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Abstract The Atlantic meridional overturning circulation (AMOC) is a key component of the global climate
system. Recent studies suggested a twentieth-century weakening of the AMOC of unprecedented amplitude
(~15%) over the last millennium. Here we present a record of δ18O in benthic foraminifera from sediment
cores retrieved from the Laurentian Channel and demonstrate that the δ18O trend is linked to the strength of
the AMOC. In this 100-year record, the AMOC signal decreased steadily to reach its minimum value in the late
1970s, where the weakest AMOC signal then remains constant until 2000. We also present a longer δ18O
record of 1,500 years and highlight the uniqueness of the last century δ18O trend. Moreover, the Little Ice Age
period is characterized by statistically heavier δ18O, suggesting a relatively weak AMOC. Implications for
understanding the mechanisms driving the intensity of AMOC under global warming and high-latitude
freshwater input are discussed.

Plain Language Summary Oceanic circulation in the North Atlantic transports huge amounts of
water, heat, salt, carbon, and nutrients around the globe. As such, changes in the strength of oceanic
currents can yield profound changes in both North American and European climate, in addition to affecting
the African and Indian summer monsoon rainfall. In this study, we used geochemical evidence to highlight a
slowdown in the North Atlantic Ocean circulation over the last century. This change appears to be unique
over the last 1,500 years and could be related to global warming and freshwater input from ice sheet melt.
Based on our data, we also suggest that the period often called “The Little Ice Age” was characterized by a
slowdown, of less amplitude than the modern weakening, in the North Atlantic Ocean circulation. Thus, our
results contribute to ongoing investigations of the state of the circulation in the North Atlantic by providing a
robust reconstruction of its variability over the last 1,500 years.

1. Introduction

The Atlantic meridional overturning circulation (AMOC) encompasses the advection of warm and saline
waters in the upper ocean to the northern parts of the Atlantic, where it cools, becomes denser, and sinks,
ultimately creating North Atlantic deep water. Both observational and modeling studies have suggested that
the strength of this oceanic circulation cell is not constant through time (Bohm et al., 2015; Rahmstorf et al.,
2015), and that these changes drive many other climatic events across wide ranges of spatial and temporal
scales (e.g., Delworth et al., 2008). Weakening of the AMOC as a response to warming and/or high-latitude
freshwater release is a common feature of many climate models (Bakker et al., 2016; Jungclaus et al., 2006;
Krebs & Timmermann, 2007; Stouffer et al., 2006; Yang et al., 2016; Yu et al., 2016). However, a recent study
suggested that current models are not sensitive enough in their AMOC response (Liu et al., 2017), which
implies that previous model projections of collapse probabilities are underestimated. The possibility of an
AMOC collapse under global warming is a major concern due to its potentially dramatic impacts on oceanic
circulation and global climate. The consequences of freshwater input near sites of deepwater formation are a
contemporary concern as the total freshwater storage of the North Atlantic increased by 19,000 km3 between
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1961 and 1995 (~0.02 Sv on average; Curry, 2005). This freshwater is transported to the Labrador Sea and cre-
ates salinity anomalies (Luo et al., 2016). It is therefore increasingly critical that we understand the impacts of
climate change and freshwater release on convection in the Labrador Sea and its corresponding impact on
AMOC intensity (Gregory et al., 2005). This is especially true if we are to identify the forcing(s) responsible
for the ongoing AMOC weakening (Bakker et al., 2016; Thornalley et al., 2018).

