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1 Introduction
The intersection operator and the class of intersection bodies were defined by Lutwak [28]. The closure of
the class of intersection body operators was studied by Goody, Lutwak and Weil [11]. The intersection body
operator and the class of intersection bodies played a crucial role in [36] and [5] for the solution of the famous
Busemann–Petty problem (see also [10]).

Just as the period from the mid-60s to the mid-80s was a time of great advances in the understanding
of the projection operator and the class of projection bodies, during the past 20 years significant advances
have been made in our understanding of the intersection operator and the class of intersection bodies by
Koldobsky, Zhang, Campi, Goodey, Gardner, Grinberg, Fallert, Weil, Ludwig and others (see, e.g., [1–9, 11–
22, 24, 30, 32–37]).

As Lutwak [28] showed (and as is further elaborated in Gardner’s book [8]), there is a duality between
projection and intersection bodies (that at present is not yet understood). Consider the following illustrative
example: It is well known that the projections (onto lower dimensional subspaces) of projection bodies are
themselves projection bodies. Lutwak conjectured the “dual”: When intersection bodies are intersected with
lower dimensional subspaces, the results are intersection bodies (within the lower dimensional subspaces).
This was proved by Fallert, Goodey andWeil [4]. In [26] (see also [27, 29]), Lutwak introduced mixed projec-
tion bodies and derived their fundamental inequalities.

In 2006, Haberl and Ludwig [15] introduced the Lp-intersection bodies (p ∈ (0, 1)). For K ∈ Pn0, where
Pn0 denotes the set of convex polytopes in ℝn that contain the origin in their interiors, the star body I+pK is
defined for u ∈ Sn−1 by

ρ(I+pK, u)p = ∫
K∩u+

|u ⋅ x|−p dx, (1.1)

where u+ = {x ∈ ℝn : u ⋅ x ≥ 0}. For p < 1, the centrally symmetric star body IpK = I+pK +̃p I−pK, where +̃p de-
notes the p-radial sum and I−pK = I+p(−K), is called the Lp-intersection body of K. So, for u ∈ Sn−1,

ρp(IpK, u) = ∫
K

|u ⋅ x|−p dx.
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Note that
v(K ∩ u+) = lim

ε→0

ε
2 ∫
K

|u ⋅ x|−1+ε dx

and
ρ(IK, u) = lim

p→1−

1 − p
2 ρp(IpK, u),

that is, the intersection body of K is obtained as a limit of Lp-intersection bodies of K. Also note that a change
to polar coordinates in (1.1) shows that, up to a normalization factor, ρp(IpK, u) equals the Lp cosine trans-
form of ρ(K, u)n−p.

Following Haberl and Ludwig, this paper introduces a new notion of Lp-intersection bodies (p ∈ (0, 1)).
The Lp-mixed intersection bodies of K1, . . . , Kn−1 are written as Ip(K1, . . . , Kn−1), where p ∈ (0, 1), whose
radial function is defined by

ρp(Ip(K1, . . . , Kn−1), u) =
2

1 − p
ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu), (1.2)

where ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu) denotes the p-dualmixed volumes of K1 ∩ Eu , . . . , Kn−1 ∩ Eu in an (n − 1)-
dimensional space (see Section 2). Eu denotes the hyperplane, through the origin, that is orthogonal to u. If
K1 = ⋅ ⋅ ⋅ = Kn−i−1 = K, Kn−i = ⋅ ⋅ ⋅ = Kn−1 = L, then ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu) is written as ṽp,i(K ∩ Eu , L ∩ Eu).
If L = B, then ṽp,i(K ∩ Eu , L ∩ Eu) is written as ṽp,i(K ∩ Eu).

By the definition given above, we have

lim
p→1−

1 − p
2 ρp(Ip(K1, . . . , Kn−1), u) = lim

p→1−
ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu)

= ṽ(K1 ∩ Eu , . . . , Kn−1 ∩ Eu)
= ρ(I(K1, . . . , Kn−1), u).

