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New Findings 

• What is the central question of this study? 

We sought to understand the day-to-day variability of human indirect calorimetry during rest 

and exercise.  Previous work has been unable to separate human day-to-day variability from 

measurement error and within-trial human variability.  We developed models accounting for 

different levels of human and machine-level variance and compared the probability density 

functions using total variation distance. 

• What is the main finding and its importance? 

After accounting for multiple levels of variance, the average human day-to-day variability of V̇E, 

V̇CO2, and V̇O2 are 4.0%, 1.8% and 2.0%, respectively.  This work presents a novel method to 

understand human variability as a whole and directly enhances our understanding of human 

variance during indirect calorimetry. 

 

Abstract 

One of the challenges of precision medicine is understanding when serial measurements taken across 

days are quantifiably different from each other.  Previous work examining indirect calorimetry gas 

exchange has been unable to effectively separate differential measurement error, within-trial human 

variance and day-to-day human variance to ascertain how variable humans are across testing sessions.  

We use previously published reliability data to construct models of indirect calorimetry variance and 

compare these models with methods arising from Bayesian decision theory.  These models are 

conditional on the data upon which they are derived and assume that error conform to a truncated 

normal distribution.  A serial analysis of modeled probability density functions demonstrated that the 

average human day-to-day variance in V̇E, V̇CO2, and V̇O2 are 4.0%, 1.8% and 2.0%, respectively.  

However, the average day-to-day variability masks a wide range of non-linear variance across flow rates, 

particularly for V̇E.  This is the first report isolating day-to-day human variability in indirect calorimetry 

gas exchange from other sources of variability.  This method can be extended to other physiological 

tools and an extension of this work facilitates a statistical tool to examine within-trial V̇O2 differences, 

available in a graphical user interface.   

  



3 
 

Introduction 

In the age of precision medicine, there has been renewed interest in understanding, quantifying and 

using individual-level variability to improve practice (Collins & Varmus, 2015).  The concept of treating or 

training an individual person and not a group-average is not new; however, our treatment of data in the 

research domain often does not reflect this individual-level perspective.  Furthermore, there is a 

tendency to see apparent changes across time in an individual person’s data and assume that these 

differences are “real”.  In order for differences at the individual-level to be assumed “real” they must 

exceed both the measurement error of the device and any natural variability inherent in the human.  

Once the individual changes across time are determined to be “real”, it is important to consider whether 

the changes are “meaningful” (Hopkins, 2004; Hecksteden et al., 2015; Hopkins, 2015).  The present 

work deals with the former consideration in the application of indirect calorimetry. 

Previous work on gas exchange indirect calorimetry has indicated that human variance in V̇O2 between 

days ranges from 1.4% to 8.5% (Crouter 2006, Katch 1982, Armstrong & Costill 1985, Pereira 1994, 

Pereira & Freedson 1997); however, these studies generally use extremely small study samples, do not 

examine a wide variety of workloads, do not report variance in other common variables of interest (e.g. 

V̇CO2 and V̇E) and may not have adequately separated human variance from device measurement error.  

Indeed, most studies examining day-to-day variability in human exercise indirect calorimetry actually 

have variance at three different levels: 1) device measurement error, 2) within-exercise trial human 

variance, and 3) day-to-day human variance.  Using the gold standard Douglas bag method for exercise 

indirect calorimetry and exercise at five different absolute intensities, Crouter et al. (2006) showed day-

to-day total variance in exercise V̇O2 , V̇CO2 and V̇E to be 8.5%, 5.3% and 6.0%, respectively, without any 

adjustment for measurement error.  Performing V̇O2 max tests on multiple days using the Douglas bag 

method and five subjects, Katch et al. (1982) showed total variation to be 5.6% and concluded that 

~7.0% of the total variation was attributable to the methodology equipment.  Armstrong and Costill 

