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Abstract

The drastic improvement in data collection and acquisition technologies has enabled sci-

entists to collect a great amount of data. With the growing dataset size, typically comes a

growing complexity of data structures, of the patterns in the data, and of the models needed to

account for the patterns. How to estimate the parameters of complex models has put a great

challenge on the current statistical methodology. This paper proposes a blockwise consistency

approach as a potential solution to the problem, which works by iteratively finding consistent

estimates for each block of parameters conditional on the current estimates of the parameters

in other blocks. The blockwise consistency approach decomposes the high dimensional param-

eter estimation problem to a series of lower dimensional parameter estimation problems, which

often have much simpler structures than the original problem and thus can be easily solved.

Moreover, under the framework provided by the blockwise consistency approach, a variety of

methods, such as Bayesian and frequentist methods, can be jointly used to achieve a consis-

tent estimator for the original high-dimensional complex model. The blockwise consistency
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approach is illustrated using two high-dimensional problems, variable selection and multivari-

ate regression. The results of both problems show that the blockwise consistency approach

can provide drastic improvements over the existing methods. Extension of the blockwise con-

sistency approach to many other complex models is straightforward.

Keywords:

Coordinate Descent, Gaussian Graphical Model, Multivariate Regression, Precision Matrix,

Variable Selection.

1 Introduction

The drastic improvement in data collection and acquisition technologies in the last decades has

enabled scientists to collect a great amount of data, such as climate data and high-throughput

biological assay data. With the growing dataset size typically comes a growing complexity of data

structures, of the patterns in the data, and of the models needed to account for the patterns.

Such complex models are often characterized as high dimensional, hierarchical, or highly nonlinear.

Among the modern statistical methods, Markov chain Monte Carlo (MCMC) has proven to be

very powerful and typically unique computational tools for analyzing data of complex structures.

However, the feasibility of MCMC is being challenged in the era of big data, since it typically

requires a large number of iterations and a complete scan of the full dataset for each iteration. The

frequentist methods, such as maximum likelihood estimation and regularization methods, can be

fast, but the optimization problem involved therein is usually difficult to handle when the dimension

of the parameter space is high and/or the structure of the model is complicated. How to estimate

the parameters of complex models with big data has put a great challenge on the current statistical

methodology.

To tackle this problem, we propose a blockwise consistency (BwC) method, which is developed

based on the coordinate descent method (Tseng, 2001; Tseng and Yun, 2009). The coordinate

descent method has recently been adopted in statistics to solve the parameter estimation problem

for sparse linear and logistic regression with convex (Friedman et al., 2010) or nonconvex separa-
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ble regularization terms (Breheny and Huang, 2011; Mazumder et al., 2011), as well as the sparse

precision matrix (Friedman et al., 2008). The BwC method extends the applications of the coordi-

nate descent method to more general complex statistical models by asymptotically maximizing the

following objective function,

max
θ

Eθ∗ log π(X|θ), (1)

where π(·) denotes the likelihood function of a statistical model, θ denotes a high-dimensional

parameter vector, θ∗ denotes the true parameter vector, and Eθ∗ denotes expectation with re-

spect to the true likelihood function π(x|θ∗). Suppose θ has been partitioned into a few blocks

θ = (θ(1), . . . , θ(k)). Then with the new objective function, BwC decomposes the high-dimensional

parameter estimation problem to a series of low-dimensional parameter estimation problems: it-

eratively finding consistent estimates for the parameters of each block conditioned on the current

estimates of the parameters of other blocks. The low-dimensional problem has often a much simpler

structure than the original problem and thus can be easily solved. Moreover, under the framework

provided by BwC, a variety of methods, such as Bayesian and frequentist methods, can be jointly

used, depending on their availability and convenience, to find a consistent estimate for the original

high-dimensional complex model.

This paper demonstrates the use of BwC for two types of complex models. The first one is

high-dimensional variable selection in the small-n-large-p scenario, i.e., the sample size is much

smaller than the number of variables. For this problem, the dimension of the parameter space can

be very high, often ranging from a few thousands to a few millions. Since the problem is ill-posed,

regularization methods, e.g., Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) and MCP (Zhang,

2010), are often used. However, the performance of these methods can quickly deteriorate as the

dimension increases. As shown by our numerical results, BwC can provide a drastic improvement in

both parameter estimation and variable selection over regularization methods. The second model

is the multivariate high-dimensional regression, where BwC is used to iteratively select relevant

variables and estimate the precision matrix. BwC has decomposed the complex problem to two

sub-problems, variable selection and precision matrix estimation. Each has a simple structure with

a bunch of algorithms available in the literature. The complex problem can then be solved with a
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combined use of the existing algorithms. This facilitates big data analysis.

The remainder of this paper is organized as follows. Section 2 describes the BwC method.

Section 3 demonstrates the use of BwC for high-dimensional variable selection problems. Section 4

demonstrates the use of BwC for high-dimensional multivariate regression. Section 5 concludes the

paper with a brief discussion. In Appendix, we provide the proof for the main theorem.

2 The Blockwise Coordinate Consistency Method

2.1 The BwC method

Suppose that we are interested in estimating the parameters for a complex model with the density

function given by π(x|θ), where θ denotes a high-dimensional parameter vector. Without loss of

generality, we assume that θ has been partitioned into k blocks θ = (θ(1), . . . , θ(k)), and n samples

X1, . . . , Xn from the model have been observed. For the time being, we assume that X1, . . . , Xn are

independent and identically distributed (iid), although the independence might not be required for

the validity of the BwC method. From Jensen’s inequality, we have

Eθ∗ log π(X|θ) ≤ Eθ∗ log π(X|θ∗). (2)

Therefore, finding a consistent estimator of θ can be viewed as an optimization problem—maximizing

Eθ∗ log π(X|θ) with respect to θ. In a cyclic rule, BwC works as follows:

1. For each iteration t, set the index s = t(mod k) + 1.

2. For the index s, find an estimator of θ
(s)
t which asymptotically maximizes the objective function

W (θ
(s)
t ) = Eθ∗ log π(X|θ̂

(1)
t−1, . . . , θ̂

(s−1)
t−1 , θ

(s)
t , θ̂

(s+1)
t−1 , . . . , θ̂

(k)
t−1) (3)

based on samples X1, . . . , Xn, where θ̂
(j)
t−1’s (j ̸= s) denote the current estimates and are

treated as constants at iteration t. Let θ̂
(s)
t denote the estimator of θ(s) found at iteration t,

and set

θ̂
(j)
t =


θ̂
(s)
t , j = s,

θ̂
(j)
t−1, ∀j ̸= s.
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Since maximizing (3) is, in form, equivalent to finding a consistent estimator of θ
(s)
t given

the values of the other parameters, we call the method a blockwise consistency (BwC) method.

The consistent estimators can be found under multiple procedures. For example, Bayesian and

frequentist methods can be used to get consistent estimates for different blocks of θ, which leads to

an interestingly combined use of Bayesian and frequentist methods.

2.2 Consistency of the BwC method

Let θ̃
(s)
t = argmaxW (θ

(s)
t ) denote the maximizer of W (θ

(s)
t ). As explained above, θ̂

(s)
t forms a

consistent estimate of θ̃
(s)
t . Further, we assume the following condition holds:

(A) π(x|θ(1), . . . , θ(k)) is continuous in θ(i) ∈ Θi for all i = 1, 2, . . . , k, where Θi denotes the

parameter space of θ(i).

Let Ŵn,t = W (θ̂
(s)
t ), where the subscript n indicates the dependence of θ̂

(s)
t on the sample size n.

Let W ∗
t = max

θ
(s)
t
W (θ

(s)
t ). Under condition (A), Ŵn,t forms a consistent estimator of W ∗

t , i.e., for

any ϵ > 0,

P (W ∗
t − Ŵn,t > ϵ)→ 0, as n→∞. (4)

To study the convergence of Ŵn,t, we also assume

(B) The level set Θ0 = {θ : Eθ∗ log π(X|θ) ≥ Eθ∗ log π(X|θ0)} is compact, and Eθ∗ log π(X|θ)

has at most one maximum in θ(i) for i = 1, 2, . . . , k.

