
1 
 

Periodic and Localized Wave Patterns for Coupled Ablowitz-Ladik Systems with 

Negative Cross Phase Modulation 

H. N. Chan and K. W. Chow* 

Department of Mechanical Engineering, University of Hong Kong,  

Pokfulam, Hong Kong 

* = Corresponding author  

Email: kwchow@hku.hk     Phone: (852) 3917 2641     Fax: (852) 2858 5415 

Date of Submission of Revised Manuscript: March 2018 

CNSNS-D-18-00191 

PACS Classification scheme: 02.30.Ik, 05.45.Yv, 42.82.Et 

 

Abstract 

 A new system of coupled Ablowitz-Ladik equations is introduced where cubic 

nonlinearities from intensities of both waveguide arrays are included. The Hirota 

bilinear transform is formulated and is used to derive breathers periodic in space or 

time. One spatially periodic solution is utilized to verify the lowest order conservation 

laws. Algebraically localized rogue wave modes with pulsating properties are obtained 

from breathers in the limit of large wave periods. Incorporating additional modes of 

cubic nonlinearities, namely, cross phase modulations, in two arrays of oscillators on an 

integer lattice can further enhance the modeling capability in optical physics. 
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● A new system of Ablowitz-Ladik equations with cross phase modulation is 

studied. 

● The Hirota bilinear form is deduced and breathers are derived exactly.  
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1. Introduction 

The evolution and dynamics of wave packets governed by hierarchies of 

nonlinear Schrödinger equations are widely applicable to many branches of physics, e.g. 

fluid mechanics [1] and optics [2]. Discrete versions of these nonlinear equations have 

also been studied intensively, both for their intrinsic interest in theoretical physics as 

well as their description of realistic practical situations, e.g. spatially localized modes in 

a periodic array of optical waveguides [2]. One example of evolution equation which 

allows analytical progress is the Ablowitz-Ladik system for oscillators on an integer 

lattice (t = time, n = integer, * = complex conjugate) [3–8]: 

( ) ( ) ( )tuuuuuuuuuiu nnnnnnnnntn ==+σ+−+β+ −+−+ ,02 11
*

11, .        (1) 

The real parameters β, σ represent a measure of second order dispersion and cubic 

nonlinearity, in ways similar to the continuous counterpart [1,2], 

iΨt + β0Ψxx + 2σΨ2Ψ* = 0 .                                                                                            (2) 

The focus here is coupled Ablowitz-Ladik systems which provide models for two 

arrays of oscillators. Various versions with contrasting features have been studied in the 

literature [9–11]. Examples of novel properties treated include branched dispersion [9], 

i(un)t = (1 + |un |2)(vn+1 + vn–1) ,     i(vn)t = (1 + |vn |2)(un+1 + un–1) , 

linear coupling [10], 

i(un)t + (1 + |un |2)(un+1 + un–1) + (vn+1 + vn–1) = 0,  

i(vn)t + (1 + |vn |2)(vn+1 + vn–1) + (un+1 + un–1) = 0,  

and self-attractive nonlinear terms [11], 
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( ) ( )( ) ( ) ( )( ).1,1 **
1

2*
1

*2
nnntnnnntn uuvvivvuui ++−=++= +−  

Terminology from optics will prove to be instructive. For plane wave solutions 

of coupled nonlinear Schrödinger equations (Φ0, Ψ0 = constants) 

iΦt + Φxx + (|Φ|2 + |Ψ|2)Φ = 0,         iΨt + Ψxx + (|Φ|2 + |Ψ|2)Ψ = 0,  

Φ = Φ0 exp[i(|Φ0|2 + |Ψ0|2)t],         Ψ = Ψ0 exp[i(|Φ0|2 + |Ψ0|2)t],  

one can associate |Φ|2Φ and |Ψ|2Φ with the phase change due to the intensity of the light 

beam (Φ) itself and the co-propagating light beam (Ψ) respectively. Hence the terms 

self-phase-modulation (SPM) and cross-phase-modulation (XPM) will be employed [2]. 

