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Abstract: Monitoring slope instability is of great significance for understanding landslide 

kinematics and, therefore, reducing the related geological hazards. In recent years, 

interferometric synthetic aperture radar (InSAR) has been widely applied to this end, 

especially thanks to the prompt evolution of multi-temporal InSAR (MTInSAR) algorithms. 

In this paper, temporarily-coherent point InSAR (TCPInSAR), a recently-developed 

MTInSAR technique, is employed to investigate the slow-moving landslides in Oso, U.S., 

with 13 ALOS/PALSAR images. Compared to other MTInSAR techniques, TCPInSAR can 

work well with a small amount of data and is immune to unwrapping errors. Furthermore, 

the severe orbital ramps emanated from the inaccurate determination of the ALOS satellite’s 

state vector can be jointly estimated by TCPInSAR, resulting in an exhaustive separation 

between the orbital errors and displacement signals. The TCPInSAR-derived deformation 

map indicates that the riverside slopes adjacent to the North Fork of the Stillaguamish River, 

where the 2014 mudslide occurred, were active during 2007 and 2011. Besides, Coal 

Mountain has been found to be experiencing slow-moving landslides with clear boundaries 

and considerable magnitudes. The Deer Creek River is also threatened by a potential 

landslide dam due to the creeps detected in a nearby slope. The slope instability information 

revealed in this study is helpful to deal with the landslide hazards in Oso. 
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1. Introduction 

As one of the most frequently occurring natural hazards, landslides pose great threats to public safety 

in the world. It is generally acknowledged that monitoring of the slope instability is the key to looking 

into the landslide kinematics, as well as to protecting people from the related geological hazards.  

Earth-based systems, such as leveling, total stations, tiltmeter, optical fiber and the Global Positioning 

System (GPS), are being widely used for recording the surface and subsurface displacements associated 

with landslides [1]. Despite their high accuracy, these conventional monitoring techniques have great 

limits in providing large-scale and high spatial resolution measurements, due to the prohibitive  

costs [2]. For landslide-prone areas, where the exact locations of unstable slopes are still unknown, it is 

very difficult and even impossible to deploy these Earth-based systems. 

In recent decades, spaceborne interferometric synthetic aperture radar (InSAR) technology has shown 

its great potential in the investigation of landslides. As an imaging radar system, InSAR is independent 

of sunlight and weather and can provide spatially-dense ground deformation measurements at a relatively 

large scale, without the need to carry out an in situ survey [3,4]. These characteristics are of great 

importance for monitoring those landslides in mountainous areas, where there is a lack of public concern. 

The first applications of InSAR to investigate landslides emerged in the mid-1990s [5–7], where the 

traditional differential InSAR (DInSAR) algorithm was employed to record single landslide events with 

generally centimeter or less accuracy. With the presence of abundant archived synthetic aperture radar 

(SAR) images, many multi-temporal InSAR (MTInSAR) algorithms have been developed since the early 

2000s [8–12]. By exploiting time series SAR images acquired over the same area during a certain period, 

these MTInSAR techniques can overcome the limitations associated with DInSAR and, therefore, 

improve the deformation measurement accuracy, as well as generate the deformation time series. These 

advancements have made MTInSAR widely employed for landslide investigation [13–18]. 

In this paper, we focus on studying the capability of the MTInSAR algorithms in the investigation of 

slow-moving landslides. In particular, with a time series of ALOS/PALSAR images acquired during 

September 2007, and March 2011, the temporarily-coherent point InSAR (TCPInSAR) technique [12] 

is exploited to monitor the slope instability in Oso, Washington, United States, where a devastating 

mudslide occurred in the region 6.4 km east of Oso on 22 March 2014. A large quantity of mud and 

debris has been released by the mudslide, which dammed the North Fork of the Stillaguamish River and 

inundated an area larger than 2 km2 [19,20]. At least 43 deaths and 49 destroyed structures were caused 

by this geological hazard. As a single landslide event that was not associated with an earthquake, 

volcanic eruption or dam collapse, the Oso mudslide caused the most casualties in the history of the  

United States [21]. Actually, Oso has been suffering from landslide hazards for over half a century [22]. 

