown to have many desired properties such as the simplicity, the robustness to the

distribution assumptions and the possible dependency among the regressors, random ef-

fects and the idiosyncratic errors. However, their methods are only available for the case

with complete panels.

The main purpose of this paper is to extend the moment-based test methods of Wu

and Li (2014) to the case with incomplete panels. In Section 2, we outline the different

forms of the original model and obtain an robust estimator of the coefficients β which

is asymptotically normally distributed under some regular conditions. In Section 3, we

construct the test for the individual effect. We first derive two estimators of the variance

of the idiosyncratic error. One is the robust estimator which is consistent no matter of the

existence of the random effects, and another one is consistent when the individual effect

does not exist while inconsistent under the presence of the individual effect. Based on

the difference of the two estimators, we construct the test statistic for individual effects,

which can be shown to asymptotically normally distributed. And we can show our test
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statistic is more powerful than the traditional ANOVA F test when the regressors are

correlated with the individual effect. In Section 4, we use the same method to construct

statistics for testing time effects and study their asymptotic properties. In Section 5,

we construct several joint test statistics for both the two random effects and study their

asymptotic properties. Monte Carlo simulations are given in Section 6. Section 7 applies

our methods to a real data example. Section 8 gives some conclusions and discussions.

All proofs are provided in the Appendix.

For the sake of statements, we first introduce some notations as follows. We denote by

A′ the transpose of matrix A, by A−1 the inverse of matrix A, and by ∥A∥ = [tr(A′A)]
1
2

the norm of matrix A. A ⊗ B is the Kronecker product of matrices A and B, and

diagL(Al) is a block diagonal matrix with the diagonal elements A1, A2, . . . , AL. The

symbol “ =⇒ ” stands for weak convergence. an = op(bn) means that an/bn converges to

zero in probability, and an = Op(bn) means that an/bn is bounded in probability. EX or

E(X) stands for the mathematical expectation of the random variable X.

2 Model and notations

We assume that there are L disjoint subsets N1,N2, . . . ,NL of {1, 2, . . . , n} such that the

observed time length is identical for each i ∈ Nl with l = 1, 2, . . . , L. The subjects with

individuals in Nl form a balanced panel data set with the same time length Tl. And we

denote the number of individuals in group Nl by nl. For each group Nl, model (1) can

be rewritten into the vector form as

yli = αιTl
+Xliβ + µliιTl

+ ηl + νli, i ∈ Nl, (2)

where ιk is a vector of ones with dimension k, yli = (yli1, yli2, . . . , yliTl
)′, Xli and νli are

defined similarly, and ηl = (ηl1, ηl2, . . . , ηlTl
)′.

For each group Nl, we first eliminate the time effect by centering each term in model

(2),

ỹli = X̃liβ + µ̃liιTl
+ ν̃li, i ∈ Nl, (3)

where ỹli = yli − 1
nl

∑nl

i=1 yli, X̃li, µ̃li and ν̃li are defined similarly. Using the similar

methods of Wu and Li (2014), we find a matrix Ql such that (
ιTl√
Tl
, Ql) is a Tl × Tl
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orthogonal matrix. Premultiplying the model (3) with the matrix Q′
l yields,

Q′
lỹli = Q′

lX̃liβ +Q′
lν̃li. (4)

The model (1) can be rewritten into the matrix form by stacking the observation of

the L groups as

y = αιN +Xβ + Zµµ+ Zηη + ν,

where y = (y′1, y
′
2, . . . , y

′
L)

′ with yl = (y′l1, y
′
l2, . . . , y

′
lnl
)′, X, µ, η and ν are defined sim-

ilarly. Moreover, denote N =
∑L

l=1 nlTl, Zµ = diagL{Zlµ} with Zlµ = Inl
⊗ ιTl

, and

Zη = diagL{Zlη} with Zlη = ιnl
⊗ ITl

, where the symbol “⊗” is the Kronecker product

operator and Ik is an identity matrix of dimension k. From (3) and (4), we can show

that

Qy = QXβ +Qν, (5)

where Q = QZµQZη , QZµ = diagL{Q′
l} and QZη = diagL{QZlη

} with QZlη
= I −

Zlη(Z
′
lηZlη)

−1Z ′
lη. Based on model (5), we can obtain a robust ordinary least squares

estimator of β as follows,

β̂ = (
L∑
l=1

nl∑
i=1

X̃ ′
liPlX̃li)

−1

L∑
l=1

nl∑
i=1

X̃ ′
liPlỹli,

where Pl = ITl
− 1

Tl
JTl

with Jk denoting a k × k matrix of ones. Under some mild

assumptions, we can show that

√
n(β̂ − β) =⇒ N(0,Σ−1

1 Σ2Σ
−1
1 ),

where Σ1 =
∑L

l=1ml[E(X ′
liPlXli)−EX ′

liPlEXli] and Σ2 =
∑L

l=1mlE[(Xli −EXli)
′Plνliν

′
li

(Xli − EXli)]. The asymptotic results in this paper are based on the setting that the

individual number n goes to infinity and the time lengths Ti are fixed. Besides we assume

that lim
n→∞

nl

n
= ml > 0, which is a commonly-used setting in the literature, see, e.g, Shao

et al. (2011) and Chowdhury (1991).

3 Testing for individual effect

In this section, we consider to construct a statistic to test for individual effects in model

(1). The hypotheses of the individual effects test can be formalized as

Hµ
0 : σ2

µ = 0 vs Hµ
1 : σ2

µ > 0, (6)
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where σ2
µ is the variance of the individual effects µi. Denote the j-th column vector of

the matrix Ql by qlj, l = 1, . . . , L, j = 1, . . . , Tl − 1, and then we have

L∑
l=1

nl∑
i=1

E∥Q′
lν̃li∥2 =

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

E(q′lj ν̃li)2 = c1σ
2
ν ,

where c1 =
∑L

l=1 c1l with c1l = (nl − 1)(Tl − 1). And then we obtain a feasible estimator

of the variance of the idiosyncratic error,

σ̂2
0ν =

1

c1

L∑
l=1

nl∑
i=1

∥Q′
l
ˆ̃νli∥2 =

1

c1

L∑
l=1

nl∑
i=1

∥Q′
l(ỹli − X̃liβ̂)∥2. (7)

Under some regular conditions, σ̂2
0ν can be shown to be a consistent estimator of σ2

ν no

matter of the existence of the two random effects µi and ηt.

Similarly, it holds that

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

E(q′lj ν̃li)4 = c2γ
4
ν + c2c3(σ

2
ν)

2,

where γ4
ν = Eν4

it is the fourth-order moment of νit,

c2 =
L∑
l=1

Tl−1∑
j=1

Tl∑
t=1

q4ljt(nl − 1)(n2
l − 3nl + 3)/n2

l ,

and

c3 = c−1
2

L∑
l=1

3(nl − 1)2(Tl − 1)/nl − 3.

Therefore we can obtain an estimator of γ4
ν by solving the above equation and using the

empirical version of the solution as follows,

γ̂4
ν = c−1

2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ˆ̃νli)
4 − c3(σ̂

2
0ν)

2 = c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

[q′lj(ỹli − X̃liβ̂)]
4 − c3(σ̂

2
0ν)

2.

And we can show that γ̂4
ν is a consistent estimator of γ4

ν under some mild conditions no

matter of the existence of the two random effects µi and ηt.

When we do have the information on the absence of individual effects, that is, under

the null hypothesis without individual effect, model (2) turns out

yli = αιTl
+Xliβ + ηl + νli, i ∈ Nl.

And then we only need to eliminate the time effect by the centering transformation,

ỹli = X̃liβ + ν̃li.
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It holds that

L∑
l=1

nl∑
i=1

E∥ν̃li∥2 = c4σ
2
ν ,

where c4 =
∑L

l=1 c4l with c4l = (nl − 1)Tl. Similarly with equation (7), we can obtain

another estimator of σ2
ν ,

σ̂2
1ν =

1

c4

L∑
l=1

nl∑
i=1

∥ˆ̃νli∥2 =
1

c4

L∑
l=1

nl∑
i=1

∥ỹli − X̃liβ̂∥2.