The mixed intersection body I(K1, . . . , Kn−1) was defined by Leichtweiß [23] as

ρ(I(K1, . . . , Kn−1), u) =
1

n − 1 ∫
Sn−1∩Eu

ρ(K1, u) ⋅ ⋅ ⋅ ρ(Kn−1, u) dS(u).

For the Lp-mixed intersection bodies, Ip(K1, . . . , Kn−1), if K1 = ⋅ ⋅ ⋅ = Kn−i−1 = K, Kn−i = ⋅ ⋅ ⋅ = Kn−1 = L, then
Ip(K1, . . . , Kn−1) is written as Ip(K, L)i. If L = B, then Ip(K, L)i is written as IpKi and called the ith Lp-
intersection body of K. For IpK0, we simply write IpK and call it the Lp-intersection body of K.

The Lp-intersection body as defined by Haberl and Ludwig does not agree with the definition of a mixed
Lp-Intersection body, see (1.2). Thus, the Lp-intersection body considered in this paper is different from the
notion introduced by Haberl and Ludwig. Moreover, a quasi Lp-intersection body and a mixed quasi Lp-
intersection body were introduced by Leng, Wu and Yu [31], for p ≥ 1, by

ρ(Ip(K1, . . . , Kn−1), u)p =
1

(n − 1)ωn−1
∫

Sn−1∩Eu

ρ(K1, u)
n−p
n−1 ⋅ ⋅ ⋅ ρ(Kn−1, u)

n−p
n−1 dS(u).

Obviously, the Lp-intersection body considered here is also different from the notion introduced by Leng, Wu
and Yu.

In this paper, the inequalities for the q-dual volume sum function of Lp-mixed intersection bodies are
established. Our main results are stated as follows.

Theorem A. Let K, L, D and D� be star bodies and D� be a dilated copy of D. If 0 ≤ i < n, 0 ≤ j < n − 1, i, j ∈ ℕ,
q ≥ 1 and p ∈ (0, 1), then

Sṽq,i (Ip(K, L)j , Ip(D, D�)j)n−1 ≤ Sṽq,i (IpK, IpD)n−j−1Sṽq,i (IpL, IpD�)j ,

with the equality holding if and only if K and L are dilates.
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Here, for the star bodies K and L, Sṽq,i (K, L) denotes the q-dual volume sum function of K and L, i.e.,

Sṽq,i (K, L) = Ṽq,i(K) + Ṽq,i(L)

and Ṽq,i(K) denotes the ith q-dual mixed volume

Ṽq(K, . . . , K⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n−i

, B, . . . , B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
i

),

which was defined in [39] (see also Section 2). If q = 1, Ṽq,i(K) is the classical dual quermassintegral W̃i(K).
Moreover, Lp-dual quermassintegral sums were introduced in [38].

Remark 1.1. In the special case where D and D� are single points, the inequality in TheoremA takes the form

Ṽq,i(Ip(K, L)j)n−1 ≤ Ṽq,i(IpK)n−j−1Ṽq,i(IpL)j ,

with the equality holding if and only if K and L are dilates.

Let D and D� be single points and put q = 1 in the inequality in Theorem A. Then

W̃i(Ip(K, L)j)n−1 ≤ W̃i(IpK)n−j−1W̃i(IpL)j ,

with the equality holding if and only if K and L are dilates.

Theorem B. Let K1, . . . , Kn−1 be star bodies, p ∈ (0, 1), q ≥ 1, 1 < r ≤ n − 1, 0 ≤ i < n, 0 ≤ j < n − 1, i, j ∈ ℕ.
Let Di (i = 1, 2, . . . , n) be the dilated copies of each other, respectively. Then

Sṽq,i (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1))r

≤
r
∏
j=1
Sṽq,i (Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1), Ip(Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1)),

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.