Let Fn,t(w) = P (Ŵn,t ≤ w) denote the CDF of Ŵn,t. From (4) and the uniqueness of W ∗
t , for

any t ≥ 1, we have

lim
n→∞

Fn,t(w) =


1, w ≥ W ∗

t ,

0, otherwise.

(5)

Let θ̃t = (θ̃
(1)
t−1, . . . , θ̃

(s−1)
t−1 , θ̃

(s)
t , θ̃

(s+1)
t−1 , . . . , θ̃

(k)
t−1), where θ̃

(s)
t is the maximizer of W (θ

(s)
t ). Note that

in the limit case n → ∞, W ∗
t is actually evaluated at θ̃t for each t, i.e., the exact maximum can

be obtained at each t. Since the level set Θ0 is compact, an induction argument on t shows that

θ̃t is defined, W ∗
t ≥ W ∗

t−1, and θ̃t ∈ Θ0 for all t = 0, 1, 2, . . .. The same reasoning has also been
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used in proof for the convergence of the coordinate descent algorithm (Tseng, 2001). Further, it

follows from Jensen’s inequality (2) that {W ∗
t } is upper bounded. By the monotone convergence

theorem, for such an increasing and upper bounded sequence, the limit exists. Let W ∗ denote the

supermum of {W ∗
t }, which corresponds to a blockwise maximum point of Eθ∗ log π(X|θ). Then

limt→∞W ∗
t = W ∗. Therefore,

lim
t→∞

lim
n→∞

Fn,t(w) =


1, w ≥ W ∗,

0, otherwise,

(6)

which is equivalent to the consistency of Ŵn,t; that is, for any ϵ > 0,

P (W ∗ − Ŵn,t > ϵ)→ 0, as n→∞ and t→∞. (7)

As implied by the order of the iterated limits, a large sample size is a prerequisite for the convergence

of the algorithm. In summary, we have the following theorem.

Theorem 2.1 If the conditions (A) and (B) hold, then Ŵn,t converges in probability to a blockwise

maximum point as n→∞ and t→∞. Furthermore, if the directional derivatives of Eθ∗ log π(X|θ)

exist for all blocks, then the blockwise maximum point is also a local maximum point.

Note that the proof of this theorem is independent of the number of blocks and the size of each

block. Hence, the algorithm allows the number of parameters to increase with the sample size.

3 BwC for High Dimensional Variable Selection

Consider variable selection for a high dimensional linear regression

y = Xθ + ϵ, (8)

where y = (y1, · · · , yn)T ∈ Rn is the response vector, n is the sample size, X = (x1, · · · ,xp) ∈ Rn×p

is the design matrix, p is the number of explanatory variables (also known as predictors), θ ∈ Rp is

the vector of unknown regression coefficients, and ϵ = (ϵ1, · · · , ϵn)T ∼ Nn(0, σ
2In) is the Gaussian
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random error. Here, we use the bold letter xi to denote an n-vector realization of the ith predictor,

and assume that p can be much greater than n and can also increase with n. Under such a small-n-

large-p scenario, identification of true predictors for the model (8) is of particular interest, as this can

generally improve the accuracy of prediction for future observations and deepen our understanding

to the underlying system.

For this problem, a direct maximization of the objective function (1) will not work, as this will

lead to a dense solution due to its ill-posed nature. To resolve this issue, we can treat the problem

with a regularization method, i.e., maximizing a penalized log-likelihood function

log π(D|θ)−
p∑

i=1

Pλ(|θi|), (9)

where π(D|θ) denotes the likelihood function of all observations, Pλ(·) is a penalty function, and

λ is a tunable parameter and also known as the regularization parameter. The penalty shrinks the

parameter space to a smaller one, which is equivalent to “increasing” the sample size. If the penalty

function is chosen such that the resulting estimator is asymptotically consistent, then maximizing

(9) is approximately equivalent to maximizing (1). In this case, BwC is still applicable. That is, we

can partition the parameter vector θ to a few blocks, and iteratively finding the consistent estimate

using the regularization method for each block conditioned on others.

It is known that many choices of the penalty function can lead to consistent solutions to this

problem, such as the l1-penalty used in Lasso (Tibshirani, 1996), the smoothly clipped absolute

deviation (SCAD) penalty used in Fan and Li (2001), the minimax concave penalty (MCP) used

in Zhang (2010), and the reciprocal l1-penalty (also known as rLasso) used in Song and Liang

(2015a). The basic idea of regularization is to let the penalty Pλ(|θi|) compete against the gain in

the loglikelihood function by adding the extra predictor xi. For example, for the SCAD penalty, if xi

is added into the true model, then the gain in the loglikelihood function is approximately equivalent

to σ2(χ2
n−|t|−χ

2
n−|t|−1

) with θi = O(1/
√
n), and the gain is approximately σ2χ2

1-distributed. Around

the origin, the SCAD penalty function is reduced to the linear penalty Pλ(|θ|) = λ|θ|. To defeat the

gain, the penalty λ|θi| needs to be larger than the gain. Therefore, the performance of these methods

depends very much on the choice of λ as well as specific features of xi’s, though the methods are
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consistent in variable selection under regularity conditions. In particular, the performance of these

methods can deteriorate very quickly with an increasing number of predictors. To illustrate this

issue, we consider the following example with four different values of p = 500, 1000, 2000 and 5000:

yi = θ0 +

p∑
j=1

xijθj + ϵi, i = 1, 2, . . . , n, (10)

where n = 100, and ϵi’s are iid normal random errors with mean 0 and variance 1. The true value

of θj’s are θj = 1 for j = 1, 2, . . . , 10 and 0 otherwise. Let xj = (x1j, x2j, . . . , xnj)
′ denote the jth

predictor for j = 1, 2, . . . , p, which are given by

x1 = z1 + e, x2 = z2 + e, . . . , . . . ,xp = zp + e, (11)

where e,z1, . . . , zp are iid normal random vectors drawn from N(0, In). For each value of p, 10

datasets are independently generated.

The regularization methods, including Lasso, SCAD and MCP, were applied to the datasets.

These methods have been implemented in the R-package SIS (Fan et al., 2015), and were run under

their default settings: The variables were first scanned according to the iterative sure independence

screening (ISIS) algorithm (Fan et al., 2009), and then selected from the remaining set by maximizing

(9) with their respective penalties. The regularization parameters were determined according to

the BIC criterion. To measure the performance of these methods in variable selection, we calculate

the false and negative selection rates. Let s∗ denote the set of true variables, and let ŝ denote the

set of selected variables. Define

fsr =
|ŝ \ s∗|
|ŝ|

, nsr =
|s∗ \ ŝ|
|s∗|

, (12)

where | · | denotes the set cardinality. The smaller the values of fsr and nsr are, the better the

performance of the method is. The numerical results are summarized in Table 1. It is easy to see

that for all the methods, the performance deteriorates very quickly: All the values of fsr, nsr and

parameter estimation error increase with p. These methods have also been tried with the tuning

parameters determined via cross-validation. The results are even worse than those reported in Table

1.
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Table 1: Performance of the regularization methods for the simulated data with different values of

p: |ŝ|avg denotes the average number of variables selected for 10 datasets, fsr and nsr are calculated

in (12), ∥θ̂ − θ∗∥ =
√∑p

j=1(θ̂j − θ∗j)2 measures the parameter estimation error, and the numbers

in parenthesis denote the standard deviations of the corresponding estimators.