Under some regular conditions and the null hypothesis of Hµ
0 , σ̂2

1ν can be shown to

be a consistent estimator of σ2
ν . However, σ̂2

1ν is not consistent anymore under the

alternative hypotheses of Hµ
1 . Therefore, a Hausman-type test (e.g, Hausman (1978))

can be proposed by the statistically significant difference between σ̂2
0ν and σ̂2

1ν to test for

the individual effect. The test statistic can be constructed as follows,

TIC
µ = ω

− 1
2

n

√
n(σ̂2

1ν − σ̂2
0ν), (8)

where the scalar ωn = anγ̂
4
ν + bn(σ̂

2
0ν)

2 is used to standardize the statistic with

an =
1

n

L∑
l=1

nl[
n2

c24
Tl +

n2

c21
(Tl +

1

Tl

− 2)− 2n2

c1c4
(Tl − 1)],

and

bn =
1

n

L∑
l=1

nl[
n2

c24
Tl(Tl − 1) +

n2

c21
(Tl − 1)(Tl +

3

Tl

− 2)− 2n2

c1c4
(Tl − 1)2].

Below, we state some assumptions for the study of the asymptotic properties of the

proposed test statistics.

Assumption A: The individual effect µi is independent and identically distributed with

mean zero and variance σ2
µ = n− 1

2σ2
1 with a constant σ2

1 ≥ 0.

Assumption B: E(µiνit) = 0, n
1
2E(µ2

i ν
2
it) < ∞, E(n 1

4Xit,kµi) < ∞, for i = 1, . . . , n, t =

1, . . . , Ti.

Theorem 1. For model (1), suppose that Eν5
it < ∞, |Σ1| > 0, EX4

it,k < ∞, and

E(Xit,kνis) = 0, for i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K. If Assumptions A and

B hold, we have that

TIC
µ =⇒ Φ− 1

2σ2
1 +N(0, 1),

where Φ = aγ4
ν + b(σ2

ν)
2 with a = lim

n→∞
an and b = lim

n→∞
bn.
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Under the null hypothesis of Hµ
0 , we may find another consistent estimator as follows,

σ̃2
1ν =

1

c4

L∑
l=1

nl∑
i=1

∥ỹli − X̃liβ̃∥2,

where

β̃ = (
L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1

L∑
l=1

nl∑
i=1

X̃ ′
liỹli.

Similarly with equation (8), we can obtain another test statistic as follows,

TIC∗
µ = ω

− 1
2

n

√
n(σ̃2

1ν − σ̂2
0ν),

where ωn is defined as in equation (8). Denote Σ3 =
∑L

l=1mlE[(Xli−EXli)
′(Xli−EXli)].

Corollary 1. Suppose |Σ3| > 0 and the conditions of Theorem 1 hold. For model (1),

under Assumptions A and B, we have that

TIC∗
µ =⇒ Φ− 1

2 (σ2
1 − π) +N(0, 1),

where π =
Ω′

1Σ
−1
3 Ω1∑L

l=1 mlTl
with Ω1 =

∑L
l=1mln

1
4E(X ′

liµli)ιTl
.

Actually, we can obtain the ANOVA F test for the individual effect,

FIC
µ =

(c4σ̃
2
1ν − c1σ̂

2
0ν)/

∑L
l=1(nl − 1)

c1σ̂2
0ν/[

∑L
l=1(nl − 1)(Tl − 1)−K]

.

Denote

TIC∗∗
µ = σ2

νΦ
− 1

2
√
n(

σ̃2
1ν − σ̂2

0ν

σ̂2
0ν

).

It then follows from the Slutsky’s theorem that TIC∗
µ and TIC∗∗

µ have identical asymptotic

distribution, where

TIC∗∗
µ = θ1F

IC
µ − ϑ1,

with

θ1 = σ2
νΦ

− 1
2

√
nc1(n− L)

c4(c1 −K)
, ϑ1 = σ2

νΦ
− 1

2

√
n(c4 − c1)

c4
.

Therefore TIC∗∗
µ is a simple affine transformation of FIC

µ . A test based on TIC∗∗
µ (or

TIC∗
µ ) and the critical value from the standard normal distribution is asymptotically

equivalent to the ANOVA F test. It holds that 0 ≤ π ≤ σ2
1 and π = 0 if and only if

E(µiXit) = 0. We may conclude that our test TIC
µ will be asymptotically more powerful

than the ANOVA F test when the individual effect is correlated with regressors.
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4 Testing for time effect

In this section, we consider to construct test statistics to test for time effects in model

(1). The hypotheses of the time effects test can be formalized as

Hη
0 : var(η1) = · · · = var(ηT ) = 0 vs Hη

1 : at least one of them is nonzero. (9)

Under the null hypothesis of Hη
0 , model (2) turns out

yli = αιTl
+Xliβ + µliιTl

+ νli, i ∈ Nl. (10)

We only need to eliminate the individual effect by premultiplying the model (10) with

matrix Q′
l,

Q′
lyli = Q′

lXliβ +Q′
lνli.

It holds that
L∑
l=1

nl∑
i=1

E∥Q′
lνli∥2 = c5σ

2
ν ,

where c5 =
∑L

l=1 nl(Tl − 1). Similarly, we use the empirical version to replace the

population one to obtain the estimator of σ2
ν as follows,

σ̂2
2ν =

1

c5

L∑
l=1

nl∑
i=1

∥Q′
lν̂li∥2 =

1

c5

L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̂)∥2.

Note that σ̂2
2ν is consistent under the null hypothesisH

η
0 of no time effect and inconsistent

under the alternative hypotheses of Hη
1 . Based on the difference between σ̂2

0ν and σ̂2
2ν ,

we can construct a test statistic as follows,

TIC
η =

c5
σ̂2
0ν

(σ̂2
2ν − σ̂2

0ν) +
L∑
l=1

(Tl − 1). (11)

Below, we state some additional assumptions to study the asymptotic behavior of the

proposed test TIC
η .

Assumption C: The time effect ηt = n− 1
2η0t, where η0t is a random variable with mean

zero and finite variance Eη20t ≥ 0.

Theorem 2. For model (1), suppose that Eν2
it < ∞, |Σ1| > 0, EX2

it,k < ∞, and

E(Xit,kνis) = 0, for i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K. If Assumption C holds,

we have that

TIC
η =⇒

L∑
l=1

∥ σ−1
ν Q′

lη
∗
1,Tl

+N(0, ITl−1 − σ−2
ν Σ6l)∥2,
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where η∗1,Tl
= (η1, . . . , ηTl

)′, Σ6l = Σ5l + Σ′
5l − Σ4l with Σ4l = mlQ

′
lEXliΣ

−1
1 Σ2Σ

−1
1 EX ′

liQl

and Σ5l = mlQ
′
lE[νliν ′

liPl(Xli − EXli)]Σ
−1
1 EX ′

liQl.

It is not difficult to obtain that Σ6l = σ2
νITl−1 if EXit is independent of t. Under

the null hypothesis of no time effect, we can show that the asymptotic distribution of

TIC
η is the chi-square distribution with

∑L
l=1(Tl − 1) degrees of freedom, χ2∑L

l=1(Tl−1)
. In

application, we need first to center the regressor Xli for each group Nl, resulting in X̃li,

and then perform the test TIC
η with p-values or critical values calculated from χ2∑L

l=1(Tl−1)
.

Under the null hypothesis of no time effect, we may find another consistent estimator

as follows,

σ̃2
2ν =

1

c5

L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̃2)∥2,

where

β̃2 = (
L∑
l=1

nl∑
i=1

X ′
liPlXli)

−1

L∑
l=1

nl∑
i=1

X ′
liPlyli.

Similarly with equation (11), we can obtain another test statistic as follows,

TIC∗
η =

c5
σ̂2
0ν

(σ̃2
2ν − σ̂2

0ν) +
L∑
l=1

(Tl − 1).

