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Abstract 
 
Sectional fares have been used in transit services in practice but are rarely examined analytically 
and compared with flat and distance-based fares, especially under the considerations of path 
choice, elastic demand, service frequency, and profitability. This paper proposes a bilevel 
programming model to jointly determine the fare and frequency setting to maximize transit 
operator’s profit. The preceding three fare structures can be incorporated into the bilevel model. 
To consider the path choice and elastic demand in the bilevel model, the existing approach-based 
stochastic user equilibrium transit assignment model for the fixed demand was extended to the 
elastic demand case and the resultant model was used in the lower level model. To solve the 
bilevel model, the sensitivity-based descent search method that takes into account the approach-
based formulation for the elastic demand transit assignment is proposed, in which the approach-
based formulation was solved by the cost-averaging self-regulated averaging method. Numerical 
studies and mathematical analyses were performed to examine the model properties and compare 
the three fare structures. The result of the Tin Shui Wai network instance is also provided to 
illustrate the performance of the solution method. 
 
It is proven that when all passengers’ destinations are located at transit terminals, the sectional 
fare structure is always better than the other two fare structures in terms of profitability. For more 
general networks, the sectional fare structure is always better than the flat fare structure, but the 
choice between sectional and distance-based fare structures depends on the geometry of the 
network (e.g., the route structure and the distance between stops), the demand distribution, and 
the maximum allowable fares. It is also proven that the optimal profit (total vehicle mileage) is 
strictly monotonically decreasing (monotonically decreasing) with respect to the unit operating 
cost. Moreover, it is proven that the lower level approach-based assignment problem with elastic 
demand has exactly one solution. However, the bi-level problem can have multiple optimal 
solutions. Interestingly, it is found that from the operator’s profitability point of view, providing 
better information to the passengers may not be good.  
 
Keywords: fare optimization; frequency setting; transit assignment; bilevel optimization; transit 
network design; sensitivity-based heuristic 
 

1. Introduction 
 
Public transit services are found worldwide. They can also be very profitable and competitive. 
According to the latest Travel Characteristics Survey 2011 conducted by the Hong Kong 
Transport Department (Arup Group Limited, 2014), among the 12.6 million daily mechanized 
trips, 88% of them were made by public transit services including bus, light bus, the Mass Transit 
Railway, light rail transit, ferry, trams, taxi services, etc. Most of the transit services in Hong 
Kong are operated by profit-driven private agencies. For instance, there are 5 private bus 
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companies and over 100 private light bus companies in Hong Kong. It is crucial for these transit 
operators to optimize their services in order to stay competitive in the market. 
 
Transit fares are a basic element in public transit services. They are also considered to be a major 
factor to attract passenger demand as well as raise operators’ revenue. Fleishman et al. (1996) and 
Nassi and da Costa (2012) provided reviews of and discussions on various fare strategies. Transit 
fares can be generally classified into two types, namely flat and differentiated fares. A flat fare 
charges a single and constant price regardless of trip length, time period, and level of service, 
while differentiated fares vary with one or more factors mentioned previously. Nassi and da Costa 
(2012) evaluated the transit fare systems of some metropolitan regions worldwide and found out 
that the distance-based differentiated fare system was ranked the best by operators, professional 
consultants, and government sectors based on the weighted ranking result of different criteria 
including complexity, fare, trip attraction, etc. 
 
Vuchic (2007) concluded that some commonly concerned constraints needed to be considered 
when planning transit fare structures. Firstly, the passenger demand is not constant; it is sensitive 
to the fare charged and the level of service provided as well as those of the competing transit 
modes. When the fare of a transit mode increases or the level of service provided by that mode 
decreases, the willingness of passengers to travel on that mode decreases. Secondly, different 
individuals may have different perceptions of the value of the service provided versus the fare 
paid. In order to achieve the operators’ objectives under limited resources and other constraints, 
optimization models were proposed to find out the best decision. 
 
A summary of recently developed fare optimization models is presented in Table 1. Most of the 
existing fare optimization models consider only one kind of fare structure, including the fare 
strategy and the pricing level. For example, flat fare optimization models were proposed by Lam 
and Zhou (2000) and Zhou et al. (2005), who developed bi-level models for the flat fare structure 
optimization under stochastic user equilibrium with elastic demand (SUEED). Huang (2002), 
Wang et al. (2014), and Wang et al. (2016) extended the consideration to bi-modal equilibrium 
models for determining an optimal transit flat fare. Zhang and Yang (2016) also developed a flat 
fare and frequency optimization model considering passengers’ willingness to pay. For distance-
based fare optimization, Tsai et al. (2008) proposed a bi-level model under SUEED and trip length 
differentiation. Li et al. (2009) also developed a bi-level model to optimize the distance-based 
fare structure under different market regimes with network uncertainty. Borndörfer et al. (2012) 
considered multiple objectives in their model optimizing the zonal fare structure with monthly 
tickets. Tsai et al. (2012) developed a fare and frequency optimizing model considering distance-
based fares with the zonal partition. Recently, Wang and Qu (2017) developed an optimal 
sectional fare setting on a rail corridor that leads to the system optimal (SO) station choice 
considering passengers’ competition for seats. In the aforementioned studies, no comparison of 
the effects of adopting different fare structures was made. Moreover, the sectional fare structure 
(also referred to as the directional fare structure by Chin et al., 2016)—which can retain the 
advantages of both flat and distance-based fares (e.g., flexibility in price, simplicity, and the low 
cost of the fare collection process) and is widely adopted by bus companies in Hong Kong (e.g., 
Kowloon Motor Bus Company Limited, City Bus Limited, and New World First Bus Services 
Limited)—have not received sufficient attention in the fare optimization literature, especially over 
transit networks.   
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Table 1. A summary of fare optimization models 