Lasso SCAD MCP

p=500

|ŝ|avg 20.4 (0.60) 16.6 (1.80) 15.7 (1.16)

|ŝ ∩ s∗|avg 9.8 (0.20) 10 (0) 10 (0)

∥θ̂ − θ∗∥avg 0.86 (0.103) 0.75 (0.116) 0.82 (0.080)

fsr 0.51 (0.022) 0.31 (0.086) 0.32 (0.059)

nsr 0.02 (0.020) 0 (0) 0 (0)

p=1000

|ŝ|avg 21 (0) 19.6 (1.11) 18.2 (0.65)

|ŝ ∩ s∗|avg 7.8 (0.85) 8.9 (0.67) 9 (0.73)

∥θ̂ − θ∗∥avg 1.73 (0.323) 1.44 (0.314) 1.41 (0.325)

fsr 0.63 (0.041) 0.52 (0.067) 0.49 (0.050)

nsr 0.22 (0.085) 0.11 (0.067) 0.10 (0.073)

p=2000

|ŝ|avg 21 (0) 20.9 (0.10) 20.4 (0.43)

|ŝ ∩ s∗|avg 6.1 (0.92) 6.6 (0.85) 6.7 (0.86)

∥θ̂ − θ∗∥avg 2.42 (0.345) 2.50 (0.333) 2.51 (0.340)

fsr 0.71 (0.044) 0.68 (0.041) 0.66 (0.049)

nsr 0.39 (0.092) 0.34 (0.085) 0.33 (0.086)

p=5000

|ŝ|avg 21 (0) 19.9 (1.10) 20.3 (0.70)

|ŝ ∩ s∗|avg 3.7 (0.79) 5.4 (0.93) 5.2 (0.95)

|θ̂ − θ∗|avg 3.31 (0.235) 2.96 (0.414) 3.01 (0.390)

fsr 0.82 (0.037) 0.69 (0.085) 0.73 (0.062)

nsr 0.63 (0.079) 0.46 (0.093) 0.48 (0.095)
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Note that for this example, all the three methods selected about 21 variables, which is approx-

imately equal to n/log(n), the upper bound of the model size set by ISIS. Without this upper

bound, more variables will be selected. For example, we have also implemented Lasso using the R-

package glmnet with the regularization parameter tuned via cross-validation. The average number

of variables selected by Lasso for the datasets with p = 5000 is 72.7 with standard deviation 3.05.

The difficulty suffered by the regularization methods, whose performance deteriorates with di-

mensions, can be alleviated using the BwC method. BwC decomposes the high-dimensional variable

selection problem to a series of lower dimensional variable selection problems, which, as a return,

increases the accuracy of variable selection and parameter estimation.

3.1 An Illustrative Example

To illustrate the performance of BwC, we use the datasets of p = 5000 generated above. We first

consider a naive version of BwC before giving a sophisticated one. For this naive version of BwC,

we had the datasets slightly modified: we exchanged the positions of some variables in the dataset

such that the 10 true variables are positioned as {1, 2, 1001, 1002, 2001, 2002, 3001, 3002, 4001, 4002}.

Then BwC was implemented as follows:

1. Split the predictors into 5 blocks: {x1, . . . ,x1000}, {x1001, . . . ,x2000}, {x2001, . . . ,x3000}, {x3001,

. . . ,x4000}, and {x4001, . . . ,x5000}.

2. Conduct variable selection using Lasso for each block independently, and combine the selected

predictors to get an initial estimate of θ.

3. Conduct blockwise conditional variable selection using MCP for 25 sweeps. Here a sweep

refers to a cycle of updates for all blocks.

In this implementation, MCP is used as the block consistent estimator because MCP itself is

consistent for high dimensional variable selection. For MCP, we let the regularization parameter

be determined according to the BIC criterion, and other parameters be set to the default value

as given in the R-package SIS. To save computational time, we set the number of iterations in

10



the sure independence screening (SIS) step to be 1. However, multiple iterations will not hurt the

performance of BwC except for the CPU time. Figure 1 shows the convergence path of BwC for one

dataset. For this dataset, BwC converges to a model with 11 variables, including 10 true variables

and one false variable, and the estimation error of θ is about 0.5. BwC can converge very fast,

usually within 5 sweeps. Other results are summarized in Table 2.

5 10 15 20 25

0.
0

0.
5

1.
0

1.
5

Number of Sweeps

o

o

o o o o o o o o o o o o o o o o o o o o o o o
+

+
+ + + + + + + + + + + + + + + + + + + + + + +

fsr
nsr
sqrt(sse)

Figure 1: Convergence path of BwC for one simulated dataset with n = 100 and p = 5000, where fsr,

nsr, and sqrt(sse) denote the false selection rate, negative selection rate, and parameter estimation

error ∥θ̂ − θ∗∥, respectively.

Table 2: Comparison of BwC, Lasso, SCAD and MCP for the simulated example with p = 5000.

Refer to Table 1 for the notation.

Lasso SCAD MCP BwC

|ŝ|avg 21(0.0) 19.9(1.10) 20.3(0.70) 12.8(0.36)

|ŝ ∩ s∗|avg 3.7 (0.79) 5.4 (0.93) 5.2 (0.95) 10(0)

∥θ̂ − θ∗∥avg 3.31 (0.24) 2.96 (0.41) 3.01 (0.39) 0.655 (0.05)

fsr 0.824 0.729 0.744 0.219

nsr 0.63 0.46 0.48 0
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For comparison, the results of Lasso, SCAD and MCP were also included in the table. The

comparison shows that BwC has made a drastic improvement over Lasso, SCAD and MCP in both

variable selection and parameter estimation. On average, BwC selected only 12.8 variables for each

dataset, without missing any true variables. Recall that the number of true variables is 10 and all

the variables are highly correlated with a mutual correlation coefficient of 0.5. SCAD and MCP

selected about 20 variables for each dataset, missing about half of the true variables. Lasso performs

even worse than SCAD and MCP, it missed over 60% of the true variables. In different runs of

BwC, SCAD and Lasso were used as the block consistent estimator. SCAD produced almost the

same results as MCP, while Lasso did not. This is because Lasso is not consistent for variable

selection unless the strongly irrepresentable condition holds (Zhao and Yu, 2006; Zou, 2006), and

such a condition is hard to be satisfied by this example due to the high correlation between the

predictors.

BwC works extremely well for this example, which has been designed for an ideal scenario that

each block contains some significant variables. Here the significant variables can be understood

as the true variables or the variables that are significantly correlated with the response variable.

Since variable selection is to distinguish significant variables from other variables, the existence of

significant variables in each block can reasonably accelerate the convergence of BwC by avoiding

selecting too many noisy variables from empty blocks. A block is called empty if it contains no

significant variables. To achieve such an ideal scenario, we propose a balanced data partitioning

scheme as described in the next subsection. Along with the description, we discussed how to choose

the number of blocks.

3.2 BwC with a Balanced Data Partitioning Scheme

In the initial step of BwC, variable selection was done for each block independently. Since for

each block, the model can be misspecified with some true variables missed from the set of available

variables. As shown by Song and Liang (2015b), for each block, the variables found in this initial

step include the true variables as well as the surrogate variables for the missed true variables in

the block. Hence, we can expect that the total number of variables selected in the initial step is
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large. Then, via conditional updating, some surrogate variables can be deleted. Therefore, the

number of selected variables has a trend to decrease with sweeps. To achieve the goal of balanced

data partitioning, we propose to re-distribute the selected variables to different blocks in a balanced

manner, i.e., each block is assigned about the same number of selected variables. For convenience,

we call a stage of the algorithm for each re-distribution of selected variables. To accommodate the

decreasing trend of selected variables, we let the number of blocks be diminished with stages. In

summary, we have the following algorithm:

Algorithm 3.1 BwC for High-Dimensional Regression

1. Split the predictors into K blocks, conduct variable selection using Lasso for each block inde-

pendently, and combine the selected predictors to get an initial estimate of θ.

2. Conduct blockwise conditional variable selection using MCP for m sweeps.

3. Reduce the number of blocks K by s, which is called the block diminishing size, and re-distribute

the variables selected in step 2 to each block in a balanced manner.

4. Go to step 2 unless the number of blocks has been small enough, say 2.

5. Output the final model according to a pre-specified criterion such as sparsity, prediction error,

BIC or EBIC (Chen and Chen, 2008).