Corollary 2. For model (1), suppose that Eν2
it < ∞, |Σ1| > 0, EX2

it,k < ∞, E(Xit,kνis) =

0, EXit is independent of t, for i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K. If Assumption

C holds, we have that

TIC∗
η =⇒

L∑
l=1

∥σ−1
ν Q′

lη
∗
l +N(0, ITl−1)∥2.

Similarly, we can obtain the ANOVA F test for the time effect,

FIC
η =

(c5σ̃
2
2ν − c1σ̂

2
oν)/

∑L
l=1(Tl − 1)

c1σ̂2
oν/[

∑L
l=1(nl − 1)(Tl − 1)−K]

,

and we can further show that TIC∗
η = FIC

η κ with κ =
c4

∑L
l=1(Tl−1)

c1−K
. From the above

corollary, unlike the counterpart in the previous section, the test TIC
η is not significantly

more powerful than the ANOVA F test due to the small time length.
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5 Test jointly for both individual and time effects

In this section we consider the joint test for individual and time effects. The hypotheses

can be formalized as follows,

Hµη
0 : σ2

µ = var(η1) = · · · = var(ηT ) = 0 vs Hµη
1 : at least one of them is nonzero.

(12)

Under the null hypotheses of Hµη
0 , model (2) turns out

yli = αιTl
+Xliβ + νli, i ∈ Nl.

It holds that

L∑
l=1

nl∑
i=1

E∥νli∥2 =
L∑
l=1

nlTlσ
2
ν = Nσ2

ν .

and we can obtain an estimator of σ2
ν as follows,

σ̂2
3ν =

1

N

L∑
l=1

nl∑
i=1

∥yli − α̂ιTl
−Xliβ̂∥2,

where

α̂ =
1

N

L∑
l=1

nl∑
i=1

ι′Tl
(yli −Xliβ̂).

Clearly, σ̂2
3ν is consistent under the null hypothesis of Hµη

0 and inconsistent under the

alternative hypotheses of Hµη
1 . Based on the difference between σ̂2

0ν and σ̂2
3ν , we can

construct a test statistic as follows,

TIC
µη1 = ω

− 1
2

n

√
n(σ̂2

3ν − σ̂2
0ν),

where ωn is defined as in equation (8).

Denote that

Σ7 =
L∑
l=1

mlE(X ′
liXli)−

1∑L
l=1mlTl

(
L∑
l=1

mlEX ′
liιTl

)(
L∑
l=1

mlEX ′
liιTl

)′,

and

Ω2 =
L∑
l=1

mlEX ′
liιTl

.
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Theorem 3. For model (1), suppose that Eν5
it < ∞, |Σ1| > 0, |Σ7| > 0, EX4

it,k < ∞,

and E(Xit,kνis) = 0, for i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K. If Assumptions A−C

hold, we have that

TIC
µη1 =⇒ Φ− 1

2σ2
1 +N(0, 1),

where Φ = aγ4
ν + b(σ2

ν)
2.

Under the null hypothesis of Hµη
0 , we may find another consistent estimator as,

σ̃2
3ν =

1

N

L∑
l=1

nl∑
i=1

∥yli − α̃3ιTl
−Xliβ̃3∥2,

where

(α̃3, β̃3) = argmin(α,β)

L∑
l=1

nl∑
i=1

∥yli − αιTl
−Xliβ∥2.

We may consider another test statistic

TIC∗
µη = ω

− 1
2

n

√
n(σ̃2

3ν − σ̂2
0ν).

Corollary 3. For model (1), suppose that Eν5
it < ∞, |Σ1| > 0, |Σ7| > 0, EX4

it,k < ∞,

and E(Xit,kνis) = 0, for i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K. If Assumptions A−C

hold, we have that

TIC∗
µη =⇒ Φ− 1

2 (σ2
1 − λ) +N(0, 1),

where λ = 2∑L
l=1 mlTl

Ω′
1Σ

−1
7 Ω1 +

1

(
∑L

l=1 mlTl)2
(Ω2Σ

−1
7 Ω1)

2.

And we can obtain the ANOVA F test for both individual and time effects,

FIC
µη =

(Nσ̃2
3ν − c1σ̂

2
0ν)/

∑L
l=1(nl + Tl − 2)

c1σ̂2
0ν/(

∑L
l=1(nl − 1)(Tl − 1)−K)

.

Denote

TIC∗∗
µη = σ2

νΦ
− 1

2
√
n(

σ̃2
3ν − σ̂2

0ν

σ̂2
0ν

),

and then we have that

TIC∗∗
µη = θ2F

IC
µη − ϑ2,

with

θ2 = σ2
νΦ

− 1
2
√
n

∑L
l=1(nl + Tl − 2)c1
(c1 −K)N

, ϑ2 = σ2
νΦ

− 1
2
√
n

∑L
l=1(nl + Tl − 1)

N
.
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Furthermore, it follows from the Slutsky’s theorem that TIC∗
µη and TIC∗∗

µη have the same

asymptotic distribution. And then a test based on TIC∗
µη with the critical value from the

standard normal distribution is asymptotically equivalent to the ANOVA F test FIC
µη .

As Wu and Li (2014) argued, TIC
µη1 and TIC∗

µη fail asymptotically to detect the pres-

ence of the time effect. From the proof of Theorem 2, test statistics TIC
µ and TIC

η are

asymptotically independent if {νi} is independent of {Xi}. Following the similar method

of Wu and Li (2014), we propose a weighted test statistic as follows,

TIC
µη2 = w(TIC

µ )2 + (1− w)TIC
η ,

where w ∈ [0, 1] can be specified by practitioners. Under the null hypothesis of Hµη
0 , if

Q′
lEXli = 0 holds and {νi} is independent of {Xi}, then

TIC
µη2 =⇒ wχ2

1 + (1− w)χ2∑L
l=1(Tl−1)

.

As Wu and Li (2014) argued, if we have no preference about the weight in TIC
µη2, we can

simply set w = 0.5 in practice. And then the asymptotic distribution of TIC
µη2 can be

0.5χ2∑L
l=1(Tl−1)+1

under the null hypothesis.

6 Simulation study

In this section, we conduct several Monte Carlo simulation experiments to evaluate the

performance of the proposed test statistics (TIC
µ ,TIC

η ,TIC
µη1,T

IC
µη2). Several commonly-

used tests are also given to compare the finite sample properties with our test statis-

tics. They are Breusch and Pagan (1980)’s tests (BPIC
µ ,BPIC

η ,BPIC
µη ), Honda (1985)’s

tests (HIC
µ ,HIC

η ,HIC
µη ), Moulton and Randolph (1989)’s tests (SLMIC

µ , SLMIC
η , SLMIC

µη )

and ANOVA F ’s tests (FIC
µ ,FIC

η ,FIC
µη ), respectively. The empirical sizes and powers of

these test statistics are obtained based on 1000 replications.

The first experiment is to check the performance of the test statistic TIC
µ . The data

generating process is

yit = 0.5 +Xit1 + 2Xit2 + µi + ηt + νit, i = 1, 2, . . . , n, t = 1, 2, . . . , Ti, (13)

where the numbers of time length Ti’s are randomly taken from three different time

periods 4, 8 and 12, Xit1 follow the normal distributions with mean zero and var(Xit1) =

13



1, Xit2
i.i.d.∼ N(0, 1), µi

i.i.d.∼ σµN(0, 1), ηt
i.i.d.∼ σηN(0, 1). Besides, we let corr(Xit1, µi) = ρ

and corr(Xit1, Xis1) = ρ2 for t ̸= s. Clearly, ρ = 0 means thatXit1 and µi are uncorrelated

with each other. And we choose n = 50, 100, 200 to observe the change of the performance

of these statistics as the number of the individuals increases. Moreover, ση = 0 or > 0

corresponds repectively to the absence or the presence of the time effect, and σµ = 0 or

> 0 the size or the power. We compare these test statistics on the case of two different

distributions of νit: (i) νit
i.i.d.∼ N(0, 1) and (ii): νit

i.i.d.∼
√

1
2
(χ2

1 − 1), where χ2
1 means the

chi-square distribution with 1 degree of freedom.