(1985) examined 10 subjects and three absolute workloads and indicated that day-to-day human 

variance in V̇O2  was 2.84-4.32% after subtracting out a constant instrument fluctuation error (0.41% 

variance).  Pereira conducted two studies, one on five subjects at a workload approximating 70% V̇O2 

max (Pereira 1994) and one on 15 subjects at 70% (Pereira).  They concluded that day-to-day variance in 

biological V̇O2 was 1.4% and 1.7% after removal of ‘technical variation’ which was <0.1% and 0.1% in the 

respective studies (Pereira 1997; Pereira 1994)  While all of the previous work examining human- and 

machine-level variability is helpful to understand general variation, all of these examinations of gas 

exchange indirect calorimetry kinetics ignore the expiratory flow-based differential measurement error 

in both mixing chamber (Macfarlane & Wu, 2013; Tenan, 2016) and breath-by-breath systems (Huszczuk 

& Haouzi, 2016).  The actual measurement error is highly device specific (Tenan 2016) and may be 

variable for reasons of calibration and component part signal drift which create a unique non-linear 

measurement error across ventilatory volumes.  Previous work by Tenan (2016) has explicitly modeled 

both the machine-level and total human-level variability across varying volumes of gas flow to 

probabilistically determine if two indirect calorimetry testing periods are different on a day-to-day basis.  

The innovation proposed by Tenan was in representing the true underlying measure of V̇E, V̇CO2, and 

V̇O2 as a probability density function (PDF) which incorporated measurement uncertainty while also 

accounting for the effects of differential measurement error. However, the primary weakness in this 

work is the inability to separate device measurement error and human within-trial variability from day-
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to-day human variability.  This weakness makes it a vastly over-conservative measure of indirect 

calorimetry changes on a within-trial basis.   

The goal of this manuscript is to examine the amount of day-to-day human variation that exists in 

indirect calorimetry gas exchange by extending and improving upon the general framework employed 

by Tenan (2016).  Furthermore, an extension of this methodology enables a single-subject, within-trial 

statistical test to determine the probability that V̇O2, V̇CO2, or V̇E levels have changed with a change in 

physical workload or other physical perturbation.  These new methods are incorporated into a 

developmental toolbox and website maintained by the authors for general scientific and clinical use 

(https://tenan.shinyapps.io/gassim/).  This knowledge and the dissemination of data products which can 

apply the tools developed in this work facilitate the ability of researchers, clinicians and coaches to 

better discern whether changes in single-subject gas exchange indirect calorimetry are due to natural 

variation or the result of an intervention. 

 

Methods 

All computations described in this study are performed in the R programming language (Version 3.4.4), 

and a series of R packages:  dplyr (Version 0.7.4), devtools (Version 1.13.5), geepack (Version 1.2-1), 

msm (Version 1.6.6), cubature (Version 1.3-11), and ggplot2 (Version 2.2.1).  The general flow of 

analyses performed in this study are as follows: 

1. Define the models for overall variability of human gas exchange (human variation [within-trial 

and between days] plus machine measurement error) in indirect calorimetry (V̇E, V̇O2 and 

V̇CO2).  

2. Define the models which include only within-trial variability and machine measurement error in 

indirect calorimetry. 

3. Using the models previously defined in steps 1 and 2, determine the amount of day-to-day 

variability in human indirect calorimetry which exceeds that attributable to within-trial human 

variability and machine measurement error. 

Data Underlying the Probability Density Function Models 

The inclusion for data in the models were: 

1. Raw data for the study must be either publicly available or made available by the authors of 

previously published work. 

2. The previously published work must have used the Parvomedics 2400 TrueOne system because 

machine measurement error is device-specific. 

