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A B S T R A C T

Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements
of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical
approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the me-
chanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may af-
fect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess
over two separate years, whether a predictive model can represent natural and imposed variation in leaf pho-
tosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual
capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant
driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas
exchange data was used to build predictive models for photosynthetic parameters including maximum car-
boxylation rate of Rubisco (Vc,max), maximum electron transport rate (Jmax) and percentage leaf nitrogen ([N]).
The model was developed for wild type and genetically modified plants that represent a wide range of photo-
synthetic capacities. Results show that hyperspectral reflectance accurately predicted Vc,max, Jmax and [N] for all
plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive
ability relative to gas exchange measurements for Vc,max, but not for Jmax, and not for genotypes unique to 2017.
Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of
17% for Vc,max. and 13% Jmax. Plants generally have a positive correlation between leaf nitrogen and photo-
synthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower
Vc,max. The PLSR model was able to accurately predict both lower Vc,max and higher leaf [N] for this genotype
suggesting that the spectral based estimates of Vc,max and leaf nitrogen [N] are independent. These results
suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that
the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the
leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to
use these methods across years and between genotypes at any scale, application of accurately populated physical
based models based on radiative transfer principles may be required.
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1. Introduction

Projected population increases, rising global affluence, and
mounting pressures from a changing global climate necessitate im-
provements to global food supply (Tilman et al., 2009; Foley et al.,
2011). Yield increases brought about from the ‘Green Revolution’ have
plateaued over the last two decades for many crop species (Fischer and
Edmeades, 2010; Parry et al., 2010), requiring novel strategies to rea-
lize further gains in productivity. Improving photosynthetic potential
likely remains the best strategy to increase crop production (Monteith
and Moss, 1977; Zhu et al., 2010; Ort et al., 2015), potentially without
the need for additional fertilizer and pesticide that were critical to
support yield increases associated with the Green Revolution (Long
et al., 2006; Evans, 2013).

Despite being one of nature's most conserved processes, photo-
synthesis has a staggering number of component inefficiencies (Long
et al., 2006; Evans, 2013). These inefficiencies inspire current research
efforts to improve crop yields through manipulating photosynthetic
pathways (Ort et al., 2015; Andralojc et al., 2018) and exploiting nat-
ural variation in photosynthetic rates (Lawson et al., 2012; Meacham
et al., 2016). Regardless of the means of improvement, the ability to
non-destructively sample phenotypic variation in photosynthetic ca-
pacity among tens to hundreds of thousands of plants representing
genotypic variation within a reasonable time presents a significant
phenotyping challenge (Furbank and Tester, 2011).

Remote sensing communities have long used spectral vegetation
indices to estimate leaf and canopy properties at the ecosystem scale
(Peñuelas et al., 1994; Curran et al., 1997; Martin and Aber, 1997; Ustin
et al., 2004; Asner and Martin, 2008). More recently, spectral detection
of emission at discreet wavebands corresponding to solar induced
fluorescence (SIF) (Frankenberg and Berry, 2018) have been used as a
functional proxy for gross primary productivity (GPP) of natural and
forest ecosystems (Guanter et al., 2007; Meroni et al., 2009; Yang et al.,
2018; Guan et al., 2016) and crops (Miao et al., 2018; Yang et al.,
2018). While SIF is valuable in the context of inferring GPP, it does not
provide insights into the underlying photosynthetic mechanisms, i.e.,
maximum Rubisco carboxylation (Vc,max) and maximum electron
transport rate (Jmax), that are used as indicators of photosynthetic ca-
pacity and to model vegetation at leaf- to ecosystem-scales (e.g.,
Bernacchi et al., 2013; Bagley et al., 2015a,b). Improving photo-
synthetic productivity for increased global crop yields requires techni-
ques to quantify these parameters, yet traditional methods rely on leaf
sampling and analysis under laboratory conditions or using in-field gas
exchange systems (Long and Bernacchi, 2003). These provide a wealth
of photosynthetic information but are costly and time intensive. How-
ever, spectroscopy techniques coupled with regression analysis (Serbin
et al., 2012, 2014) have been used to screen for germplasms among
cropping species with the highest photosynthetic potential (Ainsworth
et al., 2014; Yendrek et al., 2016; Silva-Perez et al., 2017). Because of
the challenges with gas exchange measurements, remote sensing of
intensive agricultural regions of the planet is limited by ground-truth
data and the potential for genetically modified crops to increase in areal
extent suggests methods are required that quantify Vc,max and Jmax over
larger spatial areas, beyond what is capable with traditional techniques.

Statistical approaches that link spectral reflectance patterns with
‘ground-truth’ measurements from traditional techniques have poten-
tial to significantly decrease sampling time by orders of magnitude. The
partial least squares regression (PLSR) model (Wold et al., 2001), which
relates two data matrices using a linear multivariate model to predict
plant properties of interest, is increasingly used for this purpose. This
approach has been applied to rapidly collected leaf reflectance spectra
and used to predict key photosynthetic parameters in Aspen and Cot-
tonwood trees (Serbin et al., 2012), soybean exposed to ozone treat-
ments (Ainsworth et al., 2014), wheat (Silva-Perez et al., 2017) and
maize (Yendrek et al., 2016; Heckmann et al., 2017).

