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The first generation of hyperbolic metamaterials, metasurfaces, and naturally hyperbolic
materials (HMMs) utilized the static and passive properties of their constituent metallic
and dielectric components to achieve intriguing macroscopic behavior, such as imaging
and focusing of light below the diffraction limit and the broadband modification to the
rate of spontaneous emission. While promising, and operating from RF frequencies to
the ultraviolet, many potential applications of early HMMs were spoiled by inflexible
operation and dissipation losses. Recently, the use of dynamically tunable and active
constituent materials has increased, guiding HMMs into more functional regimes. In
this review we survey the state-of-the-art of tunable and active electromagnetic
HMMs. Based on a firm theoretical foundation, we review the most recent experimental
work on hyperbolic dispersion endowed with a tunable or active character. Additionally,
we review proposed ideas that may inspire new experimental work and offer a compari-
son to other photonic platforms. © 2018 Optical Society of America

OCIS codes: (160.1190) Anisotropic optical materials; (160.3918)
Metamaterials; (160.4330) Nonlinear optical materials; (300.1030) Absorption;
(300.2140) Emission; (310.6628) Subwavelength structures, nanostructures
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Dynamically tunable and active
hyperbolic metamaterials
JOSEPH S. T. SMALLEY, FELIPE VALLINI, XIANG ZHANG, AND

YESHAIAHU FAINMAN

1. INTRODUCTION

Hyperbolic metamaterials (HMMs) are naturally existing and engineered composite
materials that exhibit hyperbolic dispersion for electromagnetic waves [1–5]. In the
lossless, effective medium limit, the optical density of states (DOS) of HMMs has no
upper bound [Fig. 1(a)], resulting in wave physics with extremely subwavelength
scales [6,7], ultrafast speeds [8,9], and strong non-linear interactions [10,11].
Practically, the finite size of the constituent metal and dielectric components of
HMMs sets an upper bound on the optical DOS [Fig. 1(b)], and absorptive losses
mitigate the utility of states near the upper bound [Figs. 2(a) and 2(b)].
Additionally, HMMs generally have fixed behavior, dictated by the properties of
the constituent materials and their relative concentration. Therefore, the static and
dissipative character of conventional HMMs may be considered the primary road-
block to the widespread adoption of hyperbolic dispersion in practical technology,
as well as to the observation of new scientific phenomena in the laboratory.

To address these challenges, research on HMMs with dynamically tunable and active
properties has emerged at a rapid rate. Tunable HMMs consist of HMMs in which at
least one of the constituent elements possesses tunable behavior, e.g., externally con-
trolled dispersion [Fig. 1(c)]. Active HMMs consist of HMMs in which at least one of
the constituent elements possesses active, non-dissipative behavior, e.g., optical gain
[Fig. 2(c)]. Generally, the tunable and active properties may be considered forms of
phase and absorption modulation, respectively, with the goal of controlling the real
and imaginary parts of the refractive index of the constituent materials.

In this review, we report on the progress in tunable and active electromagnetic HMMs.
In order to achieve sufficient depth, we place several restrictions on our review. First,
as the title implies, we focus on HMMs with tunable and active functionality.
Preference is given for dynamically tunable behavior though in some circumstances
static tuning is reported if deemed sufficiently impactful. Second, aside from seminal
works, we focus on reviewing work published in 2014 or later because earlier review
papers have covered prior research [1–5]. Third, we give preference to fundamental
theory and experimental demonstrations of new physics and device operation, relative
to purely numerical device design. Lastly, we constrain ourselves to hyperbolic
dispersion for electromagnetic waves, as the acoustic analog [12,13] is beyond our
scope. These limitations aside, we have attempted to capture the status of the field
without bias to frequency range of operation, choice of constituent materials, or geo-
metric configuration. Therefore, we cover active HMMs from the terahertz to ultra-
violet, using a myriad of natural and synthetic materials, in both the multilayer and
nanowire array geometries. Nonetheless, for a field as rapidly expanding as active and
tunable HMMs, it is extremely challenging, if not impossible, to achieve a complete
survey of the field. We therefore apologize in advance to those researchers of active
and tunable HMMs whose work we have inadvertently overlooked.

The review is organized as follows. In Section 2 we provide the necessary theoretical
background for describing and understanding tunable and active hyperbolic
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metamaterials. We begin from the most general formalism considering the tailorable
electromagnetic response of constituent materials, proceed to propagation of waves in
periodic structures made of these materials, and ultimately arrive at the effective
medium approximation (EMA), from which hyperbolic dispersion derives its name.
With a firm theoretical foundation, we review experimental realizations of dynamic
HMMs in Section 3. As will be seen, HMMs affect all aspects of photons and electro-
magnetic waves, including the emission and absorption of radiation and wave propa-
gation and modulation. In Section 4 we discuss emerging applications of dynamically
tunable and active HMMs. These include high-speed and high-efficiency dynamic
light sources, super-resolution imaging systems, and advanced thermophotovoltaic
systems. Next, we provide an outlook on future hyperbolic devices and systems, dis-
cussing nascent proposals and experiments for tunable and active HMMs in Section 5.
These include 2D HMMs, non-reciprocal HMMs, and long-range dipole interactions
mediated by HMMs. Finally, in Section 6 we conclude the review. In organizing this
review, we have thus striven to appeal to as broad an audience as possible, including
theoreticians and experimentalists, newcomers, and experts. We hope that we have

Figure 1

Solving the problem of static properties with dynamic tuning. (a) In the ideal effective
medium limit, the unit cell length, or period, Λ, becomes vanishingly small with re-
spect to the propagation wavelength, and the HMM is homogeneous with effective
permittivity elements, ϵ⊥ and ϵ∥ of opposing sign, such that the relation between
orthogonal wave-vector components, k⊥ and k∥, for a fixed temporal frequency de-
fines a hyperbola. The optical density of states is defined mathematically by an in-
tegration over the hyperbola, which diverges, leading to intriguing wave physics such
as far-field super-resolution imaging [6,7]. (For the calculation, we set Ag and Al2O3

as the constituent metal and dielectric at a vacuum wavelength of 365 nm and ignore
losses.) (b) All practical HMMs have a finite period, which limits the maximum values
of the wave-vector components. The finite period is a fundamental problem because
the performance of the HMM devices, for example the resolution of the hyperlens, is
determined by the maximum wave-vector values. (For the calculation we set both the
Ag and Al2O3 layers, described by material permittivities, ϵM and ϵD, of opposing
sign, as 30 nm thick.) (c) Dynamic tuning, for example, in the form of index modu-
lation, increases the maximum value of the wave-vector components, and therefore
extends the performance limit of the HMM. (For the calculation we decrease the
refractive index of the Al2O3 layer by 4%.) In all calculations, the dashed curve
describes the isotropic spherical dispersion of vacuum.
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achieved our goal and eagerly await to witness the continued progress toward practical
HMMs enabled by dynamically tunable and active properties.

2. THEORETICAL BACKGROUND

Hyperbolic dispersion emerges in a composite system when its constituent parts are
described by elementary response functions of opposing sign. The electrical permit-
tivity, ϵ̃, and magnetic permeability, μ̃, describe the response of a material to electric
and magnetic fields, respectively. In general, both ϵ̃ and μ̃ are tensorial quantities,
relating the vectorial nature of the driving fields and the material response. When
the diagonal elements of the ϵ̃ or μ̃ tensor have opposing sign, the dispersion relation
for waves polarized with their electric or magnetic field in a plane of anisotropy, re-
spectively, describes a hyperbola [14]. Hence, engineered materials with this
dispersion relation are known as hyperbolic metamaterials, and their quasi-two-di-
mensional counterparts, hyperbolic metasurfaces. Naturally existing materials may
also exhibit hyperbolic dispersion [15]. Our use of the term HMMs will refer to
all materials with hyperbolic dispersion, including metamaterials, metasurfaces,
and natural materials.

Hyperbolic dispersion is achieved practically by combining constituent materials with
opposing response functions. For example, when combined in the correct ratio, lay-
ered, isotropic metallic and dielectric materials described by ϵ0 < 0 and ϵ0 > 0, respec-
tively (single prime denotes the real part and lack of tilde denotes isotropic) generate a
hyperbolic dispersion relation for waves with wavelengths much larger than the layer
thickness. Because all causal and passive materials exhibit dispersion and absorption,
i.e., ϵ � ϵ0�ω� � iϵ00�ω� (ω is angular frequency, double prime denotes imaginary part,

Figure 2

Solving the problem of loss with dynamic gain. (a) In the lossless but finite period
case, the imaginary part of the wave-vector component is zero except for transverse
wave-vector component values beyond the cutoff [see Fig. 1(b)]. (b) Finite imaginary
values of the wave-vector components occur when finite loss is included in the HMM.
The propagation loss increases with the magnitude of the transverse wave-vector com-
ponent and thereby reduces performance of HMM devices. (For the calculation we set
realistic losses uniformly in the Ag layers.) (c) Dynamic gain, for example, in the form
of absorption modulation, decreases the maximum imaginary value of the wave-vector
components, reduces propagation loss, and therefore extends the performance limit of
the HMM. (For the calculation we add 2 × 104 cm−1 of material gain uniformly to the
Al2O3 layers.)
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and positive imaginary part denotes absorption), the spectral bandwidth of the result-
ing hyperbolic dispersion has a finite extent, within which the dissipation is non-zero.

In the absence of external degrees of freedom, the spectral width and location of
hyperbolic dispersion may be modified by one of two ways: substitute one constituent
material with a different material, or, change the ratio of the constituent metallic and
dielectric materials. While useful, the static nature of these modifications is limited to
situations in which dynamical variables, such as power flow or peak emission wave-
length as a function of time, are not important. In most technologically relevant
situations, however, the dynamics of physical quantities is crucial to the overall system
performance.

Tunable and active hyperbolic dispersion is therefore much desired. Hyperbolic
dispersion of a system becomes dynamically tunable inasmuch as the system’s con-
stituent parts have tunable or active properties. While the properties of all electromag-
netic materials are, in principal, dependent on external perturbations, the design and
synthesis of HMMs with active and tunable macroscopic properties is far from trivial.
The most commonly used metallic components, for example, the noble metals, have
an optical response fixed by their carrier concentration, and only weakly dependent on
processing conditions. III-V semiconductors, which offer large optical gain coeffi-
cients in the visible and near-infrared, must be grown epitaxially, and are therefore
difficult to combine with metallic components in a multilayer configuration.
Operating in the mid-infrared with an all-semiconductor HMM appears to circumvent
this problem [16], but the out-of-plane dipole moment associated with intersubband
transitions is difficult to leverage for compensating losses [17]. Hence it is not obvious
what the ideal system for tunable and active HMMs looks like. Nonetheless, it is the
purpose of this review to cast a light onto the landscape from which a clearer picture
may emerge.

In the following, we attempt to provide a suitable background for describing tunable
and active hyperbolic dispersion. In this section we provide the theoretical foundation
for understanding active and tunable HMMs, beginning with Maxwell’s equations.
Throughout, we stress the effects of the dispersive and absorptive parts of the con-
stituent materials on the underlying equations. Figure 3 summarizes the constituent

Figure 3

Materials for metallic and active behavior. The top and bottom panels show the spec-
tral range over which various classes of materials behave as metals and gain media,
with negative real and imaginary permittivity, respectively. (h-BN, hexagonal boron
nitride; AZO, aluminum-doped zinc oxide; ITO, indium tin oxide).
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materials that may behave as metals and gain media across the electromagnetic
spectrum. In this review we discuss these materials with particular emphasis on
combinations that yield hyperbolic dispersion with tunable or active behavior.

2.1. Maxwell’s Equations and the Constitutive Relations
So far, we have introduced the electrical permittivity and magnetic permeability in a quali-
tative way. We now proceed to define these quantities more rigorously in the context of the
electric field,E, electrical displacement,D, magnetic field,H, andmagnetic flux density,B,
which are related by Maxwell’s equations and provide a classical description of the dy-
namics of charges and currents. Special attention will then be paid to externally controlling
ϵ and μ, which in turn leads to the ability to externally control hyperbolic dispersion.

The macroscopic Maxwell’s equations are [18]

∇ · D � ρext, (1)

∇ · B � 0, (2)

∇ × E � − ∂B
∂t

, (3)

∇ ×H � ∂D
∂t

� Jext, (4)

where ρext and Jext are external charge density and current density, respectively. The elec-
tric field and electric flux density are related through the macroscopic polarization, P, by

D � ϵ0E� P � ϵ0ϵE, (5)

where ϵ0 � 8.854 × 10−12 F m−1 is the electrical permittivity of vacuum and

ϵ � ϵ0�k,ω� � iϵ00�k,ω� (6)

is the generally, spatially dispersive, temporally dispersive, and absorptive relative per-
mittivity. In writing the second of Eq. (5) we can then relate the material response linearly
to the electric field by

P�k,ω� � ϵ0χ�k,ω�E�k,ω�, (7)

where χ�k,ω� � ϵ�k,ω� − 1. The assumption of a linear relation between P and E will
be revisited momentarily, when we discuss dynamically controlled materials
exhibiting tunable and active behavior. For now, we relate the magnetic field and the
magnetic flux density through the macroscopic magnetization, M, by

B � μ0H�M � μ0μE, (8)

where μ0 � 4π × 10−7 Hm−1 is the magnetic permeability of vacuum, and

μ � μ0�k,ω� � iμ00�k,ω� (9)

is the generally, spatially dispersive, temporally dispersive, and absorptive relative per-
meability. The speed of wave propagation in vacuum, c, is related to the
permittivity and permeability through c � �ε0μ0�−1=2, and the vacuum wavenumber,
k0, and wavelength, λ0, are related by k0 � 2π∕λ0 � ω∕c.
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2.2. Tunable Constituent Materials
Having presented the elementary framework for describing the linear response of ma-
terials to driving electromagnetic fields, we are now well positioned to more deeply
describe the dependence of the materials properties on external fields. Necessarily, we
are entering the regime of non-linear optics, wherein the interaction between multiple
electric and/or magnetic fields leads to a system the dynamics of which are signifi-
cantly more complex than in the linear case. Nonetheless, we hope to convey the
relatively simple physical picture by which the combination of tunable constituent
materials enables tunable hyperbolic dispersion.