High-resolution modeling (~10-km ocean, ~50-km atmosphere) suggests a robust relationship between a
weakening AMOC and the decrease in the proportion of Labrador-derived water (Labrador Subarctic Slope
Water (LSSW)) entering the Northwest Atlantic shelf compared to Atlantic-derived water (Atlantic
Temperate SlopeWater (ATSW)) under climate change (Saba et al., 2016). Interestingly, historical instrumental
temperature data suggest a significant reorganization of the Northwest Atlantic slope currents from the
bottom water of the St. Lawrence Estuary (Gilbert et al., 2005). The significant bottom water warming
(+1.7 °C) during the twentieth century was attributed to a decrease in the proportion (72 to 53%) of cool
LSSW entering the Laurentian Channel (Gilbert et al., 2005). This warming was suggested to be unique over
the last millennium (Thibodeau, de Vernal et al., 2010) and the last ~6,000 years (Thibodeau et al., 2013). This
major change in the regional oceanography has severe environmental consequence, as the ATSW is charac-
terized by lower dissolved oxygen content than the LSSW which, in conjunction with localized eutrophica-
tion, is thought to be responsible for the development of the permanent hypoxic zone in the St. Lawrence
Estuary (Benoit et al., 2006; Gilbert et al., 2005; Lefort et al., 2012; Thibodeau et al., 2006; Thibodeau,
Lehmann et al., 2010). As detailed in Figure 1, the recirculation gyre is considered to be controlled by the
strength of the formation of deep water in the Labrador Sea and thus by the strength of the deep western
boundary current (DWBC; Zhang et al., 2007). A strong recirculation gyre keeps the Gulf Stream path well
separated from the coast (Figure 1a) and allows for southern penetration of the LSSW. In episodes of weak
convection characteristic of modern conditions (Rahmstorf et al., 2015), a larger proportion of the warmwater
from the Gulf Stream and ATSW is expected to be found in the Laurentian Channel bottom water (Figure 1b).
It was further suggested that the westward transport of Labrador current water along the continental shelf
edge to the south of the Grand Banks of Newfoundland could significantly contribute to temperature and
salinity variability from the Gulf of St. Lawrence to the Gulf of Maine (Petrie & Drinkwater, 1993). The contri-
bution of AMOC and its component currents on regional temperature changes has led to the usage of ocean
temperature as a surrogate for the AMOC intensities (e.g., the AMOC index; Rahmstorf et al., 2015), which has
been later confirmed by high-resolution models (Saba et al., 2016). Moreover, a linear relationship was
observed between the AMOC intensity and the AMOC index using the CMIP5 climate model ensemble
(Caesar et al., 2018). Based on this relationship, it was estimated that AMOC intensity explains 89% of the var-
iance in the temperature-based AMOC index with other factor having aminor influence on the observed tem-
perature pattern (Caesar et al., 2018). Thus, the observed warming in the western North Atlantic and
consequently in the Laurentian Channel could be linked to the weakened state of the AMOC (Caesar et al.,
2018; Rahmstorf et al., 2015; Thornalley et al., 2018).

Here we present two high-resolution records of oxygen isotope (δ18O) measurements of the benthic forami-
nifera Globobulimina auriculata covering the last century and the last 1,500 years, respectively. We demon-
strate how these records can be used to track subsurface temperature of the western North Atlantic. We
then tested this paleotemperature record against instrumental measurements, new model simulations, the
AMOC index, and other AMOC-related proxies to link our record to the AMOC intensity. As such, we provide
here one of the first robust high-resolution reconstructions of the strength of the AMOC over the last
1,500 years and highlight that the current AMOC is probably at its weakest state. While the uncertainties
are larger when we investigate older periods, we further report statistically heavier δ18O during the Little
Ice Age (LIA), which is interpreted as weaker AMOC conditions during that time. Thus, our record is significant
for the investigation of the potential mechanisms responsible for the last century AMOC weakening.

2. Methods

We investigated the effects of an AMOC reduction on the western North Atlantic subsurface temperature via
freshwater perturbation experiments using two climate models: the University of Victoria climate model
(UVic) version 2.9 and the water isotope-enabled Community Earth System Model version 1.3 (iCESM1.3).
The UVic model is a climate model of intermediate complexity including an ocean general circulation
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model at coarse resolution (3.6 × 1.8°, 19 vertical levels), a single-layer atmospheric energy-moisture balance
model, a dynamic-thermodynamic sea ice model, and biogeochemical components. The freshwater
perturbation experiment analyzed here has 0.05 Sv freshwater discharged into the North Atlantic between
45–65°N and 60–0°W for 100 years. Readers are referred to previous publications for a detailed description
of the experimental setup (Schmittner & Lund, 2015).

