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Dynamics and scaling laws of underwater granular collapse with varying aspect ratios

L.Jing,! G. C. Yang,' C. Y. Kwok,"" and Y. D. Sobral®
' Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

2Departamento de Matemdtica, Universidade de Brasilia, Campus Universitdrio Darcy Ribeiro, 70910-900 Brasilia, DF, Brazil

® (Received 20 June 2018; published 9 October 2018)

We perform coupled fluid-particle simulations to understand the granular collapse in an ambient fluid (in
particular, water) with a wide range of initial aspect ratios. We observe both similar and distinct features in
underwater collapses compared to their dry counterparts. As aspect ratio a increases, the normalized runout
distance follows a piecewise power-law growth, transitioning at @ = 2.5. We associate this transition with the
different growth rates of kinetic energy (with a) in vertical and horizontal directions. The ability of utilizing
available energy for horizontal motion becomes limited when a > 2.5. Moreover, the front propagation during
underwater collapses can be well scaled by using the initial column height as length scale and considering a
reduced gravity (due to buoyancy) in timescale. Under the reduced gravity, the initial fall of tall columns is
found to be ballistic, consistent with dry collapses. On the other hand, underwater collapses (especially for
large a) exhibit unique dynamics due to the presence of water. The eddies generated in water, which may carry
considerable fluid inertia, tend to erode the surface of the granular layer, thus modifying the deposit morphology.
The energy conversion is also affected by the ambient fluid. While water obviously consumes energy from
the granular phase through fluid-particle interactions, it actually increases the efficiency of energy conversion
from vertical to horizontal directions. The latter effect compensates the difference of runout distance between

underwater and dry collapses.
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I. INTRODUCTION

The collapse of granular columns on a horizontal plane
is a popular model case for understanding granular flows,
which attracts attention from theoretical, experimental, and
numerical research communities, fascinated by the rich flow
behaviors it exhibits [1]. The granular collapse problem is
relevant to the transport of granular products in agricultural,
chemical, pharmaceutical, and other industrial applications.
It also has a direct relevance to geophysical situations, such
as the risk assessment of debris flows, rock avalanches, and
submarine landslides [2,3]. Its basic configuration can be
adapted to study granular avalanches on inclines [4,5] and the
segregative behaviors of multidisperse materials [6].

Dry granular collapses, in which the influence of intersti-
tial and ambient fluids is negligible, have been extensively
studied over the last two decades. Laboratory experiments
have identified the initial (height to length) aspect ratio as a
primary factor and revealed simple yet important power-law
relations between runout distance and aspect ratio [4,7-11].
The role of other factors, such as the initial mass, particle size,
and base roughness, were found to be minor [8,10]. Alterna-
tively, particle-based numerical simulations have been used to
reproduce the experimental observations and to add insights
by studying energy dissipations [12,13], the role of particle
properties [14,15], and the validity of granular constitutive
models [16]. From the theoretical point of view, attempts
have been made to apply thin-layer continuum models to this
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problem [17,18], with particular attention on the treatment of
vertical inertia in the collapse of tall columns [19,20]. Non-
thin-layer continuum models that involve a specific scheme
for free-surface tracking are alternatives for the continuum
modeling of granular collapses [21-25]. One of the remaining
challenges is to provide a generalized constitutive model
accounting for the static and flowing behaviors of granular
materials under either steady or transient conditions [1].
Despite the fruitful discussions on dry granular collapses,
the knowledge of immersed granular collapses remains lim-
ited. One major source of difficulty is the complicated in-
terplay among a number of factors that control the col-
lapse dynamics. Such factors include the initial aspect ratio
[26-28], the initial packing density [26,29-34], particle size
[28,35-37], particle density [38], and fluid viscosity [27,28].
Different combinations of these factors can lead to a large
variety of flow regimes, where either viscous dissipation, fluid
inertia, or grain inertia may dominate [27,28,35,39]. Here,
we focus on a single controlling parameter, i.e., the initial
aspect ratio, the role of which still remains unclear in the
immersed situation [26,27]. We restrict the choice of ambient
fluid to water, and compare all underwater cases with their dry
counterparts. This specific choice simplifies the flow regimes
to be encountered (i.e., the fluid-inertial regime [27]), thus
allowing us to concentrate on the role of aspect ratio. In
fact, even this single type of fluid leads to distinct dynamics
during the collapse of shallow and tall columns. To give a
full picture of the problem under consideration, we present
and discuss results on flow dynamics, scaling arguments,
deposit morphology, and the evolution of energy. Particularly,
we associate the transition of scaling laws with the energy
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conversion in vertical and horizontal directions. The internal
flow properties (e.g., particle velocity, fluid velocity, and
energy conversion) are made accessible by employing a cou-
pled continuum-discrete method. The details of our numerical
model are given in Sec. II. Then, typical collapse dynamics
are presented in Sec. III, followed by the quantitative results
regarding scaling arguments (Sec. IV) and energy analyses
(Sec. V). Conclusions are drawn in Sec. VI.

II. NUMERICAL METHODOLOGY
A. Numerical model and validation

We use a coupled continuum-discrete method that com-
bines coarse-grid computational fluid dynamics (CFD) and
discrete element method (DEM). The CFD-DEM model has
the advantage of solving fluid-particle interactions at a low
computational cost, allowing efficient three-dimensional sim-
ulations [40,41]. Details of the CFD-DEM method are given
in Appendix.

Our CFD-DEM coupling is implemented with a combina-
tion of open source C++- libraries, namely, OPENFOAM [42]
and CFDEMPROJECT [41]. We have performed detailed valida-
tions for this CFD-DEM framework against multiple bench-
mark problems in our previous work [43]. Recently, the
CFDEMPROJECT software has been widely applied in the study
of immersed granular flows, such as the sandpile formation in
water [44], the formation of landslide dams in rivers [45], and
immersed hopper flows [46]. In this study, since we do not aim
to reproduce the exact details of any laboratory experiments,
we choose the model setup and parameters based on general
choices in the literature (specified in the next subsection).
As we shall see later in Sec. IV C, our numerical results
have good agreement with published experimental data and
theoretical arguments.