Before combined gas exchange and aerial spectroscopic techniques

can be employed to quantify ecosystem function to feed ecosystem
models or to be used as breeding tools, the combination of these
techniques must be tested at scales that eliminate confounding factors.
Leaf-scale analysis using spectral sensors with an artificial light source
on field grown plants, provides an ideal testbed for spectroscopic
techniques as it removes many of the issues with spectral measurements
at larger scales. While hyperspectral analysis has focused on inter- and
intra-specific variation in photosynthetic potential (Ainsworth et al.,
2014; Silva-Perez et al., 2017; Yendrek et al., 2016; Heckmann et al.,
2017), there is considerable uncertainty whether this technique can be
applied to plants in which the photosynthetic machinery has been ge-
netically modified. Genetic modifications can range from optimizing
concentrations of existing proteins (e.g., Driever et al., 2017; López-
Calcagno et al., 2019) to metabolic engineering of novel pathways (e.g.,
South et al., 2019). As the underlying mechanisms measured with PLSR
techniques remain elusive, artificially altering the amount, or introdu-
cing novel proteins and pathways may challenge the predictive ability
of these models. Estimations of photosynthetic physiology have also
been attributed to leaf nitrogen content ([N]) as calculated from key
light absorption pigments in the reflectance spectra (Kattge et al., 2009;
Rogers, 2014; Walker et al., 2014; Dechant et al., 2017). This also
questions whether altered photosynthetic potential independent of
changes in leaf [N] would lead to an inability of spectroscopic analysis
of photosynthetic potential in genetically modified plants. If leaf-scale
spectroscopic techniques are unable to accurately identify natural and/
or imposed variation in photosynthetic potential among a diverse col-
lection of crop genotypes, then it would question the potential for this
technique at larger spatial scales relevant for breeding and modeling
purposes.

In this study a PLSR model is used to predict photosynthetic capa-
city from leaf hyperspectral reflectance in field grown wild-type culti-
vars and genetically modified lines of Nicotiana tabacum (tobacco) over
multiple time periods over two growing seasons. Specifically, the ob-
jectives are to determine whether (1) PLSR based spectral models
predict photosynthetic capacity in genetically modified plants, (2) the
PLSR model can be applied across growing seasons, and (3) PLSR can
predict Vc,max and Jmax independent of leaf nitrogen. Tobacco was
chosen as a model crop species to test the effectiveness of modifications
to the photosynthetic pathway based on the ease of genetic transfor-
mation, short growing seasons, and large number of seeds produced
(Kromdijk et al., 2016). This allows rapid field trial testing prior to
insertion of promising modifications into staple food crops. These ob-
jectives were tested on wild type cultivars exhibiting natural variation
in photosynthetic capacities and genotypes genetically modified to
present increased and decreased photosynthetic potential (Table 1).

2. Methods

2.1. Plant material

In 2016, six genotypes consisting of three transgenic and three wild
type lines of Nicotiana tabacum (Table 1) were grown under field con-
ditions at the University of Illinois Energy Farm Facility in Urbana, Il-
linois (40°03′46.4″N 88°12′25.4″W, 215m above sea level). Genotypes
were chosen to exhibit variation in photosynthetic capacity using the
three wild type cultivars representing different relative growth rates,
two transgenic Rubisco antisense lines with reduced photosynthetic
capacity (Hudson et al., 1992), and one transgenic with overexpression
of photosynthetic carbon reduction cycle enzymes to increase photo-
synthetic capacity (Simkin et al., 2015). Plants were germinated in
greenhouse conditions and transplanted to the field at the four-leaf
stage. High levels of ESN Smart Nitrogen (310 kg/ha, equating to
~150 ppm soil concentration) were applied to the field site two weeks
prior to transplanting. A biological pesticide Bacillus thuringiensis v.
kurstaki (54%) (DiPel PRO), was applied to the prepared field site five
days prior to transplant and at biweekly intervals thereafter to control
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for tobacco pests. A broad action herbicide, Glyphosate-iso-
propylammonium (41%) (Killzall; VPG) (15 l at 70 g/l) was applied to
all plots once, two days prior to transplanting. Irrigation was provided
as needed to eliminate water limitation throughout growth. The ex-
periment consisted of four replicated plots of each genotype with 36
plants per plot arranged in a 6× 6 grid and spaced 0.38m apart.

In 2017, the SFX genotype was removed from the experiment and
three transgenic lines were added (Table 1). Plants were grown at the
same location following the same protocol as 2016. Two newly in-
troduced lines had either reduced or increased photoprotective
quenching capacity, and the third had an alternative photorespiratory
pathway relative to the wild-type. Field set up, plot design, pesticide
and nutrient application followed the same protocol as 2016.