Over a broad frequency range, the electromagnetic response of metals is well
described by the Drude model. The Drude model directly accounts for the motion
of free electrons and expresses the electrical permittivity as

ϵ � ϵb − ω2
p

ω2 � iωγ
� ϵb − ω2

pτ
2

1� ω2τ2
� i

ω2
pτ

ω�1� ω2τ2� , (10)

where the plasma frequency, ωP, depends monotonically on the free carrier density, N ,
and effective electron mass, meff , through

ω2
P � q2N

ϵ0meff

, (11)

where q � 1.602 × 10−19 C is the electron charge, ϵb is the background permittivity
describing bound charges, and γ is the damping rate and τ � γ−1 is the damping time.

In noble metals, such as gold and silver, N is fixed due to the elemental nature of the
material, whereas γ can vary significantly depending on the technique used for
material synthesis [19]. While the process-dependent damping of elemental metals
holds modest value for designing variably absorbing metamaterials, the fixed carrier
density is a major limitation.

The magnitude of N in non-elemental materials, such as transparent conducting ox-
ides (TCOs), conversely, depends sensitively upon the processes by which the films
are deposited and grown [20–22]. This enables a passive tunability to the electrical
response, and thereby to the hyperbolic dispersion of HMMs with a TCO as the
metallic element. Similarly, heavily doped semiconductors become metallic in the
mid-infrared [16].

While useful, the passive tunability of N and γ has a similar effect as the passive tuning
of the ratio of metallic to dielectric components in a composite system. Therefore,
techniques to actively control the carrier density and damping rate are highly
desirable. This can be found through optical excitation, electrical gating, and external
temperature variation.

2.2a. Optical Excitation

The distinction between lattice and electron temperature is generally important for
modeling dynamics of high-performance photonic devices, including, for example,
vertical-cavity surface-emitting lasers [23,24]. Under the influence of a strong optical
field, the random phase approximation may be used to describe the intraband lattice
and electron dynamics of a metal. In this case the intraband part of the permittivity is
expressed as [11]

ϵ�ω, TL, Te� � ϵ∞ − ω2
p

ω�ω� iγ�ω, TL, Te��
, (12)
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where TL and Te are the temperatures of the lattice and free electron gas, respectively.
In the absence of external optical excitation, TL � Te. However, under the influence
of a sufficiently strong external field, Te can exceed TL by an order of magnitude, for
example from room temperature to 3000 K. This mechanism can be used to construct
a high-contrast and extremely compact all-optical switch in an HMM platform, as will
be discussed in Subsection 2.3.

Whereas external control of γ directly changes the imaginary part of the metal per-
mittivity, the dependence of the real part on intense fields is described by the Kerr
effect. Namely, in the presence of a sufficiently strong field, we define a non-linear
permittivity, ϵNL, as

ϵNL � ϵ� χ�3�Ip, (13)

where χ�3� is the third-order non-linear susceptibility and Ip is the intensity of the
external optical pump [25]. We will see in Subsection 2.3 that the Kerr effect is also
useful for HMM-based all-optical switching. Generally, the Kerr effect can apply to
the constituent dielectric or metallic components in an HMM, or both simultaneously.
However, often the effect in one of the components will dominate the ultimate effect
on the hyperbolic dispersion, as will be shown in subsequent sections.

2.2b. Electrical Gating

The carrier density in two-dimensional (2D) materials exhibits a remarkably strong
dependence on external static fields. In graphene, for example, the density of electrons
is externally controllable with a gate voltage, VG, that changes the Fermi level. The
permittivity of graphene may be expressed in terms of its conductivity, σ, by [26]

ϵ�ω,Vb� � 1 − i
σ�ω, μC�
ωϵ0tg

, (14)

where tg is the thickness of monolayer graphene and μC is the externally controlled
chemical potential. The latter depends on VG through

jμCj � ℏνF
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πja0�VG − VDirac�j

p
, (15)

where ℏ � 1.05 × 10−34 J s is the reduced Planck’s constant, νF ≈ 106 m s−1 is the
Fermi velocity at the Dirac point, a0 � 9.6 × 1016 �mV�−1, and VDirac is the offset
bias determined by doping and impurities. With the chemical potential known, the
permittivity can then be calculated from the conductivity. The latter is

σ�ω, μC� � −i 4πq2kBT

h2�ω − i2τ� �μC�kBT�
−1 � 2 ln�e−μC�kBT�−1 � 1��

− i4πq2�ω − i2τ�
h2

Z
∞

0

f D�−ζ� − f D�ζ�
�ω − i2τ�2 − 16πζh−1

dζ, (16)

where

f D�ζ� �
1

exp��ζ − μC��kBT�−1� � 1
(17)

is the Fermi–Dirac function, h � 6.63 × 10−34 J s is Planck’s constant, kB � 1.38 ×
10−23 J K−1 is Boltzmann’s constant, and T is the temperature. For the case of multi-
layer graphene less than or equal to six layers, Eq. (16) may be simply scaled by the
number of layers to find the multilayer conductivity [26].
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2.2c. Phase-Change Materials

Thus far we have described mechanisms by which the carrier density, N , and electron
damping rate, γ, may be modified dynamically in the constituent metallic and dielec-
tric materials, including optical excitation and electrical gating. External temperature
is another mechanism by which optical properties can be changed. In particular, con-
trol of the external temperature causes certain materials to undergo solid-state phase
changes. For example, vanadium oxide (VO2) changes from insulating to metallic at a
modest T � 68°C, making it useful as a constituent material in a practically tunable
HMM [27,28]. The permittivity of a phase-change material may be conveniently
modeled as a sum of Lorentz oscillators and a Drude term of the form

ϵ�ω� � ϵ∞ �
X∞
n�0

Anωn

ω2
n − ω2 − iγnω

� −Bγ
ω2 � iγω

, (18)

where the second and third terms account for bound and free electrons, respectively.
An describes the strength of the bound transition centered at ωn with damping γn and B
is related to the strength of the free electron response. Below and above the insulator-
to-metal transition temperature B � 0 and B > 0, respectively. Because the external
temperature can cause a complete change in optical character, phase-change materials
can play a dramatic role in tuning a metamaterial from elliptic to hyperbolic
dispersion.

2.3. Active Constituent Materials
In earlier sections we have mentioned the complex nature of the material response,
where the imaginary part is responsible for absorption. In this section we provide
further detail on this point with the goal of describing constituent materials that exhibit
optical gain. Optical gain necessarily requires external control mechanisms because all
causal materials are inherently passive.

2.3a. Organic Dyes

To date, most active HMMs have used organic dye molecules as the gain media because
dyes are inexpensive and fairly easy to incorporate into conventional multilayer struc-
tures. Theoretically, the easiest way to model gain in an HMM is to use a constituent
dielectric with an imaginary part that opposes the sign of the imaginary part of the con-
stituent metal. Here, we use the convention that ϵ00 > 0 corresponds to loss and ϵ00 < 0

corresponds to gain. A more rigorous description of optical gain accounts for the electric
field and material polarization self-consistently. This method was first used in the analy-
sis of generic metamaterials with gain, and later for studying active HMMs for improved
imaging performance [29–32]. A self-consistent, time-domain approach is often neces-
sary because, in the presence of gain, the dispersion of the HMM may significantly
change relative to the absence of gain due to the Kramers–Kronig relations. In turn,
the interaction between a propagating electromagnetic field and the material gain
changes as the HMM dispersion changes, until eventually a steady state is reached.
One of the most interesting features of the self-consistent model is that the effective
gain coefficient for the metamaterial can exceed the gain coefficient of the constituent
gain material in isolation [29]. This occurs because the metamaterial supports strong
electric fields that effectively amplify the intrinsic gain coefficient of the constituent gain
material, overcoming the absorption coefficient associated with the constituent metal.
Hence using a less rigorous approach such as the naive inclusion of a negative ϵ00

may lead to either overestimated or underestimated results depending on the situation.

Assume a four-level system with the charge carrier population density in each level
given by Nl�l � 0, 1, 2, 3�. Carriers are pumped at the rate R03 from level 0 to level 3,
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decay quickly non-radiatively between level 3 and level 2 and between level 2 and
level 0 at the rates τ32 and τ10, respectively. Between levels 2 and 1, the decay is slower
and partially radiative at the rate τ21. Transitions between levels 3 and 1, 3 and 0, or 2
and 0, are generally deemed forbidden. An optical pump with the energy E30 � E3 −
E0 � ℏω30 excites carriers from the ground state (level 0) to level 3, and optical emis-
sion occurs with the energy E21 � E2 − E1 � ℏω21. The dynamics of this four-level
system are described by

∂N 3

∂t
� R03N0 − N 3

τ32
, (19)

∂N2

∂t
� N3

τ32
− N 2

τ21
� 1

ℏω21

E ·
∂P
∂t

, (20)

∂N1

∂t
� N 2

τ21
− N 1

τ10
− 1

ℏω21

E ·
∂P
∂t

, (21)

∂N 0

∂t
� −R03N 0 �

N1

τ10
, (22)

where the term 1
ℏω21

E · ∂P∂t denotes stimulated emission and absorption when positive
and negative, respectively. The polarization, P, is described as a forced harmonic os-
cillator driven by the local electric field, E, according to

∂2P�t�
∂t2

� γ21
∂P�t�
∂t

� ω2
21P�t� � −σ21ΔN�t�E�t�, (23)

where ΔN � N 2 − N 1 and σ21 is the coupling strength between P and E, with a typ-
ical value of 10−4 C2 kg−1. Typical values of the time constants are τ32 � τ10 � 50 fs

and τ21 � 5 ps, with a total electron density of N � N0 � N1 � N 2 � N 3 �
5 × 1017 cm−3 for dye molecules. Equations (19)–(23) may be solved through the
finite-difference time-domain method [29], where the field, polarization, and popu-
lation densities are sequentially updated at each point in space along each time step.
A strong pump wave excites the total carrier population, initially in the ground state,
and a second, weaker, wave probes the metamaterial as the system evolves.

For sufficiently weak pumping wherein the probe responds linearly to the pump
(jEj < 104 Vm−1 in [29]), a simpler model for the optical gain can be used, circum-
venting the self-consistent calculation. In this case, the magnitude of the polarization
takes the form

P � ϵ0�χ 0 � χ 00�E, (24)
where

χ 0�ω� � − χ 000Δx�ω�
1� Δx�ω�2 , (25)

χ 00�ω� � χ 000�ω�
1� Δx�ω�2 , (26)

Δx�ω� � 2�ω−ω21�
γ21

, and χ0 � σ21ΔN
ϵ0ω21γ21

. Further, in the linear case, the permittivity may be

approximated as an explicit function of the pumping rate according to a simple
Lorentzian function [32]:
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ϵ�ω� � 1� ω2
g

ω2 − ω2
21 � iωγ21

, (27)

where

ωg �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RNσ21
γ21ϵ0

s
: (28)

Finally, if the refractive index of the dielectric host for the dye molecules, nh, is much
larger than the real and imaginary parts of χ, then in the linear pumping regime we can
approximate the frequency-dependent effective index of the four-level system as [31]

n0�ω� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2h − 2� n2h

3ϵ0

X
i�30, 21

ω2
i − ω2

�ω2
i − ω2� � 4γ2iω

2
σiΔi

vuut , (29)

n00�ω� � − 2� n2h
6nhϵ0

X
i�30, 21

2γiω

�ω2
i − ω2� � 4γ2i ω

2
σiΔi: (30)

2.3b. Rare-Earth Ions

Rare-earth ions are an attractive gain media to incorporate into HMMs because they
may be co-sputtered with oxides providing a more stable gain media than organic dyes
without significant added complexity.

For example, erbium oxide (Er2O3) can be co-sputtered with aluminum oxide (Al2O3)
to form a light-emitting [33] oxide film. Enhancement in photoluminescence and up-
conversion efficiency of Er3� was achieved by placing Ag films of varying thickness
atop the Er-doped oxide layer. In principle, one should be able to achieve a multilayer
metal-oxide geometry in which the oxide layer contains co-sputtered Er ions. The
precise gain profile of Er-doped oxides depends on the exact transition and host oxide.
The amplification process in Er-doped media is most often modeled by a three-level
system [34]. In this case the lasing transition occurs between the first excited state and
the ground state. Therefore, unlike the four-level system used for modeling dyes, pop-
ulation inversion requires a more substantial pumping rate to reduce the ground-state
population [34].

2.3c. Bulk and Quantum Well Semiconductors

Beyond isolated emitters, bulk and one-dimensional quantum heterostructures, i.e.,
quantum wells (QWs), are the most challenging gain media to incorporate into
HMMs. To date, a self-consistent description of the dynamics of charge carriers
and photons in a metal-QW composite medium exhibiting hyperbolic dispersion
has yet to be demonstrated, though advanced models for self-consistent QW gain
dynamics have been put forth [35]. Here we outline the origin of gain in QW
semiconductors, which can be incorporated into linearly pump-dependent models
for active HMMs [36,37].