B. Model setup and parameters

The setup of our numerical experiments is illustrated in
Fig. 1(a). The computational domain is a rectangular box of
length L, width W, and height H, filled with fluid. Periodic
boundaries are imposed on the two sides of the domain in
both CFD and DEM, resulting in a quasi-two-dimensional
configuration. In DEM, the bottom of the box is roughened
by gluing a layer of base particles (diameter dj,). A granular
column (particle diameter d,) is generated with an initial
length /; and height 4;, hence an initial aspect ratio a = h;/I;
[Fig. 1(b)]. The coordinate system of this quasi-two-
dimensional problem is shown in Fig. 1(c), with the front
position x ; and top height y, given for time ¢ after the release
of the initial mass. Eventually, the granular mass comes to
a final stop as shown in Fig. 1(d), where the final length [,
and height /1y can be obtained. Note that the runout distance
is conventionally defined as Iy —[;, and h, is measured at
x = 0. The final thickness in the middle region, h’;}, is also
measured at x = 0.5/, for later analyses.

The specific choices of parameters are elaborated as fol-
lows. We use particle diameter d, = 0.001 m, with a slight
polydispersity (Gaussian distribution with standard deviation
of 0.1d,) to avoid layering, initial length /; = 20d,, and
aspect ratio a € [0.5, 8]. The bulk packing density of the
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FIG. 1. Setup and primary notation. (a) The three-dimensional
model in CFD-DEM, with a computational domain of size
LxW x H. Periodic boundaries are imposed in the width direction.
The bottom is roughened by a layer of fixed particles. (b) Initial con-
figuration with initial length /; and height ;. (c) Front position x /()
and top height y,(#) at an arbitrary time 7. (d) Final configuration
with final length [, and height /1 ; (measured at x = 0). The middle
deposit thickness 1’} is measured at x = 0.5/;.

initial columns is around 0.56. The length and height of the
computational domain (L and H) are adjusted for each a to
avoid boundary effects; for instance, we have L = 20/; and
H = 10I; for a = 8. The separation of periodic boundaries re-
mains unchanged (W = 10d,,), which has been verified to be
sufficient to not affect the results. The rough bottom is made of
closely packed base particles with dj, = d,, which is compa-
rable to the roughness size used in previous experiments [8,9].
Since the influence of base roughness was reported to be
minor [8,9], we do not vary d; in this study. However, we
note that our recent work [47] suggested a stronger basal
effect in steady flows if a much wider range of roughness is
adopted (by varying d;, and spacing), which is worth a future
investigation with the current transient configuration.

For each aspect ratio, we run two parallel simulations
under dry (DEM only) and underwater (CFD-DEM) con-
ditions, respectively. In DEM, the particle properties are
consistent for both bulk and base particles: particle density
pp = 2650 kg/m3, Young’s modulus ¥ =5 GPa, Poisson’s
ratio v = 0.24, the coefficient of friction ©, = 0.5, and the
coefficient of restitution e = 0.5. The Young’s modulus is
one order of magnitude smaller than that of actual glass
beads (i.e., 50 GPa), which does not affect the results but
significantly saves computational time [15]. Although the
choice of e is smaller than the measured value (around 0.8)
of glass beads [48], we have verified that varying e leads to
nearly identical final deposits for both dry and underwater
cases, but a moderate value (i.e., e = 0.5) has the advantage of
reducing computational efforts and producing more realistic
interactions between frontal particles and the bumpy bottom.
The friction parameter u, = 0.5 follows general choices. In
fact, a previous study showed that only extreme values of the
contact parameters (¢ — 1 or u, < 0.1) induce substantial
influence on the overall collapse behaviors [14]. In CFD, the
fluid is set as pure water with density oy = 1000 kg/m? and
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FIG. 2. Snapshots of granular collapse with a = 1. From left to right: = 0.05, 0.10, 0.20, 0.50 s. (a)—(d) Dry. (e)—(h) Underwater. The
color map indicates the magnitude of velocity of individual particles (|u;|), while the arrows in the lower panels represent the fluid velocity

field of a central slice. The fixed layer of base particles are not shown.

viscosity pr = 0.001 Pa s. The size of computational cells in
CFD is 2d,, and we have verified the numerical convergence
towards this resolution. The time steps in DEM and CFD are
107% s and 107 s, respectively, such that coupling is made
every 10 DEM cycles [41,43].

III. COLLAPSE DYNAMICS OF SHALLOW
AND TALL COLUMNS

We present two distinct collapse behaviors of shallow
(@a=1) and tall (¢ = 8) columns in Secs. IIT A and IIIB,
respectively. Each underwater case is compared with its dry
counterpart.

A. Collapse of shallow columns

Figure 2 presents the collapse of shallow columns (a = 1)
under dry and underwater conditions. The initial state of both
cases is shown as a dashed profile in Fig. 2(a).

In the dry case, flow starts from the leading edge
[Fig. 2(a)], with a clear boundary (or, a fracture surface)
indicated by the velocity distribution between mobilized and
stationary zones. The flow is localized above the fracture
surface. As the granular flow propagates, its front becomes
thinner, forming a sharp tip, and the flowing layer becomes
shallower towards the surface [Figs. 2(b) and 2(c)]. Since the
front particles have less contact with their neighbors, a small
number of them may become detached from the main flow
[Fig. 2(c)]. Eventually, the flow comes to a halt and the final
deposit exhibits a triangular shape with a slightly concave
surface [Fig. 2(d)].

Compared to the dry case, the underwater collapse has a
similar fracturing process with a longer duration and shorter
runout distance. Several unique characteristics can be ob-
served. The particle flow initiated at the top-right corner leads
to the formation of a vortex in the ambient fluid [Fig. 2(e)],
which propagates in the direction of the overall motion of
particles. A thicker front of the granular flow is built up
followed by a convex surface, which is attributed to the

resistance (i.e., drag force) provided by the fluid [Fig. 2(f)].
The convex front contrasts with the sharp tip in the dry
collapse, and sustains during the deposition stage [Figs. 2(g)
and 2(h)]. The convexity clearly modifies the surface shape of
the final deposit, as seen by comparing Figs. 2(d) and 2(h).
The resistance of fluid also leads to a denser front where no
detached particles can be observed. In the final state where
all particles reach an equilibrium, the vortex continues to flow
away from the granular deposit [Fig. 2(h)].

B. Collapse of tall columns

Figure 3 presents the collapse of tall columns (@ = 8) un-
der dry and underwater conditions. The initial profile (dashed
line) is shown in Fig. 3(a).