Remark 1.2. In the special case where D1, . . . , Dn−1 are single points, the inequality in Theorem B takes the
form

Ṽq,i(Ip(K1, . . . , Kn−1))r ≤
r
∏
j=1
Ṽq,i(Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1)),

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.

Let D1, . . . , Dn−1 be single points and put q = 1 in the inequality in Theorem B. Then

W̃i(Ip(K1, . . . , Kn−1))r ≤
r
∏
j=1
W̃i(Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1)),

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.

2 q-dual mixed volume
The setting for this paper is the n-dimensional Euclidean space ℝn (n > 2). We preserve the symbol u for
unit vectors, and the symbol B is preserved for the unit ball centered at the origin. The surface of B is Sn−1.
The volume of the unit n-ball is denoted by ωn. Integration over Sn−1 by the usual Borel measure on Sn−1 is
denoted by dS.

Associated with a compact subset K of ℝn, which is star-shaped with respect to the origin, is its radial
function ρ(K, ⋅ ) : Sn−1 → ℝ defined for u ∈ Sn−1, by ρ(K, u) = max{λ ≥ 0 : λu ∈ K}. If ρ(K, ⋅ ) is positive and
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continuous, K will be called a star body. Let φn denote the set of star bodies in ℝn. Let δ̃ denote the radial
Hausdorff metric defined as follows: if K, L ∈ φn, then

δ̃(K, L) = |ρ(K, ⋅ ) − ρ(L, ⋅ )|∞,

where | ⋅ |∞ denotes the sup-norm on the space of continuous functions C(Sn−1).
The q-dual mixed volume Ṽq(K1, . . . , Kn) was defined in [39] as follows.

Definition 2.1. Let K1, . . . , Kn ∈ φn and q ̸= 0. The q-dual mixed volume is defined by

Ṽq(K1, . . . , Kn) = ωn(
1
nωn

∫
Sn−1

ρq(K1, u) ⋅ ⋅ ⋅ ρq(Kn , u) dS(u))
1
q
. (2.1)

By Definition 2.1, Ṽq is a map
Ṽq : φn × ⋅ ⋅ ⋅ × φn → ℝ.

Taking q = 1 in (1.1), we have

Ṽ1(K1, . . . , Kn) = Ṽ(K1, . . . , Kn),

where Ṽ(K1, . . . , Kn) is the classical dual mixed volume which was defined by Lutwak [25]. Moreover, we
will write Ṽq(K, . . . , K⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n−i
, L, . . . , L⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

i
) as Ṽq,i(K, L), and Ṽq(K, . . . , K⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

n−i
, B, . . . , B⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

i
) as Ṽq,i(K).

3 Auxiliary results
For the q-dual mixed volume, we obtain a new inequality, an Aleksandrov–Fenchel type inequality between
q-dual mixed volumes, defined as follows.

Lemma 3.1. If K1, . . . , Kn ∈ φn, 1 < r ≤ n, and q ≥ 0, then

Ṽq(K1, . . . , Kn)r ≤
r
∏
j=1
Ṽq(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn), (3.1)

with the equality holding if and only if K1, . . . , Kn are all dilations of each other.
The inequality is reversed for q < 0.

Proof. Hölder’s inequality for integrals states that for positive continuous functions f1, . . . , fm, g : Sn−1 → ℝ
and positive numbers p1, . . . , pm with 1

p1 + ⋅ ⋅ ⋅ + 1
pm = 1, we have

n−1

∫
S

f1 ⋅ ⋅ ⋅ fmg dS ≤
m
∏
j=1

(
n−1

∫
S

f pjj g dS)
1
pj .