References Behavioral 
assumption 

Bi-level 
optimization 

problem 

Fare structure 

Flat fare 
Differential fare 

Distance-
based Sectional 

Borndörfer et al. (2012) Logit-type elastic 
demand   •  

Chien and Tsai (2007) Elastic demand  • •  
Deng et al. (2014) Elastic demand  • •  

Huang (2002) 
Bi-modal logit 

with elastic 
demand 

 •   

Huang et al. (2016) Logit SUEED • • •  
Lam and Zhou (2000) Logit SUEED • •   

Li et al. (2009) Logit SUEED •  •  
Tsai et al. (2008), (2012) Elastic demand   •  

Wang et al. (2014) Bi-modal logit  • •   
Wang et al. (2016) Bi-modal logit  •   

Wang and Qu (2017) UE/SO    • 
Zhang and Yang (2016) Elastic demand  •   

Zhou et al. (2005) Logit SUEED • •   
 
Limited studies consider two fare structures. These studies often focus on the comparison between 
the flat and differentiated fare structures or between the flat and distance-based fare structures. 
Ling (1998) made a comparison between the flat and differentiated fare structures and concluded 
that the optimal fare structure is affected by the fare elasticity of demand for short and long trips 
and the numbers of long and short trips. It was found that the distance-based differentiated fare 
structure is favorable in terms of revenue maximization when the fare elasticity of demand for 
short trips is greater than that for long trips or the number of short trips is larger than that of long 
trips. Other analytical models considering more than one kind of fare structures focus on the 
comparison between flat and distance-based fare structures (e.g., Chien and Tsai, 2007; Deng et 
al., 2014; Huang et al., 2016). As the time of this writing, there is no study with a comparison of 
more than two kinds of differentiated fare structures such as the distance-based and sectional fare 
structures analytically. It is unclear whether the sectional fare structure is always better than the 
distance-based fare structure under profit maximization or vice versa. 
 
Some existing fare optimization models do capture the path choice behavior of passengers, which 
is formulated into a transit assignment problem (e.g., Lam and Zhou, 2000; Zhou et al., 2005; Li 
et al., 2009; Huang et al., 2016). Most of the existing transit assignment models are link-based 
(e.g.,  Hamdouch and Lawphongpanich, 2008; Hamdouch et al., 2011; Sun et al., 2013; Codina 
and Rosell, 2017) and path-based (e.g., Cats et al., 2016; Nuzzolo et al., 2016). The path-based 
models use path flows to present passengers’ path choice behavior. Therefore, path-specific 
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information is contained in the formulation and is useful to determine the impacts of path-specific 
design decisions such as fare discounts for transfers between particular transit lines in the upper 
level fare setting design problem. However, the path-based formulation requires the full path set 
to be given, which is known to be time-consuming to find it out completely. On the other hand, 
passenger link flows are used to formulate the link-based models. They do not require the path 
choice set information, and the computational efficiency and the convergence of solution methods 
for the link-based-formulated models for large networks can be ensured. Long et al. (2013) 
proposed an alternative formulation, namely approach-based formulation, for their dynamic 
traffic assignment model. This formulation used approach proportions (i.e., the probability of the 
traffic using each outgoing link from a node) as decision variables to model traffic movements at 
a node. Like solving for the link flows of the link-based formulation, solving for the equilibrium 
approach proportions of the equilibrium approach-based formulation does not require the time-
consuming path set enumeration. However, the path-based variables such as path flows and path 
selection probabilities can be traced using approach proportions. In the transit assignment 
literature, there are still very limited transit assignment models adopting this newly developed 
formulation method. Table 2 summarizes the existing approach-based transit assignment models 
in the literature. However, they are all related to fixed demand. The extensions to SUE with elastic 
demand (SUEED) have not been found yet. 
 

Table 2. A summary of approach-based transit assignment models 
Reference Behavioral assumption 

Szeto and Jiang (2014a) User equilibrium (UE) 
Jiang and Szeto (2016) Reliability-based user equilibrium 
Sun and Szeto (2018) Stochastic user equilibrium (SUE) 

 
With a transit assignment model incorporated into bilevel fare optimization models as a lower-
level model, gradient-based sensitivity analysis heuristics can be used to solve the whole models. 
The heuristics are related to the gradient-based sensitivity analysis of network equilibria 
introduced by Tobin and Friesz (1988), which has been extended for different network 
equilibrium problems (e.g., Yang, 1995; Yang, 1997; Yang and Bell, 2007). The sensitivity 
analysis is aimed at calculating the derivatives of equilibrium flows. In the literature, most of the 
bi-level transit fare optimization models, including those developed by Lam and Zhou (2000), 
Zhou et al. (2005), Li et al. (2009), and Wang et al. (2014), have been solved by sensitivity 
analysis-based algorithms, but the sensitivity analysis of the approach-based SUEED and the 
corresponding sensitivity analysis-based algorithms have yet been found. 
 
In this paper, we propose a fare and frequency optimization model that considers the approach-
based SUEED over transit networks and the profitability of the operator. This bilevel model can 
incorporate the sectional, flat, and distance-based fare structures. We compare the sectional fare 
structure with the two other fare structures in terms of the profitability of the operator under 
different network topologies, demand patterns, and maximum allowable fares. We also 
investigate the effects of the passenger perception of travel cost on the profitability of the operator 
and the relationships between profit, total vehicle mileage, and unit operating cost. Based upon 
the sensitivity analysis of the approach-based SUEED in our study, we develop a sensitivity-based 
descent search method to solve the bilevel model, in which the approach-based model is solved 
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by the cost-averaging self-regulated averaging method. To illustrate the performance of the 
solution methodology, we present a case study of Tin Shui Wai, Hong Kong. 
 