In practice, we often set K = 10 or larger, with 10 as the default value. Since the performance

of the regularization methods can deteriorate with the dimension, see Table 1, a small initial block

size is generally preferred. On the other hand, an extremely small initial block size can result

in a large set of significant variables identified in the initial step, which, in turn, slows down the

convergence of BwC. As a trade-off, we suggest to set the initial block size to be 1000 or less. Since

BwC can converge pretty fast for a given partition, we set m = 25 as the default number of sweeps,

which has been extremely conservative according to our experience. Also, we point out that the

MCP algorithm, implemented in the package SIS, assumes that significant variables can be found

for each regression. We modified the code slightly such that it allows for the return of null models.
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For the block diminishing size s, we set 2 as the default value, but 1 and 3 are also often used. In

distributing selected variables to different blocks, we often have the unselected variables shuffled and

redistributed, though this is unnecessary. The shuffling and redistributing step helps to maintain

the same block sizes as stages proceed. For BwC, we often output the sparsest model as the final

model, which is set as the default criterion for model selection. Other criteria, such as prediction

error, BIC and EBIC, can also be used as the criterion for final model selection. In what follows,

BwC will be run with default settings unless stated otherwise.

To illustrate the performance of BwC with the balanced data partitioning scheme, we considered

a modified example from the one used in Section 3.1. Here we considered four settings of the true

model with the true model size |s∗| = 5, 10, 15 and 20, respectively. Under each setting, the positions

of the true variables are uniformly distributed among the first 3500 variables out of p = 5000 in total.

This mimics the situation that empty blocks exist in the early stages of BwC. To accommodate the

large true model size, we increase the sample size n from 100 to 200. For each true model size, we

generated 10 datasets independently. To measure the prediction performance of the selected model,

we generated additional 1000 observations as the test set for each of the 40 datasets.

BwC was applied to these datasets under the default setting. The results are summarized

in Figure 2 and Table 3. Figure 2 shows the number of selected variables and the sum of squared

prediction errors produced by BwC for 4 datasets, each with different true model size, along with the

number of blocks. For the datasets with |s∗| = 5, 10, 15 and 20, the sparsest models were produced

at K = 2, 4, 6 and 6, respectively. In terms of variable selection, the results are surprisingly good:

The sparsest models produced by BwC are almost identical to the true models. It is interesting to

see that the model sizes produced by BwC with block numbers form a U -shape curve, where the

sparsest model (usually the true model) is located at the bottom of the curve. For the dataset with

|s∗| = 5, although the size of the models produced by BwC tends to decrease with K, it still forms

a U -curve if the non-blocking case (i.e., K = 1) is included. From this U -curve, the optimal block

number can be automatically determined. For these datasets, it is easy to see that the curves of

prediction error match well with the curves of model size.
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Figure 2: The number of selected variables and the sum of squared predicted errors along with the

diminishing number of blocks
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Table 3 summarizes the results of BwC for the 40 datasets. For comparison, the regularization

methods, Lasso, SCAD and MCP, were also applied to these datasets. As for the previous examples,

these methods were run with the package SIS under their default settings except that the regular-

ization parameters were determined according to the BIC criterion. The comparison indicates that

BwC is superior to these regularization methods in both variable selection and parameter estima-

tion for all the four cases. The regularization methods tend to select more false variables and miss

more true variables as |s∗| increases, while BwC can consistently identify almost all true variables.

Table 3 also reports the CPU time (in seconds) cost by each method for a single dataset.

The comparison indicates that BwC does not cost much more CPU time than SCAD and MCP.

Note that in the package SIS, all the methods, Lasso, SCAD and MCP were implemented with a

variable screening step. Under their default setting, the variable screening step is done with the ISIS

algorithm, which may take quite a few iterations to converge for some datasets. For this reason,

SCAD, MCP and BwC take comparable CPU time. Compared to SCAD and MCP, Lasso tends to

select more variables at each iteration. As a consequence, it often takes less iterations to converge

and thus costs less CPU time.

For the model with |s∗| = 10, we have considered two sample sizes n = 100 and 200 with the

results reported in Table 2 and Table 3, respectively. A comparison of the two tables show that the

performance of all methods has been improved as the sample size increases. For BwC, the average

model size |ŝ|avg is closer to the true model size and the value of fsr is further reduced as the sample

size increases. For the regularization methods, both fsr and nsr have been reduced, although the

average model size is still very large. This comparison indicates that the performance of BwC is

much less dependent on the sample size than the regularization method.

For a thorough comparison of BwC with the regularized methods, we also consider the scenario

where the mutual correlation coefficient between different predictors is low. For this purpose, we

generated another 40 datasets according to (10) and (11) with the variance of e tuned such that

the mutual correlation coefficient is equal to 0.2. The results are summarized in Table 4. BwC also

significantly outperforms the regularization methods under this scenario.
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Table 3: Numerical results of BwC, Lasso, SCAD and MCP for the simulated data with the mutual

correlation coefficient ρ = 0.5: The CPU time (in seconds) is measured for a single run on an Intel

Core i7-4790@3.60GHz Quad-Core desktop. Refer to Table 1 for other notations.

Lasso SCAD MCP BwC

|s∗| = 5

|ŝ|avg 18.9 (3.07) 20.6 (4.37) 21.5 (0.77) 6.7 (0.30)

|ŝ ∩ s∗|avg 5 (0) 5 (0) 5 (0) 5 (0)

∥θ̂ − θ∗∥avg 0.50 (0.065) 0.70 (0.136) 0.94 (0.033) 0.33 (0.029)

fsr 0.69 (0.032) 0.50 (0.137) 0.75 (0.010) 0.24 (0.036)

nsr 0 (0) 0 (0) 0 (0) 0 (0)

CPU time 5.41 (1.26) 18.94 (4.43) 20.53 (1.60) 30.79 (0.41)

|s∗| = 10

|ŝ|avg 35.3 (1.70) 28.4 (4.04) 25.4 (1.27) 12.7 (0.56)

|ŝ ∩ s∗|avg 10 (0) 10 (0) 10 (0) 9.9 (0.10)

∥θ̂ − θ∗∥avg 0.75 (0.048) 0.81 (0.128) 0.98 (0.056) 0.50 (0.077)

fsr 0.71 (0.023) 0.51 (0.111) 0.60 (0.022) 0.21 (0.038)

nsr 0 (0) 0 (0) 0 (0) 0.01 (0.01)

CPU time 10.14 (0.89) 23.28 (3.50) 26.66 (1.34) 31.43 (0.36)

|s∗| = 15

|ŝ|avg 37 (0) 34.3 (2.20) 30.3 (0.75) 17.5 (0.62)

|ŝ ∩ s∗|avg 12.5 (1.21) 14.5 (0.50) 15 (0) 15 (0)

∥θ̂ − θ∗∥avg 1.70 (0.430) 1.12 (0.258) 1.00 (0.039) 0.46 (0.024)

fsr 0.66 (0.032) 0.54 (0.062) 0.50 (0.012) 0.13 (0.028)

nsr 0.17 (0.081) 0.03 (0.033) 0 (0) 0 (0)

CPU time 16.97 (2.81) 24.46 (2.23) 32.78 (0.31) 31.98 (0.11)

|s∗| = 20

|ŝ|avg 37 (0) 37 (0) 36.5 (0.34) 24 (0.71)

|ŝ ∩ s∗|avg 9 (1.42) 11.6 (1.69) 12.7 (1.69) 19.9 (0.10)

∥θ̂ − θ∗∥avg 4.04 (0.404) 3.62 (0.493) 3.36 (0.527) 0.65 (0.106)

fsr 0.76 (0.038) 0.69 (0.046) 0.65 (0.050) 0.16 (0.026)

nsr 0.55 (0.071) 0.42 (0.085) 0.37 (0.084) 0.01 (0.005)

CPU time 13.49 (1.96) 17.37(1.59) 24.45 (2.57) 32.64(0.52)
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Table 4: Numerical results of BwC, Lasso, SCAD and MCP for the simulated data with the mutual

correlation coefficient ρ = 0.2. Refer to Table 3 for the notation.