2.2. Leaf reflectance and gas exchange

2.2.1. Leaf reflectance
Leaf spectral reflectance was measured in situ from 400 to 2500 nm

using a spectroradiometer (Fieldspec4, Analytical Spectral Devices - ASD,
Boulder, CO USA), with spectral resolution of 3 nm in the visible and
NIR (350–1000 nm) and 8 nm in shortwave-infrared (SWIR;
1000–2500 nm). Measurements were made with a leaf clip attached to
the fiberoptic cable. The device contains a radiometrically calibrated
light source which was standardized for relative reflectance (white re-
ference) prior to each measurement using a spectralon panel. The last
fully expanded leaf on each plant was measured, always keeping its
natural orientation, avoiding leaf midrib and leaf edges. Each mea-
surement was the mean of 10 scans at 100ms scanning speed per scan.
Six reflectance spectra were recorded using the leaf clip attachment in
different regions of the same leaf, and a total of three leaves were
sampled per plot.

A spectral splice correction was applied to each spectrum to align
the VIS and SWIR sensor to the NIR sensor, and a bias threshold re-
moved spectra with high light levels at 450 nm as a quality control to
ensure the leaf clip was properly fastened onto the leaf during each
measurement. The six spectra for a single leaf were then averaged to
give a mean spectrum per leaf. Spectra from the six samples with a
deviation from the mean greater than 2% reflectance were eliminated
using the FieldSpectra package in R according to Serbin et al. (2014).
Leaves with a remaining number of viable spectra less than 4 repeti-
tions were eliminated from analysis.

Plants were measured at multiple developmental stages to capture a
wide variation in maturity and in meteorological conditions for each
genotype. Measurements were collected during three date ranges in
2016: June 30 – July 1 (T1), July 19–21 (T2), and August 4–5 (T3). In

2017 measurements were made on four date ranges: June 26–28 (T1),
July 6–12 (T2), July 31–August 1 (T3) and August 18 (T4).
Measurements were made on clear sky days between 11 am and
2:30 pm local time (Central Daylight Time). Meteorological conditions
for measurement periods are summarized in Fig. S1.

2.2.2. Gas exchange
Within 30min of the spectral measurements, photosynthetic (A) vs.

intercellular CO2 (Ci) response curves were collected to determine
Vc,max and Jmax for each leaf to use as ground-truth training for a PLSR
model. Curves were measured on the same leaves as the hyperspectral
measurements using a portable leaf gas exchange system (LI-6400,
LICOR Biosciences, Lincoln, NE, USA). Ambient leaf temperature was
determined as the mean of three measurements of leaf temperature
with a handheld IR gun (FLIR TG54, FLIR® Systems, Inc., Wilsonville,
Oregon, USA). Block temperature on the gas exchange system was set to
match this mean leaf temperature prior to each CO2 response curve.
PAR was set to 1800 μmol m−2 s−1, and CO2 concentrations were ad-
justed stepwise over a range of 50 to 2000 μmol mol−1 in set incre-
ments as follows: 400, 200, 50, 100, 300, 400, 600, 900, 1200, 1500,
1800, 2000. Leaves were acclimated to chamber conditions for a
minimum of 300 s prior to initiating each A/Ci curve and a minimum
and maximum wait time of 160 s and 200 s, respectively, was in-
corporated before triggering each individual measurement. Relative
humidity inside the chamber was manually controlled to 65 ± 5%
before each curve by adjusting the flow through the desiccant tube
integrated into the gas exchange system. Vc,max and Jmax were de-
termined from these A/Ci curves according to the mechanistic model of
photosynthesis (Farquhar et al., 1980). A/Ci curves were analyzed using
a curve fitting utility developed by Sharkey et al. (2007) with meso-
phyll conductance (gm) constrained according to values for tobacco at
25 °C reported previously with temperature dependency incorporated
from the linear relationship of gm with temperature where
y=−0.44+0.058x (Evans and Von Caemmerer, 2013).

2.3. Leaf nitrogen concentration

In 2016, immediately following each A/Ci curve, three 2.01cm2 leaf
disks were destructively harvested from each leaf using a cork borer and
dried until constant mass and a subset of ground tissue of known mass
(3 ± 0.5mg) was combusted with oxygen in an elemental analyzer
(Costech 4010; Costech Analytical Technologies) and calibrated to %N
against an acetanilide standard curve.

Table 1
Nicotiana tabacum genotypes used in this study and brief description of transgenic modification, with reference for detailed description of transformation.

Year(s) grown Genotype Transgene Transgene expected function

2016 & 2017 Petite Havana None (WT) n/a
2016 & 2017 Samsun None (WT) n/a
2016 & 2017 Mammoth None (WT) n/a
2016 SFX Overexpressed photosynthetic carbon reduction cycle enzymes, background:

Samsun (Simkin et al., 2015)
Improved photosynthetic capacity, due to
increased carbon reduction enzymes.