The contributions of this paper are specified as follows: 
- It proposes a new bi-level model to optimize fare and frequency settings to maximize transit 

operator’s profit under SUEED. To the best of our knowledge, we are the pioneers to consider 
sectional fares over transit networks. 

- It presents the properties of the bilevel model and provides insights on the choice of fare 
structures. We analytically compare the performance of three different fare structures (i.e., 
flat, distance-based, and sectional fare structures) in terms of profit maximization. We prove 
that the flat fare structure is a special case of the sectional fare structure; under a special 
condition, we find that the distance-based fare structure is a special case of the sectional fare 
structure. We also prove that the optimal profit and total vehicle mileage are respectively 
strictly monotonically decreasing and monotonically decreasing with respect to the unit 
operating cost. 

- It proposes an approach-based formulation for the SUEED transit assignment problem, and 
we prove the existence and uniqueness of the solution to the problem. 

- It introduces a sensitivity analysis-based descent search method to determine an optimal fare 
and frequency setting, taking into account the approach-based formulation for the lower level 
problem. This paper supplements the literature in terms of broadening the concept and theory 
of approach-based transit assignment to SUEED and developing the corresponding sensitivity 
analysis methodology that can be used for solving general bi-level transit network design 
problems. 

 
The remainder of this paper is organized as follows. Section 2 provides the problem formulation 
and properties. Section 3 gives the details of the solution method. Section 4 presents the numerical 
studies. Finally, Section 5 concludes the paper. 
 

2. Problem formulation 
 
2.1. Network representations 
 
The node-link representation of a transit network using the concept of attractive lines as described 
by De Cea and Fernández (1993) was used in this study, which is one of the approaches to 
handling the common line problem (e.g., Lam et al., 1999; 2002). Using this approach, the 
problem is transformed into the one similar to the road network assignment problem. In this 
approach, transit stops are represented as transit nodes in the network, and transit lines traveling 
between the same pair of transit stops in the network are grouped into one transit link and referred 
to as the common lines on that link. Passengers can board, alight, or make a transfer only at transit 
nodes in the network. Figure 1(a) shows an example transit network consisting of a set of transit 
stops and transit lines, and Figure 1(b) shows its node-link representation using the concept of 
attractive lines. As shown in the figure, for node pair AB, only transit line L2 travels between 
node A and node B, and therefore, link S1 is associated with L2 only. For node pair AC, two 
transit lines (i.e., L1 and L2) connect node A and node C, and therefore S2 is associated with both 
L1 and L2. Similarly, for node pair BC, link S3 is formed by both L2 and L3. 
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(a) Transit stops and lines  (b) Node-link representation using attractive lines 

Figure 1. An example of the network representation using the concept of attractive lines 
 

2.2. Notations 
 
To formulate the studied problem and present the solution method, the following are used: 
 
2.2.1. Sets and indices 
 
 a approach index; 

, 'b b  route indexes; 
 d destination index; 
, ',i i j  node indexes; 

k   iteration number; 
 r origin index; 

#, ',s s s  link indexes; 
 x fare structure index. x = 1 to 3 indicates flat, distance-based, and sectional fare 

structures, respectively; 
, 'y y  path indexes;  

iA+  the set of approaches associated with node i or the set of links coming out from 
that node; 

iA−  the set of links entering node i; 

sA  the set of competing links associated with link s; 
B  the set of routes; 

sB  the set of attractive routes associated with link s; 
 D the set of destinations; 

bI  the set of stops along route b; 
b
iI +  the set of subsequent stops of stop i along route b; 

N  the set of nodes (i.e., stops) in the transit network; 
dN   the set of nodes in the transit network that are connected to destination d; 
idN   the set of nodes in the subnetwork formed by idS ; 

 R the set of origins; 
S   the set of links; 

yS   the set of links on path y; 
idS   the set of links connecting node i and destination d; 
ijY  the set of paths between nodes i and j; 
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ij
sY  the set of paths between nodes i and j using link s; 

 
2.2.2. Functions 
 

sc  the total expected cost of link s; 

c   the vector ( sc ) with a dimension of S ; 
idC  the perceived minimum expected travel cost between node i and destination d; 

se  the exponential function of the total expected travel cost of link s; 

ye  the exponential function of the total expected travel cost of path y; 
rd
yh  passenger flow on path y between origin-destination (O-D) pair rd; 

 m(s) an approach using link s; 
sp  the fare for passengers using link s; 

,
b
i xp  the fare charged at stop i of route b using fare structure x; 

 u(a) the underlying link of approach a; 
 t(s), h(s) the tail and head nodes of link s; 

sv   passenger flow on link s; 

sv  passenger flow on the competing links of link s;  
d
sv  passenger flow on link s to destination d;  
rd
sv  passenger flow on link s traveling from r to d; 

v   the vector of ( d
sv ) with a dimension of S D× ; 

d
aW  the weight for passengers who use approach a and travel to destination d; 
id
yα   the probability of passengers using path y and traveling from node i to destination 

d; 
 
2.2.3. Decision variables 
 

bf  the frequency of route b; 
f   the vector ( bf ) with a dimension of B ; 

rdq   passenger demand from origin r to destination d; 
q   the vector ( rdq ) with a dimension of R D× ; 

d
aα  the probability of passengers who use approach a and go to destination d ; 