We first compare these test statistics for the existence of individual effects in the case

with ρ = 0. When the time effect is not present, all of these tests perform well although

they still have some small difference. The test HIC
µ has a distorted empirical size even

when the number of individual is large enough, which was also illustrated by Moulton

and Randolph (1989). The power of BPIC
µ is smaller than those of the other tests as

the alternative hypotheses of BPIC
µ test are two-sided. We can see that these tests are

robust to the distributions of the idiosyncratic error even though the distributions of the

test statistics BPIC
µ , HIC

µ , SLMIC
µ and FIC

µ are inferred under assumption of normality.

When the time effect is present, the performances of BPIC
µ , HIC

µ and SLMIC
µ are worse

since their empirical sizes are distorted, however, FIC
µ and TIC

µ are comparable and both

keep the desired performance. The details on the simulation results for the case with

ρ = 0 are listed in Tables 1-2 as follows.

14



Table 1: Empirical sizes and powers of the test TIC
µ and other four tests in case of

νit ∼ N(0, 1) and ρ = 0. The nominal level is 5%.

n ση σµ BPIC
µ HIC

µ SLMIC
µ FIC

µ TIC
µ

0.0 0.0 0.056 0.109 0.056 0.041 0.058

0.1 0.072 0.139 0.124 0.092 0.118

0.2 0.264 0.397 0.423 0.366 0.425

0.3 0.678 0.833 0.851 0.802 0.817

50 0.5 0.0 0.056 0.044 0.004 0.057 0.068

0.1 0.043 0.144 0.070 0.103 0.130

0.2 0.093 0.185 0.366 0.382 0.379

0.3 0.413 0.529 0.787 0.791 0.803

1.0 0.0 0.348 0.592 0.001 0.052 0.066

0.1 0.263 0.537 0.005 0.095 0.111

0.2 0.106 0.306 0.026 0.347 0.401

0.3 0.132 0.214 0.176 0.792 0.801

0.0 0.0 0.044 0.108 0.047 0.050 0.055

0.1 0.090 0.153 0.156 0.136 0.144

0.2 0.445 0.624 0.639 0.569 0.585

0.3 0.931 0.967 0.980 0.959 0.965

100 0.5 0.0 0.111 0.266 0.043 0.050 0.044

0.1 0.067 0.185 0.097 0.120 0.144

0.2 0.145 0.264 0.518 0.561 0.602

0.3 0.639 0.784 0.950 0.965 0.964

1.0 0.0 0.625 0.797 0.002 0.049 0.058

0.1 0.492 0.706 0.003 0.125 0.145

0.2 0.269 0.431 0.021 0.565 0.601

0.3 0.198 0.344 0.219 0.961 0.970

0.0 0.0 0.065 0.094 0.048 0.060 0.043

0.1 0.103 0.212 0.220 0.189 0.184

0.2 0.749 0.873 0.866 0.839 0.836

0.3 0.997 0.999 0.999 0.999 1.000

200 0.5 0.0 0.248 0.429 0.025 0.050 0.044

0.1 0.134 0.282 0.118 0.183 0.185

0.2 0.234 0.391 0.760 0.848 0.816

0.3 0.873 1.000 0.834 1.000 1.000

1.0 0.0 0.813 0.904 0.001 0.047 0.049

0.1 0.719 0.840 0.003 0.176 0.202

0.2 0.428 0.573 0.046 0.825 0.821

0.3 0.332 0.459 0.279 1.000 0.999
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Table 2: Empirical sizes and powers of the test TIC
µ and other four tests in case of

νit ∼
√

1
2
(χ2

1 − 1) and ρ = 0. The nominal level is 5%.

n ση σµ BPIC
µ HIC

µ SLMIC
µ FIC

µ TIC
µ

0.0 0.0 0.057 0.091 0.053 0.060 0.061

0.1 0.085 0.117 0.116 0.109 0.061

0.2 0.249 0.426 0.454 0.389 0.389

0.3 0.701 0.837 0.842 0.777 0.772

50 0.5 0.0 0.051 0.169 0.034 0.070 0.049

0.1 0.05 0.137 0.087 0.121 0.113

0.2 0.098 0.179 0.390 0.370 0.387

0.3 0.405 0.575 0.779 0.772 0.809

1.0 0.0 0.365 0.613 0.005 0.058 0.048

0.1 0.252 0.550 0.005 0.113 0.111

0.2 0.125 0.308 0.032 0.389 0.375

0.3 0.111 0.237 0.156 0.778 0.779

0.0 0.0 0.048 0.095 0.054 0.074 0.062

0.1 0.091 0.156 0.139 0.161 0.132

0.2 0.465 0.622 0.658 0.560 0.547

0.3 0.938 0.973 0.980 0.953 0.952

100 0.5 0.0 0.115 0.260 0.034 0.062 0.062

0.1 0.065 0.170 0.105 0.153 0.127

0.2 0.160 0.265 0.550 0.549 0.555

0.3 0.644 0.808 0.944 0.951 0.955

1.0 0.0 0.625 0.776 0.002 0.061 0.054

0.1 0.540 0.682 0.007 0.137 0.147

0.2 0.257 0.433 0.029 0.577 0.57

0.3 0.189 0.328 0.218 0.961 0.949

0.0 0.0 0.040 0.091 0.050 0.074 0.057

0.1 0.122 0.183 0.212 0.184 0.178

0.2 0.736 0.859 0.875 0.826 0.796

0.3 0.998 1.000 0.999 1.000 0.998

200 0.5 0.0 0.228 0.422 0.027 0.059 0.056

0.1 0.119 0.246 0.098 0.181 0.180

0.2 0.203 0.376 0.740 0.811 0.800

0.3 0.869 0.935 0.997 1.000 0.998

1.0 0.0 0.816 0.912 0.002 0.061 0.055

0.1 0.721 0.815 0.006 0.184 0.185

0.2 0.439 0.579 0.027 0.821 0.782

0.3 0.337 0.473 0.275 0.998 0.997

And we let ρ > 0 to observe the performance of the test statistics when the regressors

are related to the individual effects. Here we only consider the case with νit
i.i.d.∼ N(0, 1)

and the number of individuals n = 200. The results show further that our test TIC
µ has

better performance than the competitors including the ANOVA F test FIC
µ , see more

details in the following table.
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Table 3: Empirical powers of the test TIC
µ and other four tests in case of νit ∼ N(0, 1)

and ρ > 0. The nominal level is 5%.

ρ ση σµ BPIC
µ HIC

µ SLMIC
µ FIC

µ TIC
µ

0.0 0.1 0.104 0.174 0.156 0.147 0.205

0.2 0.453 0.658 0.678 0.719 0.843

0.3 0.968 0.988 0.990 0.999 0.999

0.4 0.5 0.1 0.051 0.110 0.088 0.159 0.202

0.2 0.318 0.458 0.527 0.690 0.816

0.3 0.904 0.974 0.970 0.996 0.999

1.0 0.1 0.759 0.855 0.002 0.153 0.178

0.2 0.527 0.659 0.015 0.730 0.823

0.3 0.291 0.411 0.125 0.998 1.000

0.0 0.1 0.073 0.101 0.109 0.119 0.210

0.2 0.165 0.332 0.345 0.533 0.808

0.3 0.681 0.838 0.868 0.965 1.000

0.6 0.5 0.1 0.048 0.124 0.049 0.122 0.203

0.2 0.100 0.214 0.209 0.557 0.814

0.3 0.489 0.682 0.688 0.966 0.996

1.0 0.1 0.764 0.886 0.002 0.123 0.193

0.2 0.645 0.769 0.006 0.533 0.809

0.3 0.454 0.583 0.027 0.969 0.997

0.0 0.1 0.052 0.084 0.065 0.097 0.236

0.2 0.072 0.140 0.103 0.266 0.791

0.3 0.114 0.203 0.242 0.691 0.995

0.8 0.5 0.1 0.065 0.134 0.028 0.082 0.231

0.2 0.051 0.105 0.056 0.272 0.804

0.3 0.073 0.132 0.125 0.715 0.995

1.0 0.1 0.825 0.888 0.002 0.094 0.255

0.2 0.785 0.852 0.002 0.254 0.790

0.3 0.701 0.815 0.002 0.700 0.995

The second experiment is to check the performance of the test statistic TIC
η . The

data generating process is the same as equation (13) with n = 200 and ρ = 0. We

also consider two different kinds of the distributions of νit: (i) νit
i.i.d.∼ N(0, 1) and (ii):

νit
i.i.d.∼

√
1
2
(χ2

1 − 1), and the corresponding results are as follows.
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Table 4: Empirical sizes and powers of the test TIC
η and other four tests in case of

ρ = 0. The nominal level is 5%.