In semiconducting dielectric components, N describes the number of free electron-
hole pairs. In the two-band effective mass approximation, assuming an undoped
semiconductor [38],

N �
Z

f 2�ℏω��1 − f 1�ℏω��ρEdω, (31)

where f 2 and f 1 are the quasi-Fermi levels of the conduction and valence bands, re-
spectively, and ρE is the electronic density of states. The attenuation, α, experienced
by a propagating wave in the semiconductor decreases monotonically with increasing
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N . The optical gain, g, is therefore an increasing function of N , and may be written
as [39]

g�ℏω;N� � n0ϵ0cm0ω

πq2

Z
jMT �E21�jρE�E21�f 21�ω,N�LB�ℏω − E21�dE21, (32)

whereMT is the transition momentum matrix element, LB is the homogeneous broad-
ening line shape function, E21 is the transition energy between the conduction and
valence band states, n0 is the refractive index, and m0 is the free electron mass. In
bulk media, the integration in Eq. (32) is performed from the conduction band edge
to infinity, whereas in QW media, it is performed from the first conduction subband
edge to infinity. The magnitude of the electronic density of states in the QW is de-
termined by the valence band and conduction band effective masses, mV and mC,
respectively, while the peak spectral location of the nth subband is determined by
the energy difference between the conduction and valence band, EC, n − EV , n.
Finally, the broadening is given by the intraband scattering time, τin, leading to

ρE�ω� �
mCmV

πℏ2LQW �mC � mV �

�
1

2
� 1

π
tan−1

�
ℏω − �EC, n − EV , n�τin

ℏ

��
, (33)

where LQW is the thickness of an individual well. The inversion factor is a function of
the quasi-Fermi levels in the conduction and valence bands, FC and FV , respectively,
and is given by

f 21�ω,N� � f 2�ω,N� − f 1�ω,N�

�
�
exp

�
EC − FC

kBT

�
� 1

�−1 − �
exp

�
EV � FV

kBT

�
� 1

�−1
, (34)

where T is the average temperature, and EC and EV are the conduction and valence
band energies, respectively. The latter are calculated by the parabolic band approxi-
mation,

EC � EC, n �
mV

mC � mV
�ℏω − EG, n�, (35)

EV � EV , n − mC

mC � mV
�ℏω − EG, n�, (36)

where EG, n is bandgap energy between the nth set of subbands. In practice Eq. (32) is
solved by first solving Eqs. (35) and (36) given input values for LQW , the bandgap
energy of the well and barrier materials, EG,Q and EG,B, respectively, and the con-
duction and valence band offsets between the well and barrier, ΔEC and ΔEV , respec-
tively [39]. Then Eq. (34) is solved by numerically finding values of FC that satisfy

N � 4πm0

ℏ2LQW

X
n

Z
EC, n�ΔEC

EC, n

�
1� exp

�
E − FC

kBT

��−1
dE

� 4m0

π1∕2

�
2πm0

h2

�
3∕2 Z ∞

EC, n�ΔEC

E1∕2
�
1� exp

�
E − FC

kBT

��−1
, (37)

and values of FV that satisfy
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N � 4πm0

ℏ2LQW

X
n

Z
EV, n�ΔEV

EV, n

�
1� exp

�
E − FV

kBT

��−1
dE

� 4m0

π1∕2

�
2πm0

h2

�
3∕2 Z ∞

EV, n�ΔEV

E1∕2
�
1� exp

�
E − FV

kBT

��−1
, (38)

where the carrier density is treated as an input parameter. For all calculations we as-
sume room temperature operation, such that kBT � 0.0259 eV. We approximate MT

as a constant with respect to ω, but do account for its polarization dependence.

The optical gain spectra of a 10 nm InGaAsP QW is shown in Fig. 4 with the carrier
density and temperature as parameters, calculated from Eq. (32). The magnitude of N
in semiconductors, such as InGaAsP multiple quantum wells (MQW), depends sen-
sitively upon external pumping conditions. By Kramers–Kronig relations, the phase
delay experienced by a propagating wave also changes with N . This enables an active
tunability to the electrical response and thereby to the hyperbolic dispersion of HMMs
with InGaAsP MQW as the dielectric constituent.

For plane wave propagation in an inverted medium with ϵ00 < 0, the optical gain
relates to the semiconductor permittivity through [40]

g � −α � k0
ϵ00Dffiffiffiffiffi
ϵ0D

p , (39)

under the assumption that ϵ0D ≫ ϵ00D. A more exact determination of the complex per-
mittivity from the attenuation or gain coefficient follows from its definition as the
square of the complex refractive index. Namely,

ϵ0D � n02 − n002 � n02 −
�
αλ0
4π

�
2

, (40)

ϵ00D � 2n0n00 � n0
αλ0
2π

: (41)

Figure 4

Optical gain spectra of a 10 nm InGaAsP QW [39]. (a) Gain spectra with temperature
fixed at T � 300 K and carrier density, N, ranging from 1 × 1018 cm−3 to
7.5 × 1018 cm−3. (b) Gain spectra with N fixed at 2.5 × 1018 cm−3 and T ranging from
100 K to 400 K. The well and barrier materials are InGaAs and InGaAsP, respectively.
© 2014 IEEE. Reprinted, with permission, from Smalley et al., IEEE J. Quantum
Electron. 50, 175–185 (2014) [39].
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2.4. Surface and Bulk Plasmon and Phonon Polaritons
The interface between two media with opposing sign of the real part of the electrical
permittivity supports a surface wave known as a polariton. When the medium with
negative permittivity attains its character from the motion of free electrons, the polar-
iton is a plasmon polariton. On the other hand, when lattice vibrations are responsible
for the negative permittivity, the polariton is a phonon polariton. The dispersion
relations for these polaritons, which form the foundation of all HMMs, are now
presented.

2.4a. Plasmon Polaritons

The dispersion relation for a surface plasmon polariton (SPP) at the interface between
a semi-infinite metal and a semi-infinite dielectric is

kSPP�ω� � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵM �ω�ϵD�ω�

ϵM �ω� � ϵD�ω�

s
, (42)

where kSPP is the magnitude of the SPP wave vector. Expanding kSPP into its real and
imaginary parts, we have

k 0SPP�ω� � k0
ϵ0M �ϵ02D � ϵ002D � � ϵ0D�ϵ02M � ϵ002M �

ϵ02M � ϵ002M � ϵ02D � ϵ002D � 2�ϵ0Mϵ0D � ϵ00Mϵ
00
D�

, (43)

k 00SPP�ω� � k0
ϵ00M �ϵ02D � ϵ002D � � ϵ00D�ϵ02M � ϵ002M �

ϵ02M � ϵ002M � ϵ02D � ϵ002D � 2�ϵ0Mϵ0D � ϵ00Mϵ
00
D�

: (44)

The SPP propagation length is

LSPP �
1

2k 00SPP
, (45)

while the penetration depth into the metal and dielectric are

dSPP,M �
���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵMk
2
0 − k2SPP

p ���� (46)

and

dSPP,D �
���� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵDk
2
0 − k2SPP

p ����, (47)

respectively. In the negligible loss, long wave-vector limit, the temporal frequency of
the SPP is

ωSP � ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵM

p : (48)

As shown in Subsections 2.2 and 2.3, both the real and imaginary parts of both the
constituent metal and dielectric materials may be externally controlled by a number of
different mechanisms. Thus, the dispersion, loss, and penetration depth of SPPs may
all be modified by perturbing the metal and dielectric.
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Two SPPs may be brought in close proximity to each other by creating a metal–
dielectric–metal or dielectric–metal–dielectric multilayer, where the middle layer
has a thickness, t, small compared to the vacuum wavelength. When the semi-infinite
bounding layers of this sandwich are identical, the dispersion relation takes the form

tanh k1a � − k2ϵ1�ω�
k1ϵ2�ω�

, (49)

tanh k1a � − k1ϵ2�ω�
k2ϵ1�ω�

, (50)

where a is the thickness of the middle layer, k1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1k

2
0 − k2SPP

p
, and

k2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2k

2
0 − k2SPP

p
. Coupling between SPPs leads to a splitting in their characteristic

frequency, which may be analytically approximated in the low-loss limit as [18]

ω� � ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ϵM exp�−2kSPPt�

1� ϵM

s
, (51)

ω− � ωPffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ϵM

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ϵM exp�−2kSPPt�

1� ϵM

s
: (52)

Conversely, for a fixed temporal frequency, the system will support two SPPs, kSPP,�
and kSPP,−, where kSPP,− < kSPP < kSPP,�. The two SPPs are known as long-range
and short-range SPP due to fact that one of them has a significantly larger LSPP than
the other [41].

Adding more layers to the metal–dielectric system will lead to further splitting of the
characteristic temporal and spatial frequencies [42]. Consider a repeating sequence of
metal and dielectric layers with the period Λ � tM � tD, where tM and tD are the metal
and dielectric layer thicknesses, respectively. For a fixed spatial frequency, k, the spec-
tral bandwidth, Δω, of the coupled SPP system is inversely proportional to Λ.
Similarly for a fixed temporal frequency, ω, the angular bandwidth, Δk, is inversely
proportional to Λ. For a fixed Λ, the number of resonances within Δω and Δk is
proportional to the number of periods, Np. Beyond a three-layer system, the SPPs
take on the character of bulk modes and are therefore called bulk plasmon polaritons
(BPPs) [43,44]. The BPPs are the information carriers in hyperbolic media. Hence
creating active and tunable HMMs requires tuning and providing gain to BPPs.
As with a single SPP, this is achieved by dynamically controlling the complex
permittivity (or permeability) of the constituent metal and dielectric layers.

2.4b. Phonon Polaritons

In polar crystals, surface phonon polaritons (SPhPs) may be observed to propagate in
the Restrahlan band, which is the range of frequencies between the resonances of the
transverse optical phonon, ωTO, and longitudinal optical phonon, ωLO [45]. The per-
mittivity of uniaxial polar crystals is anisotropic, with distinct components describing
the optical response parallel and perpendicular to the optical axis. In many cases these
components may be described by a single Lorentzian function of the form [46]

ϵ⊥�ω� � ϵ∞,⊥

�
1� ω2

LO,⊥ − ω2
TO,⊥

ω2
TO,⊥ − ω2 − iωγ⊥

�
, (53)
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ϵ∥�ω� � ϵ∞, ∥

�
1� ω2

LO, ∥ − ω2
TO, ∥

ω2
TO, ∥ − ω2 − iωγ∥

�
: (54)

The magnitude of the wave vector propagating along the optical axis is then described
by the dispersion relation [46]

kSPhP � k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ⊥

�
1 − k⊥

ϵ∥k0

�s
, (55)

where k⊥ is the wave-vector component normal to the optical axis, usually treated as
an independent, real-valued quantity. Similar to SPPs, the properties of SPhPs can be
tuned by perturbing the polar crystal externally, for example with phase-change thin
films atop the polar crystal [47].

Whereas SPhPs arise in naturally existing anisotropic materials with atomic-scale
periodicity, the description of engineered HMMs as uniaxial crystals arises from
the effective medium approximation, which is detailed in Subsection 2.8.

2.5. Green’s Function for Dipole Interactions
To describe the interaction between a dipole and HMM, as well as dipole–dipole inter-
actions in the presence of HMMs, the Green’s function method is often employed. By
treating a quantum emitter as a point source, its radiation field may be described as an
infinite sum of plane waves, each with a particular direction, or k-vector. Each plane
wave will exhibit a characteristic reflection and transmission frequency spectrum. By
integrating over the angular spectrum, the emission rate of the dipole near an HMM
can be determined for a particular temporal frequency. The reflection and transmission
properties of an HMM will be discussed in Subsection 2.6. Now we focus on the
Green’s function.

2.5a. Isolated Dipole Near HMM

The Green’s function, G, is the impulse response at a location r0 to a point source
located at r. It satisfies the Helmholtz equation [48]

∇ × ∇G�r, r0;ω� − ϵ�ω�ω
2

c2
G�r, r0;ω� � 1δ�r − r0�: (56)

Using a plane wave basis, we may write the Green’s function as

G � i

8π2

ZZ
dkxdky
kzk

2
1

ei�kxx�kyy�kzjzj�

264 k21 − k2x −kxky −� kxkz−kykx k21 − k2y −� kykz−� kzkx −� kzky k21 − k2z

375, (57)

where k1 � ffiffiffiffi
ϵ1

p
k0 is the wave-vector magnitude assuming that the emitter is em-

bedded in a medium with permittivity ϵ1. If the Green’s function is known, the optical
density of states, ρO, may be calculated from

ρO�r0,ω� �
2ω

πc2
Im�Tr�G�r0, r0;ω���, (58)

where r0 is the location of the emitter, serving as both the source and observa-
tion point.
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2.5b. Purcell Factor

The spontaneous emission rate enhancement due to HMMs may be expressed in terms
of the Purcell factor, FP. Assuming spectral and spatial alignment between the emitter
(dipole) and modal electric field (mode supported by HMMs), the enhancement may
be expressed as

FP � Γg

Γ0

, (59)

where

Γ0 �
ω3
21μ

2
21

3πϵ0ℏc3
(60)

is the emission rate in vacuum, and

Γg �
2πμ221E

2
0

ℏ2
ρO�ω21� (61)

is the emission rate in an environment defined by the frequency-dependent local op-
tical density of states, ρO. In Eqs. (60) and (61), ω21 is the transition frequency, μ21 is
the magnitude of the transition dipole moment, and E0 is the magnitude of the local
electric field. In Eq. (61) we assume that the dipole and electric field share the same
polarization. Note that if the environment takes the form of a cavity resonant with the
dipole, then ρO�ω21� � �Δω21V �−1, where Δω21 � ω21∕Q is the cavity bandwidth
and V is the its physical volume [49]. Using the effective modal volume, V eff , the
Purcell factor for the cavity becomes

Fp �
3λ3Q

4π2V eff

, (62)

where it is assumed that the dipole and cavity mode are spatially and spectrally aligned
and share the same polarization.

In spite of low quality factor resonances associated with individual SPPs, an HMM
supports a broadband density of states, which may be understood as multiple low
effective volume channels, that significantly enhances the rates of dipole emission.
Based on the formalism of Subsection 2.5a, the Purcell factor of a randomly oriented
dipole, a distance h above a multilayer HMM, is conveniently described as the average
of a dipole oriented parallel and normal to the optical axis of the HMM [50]:

FP � 1

3
FP,⊥ � 2

3
FP, ∥: (63)

The component along the optical axis is governed by the p-polarization reflectivity,
rp1−2, where the subscript denotes the material the radiation is incident from (1) and
reflected from (2). The expression is

FP, ∥ � 1 − η� η
3

2
Im

Z
∞

0

dk⊥
k3⊥
w

�1 − rp1−2�e−2ik1, ∥h, (64)

where w � −i ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2⊥

p
and it should be understood that here k⊥ is normalized with

respect to k1.

The component normal to the optical axis depends upon both the p- and s-polarization
reflectivity, rs1−2, through
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FP, ∥ � 1 − η� η
3

4
Im

Z
∞

0

dk⊥
k⊥
w

��1� rs1−2� − �1 − k2⊥��1� rp1−2��e−2ik1, ∥h: (65)

The Fresnel coefficients of an arbitrary multilayer system are explicitly defined in
Subsection 2.6a. For a randomly oriented dipole located in the near-field of an
HMM, the decay rate is dominated by the high-k channels of the component along
the optical axis. For this case the decay rate may be analytically approximated as [8]

Γhigh-k �
μ2⊥
8ℏh3

2
ffiffiffiffiffiffiffiffiffiffiffiffijϵ⊥jϵ∥

p
1� jϵ⊥jϵ∥

, (66)

where the effective permittivity elements are defined in Subsection 2.8. The depend-
ence of the second term of Eq. (66) is plotted for a Ag∕SiO2 system in Fig. 5, as a
function of wavelength and metal fraction for cases of unperturbed and perturbed
constituent oxide. Regions of elliptical and hyperbolic dispersion are denoted by zero
and non-zero values of Im�rp� �

ffiffiffiffiffiffiffiffiffiffiffiffijϵ⊥jϵ∥
p

∕�1� jϵ⊥jϵ∥�. Maximum Purcell enhance-
ment occurs at the maximum of this quantity. A 10% change in the refractive index of
the oxide leads to a dramatic shift in the onset of hyperbolic dispersion and can thus be
used to tune the emission rate dynamically.