The collapse of tall columns is more complicated than
the shallow ones. Three clear stages emerge subsequently,
namely, collapse, heap, and spread [27]. A distinct vertical
fall can be observed in the initial stage [Figs. 3(a) and 3(e)].
The motion of particles near the top surface is similar to
a free fall [10], which will be discussed quantitatively in
Sec. IV B. Horizontal displacement is not significant in this
stage [19]. For this reason, the recirculation of fluid (i.e.,
vortex formation) at the top corner is not significant during
the fall of particles.

The particles then heap up and turn into a shear flow. The
majority of the column mass has been involved during the
heaping, with only a relatively small “dead zone” observed
at the bottom-left corner in both cases [Figs. 3(b) and 3(f)].
The granular heap then starts to spread horizontally. In the dry
case, the frontal region is followed by a significant concave
flow-depth profile [such as x/I; = 4 in Fig. 3(c)]. In contrast,
a much thicker front can be observed in the underwater case,
and some “clouds” of particles are observed on the surface
with the water flow [Fig. 3(g)]. A major eddy starts to develop
in the fluid, as the granular flow evolves from falling to
spreading. The front position under the underwater condition
is significantly behind that of the dry collapse [Figs. 3(c)
and 3(g)].
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FIG. 3. Snapshots of granular collapse with a = 8. From left to right: = 0.05, 0.15, 0.25, 0.50 s. (a)—~(d) Dry. (e)—(h) Underwater. The
color map indicates the magnitude of velocity of individual particles (|u;|), while the arrows in the lower panels represent the fluid velocity

field of a central slice. The fixed layer of base particles is not shown.

In the final configuration, the dry deposit shape is
roughly triangular with a long sharp tip and concave surface
[Fig. 3(d)], while the underwater deposit exhibits a compli-
cated morphology [Fig. 3(g)]. A nonmonotonic surface [see,
e.g.,x/l; =3 — 5inFig. 3(h)] is formed as the loosely packed
particles on the surface are eroded and further transported
by the fluid flow. A typical moment of this phenomenon is
presented in Fig. 4.

IV. SCALING ARGUMENTS AND FINAL DEPOSITS

In the following, we explore more quantitative data over
a wide range of aspect ratios. We present the temporal evo-
lution of the front position and column height in Secs. IV A
and IV B, respectively, and then focus on the scaling laws in
Sec. IV C. In Sec. IV D, we discuss the effects of fluid on the
deposit morphology.

FIG. 4. Transport of particles on the deposit surface by the fluid.
The arrows indicate the velocity vectors of the fluid, while the points
with dark to bright colors represent particles with low (zero) to high
velocities.

A. Front propagation

Figure 5 compares the front propagation in dry (left panels)
and underwater (right panels) cases for varying aspect ratios
a=0.5,1,2,4,8. In Figs. 5(a) and 5(b), physical units are
used for both front position x, and time 7. Comparing the
stoppage time for different a, which is marked by a circle
on each line, it is apparent that the flow duration increases
with a, and that the front propagation is slightly slowed
down in the underwater cases. Note that the stoppage time
is determined with x; only (when the change of x; is no
longer greater than 0.01d,,), which does not account for the
remaining motion of particles behind the front. The kinks in
the deposit stage for dry cases [such as r ~ 0.45 s, a =8
in Fig. 5(a)] are due to the detachment of particles in the
frontal regions (detached particles are excluded when x is
determined). By contrast, the lines for underwater cases are
smoother because all particles remain in the bulk, especially
for taller columns [Fig. 5(b)].

Outstanding features of the front propagation is the
three stages of acceleration, constant velocity, and decelera-
tion [8,10,36]. From Figs. 5(a) and 5(b), we observe a similar
initial acceleration stage for all aspect ratios in both dry
and underwater cases. The constant acceleration is previously
reported as 0.75g in dry experimental collapses [10], which
matches well with the value in our dry cases [Fig. 5(a)].
Interestingly, by using a reduced gravity g’ = (o, — p£)g/0p>
which accounts for the buoyancy effect in the ambient fluid,
the underwater accelerations are also a constant, 0.75g, as
shown in Fig. 5(b). The converged initial behavior of shallow
and tall columns seems to stem from the fact that the initial
propagation of the lower part of a tall column does not interact
with the vertical motion of its upper part. Indeed, in the
initial stage, the energy dissipation due to particle interac-
tions is negligible (see Sec. V C). Moreover, the constant
values of 0.75g and 0.75g’, which are surprisingly coincident,
may be explained by a similar basal resistance provided
by the same rough bottom. After the initial acceleration in
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FIG. 5. Front propagation of dry (left panels) and underwater (right panels) cases, with varying aspect ratios (a = 0.5, 1, 2, 4, 8). Circular
markers indicate the stoppage time when the change of x is smaller than 0.01d,. (a), (b) The front position x; as a function of time ¢ with
physical units. The gray thick lines show the acceleration of 0.75g and 0.75¢’, respectively. (c), (d) The normalized front position (x; —I;)/I;
against the normalized time ¢ /+/h; /g and t //h; /g’ for dry and underwater cases, respectively.

Figs. 5(a) and 5(b), the front propagates at a relatively constant
velocity for each a, until it decelerates and stops. The duration
of the constant-velocity stage increases with a, agreeing with
previous results [10,12].

Next, we explore the front propagation in terms of dimen-
sionless variables. Previous work showed that by choosing a
timescale /h; /g, the total durations of dry granular collapses
become a constant, regardless of the aspect ratio [8,10].
For immersed granular collapses, the timescale /h; /g’ was
shown to be proper [36]. As for the length scale, a common
choice in the literature is to normalize the travel distance
xy —1; by I; [8,12]. Here, we follow this length scale, but
also discuss an alternative scaling later. The scaled results
are shown in Figs. 5(c) and 5(d). In agreement with the
literature, we observe that after normalization the total flow
durations become close for both dry and underwater cases.
The dimensionless duration was previously reported as 3.3
in [8,10], while in our cases it lies around 4. On the other hand,
the normalized form of front position (x; —[;)/l; preserves
the influence of aspect ratio; a higher a leads to a longer
(xp —1:)/1; [8].

Alternatively, we rescale the travel distance by the initial
column height, i.e., (x; —;)/ h;, since the collapse is es-
sentially driven by the initial potential energy of a column.
The use of h; as length scale is also compatible with the
timescale /h;/g or \/h;/g’. As seen in Figs. 6(a) and 6(b),
an outstanding similarity of collapse behaviors is achieved for
a wide range of a, except the very shallow column a = 0.5
which has a very short constant acceleration in the begin-
ning. The constant initial acceleration of 0.75 is recovered
in its dimensionless form in both dry and underwater cases.