σµ ση BPIC
η HIC

η SLMIC
η FIC

η TIC
η

0.0 0.0 0.046 0.057 0.051 0.045 0.048

0.2 0.092 0.123 0.160 0.093 0.102

0.4 0.923 0.947 0.947 0.943 0.927

νit ∼ N(0, 1) 0.5 0.0 0.032 0.060 0.030 0.047 0.048

0.2 0.052 0.079 0.078 0.094 0.088

0.4 0.805 0.862 0.912 0.936 0.935

1.0 0.0 0.011 0.127 0.001 0.053 0.053

0.2 0.014 0.072 0.020 0.108 0.105

0.4 0.560 0.639 0.715 0.934 0.941

0.0 0.0 0.045 0.066 0.060 0.054 0.044

0.2 0.100 0.148 0.164 0.103 0.104

0.4 0.923 0.933 0.950 0.912 0.943

νit ∼
√

1
2 (χ

2
1 − 1) 0.5 0.0 0.021 0.052 0.017 0.050 0.048

0.2 0.051 0.070 0.079 0.092 0.108

0.4 0.799 0.869 0.918 0.913 0.937

1.0 0.0 0.008 0.136 0.003 0.055 0.052

0.2 0.012 0.086 0.013 0.088 0.122

0.4 0.530 0.639 0.684 0.936 0.943

From Table 4, we can see that, when the individual effect is present, the empirical

sizes of BPIC
η , HIC

η and SLMIC
η are all distorted, and in contrast, the empirical sizes and

powers of FIC
η and TIC

η are comparable and desired. In the experiment we also compare

our test with the competitors in the case that the regressors are related to the focused

random effects. The unreported results show that our test statistics have slightly higher

power than the competitors including the robust ANOVA F test statistics. We guess

that one main reason is that the time length in this paper is set to be fixed and not

large.

The third experiment is to check the performance of the joint tests. We consider the

same data generating process as equation (13). And we let νit
i.i.d.∼ N(0, 1). The number

of the individuals is set to n = 100 or n = 200. Besides, we also consider the case ρ = 0

and the case ρ = 0.6. The results are listed in Table 5.
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Table 5: Empirical sizes and powers of the tests TIC
µη1, T

IC
µη2 and other four tests. The

nominal level is 5%.

ρ ση σµ BPIC
µη HIC

µη SLMIC
µη FIC

µη TIC
µη1 TIC

µη2

n = 100

0.0 0.0 0.042 0.164 0.056 0.058 0.060 0.055

0.1 0.068 0.225 0.117 0.143 0.148 0.068

0.2 0.358 0.656 0.451 0.578 0.588 0.206

0.3 0.900 0.968 0.914 0.956 0.959 0.678

0 0.2 0.0 0.064 0.174 0.094 0.086 0.089 0.086

0.1 0.067 0.216 0.161 0.143 0.147 0.084

0.2 0.366 0.644 0.487 0.578 0.593 0.221

0.3 0.900 0.962 0.917 0.962 0.963 0.708

0.4 0.0 0.248 0.433 0.660 0.326 0.335 0.635

0.1 0.265 0.462 0.709 0.487 0.491 0.682

0.2 0.518 0.753 0.906 0.838 0.840 0.773

0.3 0.921 0.982 0.992 0.993 0.994 0.950

0.0 0.1 0.042 0.165 0.076 0.103 0.172 0.064

0.2 0.083 0.285 0.159 0.326 0.552 0.195

0.3 0.300 0.590 0.425 0.783 0.945 0.686

0.6 0.2 0.1 0.047 0.173 0.120 0.112 0.171 0.104

0.2 0.094 0.256 0.215 0.363 0.577 0.250

0.3 0.275 0.547 0.433 0.782 0.936 0.694

0.4 0.1 0.242 0.458 0.680 0.411 0.498 0.672

0.2 0.283 0.509 0.756 0.738 0.852 0.799

0.3 0.415 0.693 0.898 0.943 0.990 0.950

n = 200

0.0 0.0 0.039 0.167 0.055 0.047 0.045 0.046

0.1 0.082 0.250 0.145 0.189 0.186 0.067

0.2 0.659 0.849 0.699 0.835 0.829 0.338

0.3 0.996 0.998 0.997 1.000 1.000 0.941

0 0.2 0.0 0.065 0.174 0.116 0.067 0.062 0.105

0.1 0.089 0.273 0.239 0.211 0.204 0.120

0.2 0.647 0.864 0.777 0.853 0.844 0.432

0.3 0.996 0.998 0.995 0.999 0.999 0.964

0.4 0.0 0.548 0.707 0.887 0.519 0.507 0.913

0.1 0.583 0.728 0.935 0.718 0.706 0.935

0.2 0.837 0.952 0.994 0.979 0.977 0.974

0.3 0.997 1.000 1.000 1.000 1.000 1.000

0.0 0.1 0.056 0.204 0.091 0.125 0.197 0.065

0.2 0.157 0.383 0.229 0.523 0.779 0.358

0.3 0.554 0.825 0.616 0.964 0.996 0.931

0.6 0.2 0.1 0.065 0.199 0.166 0.171 0.243 0.134

0.2 0.170 0.420 0.335 0.605 0.830 0.451

0.3 0.562 0.827 0.723 0.969 0.999 0.941

0.4 0.1 0.553 0.728 0.911 0.646 0.711 0.926

0.2 0.637 0.817 0.961 0.917 0.971 0.978

0.3 0.825 0.947 0.989 0.995 1.000 0.998
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Table 5 gives the empirical sizes and powers of these tests. Clearly, the tests TIC
µη1

and TIC
µη2 are immune to the correlations between the possible individual effects and the

regressors. Moreover, the powers of TIC
µη1 are larger than those of TIC

µη2 as the time effect

is not present, in contrast, TIC
µη2 seems more powerful than TIC

µη1 as the time effect is

present.

7 A real example

In this section we apply the proposed tests to a data set which was used by Munnell

(1990) and Baltagi and Pinnoi (1995). To investigate the productivity of public capital

in private production, Munnell (1990) proposed the following Cobb-Douglas production

function,

lnY = α + β1lnK1 + β2lnK2 + β3lnL+ β4Unemp+ u,

where Y is gross state product, K1 is public capital which includes highways and streets,

water and sewer facilities and other public buildings and structures, K2 is the private

capital stock based on the Bureau of Economic Analysis national stock estimates, L is

labor input measured as employment in nonagricultural payrolls, Unemp is the state

unemployment rate included to capture business cycle effects. This panel data consists

of annual observations of 48 contiguous states covering the period 1970-1986. In order

to illustrate our method clearly, we choose three subsets of this data set as follows:

Data (1) contains 16 states observed over 2 years, 16 states observed over 4 years and

the other 16 states observed over 6 years, simply denoted by, 16(2), 16(4) and 16(6),

respectively. Similarly, Data 2 has 16(6), 16(8) and 16(10). Finally, Data 3 has 16(10),

16(12) and 16(14). And then we use the artificially incomplete panel to demonstrate the

performances of our tests. And the other tests are also performed for comparisons.

Table 6: Values of several statistics for individual effects.

BPIC
µ HIC

µ SLMIC
µ FIC

µ TIC
µ

Data 1 203.14 14.25 15.24 87.12 3115.14

Data 2 913.42 30.22 31.82 104.37 633.73

Data 3 2214.94 47.06 49.40 116.60 643.37

Table 6 gives the values of the test statistics for the individual effects, and the cor-

rersponding p-values are all less than 0.0001 for the three data sets. Clearly, for the
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three data sets, all the tests mentioned above are verified that the individual effect is

present. However, with no information of whether the time effect is present, the infer-

ences made from BPIC
µ , HIC

µ and SLMIC
µ can not be convinced.