Lasso SCAD MCP BwC

|s∗| = 5

|ŝ|avg 22.6 (3.97) 11.5 (4.25) 17.8 (4.34) 5.6 (0.31)

|ŝ ∩ s∗|avg 5 (0) 5 (0) 5 (0) 5 (0)

∥θ̂ − θ∗∥avg 0.58 (0.059) 0.34 (0.096) 0.60 (0.126) 0.24 (0.031)

fsr 0.71 (0.048) 0.19 (0.113) 0.43 (0.134) 0.09 (0.040)

nsr 0 (0) 0 (0) 0 (0) 0 (0)

|s∗| = 10

|ŝ|avg 37 (0) 12.8 (2.69) 28.7 (4.02) 11.4 (0.43)

|ŝ ∩ s∗|avg 9.9 (0.1) 10 (0) 10 (0) 10 (0)

∥θ̂ − θ∗∥avg 0.90 (0.075) 0.32 (0.063) 0.82 (0.120) 0.34 (0.034)

fsr 0.73 (0.003) 0.08 (0.073) 0.52 (0.107) 0.11 (0.031)

nsr 0.01 (0) 0.01 (0) 0 (0) 0 (0)

|s∗| = 15

|ŝ|avg 37 (0) 30.4 (3.36) 32.6 (2.93) 17.2 (0.53)

|ŝ ∩ s∗|avg 15 (0) 14.6 (0.40) 14.6 (0.40) 15 (0)

∥θ̂ − θ∗∥avg 0.83 (0.030) 0.88 (0.262) 1.05 (0.248) 0.45 (0.024)

fsr 0.59 (0) 0.43 (0.094) 0.49 (0.082) 0.12 (0.026)

nsr 0 (0) 0.03 (0.027) 0.03 (0.027) 0 (0)

|s∗| = 20

|ŝ|avg 37 (0) 33.6 (2.27) 37 (0) 23.8 (1.44)

|ŝ ∩ s∗|avg 10.8 (1.44) 14.6 (1.92) 14.6 (1.81) 19.9 (0.10)

∥θ̂ − θ∗∥avg 3.57 (0.377) 2.49 (0.612) 2.87 (0.570) 0.63 (0.134)

fsr 0.71 (0.039) 0.51 (0.097) 0.62 (0.049) 0.14 (0.044)

nsr 0.46 (0.072) 0.27 (0.096) 0.30 (0.091) 0.01 (0.005)
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3.3 A Real Data Study: Biomarker Discovery for Anticancer Drug

Sensitivity

Complex diseases such as cancer often have significant heterogeneity in response to treatments.

Hence, individualized treatment based on the patient’s prognostic or genomic data rather than a

“one treatment fits all” approach could lead to significant improvement of patient care. The success

of personalized medicine decisively depends on the accuracy of the diagnosis and outcome prediction

(Hamburg and Collins, 2010), and thus the discovery of precise biomarkers for disease is essential.

Recent advances in high-throughput biotechnologies, such as microarray, sequencing technologies

and mass spectrometry, have provided an unprecedented opportunity for biomarker discovery. Given

the high dimensionality of the omics data, biomarker discovery is best cast as variable selection from

a statistical point of view. In this study, we consider the problem of identifying the genes that predict

the anticancer drug sensitivity for different cell lines, toward the ultimate goal of selecting right

drugs for individual patients.

We considered a dataset extracted from the Cancer Cell Line Encyclopedia (CCLE) database.

The dataset include the sensitivity data of 474 cell lines to the drug topotecan, as well as the

expression data of 18,926 genes for each cell line. Topotecan is a chemotherapeutic agent that is a

topoisomerase inhibitor, and it has been used to treat lung cancer, ovarian cancer, and other types

cancer. The drug sensitivity was measured using the area under dose-response curves, which is

termed as activity area in (Barretina et al., 2012). For this dataset, BwC was run with the initial

block number K = 20 and the block diminishing size s = 3. To have a thorough exploration for

this dataset, BwC was run 25 times. Note that the models selected by BwC may be different in

different runs due to its stochastic nature in redistributing significant genes to different blocks. The

average number of genes found by BwC is 9.88 with standard deviation 0.40. Table 5 lists the

top 10 genes identified by BwC in the order of frequencies appeared in the 25 final models. The

appearance frequency provides a simple measure for the importance of each gene to prediction of

drug sensitivity by integrating over multiple models.

Our result is consistent with the current biological knowledge. For example, the first gene
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Table 5: Top 10 genes selected by BwC for the drug topotecan based on 25 independent runs.

No. Gene Frequency No. Gene Frequency

1 SLFN11 25 6 MFAP2 6

2 HSPB8 11 7 RFXAP 6

3 C14orf93 8 8 ANO10 5

4 ILF3 7 9 AGPAT5 5

5 C15orf57 6 10 RPL3 5

SLFN11 is a helicase that breaks apart annealed nucleic acid strands. Helicases are known to work

hand in hand with topoisomerase at many major DNA events (Duguet, 1997). It was also found

by Barretina et al. (2012) that SLFN11 is predictive of treatment response for Topotecan, as well

as irinotecan, another inhibitor of TOP-I. It is known that the gene HSPB8 interacts with the gene

HSPB1, and the recent study (Li et al., 2016) shows that HSPB1 polymorphisms might be associated

with radiation-induced damage risk in lung cancer patients treated with radiotherapy. The gene

ILF3 is also related to lung cancer, which shows correlated mRNA and protein overexpression in

lung cancer development and progression (Guo et al., 2008). The relationship of other genes to the

drug sensitivity will be further explored elsewhere.

For comparison, Lasso, SCAD and MCP have also been applied to this dataset. Similar to

simulated examples, they tend to select a larger model than BwC. Lasso selected 18 genes, MCP

selected 21 genes, and SCAD selected 52 genes, which are all significantly larger than the average

model size produced by BwC.

4 BwC for High Dimensional Multivariate Regression

Multivariate regression is a generalized regression model of regressing q > 1 responses on p predic-

tors. Applications of this generalized model often arise in biomedicine, psychometrics, and many

other quantitative disciplines. Let X ∈ Rn×p denote the design matrix, let Y ∈ Rn×q denote the
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response matrix, let B ∈ Rp×q denote the regression coefficient matrix, and let E ∈ Rn×q denote

the random error matrix. Then the model can be written as

Y = XB +E. (13)

For convenience, we let yi and y(i) denote the ith column and ith row of Y , respectively. Likewise,

we let ϵi and ϵ(i) denote the ith column and ith row of E, respectively. In general, it is assumed that

ϵ′(i) follows a multivariate normal distribution N(0,Σ), while ϵ′(1), . . . , ϵ
′
(n) are mutually independent.

We are interested in jointly estimating the regression coefficient matrix B and the precision matrix

Ω = Σ−1, in particular, when q and/or p are greater than n.

In the literature, there are several papers on variable selection for multivariate linear regression,

see e.g., Turlach et al. (2005) and Peng et al. (2010), under the assumption that the response

variables are mutually independent. There are also several methods for precision matrix estimation,

such as gLasso (Yuan and Lin, 2007; Friedman et al., 2008), nodewise regression (Meinshausen

and Bühlmann, 2006), and ψ-learning (Liang et al., 2015). However, the papers which address

simultaneous variable selection and precision matrix estimation in the context of multiple regression

are sparse. Three exceptions are Rothman et al. (2010), Bhadra and Mallick (2013) and Sofer

et al. (2014). Rothman et al. (2010) proposed an iterative approach that alternatively estimates

the precision matrix and regression coefficients under a l1-penalty, but without any theoretical

guarantees provided for the convergence of their algorithm. Bhadra and Mallick (2013) proposed a

Bayesian approach to the problem, but again no convergence results were proved. Sofer et al. (2014)

proves the convergence of the iterative approach of Rothman et al. (2010) under very restrictive

conditions, such as pq/n → 0 and q2/n → 0, which require both p and q to be much smaller than

n.

The BwC method can be naturally applied to this problem by treatingB andΩ as two separated

parameters blocks. It is easy to verify that the conditions (A) and (B) are satisfied for this problem.

Therefore, BwC provides a theoretical guarantee for the convergence of the iterative approach used

in Rothman et al. (2010) and Sofer et al. (2014). More importantly, the theory of BwC allows both

q and p to be greater than the sample size n. For the problems for which p is extremely large, BwC
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can be run in a nested manner: conditioned on the estimate of Ω, BwC can again be used as a

subroutine for estimation of B. In what follows we first give a brief review of the iterative approach

used in Rothman et al. (2010) in order to distinguish it from BwC.