α   the vector ( d
aα ) with a dimension of i

i N

A D+

∈

×


; 

flat
bρ  the fare for passengers using route b in the flat fare structure; 

dist
bρ  the fare charged per unit distance of route b in the distance-based fare structure; 

,sect
b
iρ  the fare increment at stop i along the backward direction of the stop sequence of 
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route b in the sectional fare structure; 
ρ   the vector ( flat

bρ ) with a dimension of B  in the flat fare structure; the vector ( dist
bρ ) 

with a dimension of B  in the distance-based fare structure; the vector  ( ,sect
b
iρ ) 

with a dimension of bI B×  in the sectional fare structure; 
 
2.2.4. Parameters 
 

minf , maxf  the minimum and maximum allowable frequencies; 

sl  the length of link s; 
bl   the total length of route b; 
b
il  the length of the link connecting node i and the terminal node of route b; 

minp , maxp  the minimum and maximum allowable fares; 

base
rdq  the base demand from r to d; 

b
st  in-vehicle travel time on link s over route b; 
σ  the unit conversion parameter in the waiting time function. σ  = 60 veh*min/h is 

used throughout this paper; 
ε   the convergence tolerance; 
 θ the parameter of the logit model, which reflects the passenger perception of travel 

cost; 
bκ  the capacity of a single vehicle on route b. The capacity of a double-deck bus in 

Hong Kong (i.e., bκ  = 150 pass/veh) is used throughout this paper; 
DEC
kλ  the step size at the kth iteration in the sensitivity analysis-based descent search 

method. 
tµ , ωµ  the values of in-vehicle travel time and (additional) waiting time. Since the values 

of in-vehicle travel time and waiting time are not provided in the latest Travel 
Characteristics Survey 2011 conducted by the Hong Kong Transport Department 
(Arup Group Limited, 2014), in this paper we used the values adopted in the 
literature, i.e., = = 0.5 HK$/min (Sun and Szeto, 2018); 

vχ , vχ  the calibration parameters in the additional waiting time function. vχ  = vχ  = 1 is 
used throughout this paper; 

τ   the operating cost per vehicle per unit distance; 
rdψ  the parameter of the linear demand function; 

sϖ  the calibration parameter in the additional waiting time function associated with 
link s. sϖ  = 10 min/h is used throughout this paper; 

 
2.3. Assumptions 
 
In this paper, the model formulation is developed under the following assumptions: 
A1) Passengers arrive at transit stops randomly; 

tµ ωµ
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A2) Passengers board the first arriving vehicle from a set of attractive transit routes; 
A3) The waiting times on links are independent of waiting times on other links; 
A4) Transit headways follow exponential distributions; 
A5) Passengers select their path choices according to the logit-based stochastic user 

equilibrium condition.  
A6) The passenger demand of each O-D pair is elastic with respect to its minimum expected 

perceived travel cost. Mathematically, the passenger demand between O-D pair rd  can 
be formulated into  

( ),   ,
rdrd rdq Q C r R d D= ∀ ∈ ∈ , (1) 

where rdQ  is the demand function of O-D pair rd. In this paper, a linear demand function 
is adopted, as described by 

base ,   ,
rdrd rd rdq q C r R d Dψ= − ⋅ ∀ ∈ ∈ , (2) 

where base
rdq  is the base demand between O-D pair rd and rdψ  is a positive parameter; 

A7) The transit routes in the network are operated by a single private sector; 
A8) The transit operator is allowed to optimize its profit under certain service level 

requirements; 
A9) The fares for various transit routes operated by the single operator can differ from each 

other even when they share the same stop sequence, assuming that the level of service 
provided by different transit routes (e.g., the provision/absence of air conditioners) can 
be different; 

A10) For a set of attractive routes with different fares, a weighted mean of fares is used. It is 
also assumed that the change in fares is marginal and does not change the attractive set 
of routes; 

A11) Similar to the study of Ran and Boyce (1996), passengers between each O-D pair only 
consider “efficient paths” consisting of links that only take them further away from their 
origin and closer to their destination. This implies that the sub-network for each O-D 
pair is acyclic; 

A12) All link costs are additive; 
A13) The fare structure and level of each transit route are known to all passengers before they 

decide their paths. 
 
2.4. Link costs 
 
The total expected cost of a link s is formulated as follows. 

t ω ω ,   s

s s s

nb b
s

b B v s sv
s s sb b b b

b B b B b B

f t
v v

c p s S
f f f

χ χσµ µ µ ϖ
κ

∈

∈ ∈ ∈

 
+ 

= ⋅ + ⋅ + ⋅ + ∀ ∈ 
 
 

∑
∑ ∑ ∑

, (3) 

where tµ  and ωµ  are the values of in-vehicle travel time and waiting time, respectively. The first 
term in the equation is the mean in-vehicle travel time cost, calculated by the product of the 
weighted average of in-vehicle travel times (i.e., b

st ) of all attractive transit lines associated with 
link s and the value of in-vehicle travel time. The second term in the equation is the cost of the 
mean waiting time for the first arriving vehicle in the attractive line set of link s and σ = 60 min/h. 
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The third term is the perceived congestion time cost, which is a BPR type function calculated 
using passenger flows on link s and its competing links as proposed by Szeto and Jiang (2014a). 
The competing links of link s are defined to be the links associated with passengers who board 
before/at the tail node of link s and alight after the head node of link s, using at least one of the 
attractive lines associated with link s. vχ = vχ = n = 1 and sϖ = 10 min/h for all s are used in this 
paper. The last term is the mean fare of link s, which is calculated by the weighted average of the 
fares of all the transit lines associated with link s. The fare of a transit line depends on the fare 
structure adopted in the model and will be explained in detail in the following subsection.  
 