A remark on the physical applications of the Ablowitz-Ladik systems is in order. 

One issue is the competition between nonlinearity and randomness, where a random 

potential can destroy or degrade the stability property of a soliton [12]. Another 

application is the switching dynamics of discrete solitons moving along two coupled 

arrays forming a Möbius strip. The Ablowitz-Ladik system provides a realistic model 

for the potential of the topological switches and the monopole spectra in parameter 

space [13]. A linear interchain coupling can achieve a well defined switching time 

where soliton modes move from one array to the other. 

The goal here is to propose theoretically yet another variant of coupled Ablowitz-

Ladik systems which possesses both SPM and XPM. The Hirota bilinear form is 

formulated (Section 2). Exact periodic (breather) and localized (rogue wave) solutions 

are obtained for special cases (Section 3). One spatially periodic solution is employed to 
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verify the existence of conservation laws. Discussions, conclusions and applications of 

the present work will be discussed in Section 4.  

 

2. Coupled Ablowitz-Ladik Systems 

We shall investigate a discrete system which displays nonlinearities arising from 

both SPM and XPM [2]. Furthermore, we allow for SPM and XPM of different signs: 

 ( ) ( ) ( )( ) 02 11
22

11 =+−σ+−+β+ −+−+ nnnnnnntn AABAAAAAi , An = An(t) ,                      (3a) 

( ) ( ) ( )( ) 02 11
22

11 =+−σ−−+β− −+−+ nnnnnnntn BBBABBBBi  , Bn = Bn(t) .                     (3b)  

We first implement a change of variable: 

( )itA nn β−φ= 2exp  ,  ( )itB nn βψ= 2exp  ,                                                                       (4)     

to derive 

i(ϕn)t + [β + σ(|ϕn|2 – |ψn|2)](ϕn+1 + ϕn–1) = 0 ,                                                                 (5a) 

i(ψn)t – [β + σ(|ϕn|2 – |ψn|2)](ψn+1 + ψn–1) = 0 .                                                                (5b)     

The plane wave or continuous wave is given by  

( )[ ]tnkiin
n 111 exp ω−ρ=φ  , ( )[ ]tnkiin

n 222 exp ω−ρ=ψ  ,                                                (6a) 

( )[ ] 1
2
2

2
11 sin2 kρ−ρσ+β=ω , ( )[ ] 2

2
2

2
12 sin2 kρ−ρσ+β−=ω .                                           (6b) 

The Hirota bilinear transform which proves to be effective for the single component 

case will now be generalized [5,14]: 

( )[ ]tnki
f

Gi
n

nn
n 11exp ω−=φ  ,   ( )[ ]tnki

f
Hi

n

nn
n 22exp ω−=ψ  .                                             (7) 
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The wavenumber and angular frequency of the plane wave in the background will still 

be basically Eq. (6b) but is written in a more instructive form 

( )[ ] ( ) ( )[ ]11
2
2

2
11 expexp ikiki −−ρ−ρσ+β−=ω , 

( )[ ] ( ) ( )[ ]22
2
2

2
12 expexp ikiki −−ρ−ρσ+β=ω , 

together with the additional constraint 

( ) 12
2

2
1 −=ρ−ρσ+β .                                                                                                        (8) 

The bilinear form is then given by 

( ) ( ) ( ) ( )1 1 1 1 1 1exp expt n n n n n n n n n nD G f G f G f ik G f G f ik+ − − +⋅ = − + − −  ,                           (9a) 

( ) ( ) ( ) ( )1 1 2 1 1 2exp expt n n n n n n n n n nD H f H f H f ik H f H f ik+ − − +⋅ = − + − − ,                       (9b) 

( ) 0222
11 =−σ+β+−+ nnnnn HGfff  .                                                                               (9c) 