4.1 A Brief Review of the Existing Iterative Approach

Consider the multivariate regression model (13). With the regularization methods, a natural way

is to minimize the objective function

Q(B,Ω) = − ln |Ω|+ trace

[
1

n
(Y −XB)T (Y −XB)Ω

]
+ Pλ(B) + Pγ(Ω), (14)

where Pλ(·) and Pγ(·) are the penalty functions for B and Ω, respectively; and λ and γ are regu-

larization parameters. In practice, Pλ(·) can be set to a standard penalty function, such as the one

used in Lasso, SCAD or MCP; and Pγ(·) can be set to the l1-penalty as the one used in graphical

Lasso (Friedman et al., 2008).

To minimizeQ(B,Ω) simultaneously overB andΩ, Rothman et al. (2010) proposed an iterative

approach, the so-called multivariate regression with covariance estimation (MRCE) algorithm, which

is actually a block coordinate descent algorithm. Let Ω̂ and B̂ denote the current estimators of Ω

and B, respectively. One iteration of the MRCE algorithm consist of two general steps:

Algorithm 4.1 MRCE Algorithm

(i) Estimate B by minimizing Q(B|Ω̂) conditional on the current estimator of Ω, where

Q(B|Ω̂) = trace

[
1

n
(Y −XB)T (Y −XB)Ω̂

]
+ Pλ(B). (15)

(ii) Estimate Ω by minimizing Q(Ω|B̂) conditional on the current estimator of B, where

Q(Ω|B̂) = − ln |Ω|+ trace

[
1

n
(Y −XB̂)T (Y −XB̂)Ω

]
+ Pγ(Ω). (16)

Step (ii) can be accomplished using the graphical Lasso algorithm. To accomplish step (i),

Rothman et al. (2010) suggested to set a Lasso penalty for B, i.e., set

Pλ(B) = λ

q∑
i=1

p∑
j=1

|βji|,
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and then apply the cyclical coordinate descent algorithm to solve (15) for B. Let S = XTX

and H = XTY Ω, let B̂
(m)

denote the estimate of B at the m-th iteration, and let BRIDGE =

(XTX+λI)−1XTY denote the ridge penalized least-square estimator ofB. The cyclical coordinate

descent algorithm is described as follows:

Algorithm 4.2 Cyclical coordinate descent algorithm for multivariate regression

1. Set B̂
(m)
← B̂

(m−1)
, visit all entries of B̂

(m)
in some sequence and for entry (r, c) update β̂

(m)
rc

with the minimizer of the objective function along its coordinate direction given by

β̂(m)
rc ← sign

(
β̂(m)
rc +

hrc − urc
srrωrr

)(∣∣∣∣β̂(m)
rc +

hrc − urc
srrωcc

∣∣∣∣− nλ

srrωcc

)
+

,

where urc =
∑p

j=1

∑q
k=1 β̂

(m)
jk srjωkc.

2. If
∑

j,k |β̂
(m)
jk − β̂

(m−1)
jk | < ϵ

∑
j,k |β̂RIDGE

jk | then stop, otherwise go to Step 1, where ϵ is a

pre-specified small number, say 10−4.

Following from the convergence theory of Tseng (2001), this algorithm is guaranteed to converge

to the global minimizer if the given precision matrix Ω̂ is non-negative definite. In this case, the trace

term in the objective function (15) is convex and differentiable and the penalty term decomposes

into a sum of convex functions of individual parameters. As analyzed in Rothman et al. (2010), the

computational complexity of this algorithm is O(p2q2) per iteration, as it needs to cycle through pq

parameters, and each calculation of urc costs O(pq) flops.

For high dimensional problems, the iterative approach often performs less well. Firstly, the

cyclical coordinate descent algorithm, which is a simple adoption of the Lasso algorithm for multi-

variate regression, can deteriorate its performance as the dimension increases. Secondly, the errors

introduced in one step can adversely affect the performance of the approach in the other step. Also,

it often takes a large number of iterations to converge as noted by Rothman et al. (2010). To

address these issues, Rothman et al. (2010) proposed the so-called approximate MRCE (AMRCE)

algorithm, which is described as follows.

Algorithm 4.3 Approximate MRCE (AMRCE) Algorithm
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1. Perform q separate lasso regressions each with the same optimal tuning parameter λ̂0 via cross

validation. Let B̂
lasso

λ̂0
denote the solution.

2. Compute Ω̂ = Ω̂(B̂
lasso

λ̂0
) through the gLasso algorithm.

3. Compute B̂ = B̂(Ω̂) through the cyclical coordinate descent algorithm.

The AMRCE algorithm basically output the result from the first sweep of the iterative approach,

except that the initial value for the parameter matrix B̂ is chosen by implementing q separate Lasso

regression each with the same optimal tuning parameter λ̂0 selected via cross validation. In this

paper, we implemented step 2 using the R-package gLasso (Friedman et al., 2015), and implemented

step 3 using the R-package MRCE (Rothman, 2015). The two-stage algorithm proposed by Sofer

et al. (2014) is essentially the same with the AMRCE algorithm, where one stage is to estimate B

conditional on the estimate of Ω, and the other stage is to estimate Ω conditional on the estimate

of B. The major difference between the two algorithms is on how to set the initial estimators and

how to tune the regularization parameters.

4.2 The BwC Approach

Consider the following transformation for the model (13) for a given precision matrix Ω:

Ỹ = XB̃ + Ẽ, (17)

where Ỹ = Y Ω
1
2 , B̃ = BΩ

1
2 and Ẽ = EΩ

1
2 . For this transformed model, the elements of Ẽ

are i.i.d. Gaussian N(0, 1). If we partition the matrices Ỹ , B̃ and Ẽ columnwisely, i.e., letting

Ỹ = (ỹ1, ỹ2, · · · , ỹq), B̃ = (β̃1, · · · , β̃q), and Ẽ = (ϵ̃1, ϵ̃2, · · · , ϵ̃q), then the model (17) can be

expressed as q independent regressions:

ỹi = Xβ̃i + ϵ̃i, i = 1, · · · , q, (18)

where ϵ̃i follows a multivariate Gaussian distribution Nn(0, I). Based on this transformation, the

BwC approach can be applied to iteratively estimate the coefficient matrix B̃ and the precision

matrix Ω. One sweep of the approach consists of the following steps:
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Algorithm 4.4 BwC for Transformed Multivariate Regression

1. Conditioned on the current estimator of Ω, estimate β̃1, . . . , β̃q independently according to

(18) using the BwC algorithm 3.1.

2. Conditioned on the current estimator of B̃, estimate the adjacency structure of the precision

matrix Ω from the residual Y −X ˆ̃BΣ1/2 using the ψ-learning algorithm (Liang et al., 2015),

where ˆ̃B denote the current estimate of B̃.

3. Based on the adjacency structure obtained in step 2, recover the precision matrix Ω using the

algorithm given in Hastie et al. (2009)(p.634).

Note that Algorithm 4.4 is a nested BwC algorithm, where B̃ is also estimated using the BwC

algorithm. Given an estimate of B̃, one may get an estimate ofB via the transformation B̂ = ˆ̃BΣ̂
1
2 .

Note that the estimate B̂ obtained in this way might not be very sparse (although still sparse in

rows), as Σ̂
1
2 can be a dense matrix. However, since a zero-row of B̃ implies a zero-row of B, ˆ̃B

can be used for variable screening, i.e., removing those variables in X which correspond a zero-row

of ˆ̃B. After variable screening, the remaining rows of B can be easily estimated using Algorithm

4.2 based on the estimate of Ω. In summary, the proposed approach consists of the following steps:

Algorithm 4.5 BwC for Multivariate Regression

1. (Initialization) Use the ψ-learning algorithm to estimate the adjacency structure of Ω from the

response variables Y , and recover the working precision matrix Ω̂ from this structure using

the algorithm given in Hastie et al. (2009)(p.634).

2. (B̃ and Ω-estimation) Conditioned on the working precision matrix Ω̂, estimate B̃ and Ω

using Algorithm 4.4.

3. (Variable screening) Remove all the variables in X which correspond to the zero-rows of ˆ̃B.

Denote the reduced design matrix as Xred.

4. (B-estimation) Conditioned on the working precision matrix Ω̂, estimate the remaining re-

maining rows of B using Algorithm 4.2 from the reduced model Y = XredBred +E.
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Regarding this algorithm, we have a few remarks.