2.5. Fare structures 
 
2.5.1. Flat fare 
 
The fare is independent of the transit service provided. Each route in the network charges a fixed 
price, regardless of the number of stops and distance traveled by the passengers on that route. Let 

flat
bρ  be the fixed fare of route b. Then for a particular link s, the expected fare is the weighted 

sum of the fares of the associated routes as calculated by 
flat

,   s

s

b b

b B
s b

b B

f
p s S

f

ρ
∈

∈

= ∀ ∈
∑
∑

. (4) 

 
2.5.2. Distance-based fare 
 
Following Li et al. (2009), Tsai et al. (2008), and Tsai et al. (2012), the mileage-based distance-
based fare is adopted, where the fare charged to each passenger is directly proportional to the 
distance traveled by him or her. Each route has its fare charging rate, and the fare equals the unit 
rate multiplied by the distance traveled by the passengers on that route.  
 
Let dist

bρ  be the fare charging rate per unit distance of route b. Then for a particular link s, the 
expected fare is 

dist

,   s

s

b b
s

b B
s b

b B

l f
p s S

f

ρ
∈

∈

= ∀ ∈
∑
∑

, (5) 

where sl  is the length of link s. 
 
2.5.3. Sectional fare 
 
For the sectional fare structure, the transit route is divided into sections. The amount of fare 
remains unchanged within each section and decreases when crossing sections. Passengers are 
required to pay the fare when boarding. The fare charged to each passenger depends on which 
section the passenger’s boarding stop belongs to. This kind of fare structure is widely adopted by 
bus companies in Hong Kong because it is more flexible in price compared with the flat fare 
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structure while retaining simplicity in the fare collection process compared with the distance-
based fare structure.  
 
Let , sect

b
ip be the fare charged at node (stop) i of route b. The expected fare of link s is 

( ), sect

,   s

s

b b
t s

b B
s b

b B

f p
p s S

f
∈

∈

= ∀ ∈
∑
∑

. (6) 

 
In order to handle the constraint that the fare at each stop cannot be higher than that at its previous 
stops while making the decision variable at each stop nonnegative, the decision variable at that 
stop is defined as “the fare increment at that stop along the backward direction of the stop 
sequence of the route”. Therefore, the feasibility constraints for the fare increment , sect

b
iρ  at stop 

i of route b can be defined as 
,sect 0,   ,b b

i i I b Bρ ≥ ∀ ∈ ∈  and (7) 

, sect max ,   
b

b
i

i I

p b Bρ
∈

≤ ∀ ∈∑ , (8) 

where maxp  is the maximum allowable fare. 
 
The fare at node i of route b is 

, sect , sect ', sect
'

,   ,
b
i

b b b b
i i i

i I

p i I b Bρ ρ
+∈

= + ∀ ∈ ∈∑ . (9) 

 
For illustration purposes, Table 3 gives an example of sectional fares of a transit route and the 
fare increment at each stop. 
 

Table 3. Sectional fares and fare increments of an example transit route 
Stop sequence 1 2 3 4 (Destination) 
Fare increment , sect

b
iρ  10 0 5 0 

Fare , sect
b
ip  15 5 5 0 

 
Proposition 1 The flat fare structure is a special case of the sectional fare structure. 
 
The proof of Proposition 1 is given in Appendix A. According to Proposition 1, the optimal 
objective value obtained by the sectional fare structure is not worse than that by the flat fare 
structure, which implies that the sectional fare can outperform the flat fare structure in terms of 
profit maximization. 
 
Proposition 2 When the destinations of all passengers are located at the last stop of each transit 
route, the distance-based fare structure is a special case of the sectional fare structure. 
 
The proof of Proposition 2 is presented in Appendix A. Proposition 2 implies that the sectional 
fare structure performs better than the distance-based fare structure for certain types of networks 
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in terms of profit maximization. However, in Section 4.3, examples are given to illustrate that 
under particular network settings, the distance-based fare structure can achieve a higher profit 
than the sectional fare structure. 
 
2.6. A bi-level formulation of the problem 
 
2.6.1. The lower level problem 
 
The lower level problem is a logit-based SUEED transit assignment problem. It depicts how 
passengers select transit lines when the fare and frequency settings are fixed.  This problem is 
formulated using the concept of approach and the theory of the STOCH algorithm (Dial, 1971). 
Following the definition by Szeto and Jiang (2014a), an approach of a node is a link emanating 
from that node. The approach does not consider the head node of the link but instead only 
concerns with the tail node. In other words, an approach is an outgoing link and is solely 
associated with the tail node. (A link is defined by two nodes but an approach only concerns the 
tail node.) To illustrate the concept of approaches associated with a node, Figure 2 is given, in 
which there are two approaches associated with node A in the example network shown in Figure 
1. 
 