2.5c. Two Dipoles Near HMM

The case of two dipoles located in the near field of an HMM was recently studied in
[48]. The interested reader is suggested to consult this reference for the associated
formalism.

2.6. Propagating and Evanescent Waves in Complex Periodic Media
Propagation of electromagnetic plane waves in a one-dimensional periodic system of
finite length is exactly described using the transfer matrix method. Under the
assumption of infinite periodicity, Bloch’s theorem may be invoked, which further
simplifies the description of propagating and evanescent waves.

2.6a. Finitely Periodic Systems: The Transfer Matrix Method

The transfer matrix method (TMM) enables the calculation of transmission, reflection,
and absorption of plane waves incident at an arbitrary angle onto an arbitrary sequence
of infinitely extended layers. Each interface in the multilayer system is described by a

Figure 5

Tuning the near-field Purcell factor via index modulation. Emission enhancement fac-
tor, Im�rp� �

ffiffiffiffiffiffiffiffiffiffiffiffijϵ⊥jϵ∥
p

∕�1� jϵ⊥jϵ∥�, as a function of vacuum wavelength and Ag frac-
tion in an (a) unperturbed and (b) perturbed Ag∕SiO2 HMM. The refractive index of
SiO2 is 1.5 and 1.5� Δ, Δ � 0.15 in (a) and (b), respectively. The dispersive, com-
plex permittivity of Ag is taken from the literature [51].

372 Vol. 10, No. 2 / June 2018 / Advances in Optics and Photonics Review



transfer matrix and each discrete layer by a propagation matrix. The matrices are cas-
caded to form a system matrix by which transmission, reflection, and absorption are
determined. For completeness, we include a formal description of the TMM based on
[52], but expanded in the context of a dynamically variable ϵ or μ.

Generally, the transfer matrix at the interface of materials “1” and “2” may be
written as

T1−2 �
1

t1−2

�
1 r1−2

r1−2 1

�
, (67)

where t1−2 and r1−2 are the, generally complex, transmissivity and reflectivity coef-
ficients for waves coming from material “1” to material “2.” Throughout, we describe
the direction with respect to the optical axis (which is normal to the layer interfaces).
The transfer matrix at a metal–dielectric interface is

TM−D � 1

2
ffiffiffiffiffiffiffiffiffiffiffi
μMμD

p
k∥,M

�
μMk∥,D � μDk∥,M μMk∥,D − μDk∥,M
μMk∥,D − μDk∥,M μMk∥,D � μDk∥,M

�
(68)

for TE waves, and

TM−D � 1

2
ffiffiffiffiffiffiffiffiffiffiffi
ϵMϵD

p
k∥,M

�
ϵMk∥,D � ϵDk∥,M ϵMk∥,D − ϵDk∥,M
ϵMk∥,D − ϵDk∥,M ϵMk∥,D � ϵDk∥,M

�
(69)

for TM waves. Equations (68) and (69) explicitly depend on μ and ϵ, respectively,
implying that the transfer matrices may be modified by external perturbations through
μ and ϵ. Generally, the propagation matrix is independent of polarization and may be
written as

P1−2 �
�
exp�iϕ� 0

0 exp�−iϕ�
�
, (70)

where ϕ � k∥, αtα is the phase accrued by the wave in traversing the α material of
thickness tα. The component of the wave vector parallel to the optical axis is deter-
mined through

k∥, α �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵαμαk

2
0 − k2⊥

q
, (71)

where k⊥ is normally considered a real-valued, independent variable. Depending upon
the value of ϵα and μα, k∥, α may therefore be purely real, purely imaginary, or com-
plex-valued.

For a system of N periods terminated by vacuum on both ends, the system matrix S is�
E0�
E0−

�
� S � T0−1�P1T 1−2P2T2−1�NT 1−0

�
EN�
EN−

�
: (72)

The transmission, reflection, and absorption are then computed as

T � jtj2 � jS�2, 1�j2
jS�1, 1�j2 , (73)

R � jrj2 � 1

jS�1, 1�j2 , (74)
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A � 1 − T − R: (75)

From Eqs. (67)–(75) it becomes clear that external perturbations to ϵ and μ will di-
rectly affect the transmission, reflection, and absorption of waves propagating through
hyperbolic media.

In principle, the TMM enables the exact determination of transmission, reflection, and
absorption in an arbitrary sequence of isotropic materials with complex, and field-de-
pendent, ϵ and μ. However, in practice, the two exponentials in the propagation matrix
have opposing sign, leading one to be extremely large while the other is extremely
small when lossy materials and evanescent waves are considered. The smaller value
will be of the order of the machine precision of most microprocessors, which leads to
systemic errors and non-physical results. To remedy this problem, the scattering
matrix method [53,54] may be used, which is the subject of the next section.

2.6b. Finitely Periodic Systems: The Scattering Matrix Method

The scattering matrix method (SMM) is an iterative procedure that uses transfer and
propagation matrices. Unlike the TMM, however, the propagation matrix of the SMM
contains exponential functions whose arguments have the same sign. Consequently,
the divergence issues associated with the TMM are eliminated at the expense of higher
algorithmic complexity [53,54]. Similar to the TMM, ϵ and μ appear explicitly, pro-
viding the means to modify scattering via external control mechanisms. Here we sum-
marized the algorithm of [55] in the context of tunable and active constituent
materials.

First, a system matrix is initialized,

S0 �
�
0 1

1 0

�
, (76)

followed by a propagation matrix,

P0 �
�

0 exp�ik∥, 0t0�
exp�ik∥, 0t0� 0

�
: (77)

The initial system and propagation matrices are fed into the next system matrix S with
the recurrence relation

Sn�1�
�
Sn�1,1��Sn�1,2�Yn�1,1�Sn�2,1�qn Sn�1,2�Yn�1,2�qn

Yn�2,1�Sn�2,1�qn Yn�2,2��Sn�2,2�Yn�1,2�Yn�2,1�qn

�
,

(78)

with

qn �
1

1 − Yn�1, 1�Sn�2, 2�
: (79)

In the above equations, Yn may be either a propagation or transfer, i.e., interface,
matrix, and the parentheses refer to matrix element row and column. The transfer
matrices are defined as

T 0−1 �
1

k∥, 0
ϵ0

� k∥, 1
ϵ1

264 k∥, 0
ϵ0

− k∥, 1
ϵ1

2k∥, 1

2k∥, 0
k∥, 1
ϵ1

− k∥, 0
ϵ0

375: (80)

The system matrix is updated for each additional layer until the final, N th, layer is
reached. Then the intensity transmission, T , reflection, R, and absorption, A, are
calculated from the complex amplitude transmissivity, t, and reflectivity, r, by
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T � jtj2 � jSN�2, 1�j2, (81)

R � jrj2 � jSN�1, 1�j2, (82)

A � 1 − T − R, (83)

where

SN �
�
SN�1, 1� SN�2, 1�
SN�1, 2� SN�2, 2�

�
, (84)

with

SN�1, 1� � SN−1�1, 1� � SN−1�1, 2�PN−1�1, 1�SN−1�2, 1�qN−1, (85)

SN�2, 1� � SN−1�1, 2�Yn�1, 2�qN−1, (86)

SN�1, 2� � PN−1�2, 1�SN−1�2, 1�qN−1, (87)

SN�2, 2� � PN−1�2, 2� � SN−1�2, 2�PN−1�1, 2�PN−1�2, 1�qN−1: (88)

The SMM was used in the analysis of active multilayer metal–dielectric slabs [37],
where propagation through alternating layers of Ag and InGaAsP MQWs was com-
pared with AZO and InGaAsP MQWs. As Fig. 6 shows, despite Ag having a higher
intrinsic loss than AZO, the Ag/InGaAsP system is far superior in permitting gain-
enhanced transmission. These analytical results were further confirmed by the
finite-difference time-domain numerical method [56]. Along with analyses based on
the EMA [36], these SMM results encouraged the experimental demonstration of
the Ag/InGaAsP MQW platform for active hyperbolic dispersion in the near-
infrared [57].

2.6c. Infinitely Periodic Systems: Bloch Theory

In the limit of an infinite number of periods, Bloch’s theorem enables the
determination of band structure. At a particular wavelength, the relation between
components of the wave vector parallel and normal to the optical axis may be
determined. This relation is related to the optical DOS and is used in discussing
the passive properties of HMMs. For completeness we include the formalism here,
based on [58].

In a metamaterial composed of alternating layers of a metal and dielectric, the relative
permittivity is a periodic function,

ϵ�z� � ϵ�z� Λ�, (89)

where Λ � tM � tD is the one-dimensional lattice period, and we assume the layer
interfaces lie in the plane normal to the z-direction. The periodicity of the permittivity
is then analogous to the periodicity of the atomic potential in solid-state crystals and
electromagnetic wave propagation through the multilayer photonic crystal is analo-
gous to electron wave propagation through an atomic lattice. In the context of solid-
state physics, Bloch’s theorem states that the eigenfunctions of the one-electron
Hamiltonian of an infinite crystal may be expressed as the product of a plane wave
and a function with the periodicity of the lattice. Accordingly, the electric field vector
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of a normal mode of propagation in the periodic metal–dielectric multilayer may be
written as

E � EK∥
�z� exp�iωt − k⊥x� exp�−iK∥z�, (90)

where K∥ is the Bloch wavenumber of the system, and

EK∥
�z� � EK∥

�z� Λ�: (91)

As was shown in the discussion of the TMM, the electric field within period n of the
multilayer may be decomposed into incoming and outgoing fields, En� and En−,
respectively. By Bloch’s theorem, the fields within the next period are related by�

En−1�
En−1−

�
� exp�iK∥Λ�

�
En�
En−

�
: (92)

Using the TMM we can relate the fields in adjacent periods through a matrix of the
form

Figure 6

Transmission in active multilayer HMM [37]. (a) Schematic of lateral multilayer con-
sisting of InGaAsP MQWas the active constituent dielectric and either Ag or AZO as
the metal. Transmission through multilayer with (b) AZO and (c) Ag calculated ac-
cording to SMM. In each calculation, the structure consists of 10 periods with 30 nm
alternating layers of InGaAsP and metal. Solid blue, green, and red curves correspond
to cases when the InGaAsP layers are absorbing, transparent, and active, respectively,
while the metal layers are absorbing. Dashed black curves correspond to the hypo-
thetical case when all layers are transparent. The signal wavelength is 1500 nm.
Reprinted with permission from [37]. Copyright 2015 Optical Society of America.
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�
A B
C D

�
� P1T 1−2P2T2−1, (93)

such that �
En−1�
En−1−

�
�

�
A B
C D

��
En�
En−

�
, (94)

where

A � exp�ik∥, 1t1�
�
cos�k∥, 2t2� �

i

2

�
k∥, 2
k∥, 1

� k∥, 1
k∥, 2

�
sin�k∥, 2t2�

�
, (95)

B � exp�−ik∥, 1t1�
�
i

2

�
k∥, 2
k∥, 1

− k∥, 1
k∥, 2

�
sin�k∥, 2t2�

�
, (96)

C � exp�ik∥, 1t1�
�
− i

2

�
k∥, 2
k∥, 1

− k∥, 1
k∥, 2

�
sin�k∥, 2t2�

�
, (97)

D � exp�−ik∥, 1t1�
�
cos�k∥, 2t2� − i

2

�
k∥, 2
k∥, 1

� k∥, 1
k∥, 2

�
sin�k∥, 2t2�

�
(98)

for TE-polarized modes (assuming μ � μ0), and

A � exp�ik∥, 1t1�
�
cos�k∥, 2t2� �

i

2

�
ϵ2k∥, 1
ϵ1k∥, 2

� ϵ1k∥, 2
ϵ2k∥, 1

�
sin�k∥, 2t2�

�
, (99)

B � exp�−ik∥, 1t1�
�
i

2

�
ϵ2k∥, 1
ϵ1k∥, 2

− ϵ1k∥, 2
ϵ2k∥, 1

�
sin�k∥, 2t2�

�
, (100)

C � exp�ik∥, 1t1�
�
− i

2

�
ϵ2k∥, 1
ϵ1k∥, 2

− ϵ1k∥, 2
ϵ2k∥, 1

�
sin�k∥, 2t2�

�
, (101)

D � exp�−ik∥, 1t1�
�
cos�k∥, 2t2� − i

2

�
ϵ2k∥, 1
ϵ1k∥, 2

� ϵ1k∥, 2
ϵ2k∥, 1

�
sin�k∥, 2t2�

�
(102)

for TM-polarized modes.

Thus, we establish the eigenvalue problem for the Bloch wave:�
A B
C D

��
En�
En−

�
� exp�iK∥Λ�

�
En�
En−

�
: (103)

Solving for the eigenvalue, we have

exp�iK∥Λ� �
A� D

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�A� D�2

2
− 2�AD − BC�

r
, (104)
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which is equivalent to

cos�K∥Λ� �
1

2
�A� D�: (105)

The Bloch wavenumber is thus determined as

K∥ � − 1

Λ
cos−1

�
A� D

2

�
� 2π

Λ
s,…s � 0, 1, 2… (106)

The complex permittivity of the constituent materials affects K∥ explicitly in
Eqs. (95)–(102). Hence tuning and loss compensation for the Bloch wave is achieved
by tuning and providing gain to the constituent materials. Generally, K∥ � K 0

∥ � iK 00
∥.