However, the locations and distributions of the unstable slopes in this area are almost unknown to the 

public. This study can help us to have comprehensive information about the active landslides in the  

Oso area. 
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2. Datasets and Method 

2.1. The Available Data 

In order to investigate the Oso landslides, we collected 13 ascending Phased Array type L-band 

Synthetic Aperture Radar (PALSAR) acquisitions from the Advanced Land Observing Satellite (ALOS) 

during 4 September 2007, and 15 March 2011. Compared with C-band SAR data (e.g., ENVISAT/ASAR 

images), L-band ALOS/PALSAR data are preferred for the investigations of many landslides, due to its 

satisfactory preservation of the correlation in mountainous environments [16,23], especially in the 

heavily-vegetated Oso. Nevertheless, the accuracy of the ALOS satellite state vectors generally ranges 

from 2 to 15 cm, resulting in up to 30-cm orbital errors in the interferogram [24]. The error will inevitably 

hamper the retrieval of the landslide signals and should be carefully mitigated with respect to the 

interferograms. To eliminate the topographic phase, 1 arcsec spacing digital elevation model (DEM) 

data obtained by the Shuttle Radar Topography Mission (SRTM) were collected for the investigated area 

(Figure 1).  

 

Figure 1. Shaded relief map of the study area provided by the SRTM DEM data. The box 

outlines the coverage of the ALOS PALSAR ascending image used. The pentagram indicates 

the location of the Oso mudslide that occurred in 2014. Squares show the locations of some 

places in the surrounding area. The inset map presents the location of the study area in the 

U.S., as indicated by the boxed area. An image showing the extent of damage induced by the 

2014 Oso mudslide can be found in [20]. 
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2.2. TCPInSAR Technique 

The TCPInSAR technique was developed by the InSAR group at Hong Kong Polytechnic University 

in 2011 [25,26] and is still being developed to further improve the measurement accuracy and 

computational efficiency [12,27]. This technique takes the phase difference between the point-pair in 

multi-master interferograms as observations, which combines the primary advantages of the persistent 

scatterer (PS) and small baseline subset (SBAS) techniques in the suppression of the atmospheric artifacts 

and decorrelation noises. Although originally designed to measure urban ground subsidence [12], the 

TCPInSAR technique can also be used for the investigation of deformations associated with rural areas, 

wetlands and single infrastructure components [27,28]. 

Two approaches have been developed in the TCPInSAR technique to identify the target pixels, termed 

temporarily-coherent points (TCPs). Firstly, we can identify the TCPs according to the statistics of the 

azimuth and range offset deviations [26]. The core idea is the fact that the persistent scatterers  

are less sensitive to the parameters (i.e., oversampling factor and window size) used in the image  

cross-correlation than the distributed scatterers. Compared to the conventional methods (e.g., the 

amplitude dispersion index used in the PS technique [8]), which need a large amount of SAR images to 

identify the persistent scatterer, only two SAR images are sufficient to identify the TCPs. Secondly, the 

TCPs can also be selected based on the coherence of the interferogram, as the SBAS technique does [9]. 

In such a way, the TCPs are no longer point-wise targets, but belong to the distributed scatterer category. 

Another peculiarity of the TCPInSAR technique is that phase unwrapping is not required, where the 

disturbance of unwrapping errors can thus be avoided [25]. This advantage benefits from the fact that, 

for the multi-master interferograms with small perpendicular baselines and short time intervals, the phase 

components for a large amount of arcs (i.e., the difference between the point pairs) are without phase 

ambiguities. We therefore can construct an overdetermined linear system to resolve the deformation rate 

and topographic residuals for these arcs without phase ambiguities, while for arcs containing phase 

ambiguities, residuals from the linear system will be abnormally large. This phenomena can indicate 

well whether the arc has ambiguity or not. After detecting and removing the arcs having phase 

ambiguities, we can finally obtain the parameters at TCPs by spatial integration. In order to avoid the 

island effect caused by the removal of too many arcs, a local Delaunay triangulation network is adopted, 

which can significantly increase the density of the arcs.  