 
 
  

 
Figure 2. Two approaches associated with node A in the example network shown in Figure 1 

 
The approach probability means that the probability of the passengers who enter the link 
concerned from the tail node. Under the logit assumption, it is related to the weights of all the 
approaches coming out from the same node as explained in the following. In contrast to the 
STOCH algorithm, we calculate the weights of approaches using the exponential functions of the 
total expected travel cost of links instead. The exponential function of the total expected travel 
cost of link s is expressed as 

( )exp ,   s se c s Sθ= − ⋅ ∀ ∈ . (10) 
 
The concept of the backward pass method in Dial’s algorithm is applied to formulate the weight 
of the passengers using approach a and heading towards destination d:  

( ( ))

( ) ( ( )) '
'

,   , ,
h u a

d d d
a u a h u a a i

a A

W e W a A i N d Dδ
+

+

∈

 
= ⋅ + ∀ ∈ ∈ ∈ 

 
 

∑ , (11) 

where ( ( ))
d
h u aδ = 1 if h(u(a)) = d, ( ( ))

d
h u aδ = 0 otherwise. The corresponding approach probability is 

then computed by 

( ( ))

'
'

,   , ,

t u a

d
d a
a id

a
a A

W a A i N d D
W

α
+

+

∈

= ∀ ∈ ∈ ∈
∑

. (12) 

A B C 
a1 

a2 
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Note that for unused approaches, the corresponding weights and approach probabilities equal zero. 
Based on Eq. (12), we have 0 1d

aα≤ ≤  and 1
i

d
a

a A

α
+∈

=∑  for ,i N d D∀ ∈ ∈ .  

 
A path flow probability equals the product of all the approach probabilities of their associated 
links on the path. Let ijY  be the set of paths connecting nodes i and j and yS  be the set of links 
on path y. The expected path cost yc  and the probability of path y being used, id

yα , can be 
respectively expressed as 

,   ; ,
y

ij
y s

s S

c c y Y i j N
∈

= ∀ ∈ ∈∑  and (13) 

( ) ,   , ,
id

y

id d
y m s

s S

y Y i N d Dα α
∈

= ∀ ∈ ∈ ∈∏ . (14) 

Note that 
( ( ))
( )

( ( )) ,   , ,
t u a d

u a

d t u a d
a y i

y Y

a A i N d Dα α +

∈

= ∀ ∈ ∈ ∈∑ . The approach probabilities are related to 

yc  and id
yα  as presented in the following.  

 
Proposition 3 The approach probabilities calculated using Eqs. (10) to (12) satisfy the logit-

based SUE condition: ( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd
y

y
y Y

c
y Y r R d D

c

θ
α

θ
∈

− ⋅
= ∀ ∈ ∈ ∈

− ⋅∑
. 

 
The proof of Proposition 3 is provided in Appendix A. 
 
The calculation of the weight of an approach requires tracing the weights of all links used between 
the head node of that approach and its destination. These weights can also be used to calculate 
the perceived minimum expected travel cost between node i and destination d, given by 

1 ln ,   ,
i

id d d
a

a A

C W i N d D
θ +∈

 
= − ⋅ ∀ ∈ ∈  

 
∑ . (15) 

The elastic passenger demand between each O-D pair can, therefore, be calculated using the 
demand function given by Eq. (1) and expressed in terms of the logsum of the weights as stated 
below: 
 
Proposition 4 The passenger demands calculated using Eqs. (1) and (15) satisfy the logit-based 

elastic demand condition: ( )( )1 ln exp ,   ,
rd

rd rs
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . 

 
The proof of Proposition 4 is presented in Appendix A. 
 
The passenger flow on link s towards destination d can be expressed using the concept of the 
forward pass method. It equals the product of the probability of passengers selecting that link to 
go to destination d and the total inflow rate of its tail node, expressed as 
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( )

( )
( ) '

'

,   ,
t s

d d t s d d
s m s s

s A

v q v s S d Dα
−∈

 
= ⋅ + ∀ ∈ ∈ 

 
 

∑ . (16) 

Note that ( ) 0t s dq =  if ( )t s R∉ .  
 
The approach-based SUEED assignment problem can be defined by finding q and α that satisfy 
Eqs. (1), (3)-(12), (15), and (16) simultaneously. This problem uses passenger demands and 
approach proportions as the decision variables in which approach proportions take values between 
zero and one. This problem is different from the standard link-based/path-based SUEED transit 
assignment problem, which uses both passenger demands and link flows/path flows as the 
nonnegative decision variables.  
 
With Proposition 3 and Proposition 4, we can conclude that the solution to the approach-based 
SUEED problem satisfies the logit-based SUEED condition: 

( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd
y

y
y Y

c
y Y r R d D

c

θ
α

θ
∈

− ⋅
= ∀ ∈ ∈ ∈

− ⋅∑
 and 

( )( )1 ln exp ,   ,
rd

rd rs
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . Based on this result, it is also 

reasonable and sensible to have Proposition 5 stated below: 
 
Proposition 5 The approach-based SUEED problem is equivalent to the path-based logit 

SUEED problem: ( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd rd rd rd
y y

y
y Y

c
h q q y Y r R d D

c

θ
α

θ
∈

− ⋅
= ⋅ = ⋅ ∀ ∈ ∈ ∈

− ⋅∑
 and 

( )( )1 ln exp ,   ,
rd

rd rs
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . 

 
The proof of Proposition 5 is given in Appendix A. Proposition 5 shows that path flows can be 
calculated using approach proportions and passenger demands. The path-based logit SUEED 
problem has a unique passenger demand pattern and a unique flow pattern as discussed by Lam 
and Zhou (1999). Based on Proposition 5, we can also state the following: 
 
Proposition 6 There exists a solution to the approach-based SUEED problem in terms of 
approach probabilities and passenger demands. Moreover, the solution is unique. 
 
The proof of Proposition 6 is presented in Appendix A. 
 
The approach probabilities defined by Eqs. (10)-(12) and the passenger demands defined by Eqs. 
(1) and (15) are functions of link travel costs. As a result, the passenger link flows unilaterally 
determined by approach probabilities and passenger demands as described in Eq. (16) are also 
functions of link travel costs. On the other hand, the link travel costs defined by Eqs. (3)-(9) are 
functions of passenger link flows. Therefore, link travel costs are functions of themselves, and 



15 
 

the approach-based SUEED problem can be formulated as a fixed point (FP) problem: to find c 
such that 

( )=c F c , (17)  
where F is the mapping function defined by Eqs. (1), (3)-(12), (15), and (16).  
 