1. Like the AMRCE algorithm, we find that Algorithm 4.4 used in estimation of B̃ and Ω only

needs to iterate for a very few sweeps, say, 1 or 2. A large number of sweeps will not hurt

the performance of the algorithm, but not necessary. In general, the algorithm can produce

very stable estimates (with most of the significantly non-zero elements in B̃ and Ω being

identified) within a very few sweeps, but will not converge to some fixed solution. This is

because the execution of Algorithm 4.4 involves a lot of randomness, such as redistribution of

selected variables, shuffling of unselected variables, and stochastic approximation estimation

involved in the ψ-learning algorithm in recovering the adjacency structure of the precision

matrix.

2. Due to the sparsity of B̃, X can be much reduced in the step of variable screening. Since the

initial estimate B̂
(0)

red =
ˆ̃BredΣ̂

1/2 can be quite close to the true value of B̂red, the B-estimation

step can usually converge very fast.

3. The BwC approach estimates β̃i, i = 1, . . . , q, independently. For each i, the data size it deals

with is n× p, and the computational complexity of the BwC subroutine is O(k′np), where k′

denotes the number of sweeps performed in the subroutine. Recall that for each conditioned

step of the subroutine, the SIS-MCP algorithm is implemented for variable selection, whose

computational complexity is O(nm) and m denotes the number of variables included in the

subset data. Hence, the total computational complexity for q regressions is O(k′nqp), which

can be much better than O(p2q2), the computational complexity of the MRCE algorithm.

4. The BwC approach adopted the ψ-learning algorithm (Liang et al., 2015) for estimating the

adjacency structure of the precision matrix. The ψ-learning algorithm works based on a new

measure of partial correlation coefficients, the so-called ψ-partial correlation coefficient, which

is evaluated with a reduced conditional set and thus feasible for high-dimensional problems.

Under the Markov property and adjacency faithfulness conditions, it can be shown that the

ψ-partial correlation coefficient is equivalent to the true partial correlation coefficient in con-

struction of Gaussian graphical networks, and the networks constructed based on which are
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asymptotically consistent with the true network. The numerical results reported in Liang

et al. (2015) indicate that the ψ-learning algorithm can produce more accurate networks than

gLasso. In terms of computational complexity, the ψ-learning algorithm is also better than

gLasso. The ψ-learning algorithm has a computational complexity of nearly O(q2), while

gLasso has a computational complexity of O(q3). Even in its fast implementation (Witten

et al., 2011; Mazumder and Hastie, 2012), which makes use of the block diagonal structure in

the graphical Lasso solution, gLasso still has a computational complexity of O(q2+ν), where

0 < ν ≤ 1 may vary with the block diagonal structure it used.

Finally, we would point out that a fundamental difference between the MRCE approach and the

BwC approach is that MRCE works with an explicit objective function as specified in (14), while

BwC does not. BwC requires only an asymptotic objective function for each block; that is, the

estimator obtained for each block must be consistent, while the joint finite-sample objective function

for all blocks might not exist in an explicit form. For the ψ-learning algorithm, which is developed

based on the theory of graphical models (under neither regularization nor Bayesian frameworks),

an explicit finite-sample objective function does not exist though a consistent estimator can still

be produced. From this perspective, we can see that the BwC approach is flexible. It provides a

general framework for combining different methods for parameter estimation of complex models.

4.3 A Simulated Example

Consider the multivariate regression (13) with n = 200, q = 100, and p = 3000, 5000 and 10000.

The explanatory variables are generated by (10) and (11) except that the shared error term e

is divided by a random number generated from Uniform[1,10]. That is, some of the explanatory

variables are still highly correlated. The full regression coefficient matrix B is a p×q matrix, which

contains 300,000, 500,000 and 1,000,000 elements for p = 3000, 5000 and 10000, respectively. To

set the matrix B, we randomly selected 200 elements to set them to 1 and set the non-selected
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elements to 0. The precision matrix Ω = (ωij) is given by

ωij =



1, if i = j,

0.5, if |i− j| = 1,

0.25, if |i− j| = 2,

0, otherwise.

(19)

Such a precision matrix has been used by Yuan and Lin (2007), Mazumder and Hastie (2012) and

Liang et al. (2015) to illustrate their respective algorithms for high dimensional Gaussian graphical

models. For each value of p, we generated 10 independent datasets, and the numerical results

reported below are averaged over the 10 datasets.

The BwC approach was first applied to this example. In the B̃- and Ω-estimation step, we set

the initial block number K = 10, the number of sweeps m = 25, and the block diminishing size

s = 2, and adopted the SIS-MCP algorithm for variable selection with the regularization parameter

determined by the BIC criterion. The ψ-learning algorithm used in precision matrix estimation

contains two free parameters, α1 and α2, which represent the significant levels of the screening tests

for the correlation coefficients and ψ-partial correlation coefficients, respectively. The correlation

screening step produces conditional sets for evaluating the ψ-partial correlation coefficients. As

mentioned in Liang et al. (2015), the ψ-learning algorithm is pretty robust to the choice of α1, and

a large α1 is usually preferred, which produces large conditional sets and thus reduces the risk of

missing important connections in the resulting Gaussian graphical network. Here a connection also

refers to a nonzero off-diagonal element of the precision matrix. For this example, we set α1 = 0.25.

For α2, it is ideal to decrease its value with sweeps. A large value of α2 in the early sweeps helps

to keep important connections in the network, as variable selection in these sweeps might still be

pre-mature. A small value of α2 in the late sweeps helps to reduce the false selection of network

connections. For simplicity, we set α2 = 0.05 in all sweeps. In the variable screening step, the

number of variables in X can be largely reduced. For the datasets with p = 3000, on average

Xred contains only 201.6 variables with a standard deviation of 1.9; for p = 5000, on average Xred

contains only 210.1 variables with a standard deviation of 2.3; and for p = 10000, on average Xred
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contains only 218.5 variables with a standard deviation of 2.8. After obtaining the estimate of

Ω, the cyclical coordinate descent algorithm was applied to estimate Bred based on the reduced

set of variables. For this step, the regularization parameter was tuned according to the EBIC

criterion. For comparison, the AMRCE algorithm was also applied to this example, for which the

regularization parameter was tuned according to the BIC criterion.

Table 6 and Table 7 summarize the results for precision matrix estimation and variable selection,

respectively. The comparison shows that BwC significantly outperforms AMRCE for this example.

As indicated by Table 6, AMRCEmis-identified almost all true connections, while BwC can correctly

identified over 80% of them. For variable selection, BwC tends to have a lower false selection rate

than AMRCE, although they both are able to identify all true variables. It is remarkable that in

terms of mean squared errors (MSE) of the estimate of B, BwC works much better than AMRCE.

To have this issue further explored, we plot in Figure 3 the histograms of the non-zero elements

of B̂ obtained for three datasets. The histograms show that for the true variables, the regression

coefficient estimates produced by BwC are closer to their true value 1 than those produced by

AMRCE. Also, the true variables and the falsely selected variables are more separable for the BwC

estimates than for the AMRCE estimates. In fact, with a finely tuned threshold, the true variables

can be accurately identified with the BwC approach.

Finally, we would like to report that the BwC approach took a little longer CPU time than

AMRCE for this example. This is because BwC took multiple sweeps with diminishing block sizes

in estimation of B̃, although it is cheaper than AMRCE for each sweep. On average, BwC took

26, 36 and 52 CPU minutes on an Intel Core i7-4790@3.60GHz Quad-Core desktop for each dataset

with p = 3000, 5000 and 10000, respectively. On average, AMRCE took 5, 9 and 20 CPU minutes

for these datasets, respectively, on the same computer.