Recently, the original TCPInSAR technique was further developed to involve the orbital errors as the 

parameters in the model [27]. As a result of inaccurate determination of the satellite’s state vector, orbital 

errors behave as long wavelength artifacts in the interferograms, especially those generated by the ALOS 

PALSAR data [24]. A low-order polynomial is widely used to mitigate such errors; however, the method 

is on an interferogram-by-interferogram basis and, thus, has a high risk of also removing part of the 

deformation signal [29,30]. Considering the fact that the orbit errors have a much weaker temporal 

correlation than the deformation signals, a network method has been proposed to distinguish the orbital 

errors from a time series of unwrapped interferograms [31]. In the TCPInSAR, the orbital errors and the 

displacement signals are separated through constructing a joint model that simultaneously reflects the 

relationship between the interferometric phase differences at arcs and the deformation rates, the 

topographic residuals and the polynomial coefficients related to the orbital errors at TCPs. Since the 

joint model is a large sparse linear system, sparse least squares is employed to resolve the unknowns. 
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With regard to the aforementioned features of the TCPInSAR technique, this algorithm is particularly 

suitable in this study compared to other MTInSAR techniques. First, the TCPs can be easily identified 

in the case when only a small number of SAR images are available. Second, the unwrapping errors, 

which are common in mountainous environments, can be avoided, since the arcs with phase ambiguity 

can be removed by the outlier detector adopted in the TCPInSAR algorithm. Third, the joint model in 

the TCPInSAR technique can effectively separate the deformation from orbit errors. These advancements 

of TCPInSAR allow a better retrieval of the displacement signals associated with slope instability. 

3. Results and Analysis 

A total of 15 interferograms are generated from 13 ALOS PALSAR images with a maximum 

perpendicular baseline of nearly 900 m and a time interval shorter than 1000 days (Figure 2). The 

selected criteria for the spatial-temporal baselines can guarantee that all of the 13 PALSAR images are 

involved without introducing a low-quality interferogram. The standard two-pass DInSAR algorithm is 

adopted to produce the differential interferogram with the SRTM DEM. In order to suppress the relative 

large phase noises related to mountainous environments, all of the interferograms were processed with 

a multilook operation (six looks in the range and 14 looks in the azimuth direction), followed by a 

modified Goldstein filter [32]. It is worth noting that the conventional unwrapping methods are not 

required for the interferograms, since the TCPInSAR technique can isolate the arcs without phase 

ambiguities as observations by examining the least squares residuals. This is mainly based on the fact 

that ambiguities in arc observations can introduce abnormally large residuals during the parameter 

estimation [25]. Figure 3a–d shows four interferograms of the pairs of 10.20.2007–04.27.2010, 

06.06.2008–01.28.2011, 07.28.2010–10.28.2010 and 01.28.2011–03.15.2011, respectively, with the 

perpendicular and temporal baselines marked in the right top corner of each subplot. For the 

interferograms with medium perpendicular baselines and long temporal intervals (Figure 3a,b), we 

observe several phase variations in the areas outlined by the real rectangles. This could be the surface 

displacement signals induced by slow-moving landslides, since they are not detected in the 

interferograms with short temporal intervals (Figure 3c,d). The phase variations in these two 

interferograms, as outlined by the dashed circles, could be interpreted as the topographic residuals, since 

they are highly related to the perpendicular baselines. It is clear that these two kinds of phase variations 

are visually similar and quite difficult to distinguish based on one single DInSAR image. Besides the 

local phase variations, the orbital errors can be easily observed in most of the interferograms, which 

behave as long wavelength phase ramps. 