Following well established procedure in locating breather by bilinear transform, 

we adopt the expansion (M real, an, bn, n = 1, 2, complex, η1, η2 are phase factors): 

Gn = ρ1{1 + a1exp(pn – Ωt + η1) + a2exp(p*n – Ω*t + η2)  

+ Ma1a2exp[(p + p*)n – (Ω + Ω*)t + η1 + η2]},       (10a) 

Hn = ρ2{1 + b1exp(pn – Ωt + η1) + b2exp(p*n – Ω*t + η2)  

+ Mb1b2exp[(p + p*)n – (Ω + Ω*)t + η1 + η2]},       (10b)   

fn = 1 + exp(pn – Ωt + η1) + exp(p*n – Ω*t + η2)  

+ Mexp[(p + p*)n – (Ω + Ω*)t + η1 + η2] .                      (10c) 

The phase factors η1, η2 originates from the flexibility in setting the origins of the spatial 

coordinate n and time t. In subsequent calculations we shall select special values to 
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obtain nonsingular rational solutions. The expansion Eq. (10) will satisfy bilinear 

equations (9) only if a set of constraints is satisfied. For arbitrary input parameters (k1, 

k2, β, σ, ρ1, ρ2, p) this remains an open question.  

To reduce algebraic complexity in the remaining of this paper, we shall take for 

simplicity 

k1 = –k2 = k, ω1 = ω2 = ω = 2[β + σ(ρ12 – ρ22)]sin k .                                                     (11) 

Under such assumption, the formulations simplify considerably: 

λ+Ω

µ+Ω
=1a , 

*
1

2
1
a

a = ,
µ−Ω

λ−Ω
=1b , 

*
1

2
1
b

b = ,                                                                  (12a) 

λ = exp(ik)[exp(p) – 1] + exp(–ik)[1 – exp(–p)] ,                                                       (12b) 

μ = exp(ik)[1 – exp(–p)] + exp(–ik)[exp(p) – 1] ,                                                       (12c)  

and the set of simplified constraints is listed in the Appendix.  

If we further assume equal amplitude for the background waves: 

ρ1 = ρ2 = ρ ,                                                                                                                    (13) 

the dispersion relation (Ω = Ω(p)) for real p is given by a fourth order polynomial:   

(cosh p – 1)(Ω2 – λ2)(Ω2 – μ2) = σρ2(λ – μ)2(λ + μ)Ω .                                                 (14) 

We now proceed to calculate special exact solutions. 
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3. Breathers and Rogue Waves 

 Breathers are solutions periodic in the spatial variable n or time t. In the 

literature, those modes periodic in space and time are usually termed the Akhmediev 

and Kuznetsov-Ma breathers respectively [15].  

 

3.1 Breathers quasi-periodic in time with rogue waves as special limits 

 If we take p as purely real, complex values of Ω will lead to wave pattern with a 

certain degree of periodic character due to the imaginary parts. We shall defer a detailed 

study on periodic modes to future works and instead focus the attention here on the case 

of long wavelength limit (p → 0), where the solution now becomes a rogue wave mode 

(Figure 1). Rogue waves are localized in space and time and have received intensive 

attention [16,17]. The novel feature here is that the amplitude of the rogue wave 

pulsates instead of just simply grows to a maximum and then subsides.  

Analytically, on taking the p → 0 limit, the leading order angular frequency Ω0 = 

a + ib will satisfy a reduced form of the dispersion relation Eq. (14), namely,  

Ω = pΩ0 + p2Ω1 +O(p3), 

( ) 0sincos32cos4 0
22222

0 =Ωσρ+−Ω kkk .                                                                                      (15) 

A remarkable property for subsequent and future discussion is the flexibility in 

changing the sign of the parameter σ. If Ω0 = a + ib is a solution of Eq. (15) for a given 

σ, then Ω00 = – a + ib also solves the governing equations with σ replaced by –σ. 