Further, we use a velocity scale +/gh or 4/g’h to normalize
the frontal velocity u s, as presented in Figs. 6(c) and 6(d).
The dimensionless front velocities are nearly identical (except
a = 0.5), showing clearly the acceleration, constant-velocity,
and deceleration stages. The rescaled results in Fig. 6 suggest
a large dynamic similarity in the front propagation of different
columns, even with different ambient environments. Noting
that the overall collapse dynamics is distinct for different
aspect ratios (see Sec. III), the similarity of front propagation
shows that the frontal region communicates marginally with
the flow behind it and, therefore, in order to clearly charac-
terize the flow dynamics, other measurements and flow prop-
erties should be studied. Next, we discuss flow thickness and
deposit morphology, following which is a detailed analysis on
energy evolution (Sec. V).

B. Evolution of column height

Another quantity characterizing the dynamic deformation
of collapsing columns is the top height y, at x = 0, which
is defined in Fig. 1(c). Figures 7(a) and 7(b) present y; as
a function of ¢ for a = 1, 2,4, 8 under dry and underwater
conditions, respectively. For smaller a, the variation of y; is
subtle and gradual, while for larger a, a dramatic decrease
in y, is observed, known to be ballistic (free fall) in the
literature [10,11]. The initial free-fall behavior for large a
can be shown clearly with the dimensionless variables. In
Figs. 7(c) and 7(d), the normalized top height y,/ k; is plotted
against t//h; /g and t//h; /g’ for dry and underwater cases,
respectively. The initial falls for ¢ = 4 and 8 match perfectly
with the free-fall trajectory with a dimensionless acceleration
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FIG. 6. Normalized front position and frontal velocity as a function of time for dry (left panels) and underwater (right panels) cases, with
varying aspect ratios (@ = 0.5, 1,2, 4, 8). (a), (b) Normalized front position (x; —/;)/h; against normalized time t/+/h;/g and t/s/h;/g’,
respectively. The gray thick lines show the acceleration of 0.75 in its dimensionless form. Circular markers indicate the stoppage time when
the change of x; is smaller than 0.01d),,. (c), (d) Normalized frontal velocity u ; //gh; and u s //g'h; for dry and underwater cases, respectively.

of 1. The only exception is the a = 8 case in water, where the deforms due to the interaction with fluid, which indicates the
fall deviates slightly after a short period of time. A closer look influence of emerging drag forces along with the development
at Figs. 3(e) and 3(f) suggests that the shape of the top surface of particle-fluid relative velocity.

027
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FIG. 7. Evolution of the height of top surface (y,) measured at x = 0, for dry (left panels) and underwater (right panels) cases with
varying aspect ratios (a = 1,2, 4, 8). (a), (b) y, as a function of # with physical units. (c), (d) The normalized top height y,/h; against the
normalized time ¢/+/h;/g and t//h; /g’ for dry and underwater cases, respectively. The gray thick lines imply the free-fall acceleration of 1
in its dimensionless form.
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FIG. 8. Normalized runout distance (I —1/;)/l; as a function
of the initial aspect ratio @ = h;//;. The laboratory data (indicated
by “lab”) are the results of dry granular collapse from the work
of Lajeunesse et al. [8]. The dashed lines are power-law fittings
for dry cases [see Eq. (1)]. Error bars obtained from five repeated
simulations with varying random seeds are smaller than the symbol
size (hence not shown) for cases a = 0.5, 0.6, 0.8, 1, 6 under both
dry and underwater conditions.

C. Scaling laws with aspect ratio

In this section, we focus on the final runout distance (/)
and deposit thickness (hy). In Fig. 8, (Iy —1;)/1; is plotted
as a function of a. For the dry cases, a piecewise power-law
relation is observed with the change of slope occurring at
around a = 2.5, in agreement with previous experimental and
numerical results [8,10,12]. This may be explained by the
change of flow behavior when vertical inertia becomes signifi-
cant for taller columns (see Sec. III). For the underwater cases,
the scaling relation between (I; —1;)/l; and a slightly tilts
downwards since the ambient fluid tends to provide resistance
to particles through drag forces. A smoother change of slope
is observed ata = 2 ~ 3.

Although we do not aim to reproduce the details of any
existing experiments, the general power-law relations match
with the experimental data from Lajeunesse et al. [8]. Our
results show a shorter runout when a is small, but a slightly
quicker growth as a increases; the agreement at large values
of a is excellent (Fig. 8). Our data for dry cases can be fitted
with the following power-law curves

ly =i [1.29a'%,
T 1840,

4 €05.2.5)
ac25.8] M

in which the exponents for shallow (a < 2.5) and tall columns
(a = 2.5) are 1.28 and 0.92, respectively, slightly larger than
those (1 and %, respectively) reported in [8] and other exper-
imental studies (a recent summary of the scaling laws can be
found in [1]). The discrepancy between our simulations and
the laboratory data may stem from several sources. On one
hand, the treatment of rough bases differs in laboratory tests
and numerical simulations. In [8], the base was lined with a
piece of sandpaper, while we use a layer of fixed particles.
The roughness size is larger in our simulations, which may

(@) . b
100 ’,,»»WD > b
4
- )’
= »
lab
® dry
D> water
107 : :
(b)
100 >P>
b >
N > pPB>> B> o®
= Eb“i’."”'“"'
107 : :

10° 10"
a=h/l;

FIG. 9. Final thickness as a function of the initial aspect ra-
tio a = h;/I;. (a) Normalized deposit thickness & ;/[; measured at
x = 0. The dashed lines are power-law fittings for dry cases [see
Eq. (2)]. The laboratory data (indicated by “lab”) are the results
of dry granular collapse from the work of Lajeunesse et al. [8].
(b) Normalized middle deposit thickness hf;*/ [;, which is measured
at x = 0.5/;. Error bars obtained from five repeated simulations with
varying random seeds are smaller than the symbol size (hence not
shown) for cases a = 0.5, 0.6, 0.8, 1, 6 under both dry and underwa-
ter conditions.

