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Spatial variability of excess mortality 
during prolonged dust events in a high-density 
city: a time-stratified spatial regression 
approach
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Abstract 

Background: Dust events have long been recognized to be associated with a higher mortality risk. However, no study 
has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city.

Methods: In this study, we applied a spatial regression approach to estimate the district‑level mortality during two 
extreme dust events in Hong Kong. We compared spatial and non‑spatial models to evaluate the ability of each 
regression to estimate mortality. We also compared prolonged dust events with non‑dust events to determine the 
influences of community factors on mortality across the city.

Results: The density of a built environment (estimated by the sky view factor) had positive association with excess 
mortality in each district, while socioeconomic deprivation contributed by lower income and lower education 
induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model 
comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. 
The high‑risk areas with higher increase in mortality were located in an urban high‑density environment with higher 
socioeconomic deprivation.

Conclusion: Our model design shows the ability to predict spatial variability of mortality risk during an extreme 
weather event that is not able to be estimated based on traditional time‑series analysis or ecological studies. Our spa‑
tial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant 
data are available.

Keywords: Spatial analytics, Extreme weather event, Dust mortality, Spatial variability, Community vulnerability, 
Geospatial modelling
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Background
Dust events are extreme pollution events that can induce 
adverse health effects in global cities, as studies have found 
for major cities in the United States, Australia, Asia and 
Europe [6, 12, 16, 31, 34, 40, 49]. Previous studies exten-
sively applied temporally stratified models to quantify 
mortality risk during dust events, with promising results 

[31, 40, 49]; for example, one study showed that extreme 
events can lead to a 16% increase in dust mortality in a 
downwind city [31]. However, there has been no study to 
investigate the spatial variability of mortality risk during 
a prolonged dust event. In contrast to a lack of research 
on this issue, extensive environmental health studies 
on extreme weather and pollution have pointed out the 
necessity of predicting spatial variability of mortality and 
morbidity [2, 20, 23, 27, 29], for the purpose of measur-
ing community vulnerability and public health planning. 
Estimating community vulnerability is particularly impor-
tant to a high-density city, as the urban morphology of a 
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high-density city influences air pollutant dispersion [58], 
resulting in extreme conditions with severe health risk, in 
particular at the district level. The prolonged effect of dust 
combined with urban morphology is expected to induce 
an additional effect on mortality in a downwind city.

In order to measure community vulnerability, both 
governmental health guidelines and previous studies have 
suggested investigating the environmental and socioeco-
nomic factors that can additionally elevate the health risk 
[11, 17, 19, 24, 38, 41, 42]. Some studies have also pro-
posed combining significant environmental and socio-
economic factors to pinpoint the hotspots of health risk 
[26, 44, 47, 50]. In order to enhance health planning to 
minimize adverse health effects of prolonged dust events, 
this study develops a set of protocols for (1) evaluating 
potential environmental and socioeconomic factors that 
can elevate mortality risk during a prolonged dust event, 
(2) including spatial influences of neighboring commu-
nities to adjust for environmental and socioeconomic 
effects on mortality risk, and (3) locating communities 
with higher mortality risk for disaster risk management 
during future dust episodes. The approach developed 
from this study could be applied to other regions where 
data on city-specific environmental and socioeconomic 
factors are available.

Urban and climate settings of Hong Kong
Hong Kong is a typical high-density city located in a sub-
tropical region. There have been ten reported days with 
dust events in the past decade in Hong Kong, including 
2  days in 2006 (Apr 16–17, 2006), 4  days in 2009 (Apr 
27–30, 2009), and 4 days in 2010 (Mar 23–26, 2010) [53, 
54]. Two of these three dust events (8 of 10  days) were 
prolonged dust events with ≥3 consecutive dusty days. 
Significant mortality risk was observed on those days, 
with 7% increase in all-cause mortality and 7% increase 
in cardiorespiratory mortality during a dusty day. There 
was also significant air pollution during those dusty days, 
with average  PM10–2.5 concentrations 147.6% higher than 
the days without dust. There is also an extreme popula-
tion pattern in Hong Kong. The population density of 
Hong Kong is approximately 6500 persons per  km2. The 
significant clustering of the urban population in Hong 
Kong potentially introduces significant intra-urban dif-
ferences in mortality risk, due to the built environment 
and demographic structure [13, 33, 52].