3. The data from the published work needed to conform to one of two designs: 

a. The study data needed to contain variance at only three levels (human variation [within-

trial and between days] plus machine measurement error) 

b. The study data needed to contain variance at only two levels (human within-trial 

variation and machine measurement error) 

4. For studies conforming to criteria 3a, the measurements needed to have occurred less than 10 

days apart with no intervention in between. 
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Based on the above criteria, the experimental data used in the present analysis have been previously 

published and described in two separate studies (Crouter et al., 2006; Macfarlane & Wu, 2013).  Thus, it 

was determined that this work did not require regulatory approval as defined by the Common Rule, 

whereby existing datasets of de-identified data are excluded from review.  Study 1, performed by 

Crouter et al. (2006), used the ParvoMedics TrueOne 2400 to determine gas exchange variables (V̇E, 

V̇O2, and V̇CO2) while performing a progressive cycling task (rest, 50, 100, 150, 200, and 250 W).  Two 

trials were performed within 48 hours to examine the reliability of V̇E, V̇O2 and V̇CO2 across multiple 

days.  Study 2, performed by Macfarlane and Wu (2013), used two ParvoMedics TrueOne 2400 units 

aligned in parallel (termed “collateral configuration”), so that each unit obtained measurements from 

the same steady state work rate.  This arrangement examines the combination of within-work rate 

human variance and machine-level variance in V̇E, V̇O2 and V̇CO2 metrics during a progressive cycling 

task (rest, 30, 60, 90, 120 W).  The raw data obtained from these studies were used to define a model of 

uncertainty for each ventilatory metric, as described below.  In order to ensure model stability, the 

derived models did not extrapolate beyond the minimum and maximum values obtained in the original 

datasets (Table 1). 

Determination of Gas Probability Density Function Models and Calculation of Human Variability 

The models of variability for each ventilatory metric used in the present paper are consistent with the 

framework prescribed by Tenan (2016).  Briefly, uncertainty in the true measurement (V̇E, V̇O2, or V̇CO2) 

is modeled with a univariate truncated normal distribution with mean given by the observed 

measurement. To account for the differential measurement error, the standard deviation of the 

distribution is modeled as a function of the observed measurement. That function results from fitting a 

third-order polynomial generalized estimating equation regression for the mean and standard deviation 

of the test-retest measurements of the mean gas variable (V̇E, V̇O2 , or V̇CO2) obtained in the respective 

study (Study 1 or Study 2), clustering for the multiple observations on a single subject.  Therefore, each 

measurement yields a distribution of measurements with central tendency influenced by the gas flow 

rate, consistent with observations (Macfarlane & Wu, 2013). Formally, let 𝑋: Ω → 𝑅 be a random 

variable representing the measurement of the gas flow variable, and let 𝑔: 𝑅 → 𝑅 be the generalized 

estimating equation, a third-order polynomial. Then, the model of variability is a truncated normal 

random variable 𝑌: Ω → 𝑅 with mean 𝑋, variance 𝑔2(𝑋), and support on [0, ∞).   

𝑌 ∼ 𝑁(𝑋, 𝑔(𝑋), [0, ∞)) 

The primary differences between the current model formulation and Tenan (2016) is the use of a 

generalized estimating equation methodology versus a general linear model as well as the use of a 

truncated normal distribution instead of a standard normal distribution.  In contrast to the general linear 

model, the generalized estimating equation provides theoretically superior model estimates while 

controlling for multiple observations.  The truncated normal distribution is preferable to a standard 

normal distribution because V̇E, V̇O2, or V̇CO2 measurements are lower bounded by zero.  Both of these 

modifications to the original Tenan (2016) method are included in updates to the Gas.Sim package for 

the R programming language. Once the models for calculating expected overall variation (i.e. the 

combined day-to-day human variance, within-trial human variance and machine measurement error) 

and within-trial human variance plus machine-level variation are constructed, the respective 

measurements can be compared via the total variation distance (Gibbs & Su, 2002). Formally, let 𝑌 ∼

𝑁(𝑋, 𝑔(𝑋), [0, ∞)) be a random variable representing day-to-day measurements with PDF 𝑓𝑌  and 𝑍 ∼
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𝑁(𝑋, ℎ(𝑋), [0, ∞)) be a random variable for within-trial measurements with PDF 𝑓𝑍, where 𝑔 and ℎ are 

the respective generalized estimating equations of 𝑌 and 𝑍.  