The water isotope-enabled Community Earth System Model (iCESM) version 1.3 is a state-of-the-art fully
coupled Earth system model with the capability to simulate the oxygen isotopes in the hydrological cycle
(Nusbaumer et al., 2017; Wong et al., 2017; Zhang et al., 2017; Zhu, Liu, Brady, Otto-Bliesner, Marcott et al.,
2017). The numerical experiments analyzed here are from a recent study (Zhu, Liu, Brady, Otto-Bliesner,
Zhang et al., 2017). The simulations were conducted with a horizontal resolution of 1.9 × 2.5° (latitude × long-
itude) for the atmosphere and land, and a nominal 1° for the ocean and sea ice. The ocean model consists of

Figure 1. Link between the strength of convection in the Labrador Sea, the westward transport of Labrador current, and the temperature across the Laurentian
Channel. Schematic diagram of oceanic circulation near the entrance of the Laurentian Channel in episodes of (a) strong westward transport of Labrador current
(LC) and Labrador Sea slope water (LSSW) with weaker influence of Atlantic temperate slope water (ATSW) derived from the Gulf stream (GS) and (b) weak westward
transport of Labrador current and (c) the 2000–2010 averaged temperature (Levitus et al., 2013) profile along the Laurentian Channel. The oceanography of the
Northwest Atlantic is characterized by the interaction between water masses formed in the Labrador Sea moving southward and the northward flowing Gulf Stream.
The exact location where these two water mass systems meet (yellow dashed lines) is determined by the strength of the northern recirculation gyre (white arrows;
Hogg et al., 1986). The width of the arrows represents the relative strength of the current. White dots indicate the position of cores MD99–2220 and CR02–23, which
were cored close to each other (respectively, at 48°38.320N, 68°37.930W; 320 m and 48°42.010N, 68°38.890W; 345 m). The position of corals raised from the Northeast
Channel where a δ15N time series was recorded is also marked (42°000N, 65°360W, between 275 and 450 m; Sherwood et al., 2011). The temperature profile depicts
the annually averaged position of the slope waters and how they fill the bottom of the Laurentian Channel.
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60 uneven levels with an interval of ~10 m for the upper 200 m. The preindustrial control simulation was run
for 500 years, with forcing fixed at the values from 1850 A.D., and water isotopes in the ocean initialized from
the Goddard Institute for Space Studies interpolated observational data set (LeGrande & Schmidt, 2006). In
the freshwater perturbation experiment, 0.10 Sv of isotopically depleted freshwater was discharged into
the northern North Atlantic (50–70°N) for 100 years. The δ18O signature of the freshwater forcing was set
as�30‰ SMOW (Hillaire-Marcel & Causse, 1989). The simulation of δ18O in the model helps to test our inter-
pretation of the benthic δ18O records in the Laurentian Channel. The response of carbonate δ18O (‰ PDB
(Pee Dee belemnite)) to freshwater forcing is calculated in the model with the simulated ocean temperature
and δ18O (‰ SMOW) of seawater, using the paleotemperature equation of Shackleton (1974).

We then compiled δ18O data (‰ VPDB) measured on the benthic foraminifera G. auriculata in two sediment
cores (CR02–23 and MD99–2220; core details in S1–2) from the Laurentian Channel (Figure 1). The calcareous
shells were picked under binocular and roasted at ~200 °C for about 2 hr in order to eliminate organic matter.
Samples were analyzed with a Micromass Isoprime™ isotope ratio mass spectrometer in dual-inlet mode
coupled to a MultiCarb™ preparation system. The CO2 was extracted at 90 °C by acidification with concen-
trated H3PO4. The analytical reproducibility determined by replicate measurements of internal standard car-
bonate material was routinely better than 0.05‰, which is equivalent to a precision of approximately 0.2 °C.