Further calculations show that Ω1 = 0.  
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The parameters in the bilinear formulation defined by Eq. (12) can also be 

expanded in power series of p: 

( ) ( )[ ]
( )

2
2 3

1 2
0 0

2 sin 2sin1
exp( ) exp exp( ) exp

i k ka p p O p
ki ki ki ki

= − − +
Ω + + − Ω + + −

, 

( ) ( )[ ]
( )

2
2 3

1 2
0 0

2 sin 2sin1
exp( ) exp exp( ) exp

i k kb p p O p
ki ki ki ki

= − − +
Ω − − − Ω − − −

, 

( ) ( ) ( )2 32cos sink p i k p O pµ = − + , ( ) ( ) ( )2 32cos sink p i k p O pλ = + + , 

( )
2 2

2 4

2

41
4
a bM p O p
b

− − = + + 
 

. 

By taking the phase factors as exp(η1) = exp(η2) = -1 and defining θ = n – Ω0t, 

the long wave expansion of fn gives algebraic expression 

( ) ( ) ( )
2 2

2 3

2

2 2
2 3

2

41 exp exp * 1 exp * ( )
4

4 * ( )
4

n
a bf p p p p p O p
b

a bp O p
b

− −  = − θ − θ + + θ + θ +    
− − = + θθ + 

 

, 

and a similar mechanism works for gn and hn. 

From these leading order terms, the exact, rational rogue wave solution for Eq. 

(3) is the set of Eqs. (4, 7) supplemented by Eqs. (8, 11) and 

( )
2 2

2 2 2

2

4
4

rogue
n

a bf n at b t
b

− −
= − + + , 

rogue rogue
n nG g= ρ , rogue rogue

n nH h= ρ , 
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( )
( )[ ] ( ) ( )[ ]{ }2 2 2

2 2

4 sin sin sin 2 sin sin 2 ,
2cos

rogue rogue
n ng f k in a k k it b a k a k

k a b
= − + + + − −

+ +

 

( )
( )[ ] ( ) ( )[ ]{ }2 2 2

2 2

4 sin sin sin 2 sin sin 2 .
2cos

rogue rogue
n nh f k in a k k it b a k a k

k a b
= − + − + − +

− +
 

                                                                                                                                       (16) 

The exact rogue modes expressed in terms of the original Eqs. (3a, 3b) are thus 

( )[ ]exp 2
rogue

rogue n n
n rogue

n

gA i i kn t t
f

= ρ −ω + , ( )[ ]exp 2
rogue

rogue n n
n rogue

n

hB i i kn t t
f

= ρ − +ω + .    (17) 

Furthermore, there are additional constraints for the existence of rogue waves. 

From Eq. (16), the necessary criteria are  

(i) b is non-zero; (ii) 4 – a2 – b2 > 0 . 

For the second condition (ii), the dispersion relation now leads to a constraint on k for 

the rogue wave to exist: 

0sincos4cos22
22

22 >
σρ

−+−
a

kkka
  .                                                                                           (18) 
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(a)                                                                

 
 
(b) 

 
 

(c) 
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(d) 

 
 
 

(e) 

 

 

 
Figure 1: A rogue wave [Eqs. (4, 7, 8, 11, 15, 16, 17)] propagating from left to right 
with a burst of maximum amplitude around t = 0 for parameters σ = 1, ρ = 0.5, k = 0.5; 
(a) t = –5; (b) t = –2.5; (c) t = 0; (d) t = 2.5; (e) in the time interval [–5, 5]. [Left (Right) 
panel: |An| (|Bn|)]  
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 (a)                                                                

 
(b) 

 
(c) 

 
 

Figure 2: A sequence of wave profiles showing the pulsating nature of the rogue wave 
(same parameters as in Fig. 1): (a) t = 0; (b) t = 0.25; (c) t = 0.5 (the displacement from 
the background in (b) is less than those of (a) and (c)). [Left (Right) panel: |An| (|Bn|)] 
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We have verified the accuracy of the rogue wave solution by direct substitution 

into the bilinear equations. One remarkable feature of the rogue wave which contrasts 

sharply with similar solutions of the continuous case is the ‘pulsating’ nature. As an 

illustrative example (Figure 2), the amplitude oscillates during the time evolution to and 

from maximum displacement.  