explain the shorter runout distance for shallow columns. A
detailed calibration on particle parameters may be necessary
to reproduce the roughness in the simulations, due to the
difference of material properties, which is however not the
focus of this study. On the other hand, the quicker growth
(i.e., larger exponents) may be attributed to the fact that we
use perfectly spherical particles, without the use of rolling
resistance to account for shape effects [15], which allows a
higher mobility compared to the glass beads in the laboratory.
Moreover, the experimental observations in [8] were made
from the side wall, which slightly restrained the motion of
particles by providing additional friction. In contrast, we use
periodic boundaries at the two sides, leading to a quasi-two-
dimensional situation with no such sidewall effects. Interest-
ingly, the exponent of 0.92 for tall columns in our fitting
matches well with the value of 0.9 £ 0.1 obtained with a wide
channel, where sidewall effect shall be minimized [11].
Figure 9(a) presents the deposit thickness 4 ¢ /1; as a func-
tion of a. Note that as a convention for dry granular collapses
in the literature, hs/[; is measured at x = 0 and is known
as the maximum thickness (which may not be true for very
tall columns with a > 10; see [4]). In underwater cases, our
results show that 2y at x = 0 is usually not the maximum
thickness due to the more complicated deposit morphology

042901-7



L. JING, G. C. YANG, C. Y. KWOK, AND Y. D. SOBRAL

PHYSICAL REVIEW E 98, 042901 (2018)

resulting from fluid-particle interactions. Nevertheless, we
first compare our data of 4 ;/l; with the laboratory measure-
ments [8]. For dry cases, we have

h_f_ 0.87a%%4,
L 0.81a%%,

in which the exponent 0.33 for a > 1 matches well with the
experimental value (% fora > 0.7) in [8]; for a < 1, the fitted
exponent in our cases is 0.84, smaller than the experimental
value of 1. Similar scaling laws from previous studies have
been summarized in [1]. In general, the thickness is slightly
higher in the experiments, which is again attributed to the
side-wall effect that the wall friction tends to restrain the fall
of particles and the shape effect of spherical particles.

For underwater cases, the difference caused by water is
negligible when a < 2, while a significant change occurs
as a reaches 4 [Fig. 9(a)]. As explained earlier, during the
collapse of tall columns, the propagation of eddies in the flow
direction transports particles from the vicinity of x =0 to
further locations, resulting in the substantial decrease of 4/ [;
at x = 0. Since the transported particles tend to settle around
the middle region of the deposit [see Fig. 3(h)], we compare
additionally the final deposit thickness at x = 0.5/, which is
denoted by A';. As seen in Fig. 9(b), h'} is generally higher
in underwater cases, which becomes obvious when a > 1 and
increases significantly when a > 4.

ac[05,1)
a < [l,8] @)

D. Deposit morphology

In the existing studies on dry granular collapses, [y and & ¢
are sufficient to represent the deposit morphology [8,10,11].
However, the presence of an ambient fluid may substantially
modify the shape of a deposit surface, owing to the com-
plicated fluid-particle interactions, such as eddy formation
and surface erosion. Here, we illustrate the modified sur-
face morphology with a direct comparison between dry and
underwater cases (Fig. 10). When a = 1 and 2, the deposit
shapes are nearly identical in dry and underwater cases. When
a = 4, 6, 8, the thickness at x = 0 declines, and more material
is deposited in the middle areas. For tall columns, the footprint
of surface erosion by fluid eddies (Fig. 4) can be found in the
morphology of their deposit surface (Fig. 10).

V. ENERGY CONVERSION AND DISSIPATION

As addressed earlier, the data of runout distance and
deposit thickness can hardly provide a full picture of the
complicated collapse dynamics especially when an ambient
fluid is involved. In this section, we define different forms of
energy (Sec. V A) and then detail their evolution for shallow
(Sec. VB) and tall (Sec. V C) columns. Furthermore, we dis-
cuss the energy transformation from potential to kinetic forms
during the collapse of columns (Sec. VD) and the energy
conversion from vertical to horizontal directions (Sec. V E).

A. Different forms of energy

The temporal evolution of kinetic energy has been
used to understand the dynamics of dry granular col-
lapses [2,12,13,16,27]. As a collapse occurs, the dynamics of
the whole system is driven by the drop of potential energy of

2 dry
1¢ — — — water
0\\

2-
1
o\\kx‘

\2-
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O 1
2.
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0
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0 — ‘ ‘
0 5 10 15 20

FIG. 10. Comparison of deposit morphology between dry and
underwater cases. From top to bottom: a = 1, 2, 4, 6, 8, respectively.

particles (assuming a negligible change of potential energy in
the fluid). The total potential energy E, is defined as

np

Ep :Zmighciv 3)
i=1

where m; and h. are the mass and centroid height of a
particle i, respectively, and n, is the total number of particles.
Since E, is a function of time, ie., E, = E,(t), we can
define the total initial potential energy as Ey = E,(0). The
cumulative energy converted from potential energy at time ¢
is then

AE, = Ey— E,(1). “)

During a collapse, the change of potential energy, AE,,
is either transformed into the kinetic energy of particles and
fluid, or it is dissipated due to inelastic particle interactions
(i.e., sliding and damping) and fluid viscosity. Here, we ignore
the elastic potential energy stored at contacts and do not
calculate the nontrivial details of energy dissipation. Instead,
we explore the energy dissipation by comparing AE, with
the total kinetic energy gained in particles and fluid, i.e.,
E} and E,{ , such that the cumulative dissipated energy is
approximately

E;=AE,—E’ —E] )

with E/ and E/ given by

1 &
El = 3 ;mi|ui|27 (6a)
; nfe
Jo_ 2
Ef = 5Vie ) prlugl, (6b)

i=1
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FIG. 11. Evolution of normalized energy for @ = 1 under dry (left panels) and underwater (right panels) conditions. (a), (b) Total kinetic
energy of particles (and fluid, if applicable), compared with the energy converted from total potential energy. (c), (d) Partial kinetic energy of
particles (and fluid, if applicable) computed from the velocity components in x and y directions. The triangular markers indicate the time when

kinetic energy becomes negligible (i.e., smaller than 107 Ey).

where |u;| is the magnitude of the velocity of particle i (of
which there are n,), |uy| is the magnitude of local fluid
velocity, and Vy. is the volume of a fluid cell (of which
there are nys.). Note that the rotational kinetic energy is
ignored in this analysis, which has been found to be minor
during granular collapses [2]. Indeed, we have verified that
the rotational kinetic energy is typically smaller than 1073 E,
in all present cases.