Considering the fact that distributed scatterers are overwhelmingly available in mountainous 

environments, we preferred the coherence method to identify the TCPs in this case. A total of 220,889 

TCPs were identified in the study area, from which 769,781 arcs were constructed at a spatial resolution 

of about 600 m. Figure 4a exhibits the network constructed by the local Delaunay triangulation over the 

study area, where the black dots and green lines represent the TCPs and arcs, respectively. For 

simultaneously estimating the deformation rates, topographic residuals and orbital errors, a large sparse 

design matrix with a size of 11,546,715 × 441,836 was constructed. The value of 11,546,715 corresponds 

to the number of observations, including the phase differences at 769,781 arcs of 15 interferograms (i.e., 

769,781 × 15 = 11,546,715). The value of 441,836 corresponds to the number of unknowns, which are 
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constituted by the deformation rates and topographic residuals at 220,888 TCPs and five polynomial 

coefficients for the orbital errors at 12 SAR images, with one TCP and one SAR image being the 

references (i.e., 220,888 × 2 + 12 × 5 = 441,836). We used sparse least squares to resolve these 

parameters. After the phase ambiguity detector was applied, 190,940 arcs with phase ambiguities were 

removed in total, leaving 210,087 TCPs in the final results (Figure 4b). 

 

Figure 2. Temporal and perpendicular baselines of the generated 15 interferograms. The 

lengths and colors of the horizontal lines indicate the variations of time intervals (i.e., 

temporal baselines) and perpendicular baselines, respectively. 

Figure 5a,b shows the deformation rates in the radar line-of-sight (LOS) direction and the topographic 

residuals of the TCPs estimated by the TCPInSAR algorithm, respectively, which were geocoded in the 

WGS 84 coordinate system and superimposed on the shaded relief map of the study area. In the LOS 

deformation rate results (Figure 5a), local displacements in several slopes can be clearly found, with a 

maximum velocity of more than 2 cm/yr. Topographic residual results (Figure 5b) reveal that the 

differences between the SRTM data derived from DEM and the real terrain range from −25 m to 25 m, 

resulting in a standard deviation (SD) of 4.3 m for the whole investigated area. This is a typical relative 

vertical accuracy for the SRTM data [33]. No evident orbital ramps can be found in the LOS deformation 

rate or topographic residual maps. In order to further verify the capability of TCPInSAR to correct orbital 

errors, the LOS deformation rates were also estimated without including the orbital error polynomials in 

the joint model. As shown in Figure 5c, the long wavelength orbital ramp remains in  

the deformation rate map. Figure 5d exhibits the differences between the deformation rates shown in 

Figure 5a,c. Up to 1.5 cm of the planar ramp indicates that the orbital errors can potentially hamper the 

accurate retrieval of deformation if they are not carefully mitigated with respect to the interferograms. 
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Figure 3. Interferograms of the pairs 10.20.2007–04.27.2010 (a), 06.06.2008–01.28.2011 (b), 

07.28.2010–10.28.2010 (c) and 01.28.2011–03.15.2011 (d). Rectangles and dashed circles 

indicate the areas affected by the surface displacements and the topographic 

residuals, respectively. 

 

Figure 4. (a) Local Delaunay triangulation network of the identified TCPs. (b) The network 

after removing arcs with phase ambiguities. The black dots and green lines represent the 

temporarily-coherent points (TCPs) and arcs, respectively. Both maps are in radar coordinates. 
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Figure 5. (a) TCPInSAR-derived LOS deformation rates for the Oso area;  

(b) TCPInSAR-derived topographic residuals for the Oso area; (c) LOS deformation rates 

derived by TCPInSAR without including the orbital error polynomial coefficients in the joint 

model; (d) differences between the LOS deformation rates in (a,c). All of the maps are in the 

WGS 84 coordinate system. The pentagram indicates the location of the Oso mudslide that 

occurred in 2014. The square indicates the location of the precipitation station used in the 

study. Boxes A, B and C outline the areas exhibited in Figures 6–8, respectively. 