Methods
Evaluation of community and environmental 
characteristics related to mortality risk
Mortality for dusty days and non-dusty days was calcu-
lated for each of 287 tertiary planning units (TPU), which 
is the smallest spatial unit in Hong Kong with mortality 

and census data available, in order to measure region-
specific mortality risks across the entire territory of Hong 
Kong. The all-cause mortality dataset for dusty days was 
retrieved from mortality data of the Hong Kong Census 
and Statistics Department, based on 8 dust days (Apr 
27–30, 2009 and Mar 23–26, 2010) associated with pro-
longed dust events (≥3 consecutive dust days), and by 
excluding all traffic-related deaths (ICD-10 codes V01–
V99) during these prolonged dust episodes. Mortality on 
non-dusty days for each TPU was used to represent the 
baseline mortality. Deaths of the same weekday of four 
control weeks before and four control weeks after each 
dusty day were used to represent the mortality on non-
dusty days, in order to minimize bias of seasonality and 
weekday/weekend effect; and this was divided by the 
numbers of control weeks for the purpose of comparison 
with the total mortality on all dusty days in Hong Kong.

To evaluate the potential community and environ-
mental factors that influence mortality risk during a dust 
storm in Hong Kong, multivariate linear regression was 
firstly applied to estimate total mortality during the pro-
longed dust events. Six variables were included as inde-
pendent variables to evaluate the environmental and 
socioeconomic effects on mortality in each TPU: (1) sky 
view factor (SVF), (2) percentage of vegetation, (3) land 
surface temperature (LST), (4) percentage of low educa-
tion, (5) percentage of low income, and (6) percentage of 
elderly:

where total mortality is the total mortality within 8 days 
of each TPU, average SVF is the average SVF of each 
TPU, % vegetation is the percentage of vegetation of each 
TPU, average LST is the average LST of each TPU, % low 
education is the percentage of low education popula-
tion of each TPU, % low income is the percentage of low 
income population of each TPU and % elderly is the per-
centage of elderly of each TPU.

Urban geometric characteristics can be depicted by dif-
ferent parameterization indices such as building height, 
building density, frontal area index (FAI), planar area 
index (PAI), height/width ratio (H/W), and SVF. The 
SVF is an indicator representing combinations of build-
ing height, building density and topography [22]. The 
SVF is a ratio to measure the openness of a particular 
area within an urban setting and in general a terres-
trial landscape, which has significant implications for 
the incoming and outgoing radiation [9]. SVF has been 
widely used in urban climate research [15, 21, 25, 28, 35, 
45, 56], especially to improve spatial models of air pollu-
tion prediction [18, 39]. In this study, the SVF was used 

Total mortality = SVF + % vegetation + average LST

+ % low education + % low income

+ % elderly
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to locate high-density environments that can potentially 
trap air pollutants and prohibit air ventilation during 
prolonged dust events. Average SVF of each TPU was 
calculated based a raster-based SVF image of Yang et al. 
[56] derived from airborne Lidar data (Fig. 1). The SVFs 
at both rooftop and ground levels of this raster-based 
image were estimated and the spatial resolution of the 
airborne LIDAR data is 1  m. The building GIS data of 
Hong Kong were used to calculate the SVF for vertical 
facets using the planar area index (PAI) and the frontal 
area index (FAI).

Vegetation coverage (measured in percentage) can 
potentially influence or absorb ground-level air pollution 
in each TPU. In this study, the territory-wide vegetation 
coverage was estimated using the land use and land cover 
map derived from the Planning Department of Hong 
Kong (Fig. 2).

Land surface temperature (LST) images are com-
monly used to represent spatial variations of surface tem-
perature that can affect health risk [29, 36, 55]. Landsat 
Thematic Mapper TM 5 on March 25, 2010 was used 
to estimate LST to demonstrate typical temperature 
variations during prolonged dust events in Hong Kong. 

Average LST (Fig.  3) was estimated using an improved 
urban emissivity model based on the SVF [57].