Let q ̸= 0 and set m = r, g = 1
nωn ρ(Kr+1, ⋅ )

q ⋅ ⋅ ⋅ ρ(Kn , ⋅ )q and fj = ρ(Kj , ⋅ )q , pj = 1
r for j = 1, . . . , r. Then

1
nωn

n−1

∫
S

ρ(K1, u)q ⋅ ⋅ ⋅ ρ(Kn , u)q dS(u) ≤
r
∏
j=1

(
1
nωn

n−1

∫
S

ρ(Kj , u)qrρ(Kr+1, u)q ⋅ ⋅ ⋅ ρ(Kn , u)q dS(u))
1
r
,

and therefore
Ṽq(K1, . . . , Kn)q ≤

r
∏
j=1
Ṽq(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn)

q
r .

Hence, for q > 0, we have that

Ṽq(K1, . . . , Kn)r ≤
r
∏
j=1
Ṽq(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn),
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and, for q < 0, we have that

Ṽq(K1, . . . , Kn)r ≥
r
∏
j=1
Ṽq(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn).

Taking q = 1 in (1.2), we have

Ṽ(K1, . . . , Kn)r ≤
r
∏
j=1
Ṽ(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn),

with the equality holding if and only if K1, . . . , Kn are all dilations of each other.

This is just the Aleksandrov–Fenchel inequality between dual mixed volumes, which is due to Lutwak [25].

Lemma 3.2. If K, L ∈ φn, 0 ≤ i < n, 0 ≤ j < n − 1, i, j ∈ ℕ, q ≥ 1 and p < 1, then

Ṽq,i(Ip(K, L)j) = ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp,j(K ∩ Eu , L ∩ Eu)
(n−i)q
p dS(u))

1
q
.

From (1.2) and (2.1), Lemma 3.2 easily follows.
We shall need the following elementary inequality.

Lemma 3.3. If ai ≥ 0, bi > 0 (i = 1, 2, . . . , n), then

(
n
∏
i=1

(ai + bi))
1
n
≥ (

n
∏
i=1
ai)

1
n
+ (

n
∏
i=1
bi)

1
n
, (3.2)

with the equality holding if and only if a1b1 = a2
b2 = ⋅ ⋅ ⋅ = an

bn .

Obviously, a special case of (3.2) is the following result.
If a, b ≥ 0 and c, d > 0, then, for 0 < m < 1,

(a + b)m(c + d)1−m ≥ amc1−m + bmd1−m , (3.3)

with the equality holding if and only if ad = bc.

4 Inequalities for the q-dual volume sum of Lp-intersection bodies

4.1 Lp-Minkowski inequality for the q-dual volume sum

The following Minkowski inequality for q-dual mixed volumes of Lp-mixed intersection bodies will be estab-
lished: If K, L ∈ φn, p ∈ (0, 1), q ≥ 1 and 0 < j < n − 1, j ∈ ℕ, then

Ṽq(Ip(K, L)j)n−1 ≤ Ṽq(IpK)n−j−1Ṽq(IpL)j , (4.1)

with the equality holding if and only if K and L are dilates.
This is just a special case of the following result.

Theorem 4.1. Let K, L, D, D� ∈ φn, let D� be a dilated copy of D, and let 0 ≤ i < n, 0 ≤ j < n − 1, i, j ∈ ℕ, q ≥ 1
and p ∈ (0, 1). Then

Sṽq,i (Ip(K, L)j , Ip(D, D�)j)n−1 ≤ Sṽq,i (IpK, IpD)n−j−1Sṽq,i (IpL, IpD�)j , (4.2)

with the equality holding if and only if K and L are dilates.
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Proof. Taking K1 = ⋅ ⋅ ⋅ = Kn−j = K, Kn−j+1 = ⋅ ⋅ ⋅ = Kn = L and r = n in (3.1), we obtain

Ṽq,j(K, L)n ≤ Ṽq(K)n−j Ṽq(L)j ,

with the equality holding if and only if K and L are dilates.
Hence, in an (n − 1)-dimensional space, we have

ṽq,j(K ∩ Eu , L ∩ Eu) ≤ ṽq(K ∩ Eu)
n−j−1
n−1 ṽq(L ∩ Eu)

j
n−1 , (4.3)

with the equality holding if and only if K ∩ Eu and L ∩ Eu are dilates, which is true if and only if K and L are
dilates.