Since in situ observation is unavailable for the investigated area, we cannot carry out ground-truth 

validation in this study. It is acknowledged that the accuracy of the LOS deformation rate mainly depends 

on the suppression of the InSAR inherent errors. We have mentioned that the TCPInSAR technique can 

handle the unwrapping errors, topographic residuals and orbital errors well. Regarding the decorrelation 

noises, they are quite sensitive to the heavy vegetation in the study area, but have been greatly minimized 

in the deformation rates as the result of a complex of multi-look operations, modified Goldstein filter 

and least squares adjustment used in the TCPInSAR. However, atmospheric artifacts can be introduced 

into the TCPInSAR measurements due to Oso’s mountainous environment. In this study, a linear 

polynomial model has been applied to correct the atmospheric effects, since they are dominated by the 
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stratified disturbances in mountainous areas [31]. Therefore, the LOS deformation rates obtained by the 

TCPInSAR technique are basically reliable to detect and monitor slow-moving landslides in Oso. 

 

Figure 6. Detected LOS deformation rate map for the A region. White lines show the 

locations of the profiles. The red polygon outlines the approximate area of deposits from the 

2014 mudslide [19]. In the graphs, the blue and green dots represent the displacement and 

topography extracted along the profiles, respectively.  

Slope deformations in three regions as outlined by the boxes in Figure 5a are selected in this study 

for detailed analysis. It is worth noting that only the A region corresponds to the 2014 Oso mudslide, but 

the obvious deformations in the B and C regions indicate that these two areas also surfer from a landslide 

hazard. The A region covers an area of approximately 36 km2, across the North Fork of the Stillaguamish 

River. Besides the 2014 large mudslide, this area has a long history of slope instabilities, which date 

back to at least the early 1950s, known as the Hazel Landslide [34]. Figure 6 shows the slope deformation 

rates along the radar LOS direction in this region draped on the Google Earth map. Positive values 

indicate that the targets moved toward the satellite, and vice versa. The moist soil and heavy vegetation 

here lead to relatively few TCPs and large noises in the deformation rate results. According to the slope 

orientation and the history record, the landslides in this region mainly occurred along the north-south 

direction, toward the North Fork of the Stillaguamish River. It is however acknowledged that the InSAR 

measurements are quite insensitive to the north-south deformations due to the polar orbits of the SAR 

satellite [35]. As a result, only a few creeps are detected on the slopes around the North Fork of the 

Stillaguamish River. Nevertheless, the locations of these creeps agree well with that of the ancient 

landslides [22], indicating that the slopes were in a potentially unstable state during the investigated 

period. Close inspections have been conducted of two profiles, where the displacement and topography 
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are both measured. The AA’ profile, 2.6 km in length across the Stillaguamish River, shows a distinct 

variation in the deformation rate. The positive displacement, although across the river, could be the 

landslide deposit formed by the underground material mobilized by the deep-seated Hazel Landslide, 

while few TCPs were obtained on the slope due to its inappropriate orientation and inclination. The BB’ 

profile, 1.1 km in length along an active landslide, reveals clear downslope movements in the upper part 

of the slope. 

 

Figure 7. Detected LOS deformation rate map for the B region. White lines show the 

locations of the profiles. In the graphs, the blue and green dots represent the displacement 

and topography extracted along the profiles, respectively. 

The B region is situated on Coal Mountain, north of Day Lake. The LOS deformation rates of the 

TCPs in this region are shown in Figure 7, superimposed on the Google Earth map. It is found that the 

west slope of Coal Mountain experienced a significant slow-moving landslide, the boundary of which 

can be accurately defined. This landslide is quite favorable for the InSAR measurements, since the slope 

deformations were dominated by the west-wards and downslope movements. The positive deformation 

values, ranging from 6 to 24 mm/y, indicate that the west-wards movements were much larger than the 

downslope movements, as a natural result of the gentle incline. The CC’ profile, 2.7 km in length along 

the maximum slope direction, is examined for the displacement and topography. It is clear that the 

deformation rates of the landslide increase in the upper part, but then turn to deceleration in the lower part. 