2016 & 2017 Single Rubsico
Knockdown (SSuS)

Rubisco small subunit antisense. 40% of WT Rubisco, background: W38 (Hudson
et al., 1992)

Reduced photosynthetic capacity, due to reduced
Rubisco

2016 & 2017 Double Rubisco
Knockdown (SSuD)

Rubisco small subunit antisense. 10% of WT Rubisco, background: W38 (Hudson
et al., 1992)

Reduced photosynthetic capacity, due to reduced
Rubisco

2017 200–8 Insertion of two transgenic genes expressing the enzyme Glycolate
dehydrogenase and Malate synthase as an alternative pathway to native
photorespiration, background: Petite Havana (South et al., 2019)

Increased photosynthetic capacity, by reduction of
energy loss associated with photorespiration.

2017 43-OE Increased PsbS mRNA levels from transformation with Nicotiana benthamiana
Psbs coding sequence and 35S promoter, background: Petite Havana (Głowacka
et al., 2016, 2018)

Increased photosynthetic capacity, due to increase
in the electron transport metabolite pools.

2017 4-KO Decreased PsbS mRNA levels from transformation with Nicotiana benthamiana
Psbs coding sequence and 35S promoter, background: Petite Havana (Głowacka
et al., 2016, 2018)

Reduced photosynthetic capacity, due to decreased
electron transport metabolite pools.
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2.4. Partial least squares regression (PLSR)

Two separate PLSR model build sets were performed for Vc,max, Jmax

and [N]. One model (Model set 1) was built using data collected during
the 2016 growing season, and the second (Model set 2) was built using
75% of the data collected during the 2016 and 2017 growing seasons.
Model set 1 was validated against data collected in the following year
(2017). Model set 2 data was validated against the 25% of data not used
for the model build (Table S1). Model training data sets consisted of
pairs of modelled or measured parameters with reflectance spectra
measured on the same leaf. For model validation, coefficients output
from the PLSR model build were applied at each spectral waveband to
collected reflectance spectra to predict the trait of interest.

All models were built following the same PLS build principles
(Ollinger and Smith, 2005; Asner and Martin, 2008; Townsend et al.,
2003) using previously published methods (Serbin et al., 2014) but
modified for N. tabacum. An open-source Partial Least Squares (PLS)
package (Mevik and Wehrens, 2007) in R (The R Foundation for Statis-
tical Computing, Wien, Austria) was used to create the linear model of
waveband coefficients by identifying latent variables (LVs) that account
for trait variation in the reflectance spectra. It uses a leave-one-out cross
validation approach that then makes a prediction for the out-of-sample
observation (Siegmann and Jarmer, 2015). The predicted residual sum
of squares (PRESS) statistic and lowest root mean square error of pre-
diction from cross validation (RMSEPCV) were used to determine the
optimal number of LVs and to prevent overfitting. The PRESS statistic
determines the number of LVs to achieve minimum root mean square
error (RMSE) between modelled and observed leaf traits (Wold et al.,
2001). The RMSEPCV cross validates the model bias and variance
(Gowen et al., 2011).

2.4.1. Model set 1
For Model set 1, the Vc,max model was built with a training dataset of

113 measurement pairs. The collected reflectance spectra from six
genotypes (Fig. 2a) were used as a training dataset for a PLSR model
build with six latent variables as determined by the PRESS statistic and
RMSE (Fig. S2a, c and e). The Jmax PLSR model was built independently
given that the double Rubisco knockdown plants (SSuD) were found to
not be electron transport limited even at high CO2 concentrations. As
such, maximal electron transport rate could not be determined for the
double Rubisco knockdown measurements (SSuD) and they were re-
moved from the Jmax model build, leaving a data training set of 94
measurement pairs, with 9 latent variables (Fig. S2b, d and f). The
spectral range for the Vc,max and Jmax models was 500–2400 nm, with a
spectral resolution of 3 nm in the visible and NIR (350–1000 nm) and
8 nm in shortwave-infrared (SWIR; 1000–2500 nm). While spectra were
collected across the full range (400–2500 nm) we excluded regions
below 500 nm and above 2400 nm due to noise. The %N model was
built with a training data set of 131 N values measured from leaf tissue
samples in the same leaves measured for Vc,max and Jmax. The spectral
range for the %N model was also 500–2400 nm. PLSR build statistics for
all 2016 models are shown in Figs. S2–4.