The overlapping coefficient measures the similarity of two random variables (Weitzman, 1970; Inman & 

Bradley Jr, 1989). 

𝑠(𝑌, 𝑍) =  ∫ min[𝑓𝑌(𝑥), 𝑓𝑍(𝑥)] 𝑑𝑥
∞

0

 

In Bayesian decision theory, this quantity defines the minimum decision risk and is interpreted as the 

probability that any observation of overall measurement could be an observation of within-trial 

measurement and vice versa. While accounting for the differential measurement error in the 

measurement device, Tenan (2016) used the overlapping coefficient to determine if two indirect 

calorimetry testing periods differed on a day-to-day basis. In this case, a high overlapping coefficient 

would indicate a low likelihood of substantial difference in the given ventilatory measure, and a low 

overlapping coefficient would indicate that the observed ventilatory measure on one day was unlikely to 

have been observed on another day (i.e., the observed variability is likely to have resulted from a change 

in the true underlying ventilatory metric). 

In the present study, the goal is to discriminate between the variability introduced by the measurement 

device and that of the inherent day-to-day variability of humans and to attribute changes in indirect 

calorimetry to true changes in the ventilatory measure of interest. As the overlapping coefficient takes 

values in [0, 1] and measures similarity, the complement provides a normalized measure of dissimilarity. 

Intuitively, it measures the probability that an observation of a random variable cannot be the 

realization of another random variable, which should aid in disambiguating the effects of day-to-day 

human variability. The complement of the overlapping coefficient is known as the total variation 

distance (Gibbs & Su, 2002), 

𝑑(𝑌, 𝑍)  =   ∫ |𝑓𝑌(𝑥) − 𝑓𝑍(𝑥)|
∞

0

 𝑑𝑥. 

The total variation distance defines a valid metric on probability density functions (i.e., non-negative, 

symmetric, and sub-additive). Thus, it is a probabilistic measure of day-to-day human variability in 

indirect calorimetry gas exchange apart from other sources of error.   

These models can be defined across all gas flow rates to examine the amount of human variation at 

different work rates as well as determine the mean level of human variation in indirect calorimetry 

measures on a day-to-day basis.  V̇E flow rates from 6 – 60 L/min were assessed in 0.1 L/min increments 

whereas V̇O2 and V̇CO2 were assessed in the 0.28 – 2.00 L/min and 0.26 – 2.00 L/min ranges in 0.01 

L/min increments, respectively.  As noted earlier and in Table 1, these limits are defined by the maxima 

and minima of the two data sets on which the models are based.  In practice, the limits are bounded on 

the low end by the Crouter et al. data and on the high end by the Macfarlane & Wu data. 

Extension of Methodology for a Statistical Test of Within-Trial Changes in Human Gas Exchange 

The models derived from Macfarlane and Wu (2013) enable the creation of a statistical test for within-

trial differences in human gas exchange in line with the framework established by Tenan (2016).  Since 

this model contains only within-trial human variability and machine level differential measurement 
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error, the proposed procedure can be used to determine the probability that the two different 

experimental measures from within the same trial arose from the same distribution.  Since the 

differential measurement error is device specific, this methodology is currently limited to the 

Parvomedics 2400 TrueOne system.  A function for this statistical test has been added to the Gas.Sim 

package for R (https://github.com/TenanATC/gas.sim) as well as an online web application 

(https://tenan.shinyapps.io/gassim/).  

 

Results 

A series of example analyses for human day-to-day variability in V̇O2 at different flow rates is shown in 

Figure 1.  The mean variance in V̇E attributable to human variability is 4.0%, though the amount of 

variance differs considerably across a range of V̇E flow rates (range: 0.5% – 12.1%) (Figure 2A). The 

mean variance in V̇O2 and V̇CO2 attributable to human variability is 2.0% (range: <0.1% - 6.6%) and 1.8% 

(range: 0.1% - 3.1%), respectively, and this variance remains generally constant across flow rates 

(Figures 2B and 2C). 