Another distinct unstable slope is found in the southeast side of Coal Mountain. Although characterized 

by negative deformation values due to the east-wards and downslope movements, this landslide behaves 

similarly to the larger one on the west slope. This is also demonstrated by the displacement rates exacted 

along the DD’ profile, which is 1.1 km in length and along the southeast slope. 
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Figure 8. Detected LOS deformation rate map for the C region. White lines show the 

locations of the profiles. In the graphs, the blue and green dots represent the displacement 

and topography extracted along the profiles, respectively. 

Obvious landslides are also detected in the C region, which is located in the north of the Granite Lake 

Potholes. As shown in Figure 8, although with smaller scales and amplitudes, the slope deformations are 

more complex compared to those in the B region. The EE’ profile, 3 km in length across the active 

landslides on the northeast slope, reveals a gradient on the slope movement rates and some distinct 

variations in the landslide deposit, while for the FF’ profile, 1.6 km in length and along the slope facing 

northwest, irregular variations in the displacement rates are found on this gradual slope. The ground 

surface texture structure could be responsible for these displacement variations. However, the downward 

trend of this slow-moving landslide poses a threat of a landslide dam in the Deer Creek River, which is 

located in the foot of the slope. 

Like other MTInSAR techniques, the TCPInSAR algorithm allows us to derive the time series of 

surface deformations from the multi-master interferograms, in which the topographic residuals have 

been corrected. However, the deformation evolution results are less accurate than the deformation rate 

results. This is expected, since the unknowns in the model increase, but the observations remain the 

same. Besides, the deformation evolutions are more susceptible to the atmospheric artifacts compared 

to the deformation rates. In Figure 9, we exhibit six typical deformation evolutions derived by the 

TCPInSAR technique for the landslides on Coal Mountain (i.e., the B region). The accumulated 

deformation fields in the subplots are relative to the earliest PALSAR acquisition date, i.e.,  

4 September 2007. The accumulated days since the reference date are labeled in the right top corners.  

A sustainable growth can be easily identified for the landslide deformations during the investigated 

period, which had reached 8 cm after about three and a half years. 
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Figure 9. TCPInSAR-derived LOS deformation evolution maps for the B region. The 

reference date is 4 September 2007, and the accumulated day since the reference image is 

labeled in the right top corner of each subplot. 

Precipitation, timber harvest, earthquakes and volcanic eruptions are typical factors that can trigger 

slope movements. With respect to the Oso landslide, the slope stabilities are mainly affected by the local 

groundwater variations, which respond directly to the timber harvest, as well as the precipitation [35]. It 

had been reported that the timber harvest in Oso aggravated the activities of landslides as a result of the 

increased recharge of groundwater, with time lags of up to 20 years between timber removal and slope 

deformation [37]. Precipitation also leads to the landslide movements by changing the pore-water 

pressure [38]. In order to analyze the temporal correlation between the landslide movements and the 

precipitations, we conduct a comparison between the TCPInSAR-derived time series displacements and 

the time series precipitations. The total amount of the displacement evolutions at all of the TCPs in the 

three investigated regions is calculated and normalized to the smallest time unit, i.e., 46 days [39]. We 

then collected the precipitation data at Darrington Station in Washington to assess the results, which is 

also averaged to 46 days. The location of the station can be found in Figure 5a. As shown in Figure 10, the 

average rainfalls in the study area show a periodicity in the investigated four yearly cycles, which is very 

rainy in winter, while quite dry in summer, as a result of the Mediterranean climate. Furthermore, a 
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dramatic increase of the precipitation can be found in the last two yearly cycles. On the other side, the 

general trend of the total deformations is quite similar to that of the precipitation. It is observed that the 

46-day deformations behave as seasonal oscillations with a distinct increase in the last two yearly cycles. 

This is expected, since the low precipitations before 2010 provide favorable conditions for rainfall 

entrance and landslide movements in the following two years. Although it is difficult to calculate the 

exact time lags between the precipitation and the deformations, due to the poor temporal sampling of the 

PALSAR data used and the disturbances from other factors affecting them, the results clearly demonstrate 

that the slope deformation in Oso closely responds to the rainfall-induced groundwater variation. 