Next, to distinguish the different stages where a redirection
of the main flow takes place, “partial” kinetic energies are
calculated by considering horizontal and vertical velocity
components [12,16,27]. For particles, we have

np

1

Ef =5 > mag, (7a)
i=1
1 &

E} = 3 Zm,-vf, (7b)
i=1

where u; and v; are velocities of particle i in x and y
directions, respectively. For fluid, we have

nye

1
Ef, = 7 Vre Y psug, (82)
i=1
1 nfe
El, = EVchpfvﬁ, (8b)
i=1

where u ¢ and vy are local fluid velocities in x and y direc-
tions, respectively. Note that the partial kinetic energy based
on transversal velocities (in z direction) is negligible for both
particles and fluid (typically smaller than 1072 E).

B. Energy evolution of shallow columns

Figure 11 presents the energy evolution for @ = 1 columns
under dry (left panels) and underwater (right panels) condi-
tions. All energy forms are normalized by the energy scale Ey,
such that their values represent a fraction of the total initial
potential energy.

The first row of Fig. 11 presents the conversion from
potential energy to kinetic energy in particles and fluid. In
both dry and underwater cases, only about 40% of the initial
potential energy is involved in the dynamic process since
the center of mass of the shallow columns falls a relatively
small distance (see Fig. 2). The kinetic energy, which rep-
resents a small portion of the initial potential energy (less
than 10%), increases to a peak at around 1 characteristic
time, and then fades away at around 4. By comparing dry
[Fig. 11(a)] and underwater cases [Fig. 11(b)], the overall
energy dissipation (E;) evolves similarly. Between the fluid
and particles [Fig. 11(b)], energy transfer takes place from
particles to water through interactions, resulting in a lower
particle kinetic energy (E;) along with the increase of fluid
kinetic energy (E ,{ ).

The second row of Fig. 11 shows the partial kinetic
energy in x and y directions. In both dry and underwater
cases, the vertical and horizontal movements develop roughly
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FIG. 12. Evolution of normalized energy for @ = 8 under dry (left panels) and underwater (right panels) conditions. (a), (b) Total kinetic
energy of particles (and fluid, if applicable), compared with the energy converted from total potential energy. The square markers indicate the
time when granular dissipation starts. (c), (d) Partial kinetic energy of particles (and fluid, if applicable) computed from the velocity components
in x and y directions. The triangular markers indicate the time when kinetic energy becomes negligible (i.e., smaller than 107 Ej).

simultaneously, which correspond to the fracturing behavior
in Fig. 2, where particles slide down a self-formed slope that
is associated with their frictional property [11]. By closely
comparing E/. (or E/) and E, (or E,fy), the partial kinetic
energy in the vertical direction evolves faster and reaches its
peak slightly earlier, while the peak in the horizontal direction
is higher. The vertical energy evolution becomes insignificant
(but not zero) after around 2 characteristic times, in contrast
to the horizontal evolution that remains active for a longer
duration. The time when E], and E;, completely vanish is
roughly the same [see the triangular markers in Figs. 11(c)
and 11(d)]. The observations indicate that for the small aspect
ratio a = 1, the horizontal spreading is more significant than
the vertical falling, albeit both processes are present until the
end of the flow.

C. Energy evolution of tall columns

Figure 12 presents the energy evolution for @ = 8 columns
under dry (left panels) and underwater (right panels) condi-
tions. The first row compares the change of total potential
energy (AE)), total energy dissipation (E,;), and the total
kinetic energy of particles (E/) and fluid (E ,{ ), from which
we observe several distinct features related to the high aspect
ratio. First, around 90% initial potential energy is utilized
during the collapse of tall columns. As seen in Fig. 3, nearly
all particles have been mobilized within the initial fall stage,
and the relative height drop of the overall center of mass is
substantially larger than that of previous shallow columns.
Second, more kinetic energy is gained in the system when

compared to the shallow columns. The overall energy dissi-
pation E; is much lower in Fig. 12(b) than in Fig. 12(a), and
the motion of fluid continues for a long time after the granular
pile comes to a equilibrium; see the vortex propagation in
Fig. 3(h). In other words, a considerable portion of energy
has been transferred to the fluid, which is then dissipated
gradually by viscosity.

Another outstanding feature of the collapse of tall columns
is the delay of energy dissipation, as seen in Fig. 12(a).
In the initial stage where particles mainly fall freely under
gravity [Fig. 7(c)], E4 remains close to zero (and E{ over-
laps with AE,) for around 0.2 characteristic time [see the
square marker in Fig. 12(a)]. It indicates that in this stage
particles fall in block, and the initial potential energy is mainly
converted to the kinetic energy of particles; particle interac-
tions only dissipate a negligible amount of energy. Energy
dissipation starts when falling particles impact the bottom,
companioned by a more substantial horizontal spreading [see
such a moment in Fig. 3(b)].

In the underwater case [Fig. 12(b)], such a dissipation-free
stage is not seen by simply comparing AE, and E! . Energy is
dissipated since the start. However, it is not clear whether this
dissipation is due to particle interactions or fluid viscosity. To
understand this, we define a reduced potential energy E, and
its cumulative change AE ;,, which are

np

E, =Y migha, (%a)
i=l

AE), = E/(0) — E,(1), (9b)
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where ¢’ = (p, — p5)g/pp, which accounts for buoyancy ef-
fects when an ambient fluid is present. The difference between
AE, and AE’ may be considered as the energy transferred
from particles to fluid due to the work done by buoyancy
forces. Although we do not have an estimation of the work
done by drag forces, it is expected to be negligible in the initial
stage when the particle-fluid relative velocity remains small.
The evolution of AE ;, is plotted in Fig. 12(b), which overlaps

the initial evolution of Ekp for 0.3 characteristic time (the
square marker). Therefore, in this initial stage, particles do not
consume energy, but only transfer energy to the surrounding
fluid; the initial energy dissipation is purely owing to fluid
viscosity. The zero-dissipation stage for particles shows that
the underwater case is similar to its dry counterpart, as long
as the buoyancy effect is accounted for (by g’) and the drag
force is not dominant, which reinforces our arguments in
Figs. 6 and 7. Furthermore, when E} starts to deviate from
AE, it means that some extra energy is consumed by either
particle-particle interactions or other forms of fluid-particle
interaction (e.g., drag force).