As described in the methods above, the PDF models derived from Macfarlane and Wu (2013) can be 

used to develop a single-subject analysis for within-trial differences in gas exchange.  This same analytic 

technique can be compared across a stratum of gas flow rates to examine within-trial differences in gas 

exchange more broadly.  The gross results of these analyses are visualized as a heat map in Figure 3.  

This visualization demonstrates some small fluctuations in reliability across gas flow rates, particularly at 

high flow rates, but overall the measurement remains relatively stable.  This supports the idea that while 

there is some level of differential measurement error at the device-level, the majority of differential 

error may arise from the human. 

 

Discussion 

This report uses established methods from probability-based decision theory, epidemiology (differential 

measurement error) and previously published work in the human physiology literature (Crouter et al., 

2006; Macfarlane & Wu, 2013; Tenan, 2016) to determine the variability in human indirect calorimetry 

gas exchange on a day-to-day basis.  Previous research has indicated that day-to-day variance in V̇O2 

ranges from 1% to 8.5% (Katch et al., 1982; Armstrong & Costill, 1985; Murgatroyd et al., 1987; Donahoo 

et al., 2004; Crouter et al., 2006).  However, all of the previous literature has either implicitly or explicitly 

included day-to-day variance with one (Katch et al., 1982; Armstrong & Costill, 1985) or two 

(Murgatroyd et al., 1987; Donahoo et al., 2004; Crouter et al., 2006) other types of variance (within-

exercise trial variance or device measurement error and within-exercise trial variance, respectively).  

Furthermore, the previous studies which have attempted to account for device measurement error have 

considered the error to be constant (Katch et al., 1982; Armstrong & Costill, 1985); recent literature has 

shown that measurement error is not constant and changes with gas flow rate in both mixing chamber 

(Macfarlane & Wu, 2013) and breath-by-breath systems (Huszczuk & Haouzi, 2016).  The present 

analysis models both measurement variability which includes only device measurement error and 

within-trial human variance from published data by Macfarlane (2013) and which includes device 

measurement error, within-trial human variance, and day-to-day human variance from Crouter’s 
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published data (Crouter et al., 2006).  The net difference between these two models of probability 

density functions, as calculated via total variation can be attributed to the day-to-day human variance in 

indirect calorimetry gas exchange.  We can conclude that day-to-day variance in healthy humans for V̇O2 

and V̇CO2 are about 2.0% and 1.8%, respectively, and that there is some level of variability across gas 

flow rates (Figure 2B and 2C).  Day-to-day human variance in V̇E is 4.0% on average, but exhibits more 

extreme and notable non-linearity across workloads/flow rates (Figure 2A). 

Since the present methodology eliminates variance at more levels and accounts for differential 

measurement error, it is not surprising that the ~2% day-to-day variance in V̇O2 is lower than most 

previous studies (Katch et al., 1982; Armstrong & Costill, 1985; Murgatroyd et al., 1987; Crouter et al., 

2006).  One practical reason for this low level of daily variance in V̇O2 may be due to the V̇O2 ranges 

available for use in the present analysis.  In order to maintain model stability, it was necessary to only 

model within the ranges of data available (Table 1).  For V̇O2, the daily variance is examined from 0.2 

L/min to 2.0 L/min, which is a low to moderate V̇O2 level for many healthy moderately active individuals.  

It is entirely possible that daily variance in V̇O2 becomes greater at levels approximating V̇O2 max.  

Interestingly, the highest level of daily variance for ventilatory measures is V̇E and this is also the 

measure exhibiting the greatest nonlinear variance across work rate (Figure 2A).  Since V̇E results from 

an interaction between tidal volume and breathing frequency, it is interesting to speculate as to how 

each of these individual values may vary on a daily basis and what those underlying mechanisms may 

be.  For example, breathing frequency is highly influenced by psychological stress/perception of effort 

(Nicolò et al., 2016; Nicolò et al., 2017); if we assume tidal volume remains relatively constant for a 

given physical workload, a differential change in psychological stress could result in less reliable V̇E 

measure on a day-to-day basis.  Additional variability that may disproportionally affect V̇E, as opposed 

to V̇O2 and V̇CO2, are sudden transients such as coughing, swallowing or yawning during data collection.  