Table 7: Values of several statistics for time effects.

BPIC
η HIC

η SLMIC
η FIC

η TIC
η

Data 1 0.03 (0.49) 0.18 (0.43) 0.61 (0.27) 11.52 (0.00) 718.43 (0.00)

Data 2 6.29 (0.00) 2.51 (0.006) 3.12 (0.0009) 4.19 (0.00) 1717.84 (0.00)

Data 3 0.43 (0.33) 0.66 (0.25) 0.97 (0.17) 3.22 (0.00) 2127.01 (0.00)

Note: The values in the parentheses (·) are the p-values of the corresponding test statistics.

Table 7 gives the results of the tests for the time effects. Clearly, for the three data

sets, the null hypothesis is rejected by FIC
η and TIC

η , and their p-values are all very

small for the three data sets. However except for Data 2, the null hypothesis can not be

rejected by BPIC
η , HIC

η and SLMIC
η even as the significant size is 0.05. It may be caused

by the fact that the individual effect is present and this affects the inferences by BPIC
µ ,

HIC
µ and SLMIC

µ . Finally, we also consider the joint tests for the presence of both effects.

The corresponding p-values of these tests are all less than 0.0001 for the three data sets

mentioned above.

Table 8: Values of several statistics for both the two effects.

BPIC
µη HIC

µη SLMIC
µη FIC

µη TIC
µη1 TIC

µη2

Data 1 203.18 10.21 12.02 77.50 3044.41 9704789.00

Data 2 919.70 23.14 25.79 77.49 611.52 403335.30

Data 3 2215.37 33.74 36.56 71.02 621.48 416053.90

8 Conclusion and discussion

In this paper, we develop some methods to test for the existence of random effects

in the error component regression models with incomplete panels. Some asymptotic

properties are obtained under some mild conditions. Comparing with the work in the

existing literature, the test statistics in this paper have the desired properties as follows.

They are simple and easy to compute; they are robust to the misspecification of the

distribution assumptions; they are robust to the misspecification of another effects while

testing for one effects; they have desired performance when there are dependency among

the regressors, random effects and the idiosyncratic errors.
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In this paper, we adopt the same setting in missing form of data as Shao et al. (2011)

and Chowdhury (1991) and then obtain the asymptotic properties. However, the missing

data in practice may be more general than the setting in this paper. So, how to handle

the more general missing data deserves further study.

Appendix

This appendix contains the proofs of theorems in the previous sections. Before that, we

also state several lemmas which will be used in the process of the proofs.

Lemma 1. Suppose that Eν2
it < ∞, |Σ1| > 0, EX2

it,k < ∞, and E(Xit,kνis) = 0, for

i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K, β̂ is a
√
n consistent estimator of the parameter

β.

The proof of Lemma 1. Since the sequences {Xli} and {νli} are both i.i.d. for each

l = 1, 2, . . . , L and the conditions Eν2
it < ∞ and EX2

it,k < ∞ hold, it gives

1
√
nl

nl∑
i=1

(Xli − EXli) = Op(1),
1

√
nl

nl∑
i=1

νli = Op(1).

And we can show

1

n

L∑
l=1

nl∑
i=1

X̃ ′
liPlX̃li =

L∑
l=1

nl

n

1

nl

nl∑
i=1

(Xli −
1

nl

nl∑
i=1

Xli)
′Pl(Xli −

1

nl

nl∑
i=1

Xli)

=
L∑
l=1

ml[E(X ′
liPlXli)− EX ′

liPlEXli] + op(1)

= Σ1 + op(1),

and

1√
n

L∑
l=1

nl∑
i=1

X̃ ′
liPlν̃li =

L∑
l=1

√
nl

n

1
√
nl

nl∑
i=1

(Xli −
1

nl

nl∑
i=1

Xli)
′Pl(νli −

1

nl

nl∑
i=1

νli)
′

=
L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli + op(1).

Since
∑nl

i=1 X̃
′
liPlν̃li, l = 1, 2, . . . , L, are independent,

1√
n

L∑
l=1

nl∑
i=1

X̃ ′
liPlν̃li =⇒ N(0,Σ2),
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where Σ2 =
∑L

l=1mlE[(Xli − EXli)
′Plνliν

′
liPl(Xli − EXli)]. Therefore

√
n(β̂ − β) = (

1

n

L∑
l=1

nl∑
i=1

X̃ ′
liPlX̃li)

−1(
1√
n

L∑
l=1

nl∑
i=1

X̃ ′
liPlν̃li)

=⇒ N(0,Σ−1
1 Σ2Σ

−1
1 ),

and then β̂ − β = Op(n
− 1

2 ). The proof of Lemma 1 is completed.

Lemma 2. Suppose that Eν4
it < ∞, |Σ1| > 0, EX2

it,k < ∞, and E(Xit,kνis) = 0, for

i = 1, . . . , n; t = 1, . . . , Ti; k = 1, . . . , K, σ̂2
0ν is a consistent estimator of σ2

ν and γ̂4
ν is a

consistent estimator of γ4
ν .

The proof of Lemma 2. From Lemma 1, we can show

σ̂2
0ν =

1

c1

L∑
l=1

nl∑
i=1

ˆ̃ν ′
liPl

ˆ̃νli

=
1

c1

L∑
l=1

nl∑
i=1

[ν̃li − X̃li(β̂ − β)]′Pl[ν̃li − X̃li(β̂ − β)]

=
1

c1

L∑
l=1

nl∑
i=1

ν ′
liPlνli + op(1)

=
L∑
l=1

nl

c1

1

nl

nl∑
i=1

ν ′
liPlνli + op(1)

= σ2
ν + op(1).

To study the consistence of γ̂4
ν , we first note that,

c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ˆ̃νli)
4 = c−1

2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

{q′lj[ν̃li − X̃li(β̂ − β)]}4

= c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ν̃li)
4 − 4c−1

2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ν̃li)
3q′ljX̃li(β̂ − β) + op(β̂ − β)

= c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ν̃li)
4 + op(1).
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Hence,

γ̂4
ν = c−1

2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ˆ̃νli)
4 − c3(σ̂

2
0ν)

2

= c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′lj ν̃li)
4 − c3(σ̂

2
0ν)

2 + op(1)

= c−1
2

L∑
l=1

nl∑
i=1

Tl−1∑
j=1

(q′ljνli)
4 − c3(σ̂

2
0ν)

2 + op(1)

=
L∑
l=1

nl

c2

1

nl

nl∑
i=1

Tl−1∑
j=1

(q′ljνli)
4 − c3(σ̂

2
0ν)

2 + op(1)

=
L∑
l=1

nl

c2
E[

Tl−1∑
j=1

(q′ljνli)
4]− c3(σ̂

2
0ν)

2 + op(1)

=
L∑
l=1

nl

c2

Tl−1∑
j=1

Tl∑
t=1

q4ljtγ
4
ν + [3

L∑
l=1

nl

c2
(Tl − 1)− 3

L∑
l=1

nl

c2

Tl−1∑
j=1

Tl∑
t=1

q4ljt](σ
2
ν)

2 − c3(σ̂
2
0ν)

2 + op(1).

Since

lim
n→∞

L∑
l=1

nl

c2

Tl−1∑
j=1

Tl∑
t=1

q4ljt = 1,

and

lim
n→∞

[3
L∑
l=1

nl

c2
(Tl − 1)− 3

L∑
l=1

nl

c2

Tl−1∑
j=1

Tl∑
t=1

q4ljt − c3] = 0,

together with the consistence of σ̂2
0ν , we obtain γ̂4

ν = γ4
ν + op(1). The proof of Lemma 2

is completed.