The lower level approach-based SUEED problem can be solved by the cost-averaging self-
regulated averaging method (c-SRAM) proposed by Long et al. (2014). Similar to the problem 
studied by Sun and Szeto (2018), the proposed approach-based SUEED problem also satisfies the 
convergence criterion of the c-SRAM. 
 
2.6.2. The upper level problem 
 
In this paper, our problem of interest is to maximize the transit operator’s profit. The transit 
network design problem can, therefore, be formulated as follows: 
max ( , ) b b

s s
s S b B

Z v p f lτ
∈ ∈

= − ⋅∑ ∑ρ f  (18) 

subject to 
min max ,    bf f f b B≤ ≤ ∀ ∈  and (19) 

min max ,    bp p p b B≤ ≤ ∀ ∈ . (20) 
 
Objective (18) is to maximize the operator’s profit calculated by total revenue minus total 
operating cost. Conditions (19) and (20) are the service level requirement constraints.  
 
Proposition 7 The optimal profit increases as the unit operating cost τ decreases. 
 
The proof of Proposition 7 is provided in Appendix A. 
 
Proposition 8 The optimal total vehicle mileage is monotonically decreasing over 0τ > . 
 
The proof of Proposition 8 is presented in Appendix A. 
 
The existence and uniqueness of the solution to the lower level problem as stated in Proposition 
6 ensures that Z  has a well-defined value for any input ( , )ρ f  to these functions. Moreover, the 
objective function in (18) is continuous. Furthermore, the solution set formed by constraints (19) 
and (20) is obviously nonempty and compact. By Weierstrass’ Theorem, an optimal solution to 
the upper level problem exists. However, an example is given in Section 4.1 to illustrate that the 
solution to the upper level problem may not be unique. 
 

3. Solution method: Sensitivity analysis-based descent search method 
 
Sensitivity analysis has been known to be an effective approach for solving the bi-level 
programming problems with continuous decision variables. Ying and Miyagi (2001), Ying and 
Yang (2005), and Ying et al. (2007) have developed the sensitivity analysis of link-based SUE 
assignment problems based on Dial’s (1971) algorithm, which does not require path set 
enumeration. This approach can be applied to solve an equivalent problem to our proposed bi-
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level programming problem, in which the lower level problem is formulated as a link-based 
SUEED instead. However, this paper proposes a more efficient sensitivity analysis-based method 
to solve our proposed problem.  
 
In this paper, the derivatives of passenger link flows in the lower level problem with respect to 
the decision variables in the upper level problem, ( ),∇f v α q  and ( ),∇ρv α q , are derived to find 
out the steepest descent direction at any point of the upper level problem. Together with a properly 
designed step size, some nice properties of the upper level objective function, and an assumption, 
a stationary point can be obtained by a gradient descent method. 
 

The steepest descent direction at any point of the upper level problem is defined by 
Z
Z

−∇ 
 −∇ 

f

ρ
, in 

which Z∇f  and Z∇ρ  are calculated by 
Z ZZ ∂ ∂

∇ = + ∇
∂ ∂f f v
f v

 and  (21) 

Z ZZ ∂ ∂
∇ = + ∇

∂ ∂ρ ρv
ρ v

. (22) 

To determine ∇f v  and ∇ρv  in the above two equations, the lower level approach-based SUEED 
problem is re-formulated as an FP problem in terms of a passenger link flow vector, expressed as  

( )=v G v , (23) 
where G is the mapping function formed by Eqs. (1), (3)-(12), (15), and (16). ∇f v  and ∇ρv  can 
then be obtained from the FP problem (23) using the implicit function theorem: 

1[ ]−∇ = −∇ ⋅∇f v fv I G G  and (24) 
1[ ]−∇ = −∇ ⋅∇ρ v ρv I G G , (25) 

where I is the identity matrix with the dimension of S D S D⋅ × ⋅ . As shown above, the inverse 

operation of the matrix [ ]−∇vI G with the dimension of S D S D⋅ × ⋅  is required, which is time-
consuming. 
 
∇vG  in the preceding two equations can be derived using the product rule of matrix derivatives:  
∇ =∇ ⋅∇v c vG G c . (26) 
 
Based on Eqs. (16) and (23), the elements in ∇cG  in the preceding equation can be calculated 
using the forward pass method: 

 
# # # #( ) ( )

( )
( ) ( ) #'

( )
' '

,   , ,
t s t s

dd t s d d
m s t s d d ds s

s m s
s A s As s s s

G q Gq v s s S d D
c c c c

α
α

− −∈ ∈

   ∂∂ ∂ ∂
   = ⋅ + + ⋅ + ∀ ∈ ∈
   ∂ ∂ ∂ ∂   

∑ ∑ . (27) 

Note that ( ) 0t s dq =  if ( )t s R∉ ; 
#

( )

0
t s d

s

q
c

∂
=

∂
 if ( ) 0t s dq = .  
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( )

'

d
m s

sc
α∂
∂

 and 
( )

'

t s d

s

q
c

∂
∂

 in the preceding equation can also be obtained by the forward pass method: 

( ) ( )
( )

( ( )) ( ( ))
( )

' '

,   , , ,
t s

d d
d a d t u a t u a da a
m s s a s i

s As s

s S a A i N d D
c c
α αα δ α θ δ

−

+

∈

  ∂ ∂
 = ⋅ − ⋅ − ⋅ + ∀ ∈ ∈ ∈ ∈  ∂ ∂  

∑ , (28) 

where 1a
sδ =  if ( )s u a= , 0a

sδ =  otherwise; ( ( )) 1t u a
sδ =  if ( ) ( ( ))t s t u a= , ( ( )) 0t u a

sδ =  otherwise. 