In the absence of material loss or gain, K∥ is either purely real or imaginary, where
non-zero values of K 0

∥ and K 00
∥ describe regions of propagating and evanescent waves

in momentum space, respectively. When material loss or gain is present, K∥ is com-
plex over the entire momentum space (span of k⊥), and the separation between propa-
gating and evanescent behavior is less clear. Nonetheless, analyzing Bloch waves in
the presence of loss and gain provides useful information on the potential for achiev-
ing active HMMs [59]. Even in the absence of loss or gain, Bloch analysis is useful for
identifying the angular bandwidth over which a metal–dielectric system transmits
high-k states. In Fig. 7, this is done for infinitely periodic multilayers consisting
of InGaAsP as the dielectric and either AZO or Ag as the metal. A clear distinction
between the two systems is observed. Namely, the range of kx � k⊥ values supported
in the AZO system has no minimum but a maximum around 3k0, while the range of
such values in the Ag system has a minimum and maximum around 5k0 and 6.5k0,
respectively. These traits of the two systems are characteristic of Type I and Type II
hyperbolic dispersion, respectively. Dynamically perturbing the constituent materials
results in a modification to these values, leading to changes in observables such as
transmission (see Fig. 6).

Figure 7

Wave-vector diagrams calculated according to Bloch’s theorem [37]. InGaAsP-based
multilayer with (a) AZO and (b) Ag as the constituent metals. In each calculation, the
structure consists of an infinite number of periods with 30 nm alternating layers of
InGaAsP and metal, each modeled as transparent materials. Solid and dashed blue
curves correspond to the real and imaginary-valued solutions to Eq. (106), while
the red curve is the effective medium approximation detailed in Subsection 2.8.
The signal wavelength is 1500 nm. Reprinted with permission from [37].
Copyright 2015 Optical Society of America.
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2.7. Effective Medium Theory

2.7a. Dispersion Relation

Effective medium theory reduces the complexity of the complete description
of a system of two or more distinct materials [60]. The main assumption of the
EMA is that the characteristic length of the system, lα, is much smaller than the
wavelength of the of the electromagnetic wave propagation in the medium,
λ0∕neff , that is,

λ0 ≪ neff lα, (107)

where neff is the effective index of the mode of interest. This assumption arises from a
Taylor series expansion of Eq. (106) and retaining only the lowest-order term. Doing
this we obtain polarization-dependent dispersion relations in an anisotropic medium.
Using TM and TE polarization to refer to polarization states with electric field in-plane
and out-of-plane with respect to the optical axis of the multilayer, respectively, the
dispersion relation is [61,62]

ω2

c2
� k20 �

k2⊥
ϵ∥μ⊥

� k2∥
ϵ⊥μ⊥

(108)

for TM polarization. Solving for the component parallel to the optical axis we see
that effective medium theory approximates Bloch’s theorem by the substitution of
K∥ with k∥:

k∥ � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ⊥

�
k20 − k2⊥

ϵ∥

�s
, (109)

where the sign is determined through the causality requirement that ϵ⊥k∥ > 0 [61].

For TE-polarized waves, the effective medium dispersion relation is

ω2

c2
� k20 �

k2⊥
ϵ⊥μ∥

� k2∥
ϵ⊥μ⊥

. (110)

For wave propagation along the optical axis, the effective index of a mode may be
defined as

neff �
k∥
k0

, (111)

which, along with λ0, determines the applicability of the EMA.

According to the zeroth-order, local EMA, the electrical response of the system is
described by a diagonal permittivity tensor, ϵ̃, of the form [60]

ϵ̃ � ϵ0

24 ϵ⊥ 0 0

0 ϵ⊥ 0

0 0 ϵ∥

35: (112)

The equivalence of a multilayer metal-dielectric system and an HMM is shown in
Figs. 1(a) and 1(b), with the optical axis, c, pointing normal to the layer interfaces.
In writing Eq. (112), we have assumed TM polarization of the electromagnetic wave,
such that the magnetic field points in the direction normal to the optical axis.
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To account for possible hyperbolic dispersion for TE polarization, in which the elec-
tric field points normal to the optical axis, we describe the magnetic response of the
system by an analogous diagonal permeability tensor, μ̃, of the form [62]

μ̃ � μ0

24 μ⊥ 0 0

0 μ⊥ 0

0 0 μ∥

35, (113)

where μ0 is the vacuum permeability. For a given frequency, Eqs. (112) and (113)
generally describe an ellipse when ϵ0⊥ϵ

0
∥ > 0 and μ0⊥μ

0
∥ > 0, respectively, where the

single prime denotes real part. This is the case of conventional anisotropic materials,
i.e., dielectric crystals. However, when the orthogonal elements of the permittivity and
permeability tensors have opposite sign, Eqs. (112) and (113) describe hyperbolas.
Generally, two types of hyperbolic dispersion exist for each polarization, depending
upon whether one or two of the effective tensor elements are negative. When one and
two of the principal directions are negative, the dispersion is called Type I and Type II,
respectively. Types I and II for TM polarization are thus described by ϵ⊥ > 0, ϵ∥ < 0

and ϵ⊥ < 0, ϵ∥ > 0, respectively.

2.7b. Multilayer Metal–Dielectric System

For a multilayer system of metal fill fraction, ρ � tM∕Λ, the elements of ϵ̃, and μ̃ by
appropriate substitution, are [60,61]

ϵ⊥�ω� � ϵ0⊥�ω� � iϵ00⊥�ω,N� � ρϵM �ω� � �1 − ρ�ϵD�ω,N�, (114)

ϵ∥ � ϵ0∥�ω� � iϵ00∥�ω,N� � ϵM �ω�ϵD�ω,N�
ρϵD�ω,N� � �1 − ρ�ϵM �ω�

. (115)

In Eqs. (114) and (115), the imaginary permittivity elements are written as an explicit
function of the free carrier density, N, discussed in Section 2.3.

2.7c. Nanowire Array System

Similarly, a system composed of an array of metallic nanowires in a dielectric
host may be described by a zero-order effective medium approximation. For a
nanowire system with radius rnw and lattice constant anw, the metal fill fraction is

ρ � πr2nw
a2nw

. Under the assumption that ρ ≤ 0.3, the effective permittivity elements be-

come [61]

ϵ⊥ � ρϵM � �1 − ρ�ϵD, (116)

ϵ∥ �
2ρϵMϵD � �1 − ρ�ϵD�ϵM � ϵD�

2ρϵD � �1 − ρ��ϵM � ϵD�
: (117)

2.7d. Higher-Order Approximations

Local effective medium theory accounts for only the zero-order term in a Taylor
series expansion of the wave-vector-dependent permittivity, which may generally be
written as

ϵ⊥, ∥�k� � ϵ⊥, ∥�0� �
X
i

ki
∂
∂ki

�ϵ⊥, ∥�k��k�0
�

X
ij

kikj
2

∂2

∂ki∂kj
�ϵ⊥, ∥�k��k�0

�…

(118)
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The higher-order terms describe spatial dispersion, or non-local effects, where the
responding displacement field occurs at a position distinct from the driving electric
field. These effects become more important as the length of the period of the HMM
increases with respect to the operating wavelength. If the HMM possesses centro-
symmetry, which is often the case, the odd order terms of Eq. (118) vanish.
Accounting for the second-order correction, the dispersion becomes

k20 �
k2⊥

ϵ∥ � k2⊥
∂2ϵ∥�k�
∂k2⊥

� k2∥
∂2ϵ∥�k�
∂k2∥

� k2∥

ϵ⊥ � k2⊥
∂2ϵ⊥�k�
∂k2⊥

� k2∥
∂2ϵ⊥�k�
∂k2∥

(119)

for TM waves, and

k20 �
k2⊥
ϵ⊥

� k2∥

ϵ⊥
�
1 − k20

∂2ϵ⊥�k�
∂k2∥

	−1 (120)

for TE waves [62]. Alternatively one can substitute the following expressions for the
zero-order permittivity elements, which illustrate the explicit dependence on the ratio
of HMM periodicity, Λ, to operating wavelength, λ0 [63]:

ϵ�2�⊥ � ϵ�0�⊥ � 1

3

�
Λπρ
λ0

�1 − ρ��ϵm − ϵD�
�
2

, (121)

ϵ�2�∥ � ϵ�0�∥ � 1

3

�
Λπρ
λ0

�ϵ�0�∥ �3�1 − ρ�
�
1

ϵm
− 1

ϵD

��
2

: (122)

Here, ϵ�0�⊥ and ϵ�0�∥ are given by Eq. (114) and Eq. (115), respectively. The case of a
non-centro-symmetric HMM is discussed in Subsection 5.2b.

2.8. Resonance Cones
Radiation in extremely anisotropic media was first analyzed theoretically in the con-
text of an ionized gas in a static magnetic field [64]. The direction of the magnetic field
defined an axis of symmetry, which in the context of crystal optics, we denote as the
optical axis, c, of a uniaxial medium. (Note that electromagnetic waves polarized in
the plane containing c experience the anisotropy of the medium and are known as
extraordinary, whereas waves polarized normal to c experience an isotropic medium
and are therefore known as ordinary). Kuehl analyzed the radiation patterns of dipoles
situated in the anisotropic media first studied by Bunkin and found that the Poynting
vector diverges at particular angles with respect to c, leading to an infinite radiation
resistance of antennas in a magnetized plasma [65]. While the “infinity catastrophe”
was dispelled [66], the highly directional emission of radio waves in magnetized plas-
mas was eventually experimentally observed [67]. Namely, a resonance cone was first
demonstrated by Fisher and Gold in a warm anisotropic plasma probed with a radio
frequency electric field. In this experiment the authors applied a static magnetic field
along the axis of an Ar plasma column contained on a glass cylinder. With the mag-
netic field, the plasma becomes anisotropic, and the solution of Maxwell equations
results in oscillating dipole electric fields along an axis tilted with respect to the ap-
plied magnetic field. The resonance cone angle depends then on the plasma density,
magnetic field amplitude, and incident frequency. A consequence is that the Poynting
vector is also singular on the resonance cones, together with the power flow.
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In anisotropic media the Poynting vector, S, and wave vector, k, are not parallel. It was
shown that S in media describable by hyperbolic dispersion exhibit a singularity along
a particular direction with respect to the optical axis, c. This angle was dubbed the
resonance cone angle, θRC, and is given by the relation [67]

θRC � tan−1
ffiffiffiffiffiffiffiffiffi
− ϵ⊥
ϵ∥

r
, (123)

where the permittivity elements are usually assumed purely real.

In metamaterials, resonance cones were proposed on a planar wire-grid network
loaded with capacitors and inductors excited by a localized single-frequency source
[68]. In this case, the directions of the zeros in the reactance across the grid surface
define the resonance cone direction. The wire-grid network also presents negative
reflection and subwavelength focusing. Interchanging the capacitors and inductors
results in different impedances of the network that affect the impedance of small
RF probe [69]. Double-resonance cones were predicted on multilayer nanostructures
described by the EMA [70]. With the use of non-linear metamaterials, not just the
fundamental electric field, but also the second-harmonic generated signal will propa-
gate along resonance cones. The resonance cone angle is different due to the higher
frequency of the second-harmonic generated signal, allowing subwavelength
non-linear microscopy.

More recently, experimental results in a Ag/InGaAsP system demonstrated that, for a
dispersive HMM, the propagation loss is also singular along the resonance cone [57].
These results were used to show that, in the case of HMMs presenting gain, shorter
wavelengths are more likely to be detected because they propagate closer to the meta-
crystal axis and therefore experience less attenuation than longer wavelengths. The
dispersion of the effective permittivity of the Ag/InGaAs system is shown in Fig. 8,
along with the dispersion of the resonance cone angle and its visualization. Over the
wavelength range in which the constituent dielectric becomes active, the system
exhibits Type II hyperbolic dispersion. The resonance cone angle is an increasing
function of wavelength. It was hypothesized that the latter relationship leads to a blue-
shifting of InGaAs emission under external pumping [57]. Blueshifting of emission
was similarly observed in an active HMM based on organic dyes, with the effect being
attributed to the Purcell effect [71].

3. EXPERIMENTAL EFFECTS

3.1. Broadband Purcell Effect

3.1a. Emitters Near and Inside HMM

Light emission is inherently an active process, in that light emission from a system
occurs, whether spontaneous or stimulated, only by the injection of energy into the
system from an external source such that the ground state of the system is unoccupied.
A direct consequence of the large photonic density of states of HMMs is an enhanced
decay rate of quantum emitters in the vicinity of the HMM, relative to vacuum.
Furthermore, unlike conventional plasmonic structures based on resonant enhance-
ment, enhancement in HMMs is broadband and passively or actively tunable depend-
ing on the ratio of metal to dielectric constituent materials.

One of the major applications of active HMMs is the broadband enhancement of spon-
taneous emission, which could lead to high-speed, high-efficiency light-emitting di-
odes (LEDs) and to efficient single-photon sources [72] (see Subsection 4.1). This is
achieved through the simultaneous increase in the rate and intensity of spontaneous
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emission from quantum emitters (dye molecules, quantum dots, nitrogen vacancy
centers, quantum wells, etc.) located within or adjacent to HMMs.

In addition to rate and intensity enhancement of light emitters near and within the
HMM, the directionality and polarization of emission can be controlled with
HMMs [57,73–75]. Control of the emission direction and polarization has obvious
applications for directive illumination and communications. By combining the inher-
ent directional and polarization-sensitive emission of passive HMMs with external
tuning mechanisms, beam-forming becomes possible, which would be instrumental
for visible light communication systems and LIDAR, for example. HMMs that modify
the emission rate, intensity, polarization, or direction are summarized in Fig. 9.

HMMs themselves are also highly tailorable sources of directional thermal radiation
[62]. The thermal emission spectrum of HMMs can be engineered for enhancement or
suppression of thermal radiation, which makes them excellent candidates as
components of thermophotovoltaic systems [76].

3.1b. Thermal Emission of HMMs

A heat source emanates propagating waves whose energy is carried away to the far
field. This energy dictates the upper limit for the blackbody emission but it is not a
fundamental limit since evanescent waves enable energy transport in the near field.
The power, P, irradiated from a unit surface of a body in free space per unit interval of
frequency is non-coherent, isotropic, and given by

P�ω� � hbarω3es�ω�
4π2c2

exp

�−ℏω
kBTs

�
, (124)

where Ts is the temperature of the body surface and es�ω� is the spectral emissivity of
the body’s material. In the classical theory of thermal radiation, an emitting body can
have the maximal thermal radiation emitted if es�ω� � 1 and it is considered a trans-
parent media with absent emission if es�ω� � 0, when no optical losses are considered
at the specific frequency. Absorption is reciprocal to emission.