 

3.2 Breathers periodic in the lattice coordinate n 

 Another class of exact solutions periodic in the coordinate n can be derived by 

taking the parameter p to be purely imaginary. Indeed Eq. (10) will be of period 6 by 

setting p = iπ/3. However, due to the in term and exponential factors in Eq. (7), the 

actual spatial period of the complex valued array of oscillators will be the lowest 

common multiple of 4 and 6, i.e. a period of 12, provided that k = π/3 in Eq. (11). This 

amplitude will still generally be a localized function of time. Typical wave profiles for 

maximum amplitudes versus those away from the peak displacements are illustrated in 

Figure 3. We conjecture that solutions of spatial period of 4N (odd N) or 2N (even N) (N 

= a positive integer greater than 3) can be attained by setting p = iπ/N and k = π/N, but 

details of the verification will be left for future studies. 

 We should also remark that the assumption of equal amplitude for the 

background plane waves (Eq. (13)) will imply β = –1 through Eq. (8). In other words, 

the quadratic dispersion (Eq. (2)) as represented by the second order central difference 
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(Eq. (3)) must be negative. The implication on the range of cubic nonlinearity (the 

parameter σ) deserves further studies in the future.   

 
 
(a)                                                                  

 
 
(b)                                                                  

 
                                                        

           
Figure 3: Typical wave profiles of the breather solutions [Eqs. (4, 7, 8, 10, 11, 13)] with 
spatial period 12 for different values of time t with input parameters σ = 0.2, ρ = 1, k = 
π/3, p = iπ/3, Ω = 0.161+i: Top row: t = –10; Bottom row:  t = 10; Left (Right) panel: 
|An| (|Bn|). 
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3.3 Conservation laws 

Finally, the existence of spatially periodic solutions also facilitates the search for 

conservation laws [6], which are usually associated with the underlying physics and 

desirable features for the case of continuous evolution equations. Indeed momentum 

conservation law could be derived by a symplectic integrator for a nonlinear 

Schrödinger-type equation, and had been verified numerically earlier in the literature 

[18]. Here similar conservation laws for the coupled Ablowitz-Ladik system will be 

established directly from the governing system of Eq. (5). We shall in fact confirm two 

classes of conservation laws, the first type involves one component alone, while the 

second type incorporates both arrays.   

In terms of derivation, an auxiliary equation can be obtained by multiplying Eq. 

(5a) by *
1+φn , while another auxiliary equation would be computed by multiplying the 

complex conjugate of Eq. (5a) by ϕn+1. On subtracting these two equations, we obtain 

( ) ( )[ ] ( )[ ]( )*
111

*
1

22
1

**
1 +−+−++ φφ−φφψ−φσ+β=φφ+φφ nnnnnnntnntni .  

The same procedure is applied again with the lattice point at n+1 taken as the center. 

Addition of these intermediate equations will yield a time derivative: 

( ) ( )[ ]( )
( )[ ]( ).*

22
*2

1
2

1

*
111

*
1

22
1

**
1

++++

+−+−++

φφ−φφψ−φσ+β+

φφ−φφψ−φσ+β=φφ+φφ

nnnnnn

nnnnnntnnnni
 

By the assumption of spatial periodicity, we can deduce that the quantity 

( )∑ ++ φφ+φφ= 1
**

11 nnnnJ                                                                                           (19) 
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is an invariant in time, provided that the summation is taken over one period (Figure 4).  