The models for Vc,max, Jmax and %N were built with varying sample
sizes, according to the reliability of leaf level field gas exchange mea-
surements and sampling. For the %N 131 data pairs were used, for
Vc,max 114, and for Jmax only 97, given that a model build requires a
collected spectrum and accurate ‘ground truth’ measures of leaf N,
Vc,max or Jmax. In 2016, a total of 132 plants were measured (132 spectra
collected). One of the leaf disks for nitrogen extraction was compro-
mised during transport to the lab and therefore discarded, leaving 131
measurement pairs to build the %N model. CO2 response curves made
with gas exchange systems respond to plant environment and phy-
siology over the ~30mins required per response curve, and thus have a
greater margin for error. If the collected curves could not be fit for a
reliable value for Vc,max and Jmax, they were removed from the analysis
prior to any model build. For example, if stomatal conductance was

shown to be limiting, or the sum of squares from being fit according to
the Farquhar et al. (1980) model of photosynthesis was greater than
100, the derivation of Vc,max and Jmax was deemed unreliable and re-
moved from the analysis. Reliable modelled values of Jmax were further
reduced compared with Vc,max given the inability to define an electron
transport limited state for the plants with reduced Rubisco. No data
pairs with reliable ground truth measurements for %N, Vc,max and Jmax

were removed from analysis beyond this point for any model builds. No
outliers were removed from any models.

2.4.2. Model set 2
The same PLSR model builds protocol as for Model Set 1 was fol-

lowed for Model Set 2. The Vc,max model was built with a training da-
taset of 186 measurement pairs of collected reflectance spectra and
modelled gas exchange Vc,max values from 9 genotypes, with 15 latent
variables as determined by the PRESS statistic and RMSEPCV (Fig. S5a,
c and e). The Jmax model was built independently, again with the double
Rubisco knockdown measurements (SSuD) removed, leaving a data
training set of 165 measurement pairs, with 15 latent variables (Fig.
S5b, d, f). PLSR scores for both models are presented in Fig. S6 and
model residuals in Fig. S7. The spectral range for the Vc,max and Jmax

models was 500–2400 nm. Newly generated PLSR coefficients were
applied to the spectra from the 25% holdout validation dataset for both
Vc,max and Jmax.

3. Results

3.1. Model build set 1

Measurements for the Model Set 1 made over the 2016 growing
season (Fig. 1) represented a wide range of meteorological conditions
(Fig. S1), which coupled with the different cultivars and genetic mod-
ifications, yielded a wide range of values for Vc,max (14.7–279.8 μmol
CO2 m−2 s−1) and Jmax (92.8–323.2 μmol CO2 m−2 s−1). To build a
predictive model for Vc,max, Jmax and [N], measurements of each para-
meter were paired with collected reflectance spectra from the same
leaves (Fig. 2).

For Model Set 1, the PLSR model for Vc,max (R2= 0.6; Fig. 3a), Jmax

(R2= 0.59; Fig. 3b), and [N] (R2= 0.83; Fig. 3c) all showed strong
positive correlations with the measured values. Leaf [N] was very high
in the SSuD double Rubisco knockdown leaves which had the lowest
Vc,max (Fig. 3). Fig. S2 shows the number of latent variables (LV's)
chosen for each model build, defined as the LV number that minimizes
the predicted residual error sum of squares (PRESS) statistic and root
mean square error of prediction from cross validation (RMSECV) from
the predictions vs. sample observation fit. In model set 1, six LV's were
used for the Vc,max build, while nine LV's were used for Jmax and [N].
PLSR scores for LV's and model residuals are shown in Figs. S3 and S4,
respectively, with residuals evenly centered around zero for all model
builds, confirming the suitability of a linear regression model.

Model coefficients generated from the model fit center around zero
in all model builds (Figs. 4a and b). Model loadings indicate the impact
of spectral regions on the model build.

Where loading values are closer to zero, they have a lower impact
on the model build and the more the values deviate from zero indicate
greater influence on the PLSR predictions. Vc,max model loadings across
the spectra (Fig. 4c) showed stronger correlation in the chlorophyll
bands (450–550 nm and 640–680 nm), across the red edge
(680–730 nm), and across the NIR (900–1400 nm). In the short wave
infra-red region (177–2400 nm) loading values had a lesser impact than
in the visible and near infra-red ranges. The same chlorophyll bands
were highly loaded in the Jmax model, yet the NIR region
(800–1400 nm) and SWIR (1700–2400) had a lower loading weight
(Fig. 4c). Percentage [N] model loadings were strong across the NIR
spectra (700–1300 nm) and from 1500 to 2400 nm in the SWIR, with
areas of lower loading weight between 1300–1400 and 1900–2000 nm
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(Fig. 4d).
Spectral measurements were coupled with gas exchange measure-

ments from leaves at varying growth stages and meteorological condi-
tions during 2017 in the same cultivars to test the model build from
2016 (Fig. 5). With PLSR coefficients applied to these collected leaf
reflectance spectra, Model set 1 correlated strongly for measured Vc,max

(R2= 0.69) but not for Jmax (R2= 0.17) in 2017 (Fig. 4). However,
photorespiratory bypass and modified photoprotection transgenic lines
(200-8, 43-OE and 4-KO) that were not grown in 2016 reduced the
predictive power of Vc,max Model set 1 when added to the validation
dataset (Fig. 6a). Predicting Vc,max for all 2017 genotypes using Model
set 1 resulted in lower R2 values of 0.53 (Fig. 6a). Applying the PLSR
coefficients solely to the three newly added 2017 transgenic cultivars
showed no predictive power for Vc,max (Fig. 6b).