Once evanescent waves are considered, there is energy transport in the near field, and
thermal radiation beyond the blackbody limit is possible. The phenomenon relies on
the enhanced density of photonic states of surface electromagnetic states [77] and
edges of photonic crystals bandgaps [78], being limited by a narrow bandwidth.

HMMs allow the propagation of bulk plasmon polariton modes with high-k that con-
tributes to the enhancement of the photonic density of states. As a consequence of the
broadband Purcell effect in HMMs, emission of thermal radiation from HMMs is en-
hanced, in addition to emission from dipole sources located within and nearby HMM
surfaces. Because the Planck distribution of a thermal body includes only far-field
effects while the near-field emission of HMMs is enhanced, the thermal emission
of HMMs is considered super-Planckian and non-resonant, not being limited by a
narrow bandwidth [79,80].

A demonstration of super-Planckian thermal emission with HMMs was predicted [81]
with a metal–dielectric structure composed of SiC and SiO2. SiC supports SPhP with
real part of the permittivity negative in the Reststrahlen band, enabling thermal ex-
citation at temperatures from 400 to 500 K. In the sequence, the same authors pro-
posed the super-Planckian heat transfer in the near field between HMMs composed of
plasmonic materials with high melting point [80]. These works pave the way for novel
thermophotovoltaic devices for thermal management at the nanoscale [82], including
directive thermal emissions in the far-field zone [83], cooled down super-emitters, and
so-called thermal black holes [84].
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3.1c. Outcoupling Emission

As described in the previous sections, the large photonic density of states supported by
HMMs leads to a broadband Purcell effect, which enhances the emission dynamics of
dipoles interacting with the HMM, as well as the thermal emission of the HMM itself.
While a key signature of this enhancement is a reduced lifetime, a common conse-
quence is a reduced external quantum efficiency because of impedance mismatching
between the HMM states and the surrounding vacuum. This problem is common to
many plasmonic systems and arises due to the requirement of momentum conserva-
tion. Solutions to this problem include gratings, photonic hypercrystals (PHCs), and
side-coupling, which have been experimentally demonstrated by numerous groups.

One of the first successful attempts of improved outcoupling was realized with a nano-
patterned HMM made of Ag and Si multilayers [9]. The multilayers were patterned
with a focused ion beam to form trenches and all covered with rhodamine dye. The
covered HMMs were pumped with a 100 fs, 800 nm wavelength laser and visible
emission due to two-photon absorption was collected for a time-resolved photolumi-
nescence experiment. The authors reported an intensity enhancement of 76 times com-
pared to rhodamine over a silver substrate. This work created different perspectives
toward designing efficient outcoupling for HMMs, and was complemented by work
on two-dimensional gratings [85,86].

Figure 8

Dispersion and resonance cone of the active Ag/InGaAs HMM under the EMA.
(a) Real and (b) imaginary effective permittivity elements as a function of wavelength.
Fill fraction and InGaAs carrier density are ρ � 0.5 and N � 5.8 × 1018 cm−3, re-
spectively. (c) Resonance cone angle, calculated analytically via Eq. (123) and deter-
mined through numerical simulation for ρ � 0.5 and purely real permittivity elements.
(d) 2D plot of Poynting vector, S�x, z�, resulting from numerical simulation at the
vacuum wavelength of 1400 nm (axis labels are in units of μm, color is in units
of Wm−2). The optical axis is in the vertical direction.
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Later, more elaborate designs were demonstrated, as a high-index, Ge bullseye grating
for efficient outcoupling of the high-k modes with simultaneous spontaneous emission
lifetime enhancement [74]. The evanescent modes were excited by quantum dots em-
bedded into an inner layer of the HMM. The authors observed a 10 times lifetime
reduction and 20 times larger intensity into a resonant cone.

An interesting follow-up of this work is the use of a so-called photonic hypercrystal
[87] to achieve a 20× enhanced radiative rate with a 100× more efficient light out-
coupling, again from probed quantum dots inserted within the HMM [88]. A PHC has
a large density of states provided by the HMM but with efficient light-scattering
provided by a hexagonal grating formed atop the HMM. The same concept of a
PHC was used before to enhance the spontaneous emission of transition metal dichal-
cogenides (TMDs), bi-dimensional materials placed atop the device [89]. Such a work
shows the versatility of HMMs that are now being applied to novel material platforms.

Even with the significant amount of work for efficient outcoupling, there is much to be
done since all designs are not only material dependent, but also rely on the ratio be-
tween the HMM constituents. Tuning the fill fraction to permit efficient side-coupling
was recently predicted through a systematic analysis [75] and shown experimentally
in active hyperbolic metasurfaces [57,90]. Essentially, side-coupling requires conser-
vation of the wave-vector component orthogonal to that required for top-coupling.

Figure 9

Active HMM for controlling light emission. (a), (b) Dye molecules (a) surrounding [9]
and (b) atop [85] multilayer HMM with gratings and (c) monolayer 2D material atop
multilayer HMM with grating [89] experience enhancement of spontaneous emission
intensity and rate. (d) Quantum dot embedded in center of multilayer HMM with
grating experiences directional emission [74]. (e) Quantum wells embedded in lateral
multilayer HMM absorb and emit linearly polarized light [57]. (f) Multilayer fishnet
HMM exhibits polarization-insensitive directional thermal emission [62]. (g) Flying
electrons traveling over multilayer HMM emit visible Cherenkov radiation [91].
(a) Reprinted by permission from Macmillan Publishers Ltd.: Lu et al., Nat.
Nanotechnol. 9, 48–53 (2014) [9]. Copyright 2014. (b) Reprinted by permission from
Macmillan Publishers Ltd.: Sreekanth et al., Sci. Rep. 4, 6340 (2014) [85]. Copyright
2014. (c) Reprinted with permission from Galfsky et al., Nano Lett. 16, 4940–4945
(2016) [89]. Copyright 2016 American Chemical Society. (d) Reprinted with permis-
sion from [74]. Copyright 2015 Optical Society of America. (e) Reproduced from [62]
under the terms of the Creative Commons Attribution 4.0 International License. With
copyright permission. (f) Reproduced from [57] under the terms of the Creative
Commons Attribution 4.0 International License. With copyright permission.
(g) Reprinted by permission from Macmillan Publishers Ltd.: Liu et al., Nat.
Photonics 11, 289–292 (2017) [91]. Copyright 2017.
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In the Type II regime of multilayer HMMs, the component normal to the optical axis
needs to be conserved but it has a lower cutoff, which prevents coupling to vacuum in
the absence of a grating. However, side-coupling requires conservation of the wave-
vector component parallel to the optical axis, which does not have a lower cutoff.
Hence coupling to vacuum is achieved without recourse to a grating.

3.2. Hyperimaging and Focusing
Aside from modification to the rate and intensity of spontaneous emission, the trans-
mission of near-field information is one of the most prominent functions of HMMs.

Initial simulation of the far-field hyperlens suggested that sub-100 nm resolution was
possible using an illumination wavelength of 365 nm [92]. The first experimental
demonstration used this wavelength and achieved 150 nm resolution in one dimension
using a cylindrical lens geometry [6,7]. Subsequent work achieved 150 nm resolution
in two dimensions using a spherical geometry and a slightly longer working wave-
length of 410 nm [93]. More recently, a non-resonant hyperlens was demonstrated
achieving 250 nm resolution by using a longer wavelength of 780 nm and a pie-slice
geometry [94]. Finally, an array of spherical hyperlenses made by nanoimprint lithog-
raphy achieved 160 nm resolution at a wavelength of 410 nm [95]. The latter device
shows promise for practical application because the design and fabrication circumvent
the need for precise placement of the nanoscale objects to be imaged. The resolution
performance of the hyperlens is summarized in Fig. 10, with a 10 nm spatial resolution
target highlighted for the 365 nm wavelength.

While impressive, hyperlenses have much room for improvement. It is clear that the
demonstrated hyperlenses to date are far from sub-10 nm resolution, which is impor-
tant for real-time imaging in biological and material sciences. In Subsections 4.2a and
4.2b we explore how combining active or tunable components may aid in achieving
this goal with a loss-compensated hyperlens and hyperstructured illumination
microscopy, respectively.

3.3. Plasmonic Spin Hall Effect
The photonic spin Hall effect describes the phenomenon of circularly polarized light
of different handedness propagating along different directions in space. It is a physical
analog of the electron spin Hall effect in which electrons of opposing spin traverse
different spatial paths under the influence of an external magnetic field. HMMs make
excellent platforms for studying and manipulating the photonic spin Hall effect, which
due to its plasmonic nature in HMMs, is called the plasmonic spin Hall effect [90].

The spin Hall effect occurs due to the spin polarization-dependent transverse currents
originated from the relativistic spin-orbit coupling of electrons. The same effect can be
observed with photons, the plasmonic spin Hall effect, and was first observed in a
conventional metasurface [96].The analogy of a spin-orbit coupling with a propagat-
ing electromagnetic wave is the coupling between the TM and TE fields; however, the
interaction is extremely weak and hard to observe. A metasurface was used to control
the geometric phase of an incident light beam, leading to a rapidly varying in-plane
phase retardation that introduced the strong spin-orbit-like interaction. The effect was
observed because of a resonance-induced anomalous “skew scattering” that breaks the
axial symmetry of the system, i.e., creates a phase discontinuity.

HMMs were proven to be a natural way of probing the spin Hall effect since the
structured interfaces present phase discontinuities that break the symmetry of propa-
gating electromagnetic fields. A two-dimensional RF transmission line metamaterial
composed of lumped elements excited by a circular polarized dipole was used to probe
the directional routing effect [97]. The system has an anisotropic hyperbolic
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dispersion that controls the directionality of energy propagation. In this case, extraor-
dinary modes that exhibit a higher density of states are more strongly localized.

The polarization- and wavelength-dependent routing of surface plasmon polaritons
and two-dimensional chiral photons were observed with nanostructured HMMs
[90,98]. A deeply subwavelength silver/air grating was used to support SPPs propa-
gating both parallel and perpendicular to the silver ridges, i.e., enabling SPPs with
circular polarization. In this case the group velocity changes when moving from
the hyperbolic to the elliptical polarization. While a one-dimensional waveguide
was used, this demonstration paves the way toward topologically protected plasmonic
integrated circuits.

3.4. Cherenkov Radiation
A charged particle crossing a medium with a speed greater than the phase velocity of
light in that medium emits electromagnetic radiation, called Cherenkov radiation [99].
If a material exhibits a negative index of refraction, it is possible to generate reverse-
Cherenkov radiation, where the particle radiates progressively through the material
[100]. The conical radiation wavefront angle is given by

cos ζ � ϕ

v
� c

nv
, (125)

where ϕ is the phase velocity of electromagnetic radiation and v is the particle velocity,
both in the guiding medium with refractive index n. If the guiding medium has a
negative refraction index, then Eq. (125) predicts the backward propagation of radi-
ation. Depending on their constituent materials and filling ratio, HMMs can generate
both forward- and backward-propagating Cherenkov radiation, which was first pre-
dicted by Veseslago [101]. One of the first experimental demonstrations of Cherenkov
radiation with metamaterials was reported by Grbic and Eleftheriades [102]. To
achieve negative permittivity and permeability the authors considered an array of
straight conducting wires combined with split-ring resonators, respectively. The meta-
material enables the propagation of an electromagnetic field with negative propagation
constant and positive group velocity, resulting in anti-parallel energy flow and phase
velocity. In order to achieve more efficient Cherenkov radiation from split-ring res-
onator-based metamaterials, Xi et al. proposed a left-handed metamaterial [103] while

Figure 10

Performance of hyperlens imaging systems to date. Relative and absolute resolution
achieved experimentally remains less than that predicted by theory and significantly
lower than the 10 nm regime, which would create new possibilities for real-time im-
aging of interfacial cellular and chemical dynamics.
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Duan et al. proposed a square waveguide loaded with complementary electric split-
ring resonators [104]. In the second case, the authors demonstrated, for the first time,
the reverse-Cherenkov radiation. The results were obtained with an all-metal meta-
material, with real charged particles from a single sheet electron beam bunch. The
most recent experimental observation of Cherenkov radiation from metamaterials
is from Liu et al. [91]. Using an integrated HMM formed by alternating Au
(70 nm) and SiO2 (40 nm) thin films, Cherenkov radiation was observed with low
electron energies (low electron velocities in the medium) generated from Mo
electrodes atop the HMM. The experiment is claimed to be the first realization of
an integrated free electron source, enabling a new avenue of applications for HMMs.

3.5. Wave Mixing
Wave mixing is a non-linear optical phenomenon extensively used for ultrashort pulse
generation, ultrafast optical switching, and wavelength conversion. Unfortunately, it is
a weak process that usually requires phase matching between the different harmonic
fields involved. HMMs arise as an unprecedented material for realization of non-linear
optics [3,105]. The larger Purcell factor that arises from electromagnetic field locali-
zation in the near field can significantly enhance the efficiency of non-linear proc-
esses. The interfaces of HMMs can result in symmetry breaking that can enhance
metal surface non-linearities. On the other hand, an HMM can benefit from non-linear
effects. Its properties are highly dependent on the constituent material permittivities,
being tunable with slight modifications, even if generated by high-order non-linear
processes [106].

HMMs also afford a hyperbolic dispersion that allows large refractive indices and
opportunities to achieve the quasi-phase-matching condition with a wide range of
material parameters [107], enabling the formation of double-resonance cones due
to a predicted second-harmonic generated electromagnetic field [70]. Further, the neg-
ative group velocity of a mode supported by a HMM waveguide can provide a back-
ward-propagating second-harmonic generated signal [108]. The use of HMMs on
non-linear optics has opened new avenues, for example, as an integrated source of
a paired photon-plasmon through spontaneous wave mixing [109]. These interdisci-
plinary results strongly suggest that non-linear quantum effects will emerge in HMMs.