The second row of Fig. 12 presents the evolution of partial
kinetic energy for a = 8. In both dry and underwater cases,
Efy increases immediately towards a higher peak, while the

development of Ej_is significantly delayed, with a lower
peak. The delay corresponds to the initial free-fall stage,
following which are the heap and spread stages where E!_
develops and vanishes, respectively (see also Fig. 3 for the
three stages). Notably, E{ vanishes much earlier than Ej,
(see triangular markers), which is in contrast to the case when
a = 1. This indicates that in the later stage only horizontal
movements are present. Therefore, the distinct peaks of E!
and E}, clearly describe the three typical stages, i.e., collapse
(before the first peak), heap (between peaks), and spread (after
the second peak). In addition, in the underwater case, there is
a lag between the kinetic energies of the fluid and particles,
because the motion of the fluid is driven by particles. The peak
of E ,{x is higher than E ,{v, as the horizontal motion of the fluid
is more significant.

D. Energy dissipation: Effective coefficients of restitution

The different energy forms can help explain the scaling
laws reported in Sec. IV C. In particular, the piecewise runout
scaling in Fig. 8 can be linked to the energy evolution in the
vertical and horizontal directions. Such an analysis has been
reported in two-dimensional dry granular collapses [12]. Here,
we analyze the energy dissipation and conversion in both dry
and underwater situations.

The difference in energy dissipation (E;) shown in Figs. 11
and 12 suggests that the conversion from potential to kinetic
energy differs for tall and shallow columns. The conver-
sion efficiency seems to depend on the initial aspect ratio
a. Moreover, for tall columns, energy dissipation through
particle interactions only starts when free-falling particles
reach the bottom and then are redirected to the horizontal
direction (Fig. 12), which indicates a different dependency on
a for energy forms in different directions. Therefore, here we
introduce two effective coefficients of restitution (¢, and €,)
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FIG. 13. Effective coefficients of restitution as a function of
aspect ratio. (a) Dry. (b) Underwater.

to account for the energy loss in particles, respectively, in x
and y directions. At any time ¢, we define

(EL) (1 [

€x = E_k:’ <Elfx> = ;/0 Ekpxdt’ (loa)
(E4) L

€y = EOV ) (Elfy> = ;/(; Elfydt’ (10b)

which gives an average picture of the energy dissipation over
a given duration ¢. A higher value of €, or €, indicates
less energy loss, thus a higher efficiency of conversion from
potential to kinetic energy.

Figure 13 presents €, and €, over the whole flow duration
as a function of a. In the dry case [Fig. 13(a)], €, increases
with a and tends to saturate at around 0.05, while €, continues
to increase with a. This result agrees with the previous study
by Staron and Hinch [12]. The different trends of €, and €,
may explain the change of slope in the runout scaling in Fig. 8.
When a increases, more kinetic energy can be obtained in
the vertical direction, following an exponential growth [12].
This is reasonable because a larger a means a higher initial
potential energy. By contrast, the energy conversion in the hor-
izontal direction does not increase infinitely with a; indeed, its
increase slows down when a > 2 and saturates when a = 6,
which is attributed to the fact that as the vertical momentum
increases, the energy loss increases (due to harder impact)
during the transition from vertical to horizontal movement,
limiting the amount of momentum remained for particles to
spread horizontally. As a result, the final runout distance I
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FIG. 14. Peak kinetic energy of particles as a function of aspect
ratio. (a) Dry. (b) Underwater. (c) The ratio between peak kinetic
energies in horizontal and vertical directions.

increases slower with a after a certain point (roughly, a =
2.5), leading to the piecewise runout scaling in Fig. 8.

The situation in the underwater case is similar [Fig. 13(b)].
In general, both €, and €, are lower in water than in air, which
can be viewed as a damping effect from the ambient fluid that
retards the involvement of vertical inertia. The upper limit
of €, is 0.03 in water, lower than the value of 0.05 in air.
However, the difference is not as significant as it appears in
Fig. 12 when comparing the peaks of kinetic energy, probably
due to the time averaging in the definition of €, that smears
out the details of the unsteady collapse dynamics. In order to
clearly characterize the effect of fluid in energy conversion,
we further compare the peaks of Ej, and Ej, in the next
subsection.

E. Energy conversion between vertical and horizontal directions

The dynamics of the unsteady collapse process may be
better described by the peaks of E; and E,{’y Figure 14

presents max E, and max E{, as a function of a. For dry cases
[Fig. 14(a)], both peaks increase with a. When a remains
small, max £, and maxEy, are similar, with the former being
slightly higher, since the shallow columns tend to slide down
and spread instantaneously. When a is greater than 2.5, the
peak of E ,fy overtakes E ,fx, and the difference increases with
a, which is due to the increasingly significant vertical inertia
in the collapse stage of tall columns. Again, the crossover
point a = 2.5 agrees with the transition of runout scaling in
Fig. 8. For underwater cases [Fig. 14(b)], the overall trend is
similar, and the crossing over occurs at around a = 2 and 3,
agreeing with the smoother transition in Fig. 8. Both maxE!
and max E kpv are lower than those in dry cases. However, it
is interesting to observe that the underwater cases exhibit a
smaller difference between maxEy, and maxEY,, compared
to the dry cases. In other words, the energy conversion from
vertical to horizontal directions seems to be more efficient
in water especially for higher a. To quantify this efficiency,
we show the ratio maxEj /maxEj, as a function of a
[Fig. 14(c)].

As seen in Fig. 14(c), when a is small, the ratio
maxE] /maxE[, is mainly greater than 1, and increases
slightly with a. There is no clear trend differing dry and under-
water cases. This is the fracturing regime (see Fig. 2) where
the kinetic energy grows in both horizontal and vertical direc-
tions, with the former slightly more significant [see Figs. 11(a)
and 11(b)]. For large values of a, at which distinct free-fall and
spread stages emerge, the energy conversion from vertical fall
to horizontal spread becomes clear [see Figs. 12(c) and 12(d)].
In this regime, maxE ,fx /max E ,fy is smaller than 1, which may
be considered as the efficiency of energy conversion from
vertical to horizontal directions. We observe from Fig. 14(c)
that, for tall columns, the presence of an ambient fluid leads
to more efficient energy conversions, which may compensate
the difference between underwater and dry collapses; indeed,
although the collapse dynamics in water differs significantly
from the dry cases, the difference of runout distance between
the two situations is not as large as expected (see Fig. 8).
This finding is reminiscent of the fluid-inertia regime reported
in [27], where immersed collapses may even run longer than
the dry counterparts in some circumstances. Our explanation
to this observation is threefold. First, in fluid, a lower vertical
momentum is obtained during free fall, which leads to a softer
impact on the bottom, thus dissipating less energy through
particle collisions. This can be viewed as a “cushioning effect”
of the fluid. Second, a thicker granular layer can be mobilized
in water than in air, due to the “contact reducing” effect
of interstitial fluids [27]. Indeed, by comparing Figs. 3(c)
and 3(g), we observe that while the dry flow propagates with
a higher frontal velocity, the velocity distribution is more
uniform (and over a larger area) in the underwater flow. In
other words, when immersed, the flow has a higher ability
to utilize the available energy for horizontal spreading by
putting more particles in motion. Finally, as particles spread
horizontally, a considerable vortex structure develops in the
flow direction, eroding the surface of the granular deposit
and transporting particles further downstream (see Fig. 4),
which alleviates the energy “loss” in particles that goes to the
surrounding fluid.