4.4 A Real Data Study: eQTL Analysis

This dataset includes 60 unrelated individuals of Northern and Western European ancestry from

Utah (CEU), whose genotypes are available from the International Hapmap project and publicly

downloadable via the hapmart interface (http://hapmart.hapmap.org). The genotype is coded
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Figure 3: Histograms of non-zero elements of B̂ obtained by BwC (left panel) and AMRCE (right

panel) for three datasets with p = 3000 (upper panel), p = 5000 (middle panel), and p = 10000,

respectively.
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Table 6: Results comparison for precision matrix estimation: the results are averages over 10

independent datasets with the standard deviation given in the parenthesis, where |ŝ|avg denotes

the number of connections selected by the method, and |ŝ ∩ s∗|avg denotes the number of true

connections selected by the method. The true number of connections is 197.

p method |ŝ|avg |ŝ ∩ s∗|avg fsr nsr

3000
BwC 171.1 (2.28) 162.0 (1.75) 0.05 (0.008) 0.18 (0.009)

AMRCE 70.7 (5.92) 1.1 (0.33) 0.99 (0.004) 0.99 (0.003)

5000
BwC 169.8 (3.51) 161.3 (2.64) 0.05 (0.006) 0.18 (0.013)

AMRCE 68.35 (10.14) 0.65 (0.20) 0.99 (0.003) 0.99 (0.002)

10000
BwC 165.6 (1.57) 156.2 (1.54) 0.06 (0.006) 0.21 (0.008)

AMRCE 65.35 (13.58) 1.55 (0.52) 0.98 (0.006) 0.98 (0.005)

as 0, 1 and 2 for homozygous rare, heterozygous and homozygous common alleles, respectively.

Our study focuses on the SNPs found in the 5
′
UTR (untranslated region) of mRNA (messenger

RNA) with a minor allele frequency of 0.1 or more. The UTR possibly has an important role in

the regulation of gene expression and has previously been subject to investigation by Chen et al.

(2008). The gene expression data of these individuals were analyzed by Stranger et al. (2007).

There were four replicates for each individual. The raw data were background corrected and then

quantile normalized across replicates of a single individual and then median normalized across all

individuals. The gene expression data are again publicly available from the Sanger Institute website

(ftp://ftp.sanger.ac.uk/pub/genevar). Out of the 47293 total available probes corresponding to

different Illumina TargetID, we selected the 100 most variable probes with each corresponding to a

different transcript. Further, we removed the “duplicated” SNPs. Two SNPs are said “duplicated”

if they have the same genotypes across all individuals. After these reductions, we reached a dataset

with n = 60, p = 3005 (for SNPs), and q = 100 (for transcripts). The same dataset has been

analyzed by Bhadra and Mallick (2013).

To validate the Gaussian assumption for the response variables of the model (13), the non-

paranormal transformation proposed by Liu et al. (2009) has been applied to the gene expression
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Table 7: Results comparison for variable selection: the results are averages over 10 independent

datasets with the standard deviation given in the parenthesis, where |ŝ|avg denotes the number of

variables selected by the method, and |ŝ ∩ s∗|avg denotes the number of true variables selected by

the method. The true number of variables is 200.

p method |ŝ|avg |ŝ ∩ s∗|avg fsr nsr MSE

3000
BwC 248.3 (3.23) 200 (0) 0.19 (0.010) 0 (0) 0.05 (0.003)

AMRCE 268.5 (5.03) 199.9 (0.10) 0.25 (0.014) 0.001 (0.001) 0.22 (0.009)

5000
BwC 251.8 (3.91) 200 (0) 0.20 (0.012) 0 (0) 0.05 (0.002)

AMRCE 265.9 (12.96) 199.4 (0.40) 0.23 (0.039) 0.003 (0.002) 0.25 (0.019)

10000
BwC 255.9 (3.96) 200 (0) 0.22 (0.012) 0 (0) 0.06 (0.003)

AMRCE 233.3 (7.20) 198.5 (0.50) 0.14 (0.021) 0.008 (0.003) 0.30 (0.011)

data. The nonparanormal transformation is a semiparametric transformation, which converts a

continuous variable to a Gaussian variable while leaving the structure of the underlying graphical

model unchanged. Prior to the analysis, we centered both the response variable (Gene expression

data) and the predictors (SNP). Each of the predictors has also been normalized to have a standard

deviation of 1. The BwC approach was applied to this example. In the step of B̃ and Ω-estimation,

we set the initial block number K = 10, the number of sweeps m = 25, and the block diminishing

size s = 2 for the sub-BwC run. For the ψ-learning algorithm, we set α1 = 0.25 and α2 = 0.05.

The BwC approach was independently run for 25 times with the results summarized in Table 8 and

Table 9.

Table 8 reports 8 pairs of associated transcripts that were identified by BwC in all 25 runs.

Among them, there are two transcripts from the gene FXYD2, two transcripts from the gene

KIAA0125, and two transcripts from the gene PIP3-E. Also, the associated gene pair, CYorf15B

and SMCY, found in this study are known to be related with gender (Weickert, 2009). These

results indicate the validity of the BwC approach. Due to the general weak relations between SNPs

and transcripts, the null model tends to be produced in the B-estimation step with the cyclical

coordinate descent algorithm. Instead, we explored the estimator B̂ = ˆ̃BΣ̂
1
2 for this example.
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Table 8: Pairs of associated transcripts identified by BwC in all 25 runs.

Correlated Transcripts Related Gene

GI 14211892-S : GI 33356559-S CYorf15B : SMCY

GI 20302136-S : GI 7661757-S KIAA0125 : KIAA0125

hmm3574-S : Hs.406489-S hmm3574 : Hs.406489

Hs.449602-S : Hs.449584-S Hs.449602 : Hs.449584

Hs.512137-S : GI 41190507-S Hs.512137 : LOC388978

Hs.449602-S : Hs.449584-S Hs.449602 : Hs.449584

GI 27754767-A : GI 27754767-I FXYD2 : FXYD2

GI 40354211-S : Hs.185140-S PIP3-E : PIP3-E

For this estimator, there were 256 non-zero elements identified by BwC in all 25 runs. Among

the top 100 elements (in magnitudes), we found 5 SNPs which are associated with more than one

transcripts. Table 9 shows these SNPs and the associated multiple transcripts.

Table 9: SNPs and their associated multiple transcripts identified by BwC.

SNP Transcript

rs3784932 GI 24308084-S, GI 21389558-S

rs1044369 GI 37546969-S, hmm3587S

rs1944926 GI 21464138-A , GI 22027487-S, GI 41350202-S, hmm9615-S

rs2241649 hmm9615S, GI 7019408-S

rs12892419 GI 33356162-S, GI 13514808-S

5 Conclusion

We have proposed the blockwise consistency (BwC) method as a potential solution to the problem

of parameter estimation for complex models that are often encountered in big data analysis. The

BwC method decomposes the high dimensional parameter estimation problem to a series of lower
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dimensional parameter estimation problems which often have much simpler structures than the

original high-dimensional problem, and thus can be easily solved. Moreover, under the framework

provided by BwC, a variety of methods, such as Bayesian and frequentist methods, can be jointly

used to achieve a consistent estimator for the original high-dimensional complex model. The BwC

approach has been illustrated using two examples, high dimensional variable selection and high-

dimensional multivariate regression. Both examples show that the BwC method can provide a

drastic improvement over the existing methods. Extension of the BwC method to other high-

dimensional problems, such as variable selection for high-dimensional generalized linear models, is

straightforward.

The BwC method works in a similar way to the block coordinate descent algorithm. As men-

tioned previously, the fundamental difference between the two algorithms is that the block coordi-

nate descent algorithm works with an explicit finite-sample objective function for each block, while

BwC does not. BwC requires only a consistent estimator for each block, while the joint finite-sample

objective function for all blocks might not exist in an explicit form. This allows us to combine the

best methods to each sub-problem to solve the original complex problems.

The BwC method can also be used under the Bayesian framework to find the maximum a

posteriori (MAP) estimator for a complex model, e.g., hierarchical model, for which the conjuacy

holds for the parameters. We note that these models are traditionally treated with the Gibbs

sampler under the Bayesian framework. However, the feasibility of the Gibbs sampler (Geman and

Geman, 1984) is being challenged in the era of big data, as which typically requires a large number

of iterations and multiple scans of the full dataset for each sweep. Compared to the Gibbs sampler,

BwC can converge much faster, usually within tens of iterations. For many problems, typically,

if the Gibbs sampler can be implemented, so can BwC but with substantially less work and more

straightforward convergence properties. The uncertainty of the BwC estimator can be assessed

using the bootstrap method (Efron and Tibshirani, 1993).
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