3. Results and Discussion
3.1. Modeled Effect of Reduced AMOC on Subsurface Temperature

To test the link between AMOC strength and subsurface warming, the AMOC strength was reduced in two
models (iCESM and UVic; see detailed results in S3). Both models used here produced a large-scale subsurface
warming in the northwest Atlantic at 45°N (Figures S1 and S2) with a maximum of 1–3 °C around 50°W. The
AMOC reduction obtained with the UVic model (~17%) is consistent with the most recent estimate of weak-
ening (Caesar et al., 2018; Rahmstorf et al., 2015; Thornalley et al., 2018). This subsurface warming of the
western North Atlantic under weak AMOC conditions is expected from global gridded data set (Dima &
Lohmann, 2010), theory (Petrie & Drinkwater, 1993; Zhang, 2008; Zhang et al., 2007), coarse (this study),
and high-resolution and eddy-permitting models (Brickman et al., 2018; Caesar et al., 2018; Saba et al.,
2016; Thornalley et al., 2018). Thus, the warming can be considered a robust fingerprint of the weakened
AMOC. Moreover, the simulated water δ18O is enriched by about 0.2–0.3‰ in the iCESM (Figure 2). This sug-
gests a major increase in the proportion of δ18O-enriched ATSW in the subsurface water, indicating a change
in western North Atlantic oceanography. This supports previous estimates based on temperature and
dissolved oxygen changes (Gilbert et al., 2005; Thibodeau, de Vernal et al., 2010).

3.2. Influence of Temperature and Water Mass Contribution on the δ18O Record

Due to the strong stratification in the Laurentian Channel, the temperature variation at our coring site reflects
the temperature variation of the slope water entering the channel at Cabot Strait (Gilbert et al., 2005). Thus,
because of the high-sedimentation regime of this region, our cores provide a unique proxy of the slope water
with a resolution of about two years per centimeter. It was demonstrated that isotopic signature of oxygen in
G. auriculata tests is a good proxy of temperature change in the Laurentian Channel over the last century
(Thibodeau, de Vernal et al., 2010). The warming instrumentally observed in the Laurentian Channel bottom
water seems well captured by G. auriculata δ18O in the high-sedimentation box-core CR02–23 samples
(Figure 3), as the δ18O decreases from 1940 to 2000 by about 0.4‰ synchronously with the 2 °C increase
in temperature from the bottomwater of the St. Lawrence Estuary. However, the δ18O of benthic foraminifera
also records the change in the proportion of water masses entering the Laurentian Channel, as these water
masses are characterized by different isotopic conditions. Using the isotopic signature of both water mass
(ATSW = 0.5‰ and LSSW = �0.5‰), it was estimated that the proportion of these water masses is currently
about 50–50% (Thibodeau, de Vernal et al., 2010). Based on dissolved oxygen and temperature, it was
hypothesized that the proportion of ATSW entering the Laurentian Channel was much lower in 1940 at about
30% (Gilbert et al., 2005), which imply an increase of δ18O by about 0.2‰ between 1940 and 2000. We
observed that the δ18O of seawater exhibits an enrichment of 0.2 to 0.3‰ in the subsurface western North
Atlantic in the freshwater perturbation experiment using iCESM (Figure 2), which is coherent with the
magnitude of the increase in the proportion of ATSW entering the Laurentian Channel inferred from
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temperature and dissolved oxygen changes (Gilbert et al., 2005; Thibodeau, de Vernal et al., 2010).
Considering a relationship of about �0.22‰/°C (Ravelo & Hillaire-Marcel, 2007), one would expect a
decrease of �0.44‰ in the δ18O of G. auriculata given the instrumentally measured 2 °C warming in the
bottom water between 1940 and 2000. The increase in seawater δ18O of at least 0.2‰ (from model and

Figure 2. Attributing response of subsurface carbonate δ18O to freshwater forcing in iCESM. (a) Total changes in carbonate δ18O (units: ‰ PDB) along 45°N in
the North Atlantic calculated from modeled changes in seawater δ18O (units: ‰ SMOW) and ocean temperature using the equation of Shackleton (1974), and
contributions from (b) changes in seawater δ18O and (c) ocean temperature. (d) Changes in seawater δ18O (units:‰ SMOW) coming from the direct meltwater effect,
that is, the direct depletion from the depleted freshwater forcing without changes in circulations.