From Lemma 3.2, (4.3), the Minkowski inequality for an integral, and in view of the following fact:

Ṽq,i(IpM) = ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp(M ∩ Eu)
(n−i)q
p dS(u))

1
q
,

where M = K or L, we obtain

Ṽq,i(Ip(K, L)j) = ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp,j(K ∩ Eu , L ∩ Eu)
(n−i)q
p dS(u))

1
q

≤ ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

(ṽp(K ∩ Eu)
q(n−j−1)
n−1 ṽp(L ∩ Eu)

qj
n−1 )

n−i
p dS(u))

1
q

≤ ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ( ∫

Sn−1

ṽp(K ∩ Eu)
(n−i)q
p dS(u))

n−j−1
n−1

)

1
q

( ∫
Sn−1

ṽp(L ∩ Eu)
(n−i)q
p dS(u))

j
q(n−1)

= ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp(K ∩ Eu)
(n−i)q
p dS(u))

n−j−1
q(n−1)

× (
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp(L ∩ Eu)
(n−i)q
p dS(u))

j
q(n−1)

= Ṽq,i(IpK)
n−j−1
n−1 Ṽq,i(IpL)

j
n−1 .

In view of the equality conditions in (4.3) and the Minkowski inequality for integrals, it follows that the
equality holds if and only if K and L are dilates.

Hence,
Ṽq,i(Ip(K, L)j)n−1 ≤ Ṽq,i(IpK)n−j−1Ṽq,i(IpL)j ,

with the equality holding if and only if K and L are dilates.
In view of the fact that D� is a dilated copy of D, we have

Ṽq,i(Ip(D, D�)j)n−1 = Ṽq,i(IpD)n−j−1Ṽq,i(IpD�)j .

Therefore, from inequality (3.3), we have

Sṽq,i (Ip(K, L)j , Ip(D, D�)j) ≤ Ṽq,i(IpK)
n−j−1
n−1 Ṽq,i(IpL)

j
n−1 + Ṽq,i(IpD)

n−j−1
n−1) Ṽq,i(IpD�)

j
n−1

≤ Sṽq,i (IpK, IpD)
n−j−1
n−1 Sṽq,i (IpL, IpD�)

j
n−1 .

In view of the equality conditions in inequality (3.3), it follows that the equality holds if and only if K and L
are dilates.

The proof of Theorem 4.1 is complete.

Remark 4.2. Taking q = 1 in (4.2), we have

Sw̃i (Ip(K, L)j , Ip(D, D�)j)n−1 ≤ Sw̃i (IpK, IpD)n−j−1Sw̃i (IpL, IpD�)j .

with the equality holding if and only if K and L are dilates.
Here Sw̃i denotes the i-dual quermassintegral sum function.

Let D and D� be single points. Taking i = 0 in (4.2), (4.2) transforms to (4.1).
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4.2 Lp-Aleksandrov–Fenchel inequality for the q-dual volume sum

The following Aleksandrov–Fenchel type inequality for the q-dual volume sum function of Lp-mixed inter-
section bodies will be proved: If K1, . . . , Kn−1 ∈ φn , 0 ≤ j < n − 1, j ∈ ℕ, p ∈ (0, 1) and q ≥ 1, then

Sṽq (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1))r

≤
r
∏
j=1
Sṽq (Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1), Ip(Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1))

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.
This is just a special case of the following result:

Theorem 4.3. Let K1, . . . , Kn−1 ∈ φn, p ∈ (0, 1), q ≥ 1, 1 < r ≤ n − 1, 0 ≤ i < n, 0 ≤ j < n − 1, i, j ∈ ℕ and let
Di (i = 1, 2, . . . , n) be the dilated copies of each other, respectively. Then

Sṽq,i (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1))r

≤
r
∏
j=1
Sṽq,i (Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1), Ip(Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1)), (4.4)

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.