Lower education is associated with higher social vul-
nerability during air pollution events [32, 52], and lower 
income is related to low socioeconomic status, which 
may induce adverse health effects on a day with heavy 
pollution [52]. The elderly are identified as one of the 
major age groups that are highly vulnerable during days 
with heavy air pollution [8, 32]. Therefore, the percent-
ages of low education, low income and elderly were 
extracted from the 2006 census data of Hong Kong, and 
were used to represent the socioeconomic influence of 
each TPU. The percentage of low education was calcu-
lated based on the percentage of persons who had a pri-
mary school education or less (Fig.  4). The percentage 
of low income was the percentage of persons who were 
unpaid or had monthly income lower than HKD$10,000 
(Fig. 5). The percentage of elderly was the percentage of 
persons aged ≥65 in each TPU (Fig. 6). Two TPUs with 
missing data of low education, low income and elderly 
were excluded from this study.

Finally, the predicted total mortality and the 95% con-
fidence interval (CI) were estimated to represent the 

114°20'0"E

114°20'0"E

114°10'0"E

114°10'0"E

114°0'0"E

114°0'0"E

113°50'0"E

113°50'0"E

22
°3
0'
0"

N

22
°3
0'
0"

N

22
°2
0'
0"

N

22
°2
0'
0"

N

22
°1
0'
0"

N

22
°1
0'
0"

N

124°0'0"E

124°0'0"E

116°0'0"E

116°0'0"E

108°0'0"E

108°0'0"E

38
°0
'0
"N

38
°0
'0
"N

30
°0
'0
"N

30
°0
'0
"N

22
°0
'0
"N

22
°0
'0
"N

14
°0
'0
"N

14
°0
'0
"N

6°
0'
0"

N

6°
0'
0"

N

0 1,000500

km

020 10

km

sky view factor

0.40 - 0.55

0.55 - 0.68

0.68 - 0.80

0.80 - 0.88

0.88 - 0.98

TPU without informa�on
Fig. 1 Average sky view factor of each TPU in Hong Kong



Page 4 of 14Wong et al. Int J Health Geogr  (2017) 16:26 

additional effect of mortality risk on both dusty days and 
non-dusty days (baseline) from the spatial variability of 
each variable. Excess mortality between dusty days and 
non-dusty days contributed by each spatial factor was 
also reported in this study (Fig. 7).

Including neighboring effects for mortality risk estimation
To include neighboring effects on mortality risk of each 
TPU, a spatial error model was applied and was com-
pared with the results of multivariate linear regression. 
The spatial error model incorporated spatial autocor-
relation in a regression error term (Lambda) to adjust 
spatial dependence in a multivariate linear regression 
model [3]. In our study, the spatial error model weights 
the neighboring TPUs to spatially adjust socioeconomic 
and environmental influences on total mortality. To spa-
tially weight the TPUs, we applied the queen contiguity 
method. This method weights all spatial neighbors with 
shared borders and corners [4], based on a spatial dis-
tance with the order of contiguity. This study applied the 
queen contiguity method to adjust the mortality risk of 
each TPU based on all surrounding TPUs. To evaluate 
the appropriate spatial distance for adjustment, the 1st to 

3rd orders of contiguity (lag 1–lag 3) were used to esti-
mate total mortality and for comparison with the linear 
results. All significant environmental and socioeconomic 
variables were used to construct the spatial error models 
with the 1st–3rd order of contiguity, and the multivariate 
linear regression for comparison. The Akaike information 
criterion (AIC) [10] was then adopted to compare the 
models, in which lower AIC indicated better model per-
formance. Total mortality and CIs representing the addi-
tional effects of mortality risk from the spatial variability 
of each variable were also reported, and the differences 
between models were further evaluated. Finally, pre-
dicted mortality change (increase or decrease) in num-
bers of deaths of each TPU from the appropriate models 
for both dusty and non-dusty days were used to illustrate 
the spatial variability of relative mortality across Hong 
Kong during prolonged dust events.