3.2. Model build set 2

Model build set 2 used the data collected in 2016 and 2017 with

75% of the spectra from both years (Fig. 7) used to train a second PLSR
model to test against the remaining 25%. The new model showed a
strong relationship for Vc,max (R2= 0.77, y= 0.77x+ 40; Fig. 8a) and
Jmax (R2= 0.72, y= 0.72x+ 68.1; Fig. 8b). Both models were built
with 15 latent variables (LV's) through determination of the PRESS
statistic (Fig. S5). PLSR scores are shown in Fig. S6 and model residuals
had an even spread around zero (Fig. S7).

The RMSEP CV was 35.78 and 29.52 μmol m−2 s−1 and model bias
was −0.06 and 0.17% for Vc,max and Jmax, respectively. With 25% of the
data randomly selected and held back for cross validation by applica-
tion of the PLSR coefficients from the new model (Fig. 9a), both Vc,max

and Jmax were faithfully predicted from the reflectance spectra where
R2 for Vc,max was 0.61 (Fig. 8c) and for Jmax was 0.62 (Fig. 8d). Model
loadings for model set 2 (Fig. 9b) follow similar patterns to model set 1
(Fig. 4c), with the exception that Jmax has higher loadings in the NIR
region (800–1400 nm).

Fig. 1. Box plots for Vc,max (a) and Jmax (b) calculated from photosynthetic-CO2 response curves for tobacco plants over two growing seasons. The boxes show the
interquartile range with the median as solid horizontal line. Whiskers show data outside the interquartile range but within 1.5× the interquartile range. Dots show
outliers. Colors are included to assist in comparisons with Figs. 3, 5, 6 and 8. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Fig. 2. Mean, 95% confidence intervals, and minimum and maximum leaf reflectance for all leaves of Nicotiana tabacum used for the 2016 Vcmax (a), Jmax (b) and %N
(c) model builds and the co-efficient of variation across the full spectra for each model build respectively (d, e and f).

Fig. 3. PLSR predicted from leaf spectral measurement (500–2400 nm) vs. measured using traditional techniques of Vc,max (a), Jmax (b) and [N] (c) from 6 tobacco
genotypes in 2016. The dashed line represents a linear regression fit to the data with statistical results are inset.
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4. Discussion

This research addressed whether the PLSR method can be applied to
genetically modified crops to rapidly and accurately predict Vc,max and
Jmax (Prediction 1) and to assess interannual variability in photo-
synthetic performance (Prediction 2). We further sought to test whether
spectra-based Vc,max and Jmax models would be independent of spectra-
leaf nitrogen relationships rather than arising from the close inter-re-
lationships between Vc,max and Jmax with leaf nitrogen (Prediction 3).

The PLSR models were able to predict significant variation in Vc,max

and Jmax imposed by genetic modification and measured across growing
seasons, supporting Prediction 1. A PLSR model built using 2016 data
(Model set 1) resulted in a strong ability to predict Vc,max in 2017 but
not Jmax, supporting Prediction 2 for Vc,max, but not for Jmax. Further,
the PLSR Model set 1 was only successful in predictions of Vc,max and
Jmax for genotypes used to build the model in 2016, i.e., the model was
unable to predict either Vc,max or Jmax for genotypes unique to 2017
using a model built with data from 2016 (Fig. 6a). Finally, the model
worked for all species, including a genetically modified genotype
showing the lowest Vc,max yet the highest [N], reverse for all other
genotypes. That the model faithfully predicted both Vc,max and Jmax for

this genotype suggests that the PLSR model is not merely using leaf [N]
as a proxy of for photosynthetic physiology, which supported Prediction
3.

Measurements represented a wide range of photosynthetic capacity
and leaf nitrogen concentrations, however the full strength of the model
was only realized when built using data that captured the full range of
interannual and genetic variation (Fig. 8). The application of our 2016
model to the 2017 dataset for the same species but with three addi-
tional transgenic lines (Fig. 6) showed that the model may only be
applicable to the varieties used to build the model, regardless whether
wild-type or genetically modified. PLSR coefficients from Model set 1
predicted 2017 measurements well (Fig. 4) but only for Vc,max and for
the genotypes present in both years.

The inability of model build set 1 to predict Jmax in 2017 may be
linked with the underlying processes represented by Jmax compared
with Vc,max. The total amount of the enzyme Rubisco that is present and
metabolically active determines Vc,max (Bernacchi et al., 2001; Portis,
2003; Suzuki et al., 2009). While there is substantial uncertainty sur-
rounding the mechanism being used to predict Vc,max, there is no in-
terannual variation in the structure and function of Rubisco. Therefore,
the performance of the 2016 model in predicting Vc,max in 2017 is not

Fig. 4. Model build set 1 spectral-specific coefficients for Vc,max and Jmax (a) and %N [N] (b), with model loadings for Vc,max and Jmax (c) and %N (d).