Similarly, the corresponding counterpart for the second component nψ  is given by 

( )∑ ++ ψψ+ψψ= 1
**

12 nnnnJ .                                                                                     (20) 

Eqs. (19) and (20) thus constitute conservation laws of the governing system which 

involve only one component.  

 

    

Figure 4: The invariants J1 and J2 as given in Eqs. (19, 20) are conserved over time. The 
input parameters are the same as those in Fig. 3. [Left (Right) panel: J1 (J2)]  
 

 The second class of conservation principles can be obtained by roughly similar 

algebraic manipulations. The contrast is that products from cross phase modulations can 

only be cancelled with a summation involving both components. The quantity  

( )∑ ++++ ψψ−ψψ+φφ−φφ= 1
**

11
**

13 nnnnnnnnJ                                                                (21) 

is then conserved for a summation over one period (Figure 5).  
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We conjecture that more sophisticated conservation laws involving more 

neighboring grids can be derived [18]. Here only one particular case will be tested 

numerically. The quantity J4 defined by 

( ) ( )[ ]∑ ++++++++ ψψ−ψψ+φφ−φφ−ψψ−ψψ+φφ−φφ= 2
**

22
**

21
**

11
**

14 8 nnnnnnnnnnnnnnnniJ . 

  (22) 

is invariant in time if the summation is taken over one period (Figure 5). 

                                                                          

                             

 

Figure 5: The invariants J3 and J4 as given by Eqs. (21, 22) are conserved over time. The 
input parameters are the same as those in Fig. 3 [Left (Right) panel: J3 (J4)]. 
 

 

These two classes of conservation principles might be associated with the 

physical quantities like momentum [6,12,18]. For boundary conditions other than spatial 

periodicity, derivation of invariant quantities might need additional considerations. 
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Nevertheless future efforts to extract further conservation laws of the system will 

enhance confidence that Eq. (3) or Eq. (5) is probably ‘integrable’ [6,18]. 

 

4. Discussions and Conclusions 

 A new system of coupled discrete (Ablowitz-Ladik) evolution equations with 

both self phase and cross phase modulations is introduced. The Hirota bilinear form is 

constructed and is utilized to obtain breathers periodic in space or time [19]:  

● Rogue waves with pulsating growth phase are generated in the long wave limit; 

● Low order conservation laws are verified for spatially periodic solutions.  

Although versions of coupled Ablowitz-Ladik equations have been considered in 

the literature, the present formulation incorporates for the first time cubic nonlinearities 

due to intensities from both arrays of waveguides, and in particular SPM and XPM of 

different signs are permitted. We conjecture that the system is ‘integrable’ but the 

details are left for future works. 

 Ablowitz-Ladik systems are applicable to many issues of physical importance, 

e.g. nonlinearity versus randomness [12], and practical applications, e.g. switching of 

discrete soliton pulses in arrays of optical waveguides [13]. Indeed the time evolution of 

arrays of oscillators can model a variety of other scenarios, e.g. a nonlinear electrical 

transmission line consisting of a suitable combination of capacitors and band pass filters 

[20]. With the present formulation, the effect of cross phase modulation in these 

physical settings can be elucidated in subsequent works. Further investigations like 
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modulation instability of the plane wave background [19] and extension to higher 

spatial dimensions [21] would be performed analytically as well as computationally in 

the near future. 

Indeed discrete breathers have received tremendous attention in the literature, as 

such modes can be applied in the descriptions of molecular crystals, Josephson 

junctions and localization of electromagnetic waves in photonic crystals [22]. Hence 

further efforts on discrete systems along the direction of the present work would 

definitely be fruitful for theoretical physics and practical applications.         
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Appendix  

 The criteria for the expansion Eq. (10) to satisfy the bilinear forms Eq. (9), with 

assumptions Eq. (11) but for general ρ1 ≠ ρ2, can be formulated by these constraints: 
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( ) ( )
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