Results
Contributions of socioeconomic and environmental 
influences to mortality risk
There were in total of 802 decedents reported on all case 
days, and 6331 decedents reported on all control days. 
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Based on the multivariate linear models, the SVF, per-
centage of low education, percentage of low income, and 
percentage of elderly show varied contributions to local 
mortality risk of each TPU during prolonged dust events 
(Table  1). Among all, percentage of low income is the 
highest risk factor of a community during prolonged dust 
events. A TPU with 10% more low-income population is 
found to have 12.5% higher mortality during a dusty day 
than a non-dusty day. At a TPU with 10% more popula-
tion who education level was primary school or below, 
there is also 6.3% higher mortality during prolonged dust 
events than days without dust. In contrast, SVF has a 
negative association with mortality risk. A TPU with 10% 
higher SVF has 5.3% less mortality during a day with a 
dust storm. This indicates that a TPU with a high-density 
built environment generally has higher risk during pro-
longed dust events, while lower-density environments 
with higher SVF have less mortality risk.

In addition, there is no observation of an increase of 
total mortality in the TPUs with a higher percentage of 
elderly. Similar results have been found in other Hong 
Kong studies; for example, Chan et  al. [13] estimated 
community vulnerability with census data and found 

that those aged ≥75 had significantly lower mortality risk 
than those aged <75, especially for the male population. 
Spatial differences in temperature and vegetation did not 
have significant contributions to mortality risk during 
prolonged dust events.

Including spatial influences for mortality risk estimation
Compared to the non-spatial model for dusty days using 
all variables with an AIC of 1692.3, the non-spatial model 
using only significant environmental and socioeconomic 
variables (SVF, % lower education, % lower income and 
% elderly) has a lower AIC of 1689.6, indicating a better 
model for prediction. By using all significant environ-
mental and socioeconomic variables, it is observed that 
inclusion of neighboring effects as spatial influential fac-
tors has enhanced mortality risk estimation. By compar-
ing all models for predicting mortality during dusty days 
with and without incorporating spatial autocorrelation 
(Table 2), the model considering the 1st order of queen 
contiguity (lag 1) has the best performance. The AIC of 
this lag-1 model is 1679.97, and it is the lowest among 
the others. There is a positive value of the regression 
error term of the lag-1 model (Lambda: 0.3), indicating 
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that including neighboring effects of surrounding TPUs 
results in less spatial error for mortality risk prediction. 
It is also important to note that only including the 1st- 
or 2nd-order queen contiguity in modelling can enhance 
mortality risk estimation for prolonged dust events in 
Hong Kong. The 3rd-order queen contiguity does not 
improve the modelling, based on Lambda reported with 
the spatial error model. We also repeated the analyses 
for mortality predictions of non-dusty days (Table  3). 
We found similar results for model comparison, with the 
lag-1 model the best for predicting mortality during days 
without prolonged dust events (AIC: 1582.04). 

By using the lag-1 model to include the neighboring 
effects (Table  4), areas with 10% higher SVF will have 
5.3% less mortality risk than TPUs during a prolonged 
dust event, while a TPU with 10% more low-education 
population will have 6.7% higher mortality during pro-
longed dust events compared to non-dusty days, with all 
these reaching statistical significance.

Based on the comparison of spatial and non-spatial 
models, we applied a spatial error model incorporating 
the 1st order of queen contiguity to predict total mor-
tality on dusty days and non-dusty days, and a predicted 

change of total mortality as relative risk of each TPU is 
reported in this study (Fig.  8). The mortality risk map 
indicates that rural areas with low-density environments 
have a potential decrease in mortality during prolonged 
dust events compared to non-dusty days. In contrast, the 
TPUs with high-density environments and high socio-
economic deprivation, such as TPUs in Tuen Mun, Sham 
Shui Po, Wong Tai Sin and Kwun Tong, generally have a 
higher increase in mortality during prolonged dust events 
compared to non-dusty days. These TPUs are predicted 
to have 0.1–0.5 more deaths in a period of 8 dust days 
than the control periods, controlling for SVF, percentage 
of low education, percentage of low income, percentage 
of elderly, and spatial autocorrelation.