 

Figure 10. Comparison between the total deformation and the precipitation in 46 days. 

4. Conclusions 

Although InSAR has been proven to be a powerful tool for monitoring slow-moving landslides, this 

is not an easy task, since the inherent InSAR errors, such as decorrelation noise and topographic 

residuals, become more troublesome in the areas where landslide hazards frequently occur, which are 

usually dominated by mountains and hills with steep slopes. In addition, orbital errors will critically mix 

with landslide signals when the ALOS PALSAR data are employed in the application for their good 

capability of maintaining coherence. In this study, an alternative MTInSAR technique, termed 

TCPInSAR, has been examined in the investigation of slow-moving landslides in Oso, U.S., with 13 

ALOS PALSAR images acquired during 2007 and 2011. Compared to the other MTInSAR techniques, 

TCPInSAR can identify the coherent pixels based on a small amount of SAR images and jointly estimate 

the deformation rates, topographic residuals and orbital errors without the error-prone phase unwrapping 

procedure. The following conclusions can be summarized from this work:  

(1) The results have demonstrated that the TCPInSAR method can effectively detect and monitor 

active landslides. There were 210,087 TCPs identified for the investigated area, characterized by hilly 

terrain and heavy vegetation, resulting in an average density of ~170 TCPs/km2. The topographic 

residuals with an SD of 4.3 m have been estimated for the identified TCPs, which can be used to refine 
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the local SRTM data. More importantly, up to 1.5 cm of the planar ramp induced by the orbital errors 

had been successfully separated from the deformation signals associated with the landslides.  

(2) LOS deformation rates for the Oso landslides are the main outcome of this study. We had found 

evident and continuous landslide deformations on the slopes of Coal Mountain, with a rate of up to  

24 mm/y. Other slope instabilities (−11~15 mm/y) were distinguished in the north of the Granite Lake 

Potholes, which were smaller in size, but more complicated in behavior, posing a potential threat to the 

adjacent Deer Creek River. With respect to the area that was affected by the major mudslide in March, 

2014, only some small creeps (<10 mm/y) had been detected on the slopes around the North Fork of the 

Stillaguamish River, since the ascending ALOS PALSAR images are nearly blind to most of the slope 

deformations here; while a distinct displacement had been found across the river, which was expected 

to be caused by the deposit associated with the deep-seated Hazel Landslide.  

(3) The deformation evolution results for the Oso landslides had also been provided by the TCPInSAR 

algorithm. For the most active slope on Coal Mountain, the LOS deformations were observed with a 

steady development during the investigated 3.5 years, reaching a peak of 8 cm. Furthermore, it was found 

that the normalized deformations and the average precipitations in 46 days exhibited seasonal 

oscillations with increased amplitudes in the last two yearly cycles. A good correlation between the 

deformations and precipitations indicates that the Oso landslides are highly sensitive to the variations  

of groundwater.  

In the future, the following issues can be addressed to further enhance the applicability of InSAR for 

monitoring landslides in Oso and other areas. First, although the deformation evolution can be provided 

by TCPInSAR techniques, there is a lot of room to improve its accuracy by suppressing the atmospheric 

artifacts. Second, high-resolution TerraSAR-X and COSMO-SkyMed data should be utilized in the 

investigation of the Oso landslides in order to reduce the blind areas and to monitor the smaller-scale 

landslides. It has been demonstrated that the worse capability for penetrating the vegetation of the X-band 

data can be partly compensated for by their shorter revisit periods compared to those of the  

medium-resolution SAR data [40]. Third, since no in situ measurements are available in this area, 

quantitative assessment cannot be conducted for the TCPInSAR results. This is quite common for most 

of the landslide monitoring in mountainous areas, while some approaches should be developed to provide 

a precision report based on the InSAR measurements themselves. 
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