The proof of Theorem 1. From Lemma 1, we can show that

√
nσ̂2

0ν =

√
n

c1

L∑
l=1

nl∑
i=1

∥Q′
l
ˆ̃νli∥2

=

√
n

c1

L∑
l=1

nl∑
i=1

ν̃ ′
liPlν̃li − 2

√
n

c1

L∑
l=1

nl∑
i=1

ν̃ ′
liPlX̃li(β̂ − β)

+

√
n

c1

L∑
l=1

nl∑
i=1

(β̂ − β)′X̃ ′
liPlX̃li(β̂ − β)

=

√
n

c1

L∑
l=1

nl∑
i=1

ν̃ ′
liPlν̃li + op(1)

=

√
n

c1

L∑
l=1

nl∑
i=1

ν ′
liPlνli + op(1),
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and

√
nσ̂2

1ν =

√
n

c4

L∑
l=1

nl∑
i=1

∥ˆ̃νli∥2

=

√
n

c4

L∑
l=1

nl∑
i=1

∥ν̃li + µ̃liιTl
− X̃li(β̂ − β)∥2.

Besides, it holds that
√
n

c4

L∑
l=1

nl∑
i=1

X̃ ′
liν̃li =

L∑
l=1

n

c4

√
nl

n

1
√
nl

nl∑
i=1

(Xli −
1

nl

nl∑
i=1

Xli)
′(νli −

1

nl

nl∑
i=1

νli)

=
L∑
l=1

√
ml∑L

l=1mlTl

1
√
nl

nl∑
i=1

(Xli − EXli)
′νli + op(1)

=⇒ N(0,Σ4), (14)

where Σ4 =
∑L

l=1
ml

(
∑L

l=1 mlTl)2
E[(Xli −EXli)

′νliν
′
li(Xli −EXli)]. Under Assumption B and

the condition EX2
it,k < ∞ hold, it gives

n
1
4

√
n

c4

L∑
l=1

nl∑
i=1

ν̃ ′
liµ̃liιTl

= Op(1),

1

c4

L∑
l=1

nl∑
i=1

X̃ ′
liX̃li =

1∑L
l=1mlTl

Σ3 + op(1),

n
1
4
1

c4

L∑
l=1

nl∑
i=1

X̃ ′
liµ̃liιTl

=
1∑L

l=1mlTl

Ω1 + op(1), (15)

where Σ3 =
∑L

l=1mlE[(Xli−EXli)
′(Xli−EXli)] and Ω1 =

∑L
l=1mln

1
4E(X ′

liµli)ιTl
. Under

Assumption A and from equations (14-15), we can show that

√
nσ̂2

1ν =

√
n

c4

L∑
l=1

nl∑
i=1

ν̃ ′
liν̃li +

√
n

c4

L∑
l=1

nl∑
i=1

µ̃2
liTl + op(1)

=

√
n

c4

L∑
l=1

nl∑
i=1

ν ′
liνli + σ2

1 + op(1).

Hence,

√
n(σ̂2

1ν − σ̂2
0ν) =

√
n

c4

L∑
l=1

nl∑
i=1

ν ′
liνli −

√
n

c1

L∑
l=1

nl∑
i=1

ν ′
liPlνli + σ2

1 + op(1)

=
1√
n

L∑
l=1

nl∑
i=1

ξli + σ2
1 + op(1).

where ξli =
n
c4
ν ′
liνli− n

c1
ν ′
liPlνli. Note that ξli, l = 1, 2, . . . , L, i = 1, 2, . . . , nl, are mutually

independent, and it then holds that

lim
n→∞

1

n

L∑
l=1

nl∑
i=1

Eξli = 0,
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and

lim
n→∞

1

n

L∑
l=1

nl∑
i=1

E(ξ2i)2 = aγ4
ν + b(σ2

ν)
2 =: Φ,

where

a = lim
n→∞

an = lim
n→∞

1

n

L∑
l=1

nl[
n2

c22
Tl +

n2

c21
(Tl +

1

Tl

− 2)− 2n2

c1c2
(Tl − 1)],

and

b = lim
n→∞

bn = lim
n→∞

1

n

L∑
l=1

nl[
n2

c22
Tl(Tl − 1) +

n2

c21
(Tl − 1)(Tl +

3

Tl

− 2)− 2n2

c1c2
(Tl − 1)2].

Note that lim
n→∞

∑n
i=1 Eξ22i → ∞ and Eν5

it < ∞ hold, and the Liapounov condition is

satisfied. Therefore Φ− 1
2
√
n(σ̂2

1ν− σ̂2
0ν)

D−→ N(0, 1)+Φ− 1
2σ2

1. From the Slutsky’s theorem

and Lemma 2, we can easily complete the proof of Theorem 1.

The proof of Corollary 1. It holds that

β̃ = (
L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(
L∑
l=1

nl∑
i=1

X̃ ′
liỹli)

= β + (
L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(
L∑
l=1

nl∑
i=1

X̃ ′
liν̃li) + (

L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(
L∑
l=1

nl∑
i=1

X̃ ′
liµ̃liιTl

).

From (14)-(15), we can show that

(
L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(
L∑
l=1

nl∑
i=1

X̃ ′
liν̃li) = Op(

1√
n
),

and

n
1
4 (

L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(
L∑
l=1

nl∑
i=1

X̃ ′
liµ̃liιTl

)

= (
1

n

L∑
l=1

nl∑
i=1

X̃ ′
liX̃li)

−1(n− 3
4

L∑
l=1

nl∑
i=1

X̃ ′
liµ̃liιTl

)

= [
L∑
l=1

mlE(Xli − EXli)
′(Xli − EXli)]

−1[
L∑
l=1

mln
1
4E(X ′

liµli)ιTl
] + op(1)

=: Σ−1
3 Ω1 + op(1).

By the proof of Theorem 1, it gives

√
nσ̂2

1ν =

√
n

c4

L∑
l=1

nl∑
i=1

∥ˆ̃νli∥2

=

√
n

c4

L∑
l=1

nl∑
i=1

∥ν̃li∥2 + ∥µ̃liιTl
− X̃li(β̃ − β)∥2

=

√
n

c4

L∑
l=1

nl∑
i=1

[ν ′
liνli + (β̃ − β)′X̃ ′

liX̃li(β̃ − β)− 2(β̃ − β)′X̃ ′
liµ̃liιTl

+ Tlµ̃
2
li] + op(1).
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Since

√
n

c4

L∑
l=1

nl∑
i=1

(β̃ − β)′X̃ ′
liX̃li(β̃ − β)

= n
1
4 (β̃ − β)′

1

c4

L∑
l=1

nl∑
i=1

X̃ ′
liX̃lin

1
4 (β̃ − β)

= π + op(1),

and

√
n

c4

L∑
l=1

nl∑
i=1

(β̃ − β)′X̃ ′
liµ̃liιTl

= n
1
4 (β̃ − β)′

L∑
l=1

nl∑
i=1

n
1
4 X̃ ′

liµ̃liιTl

= π + op(1),

where π = 1∑L
l=1 mlTl

Ω′
1Σ

−1
3 Ω1. Hence

√
n(σ̃2

1ν − σ̂2
0ν) =⇒ N(0,Φ) + σ2

1 − π.

From the Slutsky’s theorem, we can easily complete the proof of Corollary 1.

The proof of Theorem 2. We first note that

L∑
l=1

nl∑
i=1

ˆ̃ν ′
liPl

ˆ̃νli =
L∑
l=1

nl∑
i=1

ν̂ ′
liPlν̂li −

L∑
l=1

∥ 1
√
nl

nl∑
i=1

Q′
lν̂li∥2.

For each l = 1, 2, . . . , L, we can show

1
√
nl

nl∑
i=1

Q′
lν̂li =

1
√
nl

nl∑
i=1

[Q′
lνli −Q′

lXli(β̂ − β)]

=
1

√
nl

nl∑
i=1

Q′
lνli −

1
√
nl

nl∑
i=1

Q′
lXli(β̂ − β) +

1
√
nl

nl∑
i=1

Q′
lηl.