4. APPLICATIONS

4.1. High-Speed, High-Efficiency Light Sources
In Subsection 4.1 we reviewed the progress in increasing both the rate and intensity of
emitters located in proximity to HMMs. A major potential application leveraging this
progress is high-speed, high-efficiency LEDs (here we use “device” rather than “di-
ode” for sake of generality). LEDs with high speeds and high efficiency are essential
components to future light-based communication systems [110]. The information han-
dling capacity of HMM-based light sources can be described through the 3 dB band-
width, f 3 dB. This quantity describes the direct modulation frequency at which the
output power of the HMM-LED drops to half its peak value. For an LED with speed
limited by the carrier lifetime,

f 3 dB � 1

2πτ
: (126)

From Subsection 4.1 we saw that τ < 100 ps routinely for emitters coupled to HMMs.
Therefore, HMM-based LEDs with f 3 dB > 1 GHz are currently feasible and reaching
the 10–100 GHz regime is feasible. While the relation between the data transmission
rate and modulation bandwidth depends on the modulation format, assuming a 1-to-1
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correspondence, then incoherent communication systems based on HMM LEDs with
100 Gbs−1 rates on a single channel appear feasible.

Beyond photon sources enabled by spontaneous emission, HMMs can serve as
sources of Cherenkov radiation emitted by free electrons [91]. Typically, free electron
sources must break a velocity threshold to emit Cherenkov radiation, requiring high
energies and macroscopic distances to accelerate to the requisite velocity. However,
use of an HMM enables low-energy flying electrons to emit Cherenkov radiation
without a velocity threshold [91]. Thus, HMMs provide a chip-scale platform for
studying the fundamental interaction of flying electrons with artificial nanostructures,
the technological applications of which remain open to the imagination. For instance,
if a suitable HMMwere used, it may be possible to generate highly direction radiation
spanning the infrared to x-ray regimes in a single table-top platform [111].

4.2. Imaging and Focusing of Light with Super Resolution
4.2a. Active Hyperlens

Numerous theoretical studies have considered using organic dyes for visible wave-
lengths to improve resolving or focusing ability of HMMs. Ni et al. considered gain
provided by a saturated dye in an HMM based on Ag and a low-index dielectric akin
to SiO2, which exhibits Type II hyperbolic dispersion [112]. Various analytical tech-
niques were compared using the EMA, non-local EMA, Bloch’s theorem, and Fourier
modal analysis. For modes propagating normal to the plane of the layers, complete
loss compensation was deemed feasible under realistic gain conditions, whereas
modes propagating in the plane required unphysical gain levels. Additionally, simu-
lations predicted that gain could improve the resolution of subdiffraction-limited im-
aging devices and provide for a smaller phase variation in epsilon-near-zero
transmission devices. Dye-doped low-index dielectrics in combination with Ag were
also analyzed by Agryopolus et al. [106]. Using the TMM, factor of 2 improvements
in transmission of negatively refracting waves were predicted, but full loss compen-
sation was deemed impractical. Savelev et al. invoked Bloch’s theorem to analyze
generic MD systems, again resembling Ag and a low-index dielectric with dye as
the gain media [113]. Full loss compensation was predicted for high-k waves propa-
gating normal to the plane of the layers, useful for improved subdiffraction-limited
imaging. The potential existence of convective instabilities associated with amplified
spontaneous emission was also revealed, which could be harmful for practical appli-
cations. Savelev et al. later used TMM to look at similar MD systems with a finite
number of periods [114]. It was shown that modest transmission improvements were
feasible; however, it was predicted that the Purcell effect, i.e., enhanced spontaneous
emission rates near the plasma frequency of silver, would degrade the effect of loss
compensation. Smalley et al. investigated the Ag/InGaAsP system and found that
amplification for near-infrared waves propagating along the optical axis was feasible
using both the effective medium approximation [36] and the scattering matrix
method [37].

A major inspiration for the field of HMMs arose more than a decade ago with the
theoretical prediction [92] and experimental demonstration [6,7] of far-field imaging
with resolution beyond the Abbe diffraction limit. Ultimately, however, experimental
results in hyperimaging have been limited by propagation losses incurred by the high-
k components that carry near-field information from the object to the image plane.
Numerous numerical studies have suggested that compensating losses with optical
gain could enable significantly better resolution in hyperimaging systems, which
are of great potential impact to real-time imaging of biomedical specimens. Here
we provide a fundamental analysis that may offer additional guidance towards the
demonstration of active hyperimaging enhanced by optical gain.

Review Vol. 10, No. 2 / June 2018 / Advances in Optics and Photonics 389



Figure 11 shows a schematic of a five-period Ag∕Al2O3 (10 nm/20 nm) multilayer
that supports propagating high-k modes. A plane wave is launched across the structure
and the transmission at red, green, and blue wavelengths is compared for when the
Al2O3 layers are modeled as passive or as active, with a linear gain coefficient of
3000 cm−1. Improved transmission is evident, especially for longer wavelengths
where the ratio of material gain to silver loss is greatest. Importantly, the transmission
of higher-order resonances in the presence of gain can match the transmission of
lower-order resonances in the absence of gain. Hence it appears feasible that the
use of active materials could improve the resolution of hyperimaging systems.
Practically, the gain in the calculated system could be implemented by co-sputtering
rare-earth ions and oxides and using an optical pump beam in conjunction with a
bandpass filter.

4.2b. Hyperstructured Illumination Microscopy

A major drawback of the hyperlens concept is the requirement for a curved geometry
and a desired large ratio between inner and outer total structure radii for large mag-
nification [115]. The curved geometry prevents the use of ultrathin films and the large
outer radius leads to low transmission efficiency. In response to these challenges, hy-
perstructured illumination microscopy (HSIM) was proposed [116]. HSIM utilizes the
unique dispersive properties of HMMs to scan subwavelength objects. Conventional
imaging optics are used to capture the scattered light from the objects and a
reconstruction algorithm is used to predict the object permittivity profile that caused
the scattering. It is inspired by structured illumination microscopy [117], which origi-
nally doubled the resolution of confocal microscopy, and has since become a success-
ful super-resolution imaging technique. In HSIM, the ultimate spatial resolution is
limited by the periodicity of the HMM, which can approach 1 nm for a period com-
posed of epitaxially grown materials. Because the geometry is flat, achieving ultrathin
multilayer films is much more practical compared to the hyperlens. Further, the total
structure can be much thinner than in the hyperlens geometry, with the required
thickness determined by the extent of lateral scanning needed to illuminate the entire
object.

HSIM is inherently an active process, as the key ingredient, in addition to the HMM, is
a tunable-wavelength point source. This is achieved by generating a subwavelength
defect in the underside of the HMM, usually milled by a focus ion beam.
Monochromatic plane wave light illuminates the defect causing scattering of light
inside the HMM. Within the HMM, light of a particular wavelength propagates along
a specific direction determined by the resonance cone angle, as detailed in Section 2.8.
If an object to be analyzed is placed on the HMM opposite the defect, its permittivity
profile can be scanned by changing the wavelength of the plane wave illumination. For
example, tuning the wavelength from 425 nm to 750 nm in a Ag∕SiO2 HMM with a
50% fill fraction will scan the beam from approximately 45–70 deg from normal,
which translates into scanning the object of interest laterally to an extent depending
on the total HMM thickness [116]. HSIM has been shown to be relatively immune to
fabrication imperfections, such as interfacial roughness and layer thickness variation
within the multilayer HMM [118]. Due to its simplicity relative to hyperlens technol-
ogy, HSIM shows promise for combining the high-k propagation of hyperbolic media
with a tunable light source for super-resolution imaging at visible and infrared wave-
lengths [119]. The major potential advantage of HSIM over other super-resolution
platforms, such as stochastic optical reconstruction microscopy or photo-activated
localization microscopy [120], is significantly better temporal resolution. Unlike
localization-based techniques, which require buildup of a sufficient photon count
to generate an image, HSIM is a “one-shot” process, the temporal resolution of which
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is limited only by the speed of numerical reconstruction. It is therefore hoped that
HSIM will reveal real-time or video-rate dynamics in the biological and material
sciences with spatial resolutions of the order of 10 nm.

4.3. Electro-Optical and All-Optical Modulators
Light propagation is typically considered a passive phenomenon inasmuch as the
guiding material is passive. The amplitude and phase of propagating light can be ma-
nipulated by passive elements, such as absorption losses and lenses, respectively, but it
may also be controlled by active elements. Waveguides made of HMM cores and
claddings offer unusual propagation characteristics [121–125], including single-mode
higher-order propagation [124] and asymmetric transmission [125] in reciprocal me-
dia. With active control, these unusual characteristics become more applicable. For
example, the modal dispersion can be controlled in subwavelength waveguides by an
external bias [126]. Because HMM waveguides can be extremely compact relative to
diffraction-limited waveguides, controlling the dispersion [124] and loss [36] plays an
important role to their utility. HMMs can serve as critical elements of integrated
electro-optical and all-optical switches for high-speed communications, or even com-
puting [11,25,127]. Additionally, due to strong electric-field enhancement, HMMs
function as efficient elements for second-harmonic generation, an important applica-
tion of which is biomedical sensing [128]. Electro-optical and all-optical modulation
enabled by HMMs is summarized in Fig. 12.

4.4. Perfect Absorbers and Thermophotovoltaics
As described by the Shockley Queisser limit [129], the efficiency of a silicon single
junction solar cell is limited to less than 35%. The majority of the inefficiency is due to

Figure 11

Loss compensation via gain for high-k, visible frequency waves. (a) Schematic of
transmission through a five-period Ag∕Al2O3 (10 nm/20 nm layer thicknesses) multi-
layer wherein the oxide layer contains 3000 cm−1 of material gain. (b)–(d) High-k
angular transmission spectra at (b) red, (c) green, (d) blue wavelengths for the cases
of a hypothetical zero loss-gain system (black curves), lossy system without gain
(dashed curves of color), and lossy system with gain (solid curves of color).
(e) Transmission in the lossy system with gain relative to the lossy system without
gain. The red and blue wavelengths exhibit greatest and least transmission, because
the Ag loss is inversely proportional to wavelength in the visible regime.
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spectral losses since photons with energy larger than the semiconductor bandgap lose
a portion of their energy to heat and photons below the bandgap are transparent to the
cell. On the other hand, thermophotovoltaics (TPV) can overcome the Shockley
Queisser limit to achieve theoretical efficiencies greater than 80%. A TPV system
concentrates sunlight onto an absorber, transforming the broadband energy spectrum
into heat. Next the generated heat is directed at a solar cell using a thermal emitter. The
solar cell is typically made of InGaAs with a bandgap near 2100 nm. The main ad-
vantage is that the emitter can be engineered to have a narrowband emission spectrum
where the internal quantum efficiency of the cell is greatest, drastically reducing spec-
tral losses. Early designs focused on photovoltaic cell materials, solar concentrators,
and improved cooling mechanisms that resulted in total efficiencies below 1% [130].
A resurgence of TPV research has recently occurred, fueled mainly by improvements
in the selective emitter. However, experimental efficiencies remain less than 4%
efficient [131].

Following Kirchoff’s law of thermal radiation, the absorption of a material is propor-
tional to its emissivity. HMMs are a good candidate for both emitters and absorbers
since they display selective and near-perfect absorption close to the zero-crossing
point of their real permittivity. Moreover, the working spectral range can be suffi-
ciently tuned by adjusting the filling fraction. Because the free-space impedance is
fixed, however, impedance matching with between air and NIR HMM based on noble
metals can be challenging, as both ϵ0 and ϵ00 are large in magnitude. Therefore, low-
loss metal components with epsilon near zero points within the shortwave IR spectrum
(1–3 μm) are being considered for the metallic components of the HMM emitters.
Additionally, the desired operating temperature of a TPV emitter is > 1000°C, which
eliminates many low melting point materials, such as noble metals.

Due to the high melting point and appropriate permittivity values, AZO/ZnO-based
HMMs are being considered for the emitter component of TPV systems [22,132,133].
It has been reported that by tailoring the parameters of AZO/ZnO HMMs, narrowband
emitters can be fabricated to provide theoretical efficiencies that surpass the Shockley
Queisser limit [134]. AZO/ZnO multilayers were shown to exhibit negative refraction
in the near-infrared, confirming their hyperbolic character [22]. By utilizing a novel
fabrication approach, an array of cylindrical AZO/ZnO multilayers was shown to
exhibit greater than 85% absorption over the 1200–2200 nm wavelength range, with
low sensitivity to angle and polarization [133]. The behavior of the system was de-
scribed in terms of a photonic hypercrystal [87], which supports even more modes
than a conventional multilayer, thus increasing the absorption efficiency.
Significantly, the system was shown to be transferable to a flexible substrate and
is easily passively tuned by varying geometric parameters [133]. Active tuning of this
system via electrical gating should be readily feasible.

5. OUTLOOK

In this section we shift our focus to nascent proposals and experiments on active and
tunable HMMs. This includes 2D HMMs, non-reciprocal HMMs, and dipole–dipole
interactions in HMMs. While some of the work has been realized, much of it remains
to be demonstrated. As such, this section constitutes an outlook on future
developments in the field.

5.1. 2D Materials
Graphene behaves as a metal for frequencies in the infrared, with a two-dimensional
free electron response for carriers in the lattice plane. Multilayer graphene, for exam-
ple, graphene layers separated by subwavelength gaps of a dielectric, typically
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exhibits Type II hyperbolic dispersion for long wavelengths, with metallic and dielec-
tric response parallel and normal to the lattice plane [135]. Because the chemical
potential of graphene is easily controlled by an external bias, per Eq. (16), the elec-
trical conductivity, and therefore the optical response, of graphene exhibits a highly
tunable behavior useful for controlling hyperbolic dispersion [136].

Heterostructures made of graphene and hexagonal boron nitride (h-BN) exhibited hy-
brid plasmon–phonon polaritons with properties dependent on an applied voltage
[137]. h-BN is itself a natural HMM [45] that has been shown to exhibit super-
resolution focusing at mid-infrared wavelengths [138]. The integration of h-BN,
and other natural HMMs, with graphene will likely spawn a new class of tunable
HMM devices for dynamically controlling mid-infrared light generation, propagation,
and absorption.