Figure 3. Proxy validation using instrumental data and paleorecords. The AMOC index (Caesar et al., 2018; black dotted line
and smoothed black dashed line; second order, eight neighbors) and instrumental temperature record of Laurentian
Channel bottom water (Gilbert et al., 2005; light blue dots and smoothed line, second order, two neighbors) are plotted for
the 1900–2000 period along the annually resolved coral δ15N record (Sherwood et al., 2011; green dots and smoothed line;
second order, two neighbors) that serves as a proxy of the strength of the northern recirculation gyre and the modal state
of the western North Atlantic circulation. The δ18O of benthic foraminifera from core CR02–23 (Thibodeau, de Vernal et al.,
2010; pink) also shows the same general pattern during that period. The average temperature increase (2 °C) obtained at
400 m deep in the western North Atlantic in our modeled AMOC-weakening experiments is indicated by the gray bracket.
An offset of 1.8 years was found between the lead-based age model and the cesium peak and used to quantify the
uncertainty; this offset is shown on the figure. The analytical uncertainty of the lead-base age model (2σ) was found to be
much smaller than the offset displayed on the figure (S1).
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theory) combined to the expected decrease of about �0.44‰ due to higher temperature should translate
into a decrease of �0.24‰ in the benthic foraminifera calcite. In our core, we observed a depletion of about
0.26‰ between the averaged pre-1940 values and the post-2000 values, which likely support the notion that
part of the temperature effect was masked by the seawater δ18O enrichment due to the change in water
masses. While other potential factors could influence the δ18O locally (mixing event, diffusion), they do not
seem to be strong enough to mask the main signal driven by the AMOC as we demonstrated that (1) the
AMOC influences the temperature of the slope water (section 3.1, and references therein), (2) our site records
the increase in temperature (S4 and Figure 3; Gilbert et al., 2005), and (3) the δ18O at our site records the
increase in temperature (section 3.2; Thibodeau, de Vernal, et al., 2010). We therefore suggest that the
Laurentian Channel benthic δ18O record is strongly influenced by AMOC intensity via the advection of the
western North Atlantic subsurface temperature and water mass dynamics.

3.3. Comparison With Other AMOC-Related Proxies Over the Last Century

An annually resolved δ15N record retrieved from soft corals over the Canadian shelf shows a high degree of
similarity with both the δ18O record and the instrumental record of temperature (Figure 3). This record was
interpreted as an increase in the proportion of ATSW reaching the Canadian shelf, a unique event of the last
1,800 years (Sherwood et al., 2011) and is consistent with the AMOC index (Caesar et al., 2018; Rahmstorf et al.,
2015). The CR02–23 δ18O record presented here is also in agreement with the AMOC index over the 1940–
2000 period despite some leads and lags that can be attributed to either the different resolution and/or time
integration of the respective proxies. The leads and lags could also be caused by the fact that the AMOC index
and our record integrate different signals; the AMOC index estimates the difference in the temperature
anomalies between the subpolar gyre and the Northern Hemisphere while the δ18O captures the tempera-
ture and water mass distribution of the slope water. Despite the potential caveats, the similarity between
our δ18O record, the temperature-based AMOC index, and instrumental data adds to the evidence linking
the strength of the AMOC with the western North Atlantic subsurface temperature (Marcott et al., 2011;
Petrie & Drinkwater, 1993; Saba et al., 2016), which implies that temperature can been used to diagnose
the state of AMOC, as done previously (Caesar et al., 2018; Rahmstorf et al., 2015; Thornalley et al., 2018;
Zhang, 2008). The δ18O of benthic foraminifera in the Laurentian Channel can thus provide crucial informa-
tion to reconstruct AMOC variability during the last century despite the fact that it incorporates both the
temperature and the water mass signal.