Discussion
This study applied a spatial regression approach to esti-
mate spatial variability of mortality risk across a high-
density city during prolonged dust events. Based on 
this approach, the influence of the built environment is 
highlighted by the negative association between SVF and 
mortality increase. This result indicates that high-density 
urban areas may trap air pollutants during days with 
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dust storms, resulting in poorer air quality and severely 
increasing health risk; while areas with more open-
ness allow better air ventilation and dispersion, there-
fore less health risk attributable to air pollution can be 
found in these areas during dusty days. Influence from 
socioeconomic deprivation is also determined by the 
positive association between total mortality, percent-
age of low education, and percentage of low income. In 
contrast, percentage of elderly of a TPU does not have 
a positive association with mortality risk. This might be 
due to the presence of more health facilities in commu-
nities with higher percentages of elderly, which reduces 
the mortality risk of such neighborhoods, while elderly 
in TPUs with lower percentages of older population 
may not benefit from such facilities, therefore increasing 
their risk. In conclusion, these findings are innovative, 
because previous studies only temporally stratified the 
dust mortality [12, 14, 31, 40, 49], without understanding 
the intra-urban difference in mortality risk during dust 
events.

In the context of spatial health planning, health risk 
mapping can characterize vulnerability of specific pop-
ulations in a specific region [24], for the purpose of 

supporting health authorities, policymakers, and city 
officials to determine future health protocols in differ-
ent communities [1]. This mapping technique has been 
widely used along with governmental actions to develop 
public health surveillance. For example, the City of 
Toronto in Canada initiated a heat vulnerability mapping 
project for minimizing summer risks [44], and Vancou-
ver Coastal and Fraser Health Authorities gave impetus 
to the development of the Vancouver Area Neighbor-
hood Deprivation Index (VANDIX) for general health 
risk estimation [7]. Mapping mortality risk adjusted for 
environmental and socioeconomic factors can help target 
a single disaster episode for comprehensive health plan-
ning. This is necessary because the general health vul-
nerability index can be somewhat useful, but may not be 
able to fully describe the spatial variability of a particular 
health risk [43]. One example is that VANDIX is related 
to heat mortality in the Vancouver area, but it is neces-
sary to adjust it to pinpoint heat risks with accuracy [27]. 
Therefore, previous health studies indicate the need to 
calibrate spatial vulnerability assessments with health 
outcome data [5, 11, 26, 47, 50], while mortality data 
will be the most appropriate dataset for demonstrating 
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disaster episodes. Therefore, mapping mortality risk dur-
ing prolonged dust events is essential, since such spatial 
assessment can be used for local government action, as 
well as serving as a regional protocol for developing simi-
lar health indices in other cities.

Furthermore, previous research mostly developed 
health indices based on a simple spatial overlay technique 
[50]; there were issues related to spatial autocorrelation 
that these studies did not consider, and that might cre-
ate potential biases in results. Our study adopting spatial 
error modelling is test-proven, with promising results 
showing that spatial autocorrelation can significantly 
improve the accuracy of predicting mortality during dust 
episodes. Its findings are similar to those of other spatial 
epidemiologic literature showing that analysis with spa-
tial autocorrelation can help predict spatial variability of 
health risks [37, 51].

One limitation of this study is that the prolonged dust 
events were isolated episodes in Hong Kong. Based on 
only two dust events in Hong Kong, it was not able to 
employ time-series analysis for a more comprehensive 
spatio-temporal assessment. Application of an alternative 
method such as a time-stratified approach for estimat-
ing the standard mortality ratio of each small neighbor-
hood is also problematic, since comparing rare death 
cases on non-dusty days in each neighborhood may cre-
ate extreme estimation, resulting in statistical bias. To 
avoid the statistical bias, previous health studies gen-
erally applied spatial delineation techniques to stratify 
socioeconomic or environmental data by groups [27, 48, 
52]. This method can capture spatial differences between 
groups, but is still insufficient to estimate the individual 
risk of each district. Our approach is applicable for the 
present case study, because we applied spatial regression 
to predict mortality on both dusty and non-dusty days 
for comparison. With the support of spatial regressions 
to compare total mortality between dusty and non-dusty 
days, the results of this study can be used to demonstrate 

the additional mortality effect in each district due to spa-
tial variability of environmental and socioeconomic fac-
tors during the isolated but fatal dust events.