Fig. 5. Validation of model build set 1 for Vc,max and Jmax using the same genotypes measured in 2017. The regression equation and R2 are inset for each graph.
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unexpected. However, Jmax represents the coordination of a complex
series of reactions involving many proteins integrated into the thyla-
koid membrane in the chloroplast (Farquhar et al., 1980; von
Caemmerer, 2000). Furthermore, the estimation of Jmax may not ne-
cessarily reflect rates of electron transport as more recent research
suggests Jmax may be constrained by metabolic reactions involved in the
regeneration of RuBP in the photosynthetic ‘dark’ reactions (Raines,
2003; Lefebvre et al., 2005). Therefore, the more complex metabolic
processes associated with Jmax likely leads to its poor performance
compared with Vc,max (Fig. 5b). A similar challenge is observed when
trying to model photosynthesis using Jmax for plants grown under dif-
ferent environmental conditions (Bernacchi et al., 2003; Köhler et al.,
2016). The model built with 2016 and 2017 data (Model set 2) pre-
dicted Vc,max and Jmax better (Fig. 8a) than a model built with only 2016

data (Fig. 3). R2 values were higher and RMSE was reduced in model
build set 2 for both Vc,max (from 16.2 to 10.8%) and Jmax (14.0 to
10.1%). Model bias also decreased for both Vc,max (from −0.27 to
−0.06%) and Jmax (from 0.67 to 0.17%).

These results suggest that the importance of including environ-
mental variation when building PLSR models (Wu et al., 2017) is
matched by the importance of incorporating genetic variation. Com-
bined over both years, a total of nine genotypes each expressing dif-
ferent photosynthetic phenotypes were used in this analysis and the
model only performed well when validated against the same genotypes
used to build the model. Whether a PLSR model built using dozens or
hundreds of genotypes can reliably predict photosynthetic physiology
for a unique genotype still needs to be resolved.

The dependence of Vc,max and Jmax on temperature is well

Fig. 6. PLSR coefficients from 2016 model build shown in Fig. 3 applied to reflectance spectra collected in 2017 to predict Vc,max in 8 Nicotiana tabacum genotypes
(a). The 3 newly added transgenic genotypes in 2017 are separated from the dataset, and the same PLSR coefficients applied to predict Vc,max in those genotypes alone
(b).

Fig. 7. Mean, 95% confidence Intervals, and minimum and maximum leaf reflectance Model set 2 for Vcmax (a) and Jmax (b) and the co-efficient of variation for the
full spectra for both models respectively (c and d).
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documented (Farquhar et al., 1980; von Caemmerer, 2000; Bernacchi
et al., 2001, 2003). Therefore, the gas exchange measurements were
collected at the same temperature as leaf spectral measurements to
remove temperature variation between the measured and modelled
parameters. Normalizing to a standard temperature might lead to im-
proved regressions but would challenge the application of this tech-
nique under field-ambient conditions where temperatures constantly
fluctuate.

PLSR model loadings identify regions of the spectrum significant for
the trait of interest, by identifying maximum variations common to all
spectra in the dataset (Wold et al., 2001; Serbin et al., 2012). Highly
loaded regions are linked with physiological indicators, which suggest
that using PLSR to mathematically analyze reflectance spectra may be
more than purely empirical. The PLSR model loadings across the
spectra for Vc,max and Jmax for build 1 show strong correlations between
450 and 680 nm and across the ‘red-edge’ (Fig. 4c). Leaf reflectance
spectra between 450 and 680 nm is influenced by photosynthetic pig-
ments (Gates et al., 1965; Knipling, 1970; Rouse Jr et al., 1974) and
carotenoid content (Gamon et al., 1992). Similarly, the ‘red-edge’
spectral region (680–730 nm), in which leaf reflectance greatly in-
creases as light in the near infra-red region is no longer absorbed by
chlorophyll (Woolley, 1971; Horler et al., 1983) has been shown to
correlate with photosystem II function (e.g., Fv/Fm; Zarco-Tejada et al.,
2000). These same spectral regions have shown similar loading for
photosynthetic PLSR models of other crop species (Serbin et al., 2012;

Yendrek et al., 2016; Silva-Perez et al., 2017). The lower loading
weights in the Jmax model compared with Vc,max model in the NIR re-
gion (Fig. 4c) are consistent with previous results (Serbin et al., 2012).
Model build 2 (Fig. 8) showed a very similar pattern for loading weights
(Fig. 9).