The trend of δ18O derived from the benthic foraminifera in long-piston core MD99–2220 (hereafter MD)
during the twentieth century is unique in its magnitude for the last 1,500 years. While the current global
warming trend could be invoked to explain this warming, we stress that neither of the parent water masses
warmed significantly during the same period (Gilbert et al., 2005). Moreover, the absolute value of 1.5–2.0 °C
is much larger than the ~0.4 °C attributed to the global trend (IPCC, 2013). Potential control from the North
Atlantic Oscillation can also be discarded as no correlation with the temperature time series was observed
(Gilbert et al., 2005). While still controversial, the reduction of the AMOC since the late 1930s and the drastic
shift in North Atlantic overturning cell at the beginning of the 1970s was already identified using a global
gridded data set (Dima & Lohmann, 2010). The agreement between the instrumental data, various climate
archives, the two models, and the AMOC index lead us to conclude that the weakening of the AMOC is a
major factor causing the subsurface warming recorded in the sediment cores and corals compiled here.
The evidence presented here thus reinforces previous findings and provides complementary proxy-based
evidence for the twentieth-century AMOC slowdown.

While our record and modeling results strengthen the previous hypothesis regarding the recent weakening
of the AMOC and its consequences in the western North Atlantic, it also highlights some discrepancies such
as the 100-year difference in the beginning of the weakening of the convection in the Labrador Sea
(Thornalley et al., 2018) and the AMOC (Caesar et al., 2018; Rahmstorf et al., 2015). Interestingly, our δ18O
record, interpreted as being controlled by DWBC strength, mimics the AMOC index with a weakening starting
within the last century as opposed to the nineteenth-century decline in the Labrador Sea convection
(Thornalley et al., 2018). While it is conceivable to invoke a potential lag between a reduced convection in
the Labrador Sea and its expression on surface waters, the pre-AD 1200 paleorecord does not seem to exhibit
such lag, as the δ18O matches the proxy for convection in the Labrador Sea (Figure 4; see section 3.5).
However, the amplitude of the recent weakening is unique over this period and so caution should be
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exercised when directly using the paleorecord to find the cause of this
apparent mismatch. Moreover, the potential absence of decline in
Labrador Sea convection during the last part of twentieth century
(Böning et al., 2016) and the last couple of decades (Yashayaev & Loder,
2016) also highlight the need to reconcile estimation of convection in
the Labrador Sea and the integrative AMOC proxies.

While it is possible to use our δ18O proxy in longer reconstruction, it is not
possible to constrain δ18O change solely to a change in the proportion of
water masses as we did for the last century since it is not known if the par-
ent water masses temperature varied. As such, potential temperature
changes of the Gulf Stream (and ATSW) and Labrador Current (and
LSSW) should also be considered as a potential driver of δ18O when analyz-
ing the pretwentieth-century record.

3.4. The 1600–1900 Period

While we observe a stepwise decrease in the AMOC starting in the late
fifteenth century, these variations are within the natural range of variability
of our δ18O record (Figure S6). However, the 1600–1899 δ18O values in core
MD are significantly heavier compared to the pre-1600 record, suggesting
a statistically weaker AMOC during the LIA. Alternative explanations for the
low δ18O during this period include a warming of either parent water mass,
which would be counterintuitive for this time period (Keigwin, 1996).
While the δ18O of the Gulf Stream increased by about 0.1‰ between
1600 and 1900 (Saenger et al., 2011), it would account only for half of
the increase observed in the MD core. Thus, a change in the proportion
of the water masses entering the Laurentian Channel due to a weaker
AMOC cannot be excluded at this point. At about AD 1850–1875, the sharp
depletion in δ18O is synchronous with the sudden decrease in DWBC
intensity and Labrador Sea convection, which might be due to the begin-
ning of the post-LIA ice cap melt and the consequent freshening of the
Labrador Sea surface water (Koerner, 1977; Koerner & Fisher, 1990).
While the MD core might record a weakened AMOC state during most of
the LIA (1625–1850), its stepwise nature, rather than a continual weaken-
ing trend observed in the sortable silt record, highlights a potential discre-
pancy between how the AMOC intensity is expressed in the δ18O record
and how it is translated in current velocity at 2,000-m depth, where the
48JPC and 56JPC cores were retrieved (Thornalley et al., 2018). Here the
potential interference from temperature and salinity changes in the parent
water masses should be investigated in greater detail.