Proof. From (1.2) and (2.1), we have that

Ṽq,i(Ip(K1, . . . , Kn−1)) = ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu)
(n−i)q
p dS(u))

1
q
. (4.5)

By using inequality (3.1), we easily get that

ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu) ≤ (
r
∏
j=1
ṽp(Kj ∩ Eu , . . . , Kj ∩ Eu⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1 ∩ Eu , . . . , Kn−1 ∩ Eu))

1
r
, (4.6)

with the equality holding if and only if K1 ∩ Eu , . . . , Kn−1 ∩ Eu are all dilations of each other, which is true if
and only if K1, . . . , Kn−1 are all dilations of each other.

On the other hand, Hölder’s inequality can be written as

∫
Sn−1

m
∏
i=1
fi(u) dS(u) ≤

m
∏
i=1

( ∫
Sn−1

(fi(u))m dS(u))
1
m
, (4.7)

with the equality holding if and only if all fi are proportional.
From (4.5), (4.6) and (4.7), we obtain

Ṽq,i(Ip(K1, . . . , Kn−1))

= ωn(
1
nωn

(
2

1 − p )
(n−i)q
p ∫

Sn−1

ṽp(K1 ∩ Eu , . . . , Kn−1 ∩ Eu)
(n−i)q
p dS(u))

1
q

≤ ωn(
1
nωn

(
2

1 − p )
(n−i)q
p )

1
q
( ∫
Sn−1

r
∏
j=1
ṽp(Kj ∩ Eu , . . . , Kj ∩ Eu⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1 ∩ Eu , . . . , Kn−1 ∩ Eu)

(n−i)q
rp dS(u))

1
q

≤ ωn(
r
∏
j=1

1
nωn

(
2

1 − p )
(n−i)q
p )

1
rq

r
∏
j=1

( ∫
Sn−1

ṽp(Kj ∩ Eu , . . . , Kj ∩ Eu⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r

, Kr+1 ∩ Eu , . . . , Kn−1 ∩ Eu)
(n−i)q
p dS(u))

1
rq

= (
r
∏
j=1
Ṽq,i(Ip (Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1)))

1
r
.

In viewof the equality conditions in (4.6) and (4.7), it follows that the equalityholds if andonly ifK1, . . . ,Kn−1
are all dilations of each other.
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In view of that Di (i = 1, 2, . . . , n) are dilated copies of each other, we have

Ṽq,i(Ip(D1, . . . , Dn−1))r =
r
∏
j=1
Ṽq,i(Ip (Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1)).

Hence,

Svq,i (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1)) ≤ (
r
∏
j=1
Ṽq,i(Ip (Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1)))

1
r

+ (
r
∏
j=1
Ṽq,i(Ip (Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1)))

1
r
, (4.8)

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other.
By using inequality (3.2) in Lemma 3.3 on the right-hand side of inequality (4.8), we obtain

Svq,i (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1))

≤
r
∏
j=1

(Ṽq,i(Ip (Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r

, Kr+1, . . . , Kn−1)) + Ṽq,i(Ip (Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
r

, Dr+1, . . . , Dn−1)))
1
r

≤ (
r
∏
j=1
Svq,i (Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1), Ip(Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1))

1
r )
r
.

In view of the equality conditions in inequality (3.2), it follows that the equality holds if and only if
K1, . . . , Kn−1 are all dilations of each other.

Remark 4.4. Taking q = 1 in (4.4), we obtain

Sw̃i (Ip(K1, . . . , Kn−1), Ip(D1, . . . , Dn−1))

≤
r
∏
j=1
Sw̃i (Ip(Kj , . . . , Kj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Kr+1, . . . , Kn−1), Ip(Dj , . . . , Dj⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

r
, Dr+1, . . . , Dn−1)),

with the equality holding if and only if K1, . . . , Kn−1 are all dilations of each other. Here, Sw̃i denotes the well
known i-dual quermassintegral sum function.
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