Since

1
√
nl

nl∑
i=1

Q′
lνli =⇒ N(0, σ2

νITl−1),

and

1
√
nl

nl∑
i=1

Q′
lXli(β̂ − β) =

√
nl

n

1

nl

nl∑
i=1

Q′
lXli

√
n(β̂ − β)

=
√
mlQ

′
lEXliΣ

−1
1

L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli + op(1)

=⇒ N(0,Σ8l),
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where Σ8l = mlQ
′
lEXliΣ

−1
1 Σ2Σ

−1
1 EX ′

liQl. Together with the fact that

E{ 1
√
nl

nl∑
i=1

Q′
lν̂li[

√
mlQ

′
lEXliΣ

−1
1

L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli]

′}

= mlQ
′
lE[νliν ′

liPl(Xli − EXli)]Σ
−1
1 EX ′

liQl

= Σ5l,

we have

1
√
nl

nl∑
i=1

Q′
lνli −

1
√
nl

nl∑
i=1

Q′
lXli(β̂ − β)

D−→ N(0,Σ6l),

where Σ6l = σ2
νITl−1 + Σ4l − Σ5l − Σ′

5l. Therefore

1
√
nl

nl∑
i=1

Q′
lν̂li

D−→ N(0,Σ6l) +Q′
lη

∗
l .

Hence

TIC
η =

1

σ̂2
0ν

L∑
l=1

∥ 1
√
nl

nl∑
i=1

Q′
lν̂li∥2

=⇒
L∑
l=1

∥ N(0, σ−2
ν Σ6l) + σ−1

ν Q′
lη

∗
l ∥2.

Note that

cov(
1√
n

L∑
l=1

nl∑
i=1

ξli,
1

√
nl

nl∑
i=1

Q′
lνli +

√
mlQ

′
lEXliΣ

−1
1

L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli)

= E(
1√
n

L∑
l=1

nl∑
i=1

ξli)(
1

√
nl

nl∑
i=1

Q′
lνli) + E(

1√
n

L∑
l=1

nl∑
i=1

ξli)(
√
mlQ

′
lEXliΣ

−1
1

L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli).

And if {νi} is independent of {Xi}, then it holds that

E(
1√
n

L∑
l=1

nl∑
i=1

ξli)(
1

√
nl

nl∑
i=1

Q′
lνli) → 0,

and

E(
1√
n

L∑
l=1

nl∑
i=1

ξli)(
√
mlQ

′
lEXliΣ

−1
1

L∑
l=1

√
ml

1
√
nl

nl∑
i=1

(Xli − EXli)
′Plνli) → 0.

when n tends to infinity. Hence, under the hypothesis of no individual and time effects,

TIC
µ and TIC

η are asymptotically independent. The proof of Theorem 2 is completed.
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The proof of Corollary 2. Since the condition Q′
lEXli = 0 holds, it gives

√
n(β̂ − β) = (

1

n

L∑
l=1

nl∑
i=1

X̃ ′
liPlX̃li)

−1(
1√
n

L∑
l=1

nl∑
i=1

X̃ ′
liPlν̃li)

= [
L∑
l=1

mlE(X ′
liPlXli)]

−1(
L∑
l=1

√
ml

1
√
nl

nl∑
i=1

X ′
liPlνli) + op(1)

= Op(1).

It holds that

β̃2 − β = (
L∑
l=1

nl∑
i=1

X ′
liPlXli)

−1(
L∑
l=1

nl∑
i=1

X ′
liPlνli) + (

L∑
l=1

nl∑
i=1

X ′
liPlXli)

−1(
L∑
l=1

nl∑
i=1

X ′
liPlηl).

So, we have that

√
n(β̃2 − β) = [

L∑
l=1

mlE(X ′
liPlXli)]

−1(
1√
n

L∑
l=1

nl∑
i=1

X ′
liPlνli) + op(1)

= Op(1),

and

n(β̃2 − β̂) = n[β̃2 − β − (β̂ − β)]

= [
L∑
l=1

mlE(X ′
liPlXli)]

−1(
L∑
l=1

nl∑
i=1

X ′
liPlηl +

L∑
l=1

nl∑
i=1

(X ′
liPl

1

nl

nl∑
i=1

νli) + op(1)

= Op(1).

Using these results, we can show that

L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̃)∥2

=
L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̂)−Q′

lXli(β̃ − β̂)∥2

=
L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̂)∥2 +

L∑
l=1

nl∑
i=1

∥Q′
lXli(β̃ − β̂)∥2 − 2

L∑
l=1

nl∑
i=1

(yli −Xliβ̂)
′PlXli(β̃ − β̂)

=
L∑
l=1

nl∑
i=1

∥Q′
l(yli −Xliβ̂)∥2 + op(1).

Following the proof of Theorem 2, we finish the proof of Corollary 2.

The proof of Theorem 3. It holds that

√
n(α̂− α) =

L∑
l=1

nl∑L
l=1 nlTl

1

nl

nl∑
i=1

ι′Tl
Xli

√
n(β − β̂) +

L∑
l=1

nl∑L
l=1 nlTl

√
nl

n

nl∑
i=1

Tlµli

=
L∑
l=1

nl∑L
l=1 nlTl

ι′Tl

√
nη +

L∑
l=1

nl∑L
l=1 nlTl

√
nl

n

nl∑
i=1

ι′Tl
νli

= Op(1).
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Hence

√
nσ̂2

3ν =
L∑
l=1

nl∑L
l=1 nlTl

√
nl

n

nl∑
i=1

ν ′
liνli + σ2

1 + op(1).

Together with the proof of Theorem 1, we can easily complete the proof of Theorem 3.

The proof of Corollary 3. It holds that

α̃3 =
1

N

L∑
l=1

nl∑
i=1

ιTl
(yli −Xliβ̃3),

and

β̃3 = (
L∑
l=1

nl∑
i=1

X ′
liXli −

1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

ι′Tl
Xli)

−1

(
L∑
l=1

nl∑
i=1

X ′
liyli −

1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

ι′Tl
yli).

Therefore

β̃3 − β = (
L∑
l=1

nl∑
i=1

X ′
liXli −

1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

ι′Tl
Xli)

−1

(
L∑
l=1

nl∑
i=1

X ′
liµliιTl

− 1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

Tlµli

+
L∑
l=1

nl∑
i=1

X ′
liηl −

1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

ι′Tl
ηl

+
L∑
l=1

nl∑
i=1

X ′
liνli −

1

N

L∑
l=1

nl∑
i=1

X ′
liιTl

L∑
l=1

nl∑
i=1

ι′Tl
νli),

and

α̃3 − α =
1

N

L∑
l=1

nl∑
i=1

[ι′Tl
Xli(β − β̃) + Tlµli + ι′Tl

ηl + ι′Tl
νli].

And it is not difficult to show that

n
1
4 (β̃3 − β) = Σ−1

7 Ω1 + op(1),

and

n
1
4 (α̃3 − α) = − 1∑L

l=1mlT1

Ω2Σ
−1
7 Ω1 + op(1),

where

Σ7 =
L∑
l=1

mlE(X ′
liXli)−

1∑L
l=1mlTl

(
L∑
l=1

mlEX ′
liιTl

)(
L∑
l=1

mlEX ′
liιTl

)′,
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and

Ω2 =
L∑
l=1

mlEX ′
liιTl

.

Hence, we have

√
nσ̃3ν =

√
n∑L

l=1 nlTl

L∑
l=1

nl∑
i=1

∥yli − α̃ιTl
−Xliβ̃∥2

=

√
n∑L

l=1 nlTl

L∑
l=1

nl∑
i=1

∥(α− α̃)ιTl
−Xli(β̃ − β) + µliιTl

+ ηl + νli∥2

=

√
n∑L

l=1 nlTl

L∑
l=1

nl∑
i=1

∥νli∥2 + σ2
1 − λ+ op(1),

where λ = 2∑L
l=1 mlTl

Ω′
1Σ

−1
7 Ω1 +

1

(
∑L

l=1 mlTl)2
(Ω2Σ

−1
7 Ω1)

2. Together with the proof of The-

orem 1, we derive the asymptotic distribution of TIC∗
µη . The proof of Corollary 3 is

completed.
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