Any uncoupling between metabolic demands to complete a given exercise work rate and the 

components of V̇E may contribute the observed non-linearity in reproducibility.   

Notably, an extension of the analysis framework established by Tenan (2016) to understand day-to-day 

variability in human gas exchange facilitates the development of a statistical test for within-trial single-

subject analysis.  This statistical test is implemented in the R package Gas.Sim and a graphical user 

interface implementation (https://tenan.shinyapps.io/gassim/).  Across the flow rates available in the 

current model, there is some degree of consistency in the reliability (Figure 3).  The probability density 

functions for V̇O2 appear to have greater dispersion at higher flow rates, which may be physiological in 

nature or a result of higher flow rates creating a non-linearity in device accuracy.  The non-linearity in 

reproducibility has implications both for how we interpret changes in primary measures of indirect 

calorimetry (i.e. V̇E, V̇O2, V̇CO2), but also derived measures, such as caloric expenditure (Beck et al., 2018 

[In Press]; Tenan et al., 2018 [In Press]).  The weakness of the statistical test for within-trial single-

subject analysis is the low to moderate flow rates (Table 1) and that it is currently limited to the 

Parvomedics 2400 TrueOne system.  As more data become available at higher workloads or additional 

systems, support will be added to the Gas.Sim package. 

The current analysis framework attributes day-to-day human variability in indirect calorimetry gas 

exchange to the total variation between PDFs which account for different sources of measurement 

uncertainty. The total variation distance is one of numerous metrics on probability spaces, and it is 

applicable in the present report due to its decision-theoretic interpretation. However, metrics on 

probability spaces is a currently active area of research in statistical inference (Genevay et al., 2016; 
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Arjovsky et al., 2017), and it is possible that use of an alternative metric for the proposed analysis 

framework such as the Wasserstein-Kantorovich distance (Genevay et al., 2016) could yield additional 

insights on the day-to-day variability of indirect calorimetry gas exchange. 

The present study proposed a novel analysis framework based on probabilistic decision theory to 

understand how variable human gas exchange is during exercise apart from other sources of error.  In 

theory, this method can be applied to other variables of physiological interest where measurement 

variability can be modeled with probability density functions containing different types of variance.  

Through this analysis, we establish the degree of variability in V̇E, V̇O2, and V̇CO2 across workloads and 

characterize any apparent nonlinearities.  Furthermore, this work has a freely-available statistical 

package for the R programming language and a web-based graphical user interface to facilitate research 

and clinical use.  
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Table 1. Range of gas metrics in studies underlying models 

 Gas Metric Minimum (L/min) Maximum (L/min) 

Crouter et al. 2006 

V̇E 7.67 131.30 

V̇O2  0.28 3.86 

V̇CO2 0.26 4.19 

Macfarlane and Wu 
2013 

V̇E 6.09 62.57 
V̇O2  0.20 2.07 

V̇CO2 0.17 2.14 
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Figure 1.  Example of Overlapping Probability 

Density Functions (PDF) for measurements 

containing different levels of variance at discrete 

flow rates.  The example V̇O2 flow rates are: 0.3 

L/min (A), 1.1 L/min (B), and 1.9 L/min (C). 
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Figure 2.  Percent variance in V̇E (plot A), V̇O2 (plot 

B), and V̇CO2 (plot C) attributable to day-to-day 

human variability across a range of gas flow rates. 
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Figure 3.  A heat map visualization of within-trial V̇O2 variance across all flow rates from 0.2 – 2.0 L/min 

for the Parvomedics 2400 TrueOne.  All probabilities less than 1% are white. 
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