For future study, inclusion of spatial data on air pol-
lution exposure may enhance mortality risk mapping. 
However, existing pollution mapping methods such as 
land use regression are limited by the spatiotemporal 
coverage of the data, which may not be able to demon-
strate extreme cases such as a prolonged dust event. In 
addition, there is an accuracy issue in using such map-
ping methods in a high-density city, because a complex 
urban built environment influences air ventilation, and 
as a result produces bias in pollution mapping [46]. Mis-
use of air pollution maps for a spatial study can induce a 
significant ecological fallacy, especially since community 
vulnerability is already influenced by the adverse effect 
due to aggregate-level data, instead of the association 
with individual-level response [13]. In order to tackle this 
issue, some studies have started to use moderate-resolu-
tion satellite images for mapping Aerosol Optical Depth 
(AOD) or Aerosol Optical Thickness (AOT) in order to 
demonstrate spatiotemporal variation in air pollution. 
However, there are varied associations between AOD/
AOT and particulate matters (the main components of 
dust), depending on the size of particulate matters and 
spatial locations. While fine particulate matter is a com-
mon pollutant contributing to health risk in typical non-
dust scenarios [30], there are also studies finding that 
 PM10 or  PM10–2.5 concentration may severely increase 
the mortality risk during a dusty day [16, 31, 40]. There-
fore, further investigation is needed on how to use AOD/
AOT to map spatiotemporal variations of both fine and 
coarse particulate matters for determining how air pol-
lution exposures actually influence mortality risk during 
a dusty day. A future study should, therefore, combine an 
existing city-based mapping method with satellite images 
to improve the spatio-temporal modelling of air pol-
lution exposure, at the same time increasing the spatial 

Table 1 Influences of community factors on excess mortality

* Are the results with significant p values (<0.05)

Variables Predicted total mortality

Change in number of deaths on days 
with prolonged dust events  
(95% confidence intervals)

Baseline: number of deaths on days  
without prolonged dust events  
(95% confidence intervals)

Excess mortality (%)

SVF (in 10%) −2.0 [−2.6, −1.3]* −1.9 [−2.5, −1.3]* −5.3

% vegetation (in 10%) 0.0 [−0.4, 0.4] 0.0 [−0.3, 0.4] 0

LST (in 1 °C) −0.1 [−0.6, 0.4] −0.1 [−0.5, 0.3] 0

% low education (in 10%) 1.7 [0.8, 2.5]* 1.6 [0.9, 2.3]* 6.3

% low income (in 10%) 0.9 [0.2, 1.6]* 0.8 [0.2, 1.4]* 12.5

% elderly (in 10%) −2.4 [−3.6, −1.1]* −2.2 [−3.2, −1.1]* −9.1
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quality, because moderate or low spatial resolution of sat-
ellite images itself may increase potential spatial biases of 
modelling.

Conclusion
This study applied a spatial regression approach to esti-
mate the spatial variability of mortality during prolonged 
dust events. The results indicated that spatial difference 

in built environment (SVF) and socioeconomic status 
(low education and low income) will increase the mor-
tality in a community during dust events. This study also 
demonstrates there is a need to include spatial autocor-
relation in modelling in order to improve the accuracy of 
prediction. Finally, the mortality risk map can be used to 
locate at-risk communities and vulnerable populations 
for developing health protocols in Hong Kong.

Table 4 Influences on excess mortality based on the best spatial regression models

* Are the results with significant p values (<0.05)

Variables Spatial error (lag 1): predicted total mortality 
on dusty day (95% confidence intervals)

Spatial error (lag 1): predicted total mortality 
on non-dusty day (95% confidence intervals)

Excess mortality (%)

SVF (in 10%) −2.0 [−2.5, −1.5]* −1.9 [−2.3, −1.5]* −5.3

% low education (in 10%) 1.6 [0.7, 2.5]* 1.5 [0.7, 2.2]* 6.7

% low income (in 10%) 0.7 [0.0, 1.4] 0.6 [0.0, 1.2] 16.7

% elderly (in 10%) −2.1 [−3.4, −0.8]* −1.8 [−2.9, −0.7]* −16.7

Low-Risk

Mid-Risk

High-Risk

Fig. 8 Mortality risk of each TPU during prolonged dust events in Hong Kong. Blue circles are the areas with a high‑density environment and high 
socioeconomic deprivation (Tuen Mun, Sham Shui Po, Wong Tai Sin and Kwun Tong)
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