3.5. The Pre-1600 Period

The comparison of the MD core with the AMOC index highlights the
absence of any trend within these two records throughout this period
(Figure 4a). However, the MD record is characterized by more variability
pre-AD 1500. This may be caused by the construction of the AMOC index

based on multiple different proxies of SST in both the western North Atlantic and the subpolar North
Atlantic, whereas the MD core records the subsurface signal at a single location, implying that the AMOC
index integrates a much larger oceanic area and reduces the variability (Rahmstorf et al., 2015). This might
alternatively be explained by subsurface temperature being slightly more sensitive to convection relative
to the surface temperature. This is supported by the agreement pre-AD 1500 between the MD core and
temperature and salinity reconstructions from the Labrador Sea (Figure 4b), which are considered effective
proxies for Labrador Sea convection (Moffa-Sánchez et al., 2014). Thus, the δ18O seems to record most of
the natural variability of the Labrador Sea convection over that period.

Figure 4. Comparison of North Atlantic climate archives covering the last
millennium. (a) Comparison of composite (MD99–2220, red and CR02–23,
pink) δ18O G. auriculata record (smoothed lines; second order, two neigh-
bors) with the AMOC index (Rahmstorf et al., 2015; black line). (b) Similarity of
the composite (MD99–2220, red and CR02–23, pink) δ18O record (smoothed
lines; second order, two neighbors) with reconstructed subsurface tem-
perature (light blue dots) and salinity (black dots) of the Labrador Sea (Moffa-
Sánchez et al., 2014), which are indicative of convection in the Labrador Sea
(smoothed lines; second order, two neighbors). (c) Sortable silt from two
sediment cores retrieved off Cape Hatteras, a proxy of the deep western
boundary current (smoothed lines; second order, two neighbors; Thornalley
et al., 2018). Gray bars highlight the LIA and the twentieth century. The 2σ
value linked to 14C dating of core MD99–2220 (St-Onge et al., 2003) is shown
on the graph.
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4. Implications

Our record adds to the very few existing paleoreconstructions of AMOC for the last millennium and highlights
the statistically weaker state of the AMOC during the twentieth century. While our record substantiates
previous finding, it also provides a unique high-resolution record of western North Atlantic subsurface water
evolution for the last millennium. The data provided here are thus important to disentangle the potential
causes of the twentieth-century weakening, as they record subsurface processes, which is different from
the previously published surface AMOC index (Caesar et al., 2018; Rahmstorf et al., 2015) and reconstruction
of the DWBC (Thornalley et al., 2018). Moreover, the heavy δ18O recorded during the LIA suggests a potential
weakening of the AMOC during that period. These data could be used with temperature reconstructions of
the Labrador Current and Gulf Stream in order to further constrain the implication of the heavy δ18O values
during the LIA. By discussing the similarities and discrepancies between the records during the twentieth
century and LIA we provided new insights on the role of the Labrador Current in both weakening event
but also the need to reconcile the different AMOC record with modern instrumental data. Our δ18O record
thus captures crucial information that will contribute to a better understanding of AMOC variability through-
out the last 1,500 years and its drivers.
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In the originally published version of this article, author Jiang Zhu’s name was spelled incorrectly as Jiang Hu.
In addition, the supporting information files for this article were not posted online. These errors have since
been corrected, and this version may be considered the authoritative version of record.
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