While model loadings are generally consistent with previous reports
and suggest links with physiological controls, the underlying me-
chanism is unclear that PLSR models utilize to predict Vc,max and Jmax.
While leaf [N] cannot be directly measured by spectral analysis, we
show that it can be accurately predicted by PLSR analysis (Fig. 3c)
consistent with other studies (Kattge et al., 2009; Serbin et al., 2012;
Rogers, 2014; Walker et al., 2014; Yendrek et al., 2016; Dechant et al.,
2017; Silva-Perez et al., 2017). Given that photosynthetic enzymes,
predominantly Rubisco, account for a large proportion of leaf nitrogen,
under favorable environmental conditions photosynthetic rate per unit
leaf area (photosynthetic capacity) increases linearly with leaf nitrogen
content (Field and Mooney, 1986; Evans, 1989; Poorter et al., 1990;
Nakano et al., 1997; Reich et al., 1998). Yet, in the SSuD Rubisco an-
tisense line this relationship is reversed – the SSuD lines have, by far,
the lowest Vc,max and the highest [N], similar to other studies using
tobacco with reduced Rubisco (Quick et al., 1991; Masle et al., 1993).
Despite this genotype differing from all others, the Vc,max and [N]
models faithfully predict each phenotype independently (Fig. 3a and c).
This suggests that, despite previous research suggesting the PLSR model
is dominated by a nitrogen signal (Kattge et al., 2009; Rogers, 2014;

Fig. 8. Measured versus predicted PLSR values of Vc,max (a) and Jmax (b) from PLSR models built with 75% of data collected in 2016 and 2017, randomly selected for
model training (Model set 2). Model build statistics are presented in Figs. S5–7.
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Walker et al., 2014; Dechant et al., 2017), the model estimates of the
traits are independent. While the results are unable to elucidate a key
mechanistic understanding of what the PLSR method is measuring, they
are both a valuable step in understanding that the relationship is not
simply a proxy for leaf nitrogen and that this method can be very useful
in phenotyping both wild-type and genetically modified plants despite
the lack of mechanistic understanding.

The model shows strong predictive ability over a wide range of
environmental conditions for plants showing a range of phenotypes.
Additional experiments using genotypes with distinct alterations to the
photosynthetic pathway and/or related metabolic pathways can be
further exploited to refine the mechanism associated with this tech-
nique. For example, Rubisco active site inhibitors, which reduce the
catalytic activity of Rubisco, thereby reducing Vc,max without changing
the concentration of Rubisco, may provide more insight into the me-
chanisms behind the PLSR results. Machine learning analysis using
plants with genetic modifications that extend beyond photosynthesis
may elucidate spectral regions driving PLSR predictions to provide
further physiological interpretation.

The results presented here also suggest that caution must be ex-
ercised with reflectance-based analysis to infer crop productivity or
health for genetically modified plants. Introduction of transgenic
modifications to the photosynthetic pathway for the SSuD tobacco line
led to shifts in known relationships between leaf chemistry and pho-
tosynthetic capacity. Using many established reflectance-based ap-
proaches, particularly related to simple indices (e.g., PRI, NDVI), would
suggest the high leaf [N] for SSuD might predict higher biomass.
Therefore, the widely held and supported view that photosynthesis and
leaf N content are highly correlated (Evans, 1989) for wild-type species
would suggest photosynthetic capacity and productivity of established
techniques may not apply to genetically modified plants.

The full extent of current and potential opportunities to improve
photosynthesis in plants extends well beyond the strategies employed in
this analysis (Ort et al., 2015). Continued use and development of high
throughput techniques using novel genotypes holds potential for further
insights into the mechanisms behind spectral shifts and how they relate
to photosynthetic physiology. Furthermore, it may prove to be a useful

tool as novel breeding strategies are realized. Extending this model to
incorporate spectra collected from imaging systems, thereby removing
the need for leaf-clip based measurements, may increase throughput
capabilities by orders of magnitude and provide critical information
related to canopy-scale variance in photosynthetic physiology. The
need to understand agronomic ecosystem functioning has led to sub-
stantial efforts to measure productivity over large spatial scales. Using
solar induced fluorescence (e.g., Miao et al., 2018) to quantify GPP can
lead to a better understanding of ecosystem functioning. However, ef-
forts to improve understanding of ecosystem function extend beyond in
situ measurements of photosynthesis and towards understanding the
underlying physiology necessitating techniques such as those described
here.

5. Conclusions

We show the spectral PLSR method can be applied to genetically
modified crops to rapidly and accurately predict photosynthetic capa-
city. However, models lose predictive power when used interannually
on new genetic material not included in model builds. Despite the
strengths of the model, the results suggest a need for repopulation of
PLSR models annually when dealing with discreet variation in photo-
synthetic capacity between genotypes of a single species in crop trials.
However, the extent that models need to be repopulated in time and
space for hyperspectral PLSR models is still uncertain. The need for
repopulating the model may also apply when using hyperspectral PLSR
to compare photosynthetic physiology between geographical regions or
when environmental conditions change dramatically over time. We also
deconvolute the relationship between photosynthetic capacity and leaf
nitrogen content, which speaks to the potential of full spectral analysis
for elucidating biochemical mechanism from spectral reflectance with
further work, at any scale.

Our results suggest that a link between remote sensing and photo-
synthetic physiology can be applied to agricultural species. This pro-
vides opportunity to better parameterize agricultural models and to
identify variation in photosynthetic physiology for breeding efforts. As
future food production will almost certainly depend on genetically
modified crops (Ort et al., 2015), we also show that novel techniques
will continue to be useful as the agricultural landscape continues to
change.
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