Simultaneous active and tunable behavior was studied analytically in a multilayer
HMM consisting of graphene and thulium-doped silica [139]. Highly tunable, spec-
trally narrow peaks in the optical gain were predicted for waves polarized such that the
optical response was metallic. This corresponds to directions normal and parallel to
the graphene plane for Type I (near-infrared) and Type II (mid- to far-infrared) hyper-
bolic dispersion regimes. The magnitude of gain predicted in the narrow peaks was
significantly greater than the broadband gain of the constituent thulium-doped silica.
An electromagnetic transparency region was also predicted where absorption becomes
vanishingly small by proper external tuning. For waves polarized such that optical
response was dielectric, the effect of tuning was negligible and the behavior was sim-
ilar to the bulk material. This study opens an interesting question into utilizing an

Figure 12

Active HMM for manipulating light propagation. (a), (b) Tuning of dispersion via
chemical potential of graphene in multilayer HMM [26,126]. (c) Amplification of
propagating waves via quantum well gain in lateral multilayer HMM [37].
(d) All-optical switch enabled by externally pumped nanowire HMM [11].
(e) Electro-optical and all-optical switch enabled by externally controlled graphene
HMM [25,127]. (f) Second-harmonic generation of propagating light in nanowire
HMM for high-sensitivity tomography [128]. (a) Reprinted with permission from
[26]. Copyright 2016 Optical Society of America. (b) Reprinted with permission
from [126]. Copyright 2017 Optical Society of America. (c) Reprinted with permis-
sion from [37]. Copyright 2015 Optical Society of America. (d) Reprinted with per-
mission from [11]. Copyright 2014 Optical Society of America. (e) Reprinted with
permission from [25]. Copyright 2015 Optical Society of America. (f) Reprinted with
permission from [128]. Copyright 2015 Optical Society of America.
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external bias for simultaneous phase (dispersion) and amplitude (gain/absorption)
control of propagating waves. Further, the possibility for narrowband enhanced gain
deserves to be scrutinized in greater detail, e.g., with self-consistent gain model
beyond the effective medium theory.

Beyond graphene, electrides are 2D-like materials with electron transport naturally
confined to a 2D plane. The electride Ca2N was recently predicted to exhibit
Type II hyperbolic dispersion over a broad wavelength range of 880–3300 nm
[140]. The hyperbolic dispersion is predicted to have extremely low absorption loss
and to be tunable via external strain.

5.2. Non-Reciprocal HMM
If both the time-reversal and inversion symmetry of an HMM is broken, then waves
propagating through it exhibit non-reciprocity. That is, transmission from left to right
does not equal transmission from right to left, which is the case for reciprocal systems.

5.2a. PT-Symmetric HMMs

Parity-time (PT) symmetric metamaterials are those in which the parity and time
operators are simultaneously applicable, leading to non-Hermitian systems with
purely real spectra [141]. PT symmetry is achieved in optical systems when the
condition

n0�r� � in00�r� � n0�−r� − in00�−r� (127)

is met for the spatially dependent complex refractive index. Therefore, achieving PT
symmetry in optical systems necessarily requires active constituent materials. The
enthusiasm surrounding PT-symmetric optical systems stems from their potential
applications in such areas as one-way cloaking and super-focusing.

Wave propagation through PT-symmetric HMMs was analyzed theoretically in a one-
dimensional multilayer with a unit cell consisting of a semiconductor HMM sur-
rounded by dissipative and active semiconductor layers, with the imaginary permit-
tivity of the dissipative and active layers being of equal magnitude but opposite sign
[142]. Despite the entire system having a net zero imaginary permittivity, changes to
the dispersion were observed upon tuning the imaginary permittivity of the passive
and active layers from zero to non-zero values. Namely, transmission bands merge and
exhibit a turning point with respect to the transverse wavenumber as the loss/gain in
the system increases. Comparative calculations between the effective medium and
exact multilayer illustrated that non-reciprocal behavior occurs for the latter.
Namely, reflection spectra for left-to-right and right-to-left propagating waves had
a slight difference in the exact case but not in the effective medium case, despite
the operating wavelength being 100 times smaller than the multilayer lattice constant.

5.2b. Magneto-Optic HMM

A multilayer configuration consisting of a magneto-plasmonic material sandwiched
between two different dielectric materials in the presence of an external magnetic field
meets the criteria for non-reciprocity. Namely, the different dielectrics break the in-
version symmetry while the magnetic field breaks time-reversal symmetry. This struc-
ture was analytically studied as a practical realization of a non-reciprocal HMM and
was found to exhibit one-way topological transitions and non-reciprocal hyperbolic
dispersion over a broad frequency range [143]. Namely, in the absence of a magnetic
field, the transmission band of forward and backward high-k waves propagating along
the crystal axis overlap spectrally. However, in the presence of a magnetic field normal
to the crystal axis, the transmission band of the forward and backward waves blueshift
and redshift, respectively. For a given wavelength, therefore, a significant extinction
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ratio for forward and backward high-k transmission emerges with the applied mag-
netic field [143].

Formally, the electrical permittivity of the magneto-plasmonic constituent layer, fϵM ,
takes the form of a tensor with a unique diagonal component in the direction of the
applied magnetic flux vector, B, and two degenerate diagonal components normal to
B. The magnetic flux breaks the time-reversal symmetry in the direction normal to
itself, along which there is also breaking of inversion symmetry. This is represented by
two non-diagonal components of equal magnitude but opposite sign that couple the
directions normal to B. Hence, assuming B � jBjy and taking the z-direction as the
optical axis of the multilayer, the permittivity tensor for the magneto-plasmonic layer
is written as

fϵM � ϵ0

24 ϵM,⊥B 0 iΔM

0 ϵM, ∥B 0

−iΔM 0 ϵM,⊥B

35, (128)

where

ϵM,⊥B � ϵ∞ − ω2
p

�ω� iγ�2 − ω2
B

�
1� γ

ω

�
, (129)

ΔM � i
ωB

ω
, (130)

ϵM, ∥B � ϵ∞ − ω2
p

ω�ω� iγ� , (131)

ωB � q

meff

jBj: (132)

From this formalism, it is clear that observation of the effects of non-reciprocity are
directly proportional to the magnetic field strength and sensitively depend on the
losses in the system. Therefore, it is of great interest to reduce losses to observe
the broadband non-reciprocity. This could be achieved by a well-designed HMM
incorporating asymmetric gain layers around the magneto-plasmonic layer. In general,
the problem of gain-enhanced non-reciprocal HMMs remains a fertile ground for
exploration.

5.3. Long-Range Dipole Interactions
Thus far, we have described only the interaction between individual dipoles and HMMs,
which lead to physical phenomena such as the Purcell factor, photonic spin Hall effect,
super-Planckian heat transfer, and Cherenkov radiation. Additionally, intriguing physi-
cal phenomena may arise due to dipole–dipole interaction in the presence of HMMs.
Namely, it was theoretically shown that both first-order effects, the cooperative lamb
shift (CLS) and cooperative decay rate (CDR), and second-order effects, fluorescence
resonant energy transfer (FRET) and the Casimir–Polder interaction potential (CPI), of
dipole–dipole interactions may be significantly enhanced in the presence of HMMs
[48]. Generally, the CLS and CDR are characterized by a modified emission wavelength
and rate, respectively, occurring in an ensemble of N cold atoms that coherently interact
through the absorption and re-emission of virtual photons [144].

In vacuum or conventional materials with elliptical dispersion, dipole–dipole interac-
tion tends to weaken super-linearly with their separation distance. Hence the CLS and
CDR are challenging to observe. However, it was shown that in the ideal lossless limit,
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the effective interaction distance between two dipoles in a HMM can become vanish-
ing small along the resonance cone angle specified by Eq. (123). This leads to giant
enhancement of the CLS, CDR, FRET, and CPI. Further it was shown that interaction
along the resonance cone reaches a maximum and minimum when the dipoles are both
oriented normal and parallel to this angle, respectively, thus providing a degree-of-
freedom for tuning the interaction strength. When realistic absorption losses were
considered, significant enhancement of many-body phenomena remains a robust pre-
diction. Several realistic platforms for experimentally studying the predicted enhanced
dipole–dipole interaction were proposed, including multilayer Ag∕TiO2 at visible
frequencies, multilayer hexagonal boron nitride in the mid-infrared, and a Ag/air
visible frequency metasurface.

Figure 13 shows exemplary numerical results for two dipoles interacting with each
other above a hyperbolic metasurface. A schematic of the interaction is shown in
Fig. 13(a). The CLS normalized to the vacuum spontaneous emission rate is plotted
in Fig. 13(b) as a function of relative angle between dipoles separated by 250 nm. A
clear singularity in the CLS appears at the resonance cone angle in the HMM, in
comparison to the CLS in vacuum and a lossy dielectric. The dependence of the
normalized CLS on dipole–dipole separation distance along the resonance cone angle
is shown in Fig. 13(c), wherein a significant enhancement of the CLS is observed to
400 nm. Enhancement in the FRET rate is shown in the inset of Fig. 13(c).

5.4. Electronic Addressability
We have presented different applications of HMMs based on different materials real-
izations, with great variety of geometries and designs. However, tunable HMMs are
desired, at least for trimming its properties on specific applications, with the final
objective of having total control of the device behavior. The integration of HMMs
with electronic control then becomes one of the major challenges in the area.

The most conservative approach to the issue is leveraging the know-how of CMOS
devices that commonly used contacts with pitches of just tens of nanometers. Metal-
oxide-semiconductor technology has already been implemented on silicon photonics
to locally modify the refractive index and material loss through the change of the
depletion region, once an external electric field is applied [145]. The effect has also
been used to allow ballistic transport on III-V nanowire junctions and change the
carrier mobility on a InGaAs tri-gate nanowire field-effect transistor [146]. More re-
cently, the depletion region control provided by the CMOS technology was applied to
engineer the second-order optical non-linear susceptibility of an electronic metama-
terial consisting of amorphous silicon and CMOS compatible metals, but still limited
by the allowed number of periods [147]. There are still non-conservative approaches,
like ionic conductance and conducting oxides. Ionic conductance was explored on
random access memories with two electrodes sandwiching an ionic conductor be-
tween them. When a positive voltage is applied, a filament is created between the
two electrodes resulting in a large change in the device resistance. A reverse bias
dissolves the filament regenerating the original resistance. The effect was used by
Thyagarajan et al. to control the reflection of two metasurfaces, consisting of nano-
structured layers of Ag, alumina, and ITO, with ultralow voltage modulation [148].
Later, the use of conducting oxides, incorporated on a nanostructured layer, enabled
the reflectance change due to field-effect modulation of the complex refractive index
of the conductive oxide, also due to carrier depletion and accumulation control, pro-
vided by the CMOS technology [149]. Novel approaches should also be considered,
for example, creating a HMM with a 2D phase-transition material or graphene, whose
properties (e.g., absorption, polarizability, and dichroism) are temperature dependent
and present a drastic variation due to a phase transition [137,150,151]. In these cases,
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on-chip micro-coolers integrated with heaters could be used for local temperature
control utilizing the Seebeck effect. The challenge imposed by electronic addressabil-
ity has led to the development of new ideas and concepts, resulting in HMMs made of
active III-V materials [57], phase-transition metamaterials [27], and tunable lenses
[152], from which breakthrough devices will likely emerge.

5.5. Comparison to Other Systems

5.5a. All-Dielectric Metamaterials

After systematically reviewing the state-of-the-art of dynamically tunable and active
HMMs, we have attained a vantage point from which we gaze the distant horizon. In
the past several years, attention has shifted from plasmonic metamaterials, of which
HMMs are a subset, toward all-dielectric metamaterials, with greater phase control
and lower losses as prime motivating factors [153,154]. While plasmonic metamate-
rials inevitably suffer greater absorption losses than their dielectric counterparts, the
higher optical density of states in plasmonic metamaterials make them the best
candidate for applications requiring high-speed operation, super-resolution, and
propagation over short distances in deeply subwavelength volumes [155].

5.5b. Single-Layer Plasmonics

In addition to the debate between plasmonic and dielectric metamaterials, arguments
against HMMs in favor of single-layer plasmonic platforms have surfaced [115,156].
These arguments fail to recognize the inherently broadband response offered by
HMMs, as well as the passively tunable response gained by using the ratio of the
constituent materials as a design parameter.

We therefore anticipate continued efforts to optimize the material selection, device
geometry, and fabrication processes to achieve HMM-based high-speed, high-
efficiency sources with dynamic control of emission direction and polarization.
Combining light-emitting and light-absorbing materials, such as compound semicon-
ductors and TMD, intricately with hyperbolic metasurfaces and microfluidic
components will open the door to compact optical systems [157,158], but still faces

Figure 13

Enhanced dipole–dipole interactions in HMM [48]. (a) Schematic of two dipoles in-
teracting with one another along the resonance cone angle above a hyperbolic meta-
surface. (b) Cooperative lamb shift normalized to the vacuum spontaneous emission
rate, Jdd∕γ0, as a function of relative angle between dipoles separated for fixed sep-
aration distance of 250 nm. (c) Cooperative lamb shift normalized to the vacuum spon-
taneous emission rate, Jdd∕γ0, as a function of separation distance along the resonance
cone angle. Inset of (c) shows rate enhancement of fluorescence energy transfer as a
function of separation distance along the resonance cone angle. Reproduced from [48]
under the terms of the Creative Commons Attribution 4.0 International License.
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several technical challenges. Namely, processing of the active materials, for example
by dry etching, often degrades their quality, leading to surface recombination and
other forms of non-radiative losses. Strategies to clean and passivate materials during
processing need to become more widely adopted, as has been recognized in the nano-
laser community where the lasing threshold is understood to depend sensitively on
processing conditions [159]. Additionally, the integration of HMMs with control
electronics requires advanced design considerations and greater collaboration between
experts in the optics community with those in the digital and RF electronics commun-
ities. For example, reconfigurable HMMs with local control of complex refractive
index at the subwavelength scale could require electrodes separated by pitches of less
than 100 nm. It would appear that this were most easily achieved if the skills and
know-how of CMOS and silicon photonics engineers were leveraged by plasmonic
device designers to co-design the optoelectronic response of active and
tunable HMMs.

6. CONCLUSION

We have reviewed the state-of-the-art in dynamically tunable and active hyperbolic
metamaterials. To fully appreciate the physical mechanisms responsible for tuning and
optical gain, we first provided a comprehensive theoretical background, with the
effective medium approximation appearing as the limiting case to the more general
matrix methods and Bloch analysis. The major physics and applications of tunable and
active HMMs were then presented, followed by emerging topics that point the way to
new experimental ideas. We hope this review has been useful for the novice and expert
alike. We look forward to witnessing the continued progress in bridging the intriguing
physics offered by hyperbolic dispersion with the practical functionality offered by
tunable and active constituent materials.
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