042901-12



DYNAMICS AND SCALING LAWS OF UNDERWATER ...

PHYSICAL REVIEW E 98, 042901 (2018)

VI. CONCLUDING REMARKS

In this paper, we perform coupled fluid-particle simulations
to understand the dynamics and scaling laws of underwater
granular collapses. The presence of fluid provides resistance
to the flow of particles, leading to a shorter runout and thicker
front. However, the influence of water becomes complicated
for tall columns due to the interplay between particles and
the ambient fluid. The eddies generated in water tend to
propagate near the surface of the granular layer, which may
carry sufficient inertia to erode the deposit surface.

In dry cases, we reproduce the power-law dependency of
(lf =1;)/1; and h/I; on a as reported in the literature. The
exponent of the power law for tall columns matches with
previous experimental measurements from a wide channel,
highlighting the role of sidewalls in the granular collapse
problem. The change of slope in the scaling law of (I, —
[;)/1; occurs at around @ = 2.5. In underwater cases, we find
that the scaling law of (I; —1;)/[; tilts slightly downwards,
with a smoother transition, while the dependency of hy/!;
is more complicated under water; due to the fluid-inertial
transport of particles, i ¢/I; drops significantly when a > 4,
while the middle-region deposit thickness (h’}‘ /1;) increases
accordingly.

The relevant length scales and timescales are explored in
both dry and underwater situations. Using 4; and /h;/g (or
Jhi/g"), we observe a roughly converged three-stage evolu-
tion (especially when a > 1), which includes an initial accel-
eration with a constant dimensionless acceleration of 0.75, a
constant-velocity steady state, and a deceleration phase. The
initial fall of tall columns is shown to be ballistic, with a
dimensionless acceleration of 1. These results suggest that
the reduced gravity g’ = (p, — ps)g/pp is a proper scaling
to account for the buoyancy effect when an ambient fluid is
present. In fact, g’ also applies to dry cases, where the density
of fluid (air) is negligible.

To understand the effects of a on these scaling laws, we
study in detail the energy conversion and dissipation. As
a increases, we find an initial stage with negligible energy
dissipation, showing that the upper part of a falling column
does not interact significantly with its lower part during the
free-fall stage, which may explain the nearly identical initial
acceleration in the frontal region. The transition of the piece-
wise power-law relation between (I —/;)/l; and a is also
explained using energy arguments. With the increase of a,
more initial potential energy is converted into kinetic energy
in the vertical direction; however, the growth of horizontal
energy slows down when a > 2 and saturates when a > 4,
because more energy is dissipated when a tall column impacts
on the bottom. The bifurcation of the growth rates in two
directions occurs roughly at a = 2.5, leading to the change of
slope in the runout scaling at the same point. Finally, we find
that the presence of water increases the efficiency of energy
conversion from vertical to horizontal directions by mobiliz-
ing more particles in the flow direction, thus compensating the
reduction of runout distance in underwater cases.

This work focuses on a single type of ambient fluid, which
is water. By varying fluid properties (viscosity and density),
different flow regimes are expected to emerge [27,35,39]. On
the basis of current findings, we will study the relevant scaling
laws in different regimes in the future.
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APPENDIX: NUMERICAL METHOD

In this Appendix, we present the governing equations
(Appendix A 1) and the fluid-particle interaction model (Ap-
pendix A 2) for the CFD-DEM method.

1. Governing equations

In CFD we solve the local-averaged Navier-Stokes equa-
tions [40,41,49]

a
E(af,ofuf)+V (afprusuy) = —a;Vp+oarV-Ty

t+arprg — 1L, (Ala)

do

B_Zf +V - (apup) =0,
where «  is the volume fraction of fluid in each computational
cell (i.e., porosity), uy = (s, vy, wy) is the velocity vector
of fluid, p is fluid density, p is pressure, Ty = pus(Vuy +
Vu};) is the extra-stress tensor of a fluid with viscosity
wy, £, is the interaction force acting from the fluid phase
to the particulate phase (given in the next subsection), and g
is the gravitational acceleration vector.

In DEM, the motion of particles is governed by the New-

ton’s second law [41]

(Alb)

du; i c f

miE = ;F” +Fl +mig, (Aza)
dw; i ¢

W =3, (A2b)

where w; = (u;, v;, w;) denotes the translational velocity of

particle i, n{ is the number of contacts on particle i, Ff, is

the contact force on particle i by particle j or a boundary, Flf
is the particle-fluid interaction force acting on particle i, ;
is the particle angular velocity, I; is the moment of inertia,
and M, is the moment acting on particle i by particle j or a
boundary.

The contact force Fj; is calculated using the Hertz model,
which takes Young’s modulus Y, Poisson’s ratio v, the coef-
ficient of friction w,, and the coefficient of restitution e as

input parameters (see [50] for details). The fluid force F‘if
includes buoyancy force Ff’ =Vi(=Vp+V . .Ty), where V;
is the volume of particle i, and drag force F;‘g (see later).

2. Fluid-particle interactions

The fluid-particle interaction is considered as a momentum
exchange term in CFD,

fr = Kpr(uy — (u,)), (A3)
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where (u,,) is the cell-based average particle velocity and K ,
is given by

Y F

SR Sl S— A4
Vieluy — (up)] (A9

Kpf

where V. is the volume of each computational fluid cell,
and Fid is the magnitude of drag force acting on individual
particles in DEM.

We calculate the drag force using the Di Felice model [51]

F{' = §Capsmd;lus — wilay ™, (AS)

where d; is the diameter of particle i, Cy is drag coefficient,
and x is a corrective coefficient. Both C; and x are a function
of the particle Reynolds number Re,,:

48 \*
C;=1063+—|, (Aba)
VRe,
1.5 —log,oRe,)?
x =3.7-0.65 exp|:—( °2g1° ) } (A6b)
with
diluy —w
Re, = w_ (A7)
Ly
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