Note that 0
d
a

sc
α∂

=
∂

 if ( ( ))t u a ds S∉ . The derivation of Eq. (28) is shown in Appendix B. 

 

The expression of 
rd

s

q
c

∂
∂

 depends on the form of the demand function used. In this paper, we adopt 

the linear demand function as presented in Eq. (2). The derivative can be obtained by the forward 
pass method: 

( )
( )

( )
' '

,   , ,
t s

rd rd
d rd r rd
m s s

s As s

q q s S r R d D
c c

α ψ δ
−∈

 ∂ ∂
 = ⋅ − + ∀ ∈ ∈ ∈
 ∂ ∂ 

∑ , (29) 

where 1r
sδ =  if ( )t s r= , 0r

sδ =  otherwise. Note that 0
rd

s

q
c

∂
=

∂
 if rds S∉ . The derivation of Eq. 

(29) is given in Appendix B. 
 

#

s
d
s

c
v
∂
∂

, an element of ∇vc , can be calculated by  

( )#
#

#

1

#,   , ,

s s

n
ss
sv vsv s ss v

sd b b b b
s

b B b B

v vc n s s S d D
v f f

χ δ χ δχ χ
ϖ

κ κ

−

∈ ∈

  ⋅ + ⋅+∂  
= ⋅ ⋅ ⋅ ∀ ∈ ∀ ∈ ∂  

 
∑ ∑

, (30) 

where # 1s
s

δ =  if #s s= , # 0s
s

δ =  otherwise; # 1
s
sδ =  if #

ss A∈ , # 0
s
sδ =  otherwise. 

 
Using the chain rule, ∇fG  and ∇ρG  in Eqs. (24) and (25) can be expressed as follows: 
∇ =∇ ⋅∇f c fG G c  and (31) 
∇ =∇ ⋅∇ρ c ρG G c .  (32) 
 
The expression of elements in ∇f c  in Eq. (31)  can be calculated by 

( )t t ω ω
' ' '

' '

,   ,

s s

b b b
s s s s ss s

sb b b b

b B b B

t p t pc n s S b B
f f f

µ µ µ ω κ µ φ
κ

∈ ∈

+ − + +∂ ⋅ ⋅
= − ∀ ∈ ∈

∂ ∑ ∑
. (33) 

 
The expression of elements in ∇ρc  in (32) depends on the fare structure selected. For the three 
different fare structures, we have 
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'
flat

'

,   ,

s

b
s

sb b

b B

c f s S b B
fρ

∈

∂
= ∀ ∈ ∈

∂ ∑
, (34) 

'
dist

'

,   ,

s

b
s s

sb b

b B

c l f s S b B
fρ

∈

∂
= ∀ ∈ ∈

∂ ∑
, and (35) 

'
, sect

'

,   , ,

s

s b
bs i

sb b
i

b B

c f s S i I b B
f

δ
ρ

∈

∂
= ∀ ∈ ∈ ∈

∂ ∑
, (36) 

where 1s
iδ =  if ( )i t s=  or ( )

b
t si I +∈ , 0s

iδ =  otherwise. 
 
Note that the calculation of the aforementioned derivative information does not require path set 
enumeration. 
 
The procedure of the heuristic is given as follows: 
1) Set the initial frequency and fare vectors 0f  and 0ρ , and the convergence tolerance ε . 

Set k = 0; 
2) Solve the lower-level problem defined by Eqs. (1), (3)-(12), (15), and (16) for given kf  

and kρ  using c-SRAM to obtain kα , vk, and qk; 
3) Calculate the sensitivity information ∇f v and ∇ρv  using kα , vk, and qk and Eqs. (24)-

(36); 
4) Calculate  and k kZ Z∇ ∇

f ρ
 using Eqs. (21) and (22); 

5) Update 1
DEC: k

k k k Zλ+ = − ∇
f

f f ; 1
DEC: k

k k k Zλ+ = − ∇
ρ

ρ ρ , where the step size DEC
kλ  is 

determined by an inexact line-search method so that the upper boundary constraints (19) 
and (20) hold; 

6) If 
, k Z ε∇ <

ρ f
, then stop. Otherwise, set k = k + 1 and return to Step 2). 

 

As discussed in Section 2.6.2, the objective function in (18) is continuous and the solution set 
formed by constraints (19) and (20) is nonempty and compact. The proposed heuristic converges 
to a stationary point to the studied problem provided that the upper level objective function is 
continuously differentiable (i.e., the first-order derivatives exist at any point of the feasible region 
and are continuous) and 1[ ]−−∇vI G always exists. If these convergence criteria are not satisfied, 
the algorithm may stop before a stationary point is found. If the non-convergence is only due to 
the non-existence of derivatives at some points, the first-order derivatives can be computed by 
approximation instead to obtain a stationary point. If 1[ ]−−∇vI G and the first-order derivatives 
always exist, the heuristic becomes a classical gradient descent algorithm. 

In the proposed solution methodology, the network loading process as described in Eq. (16) can 
be done for one origin to all destinations simultaneously using the approach probabilities (defined 
by the probability of using a specific link towards a specific destination). In contrast, when using 
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the link-based sensitivity analysis algorithms, equilibrium link flows are obtained for each O-D 
pair at a time as in the STOCH algorithm (Dial, 1971). Each link common to the sub-networks 
for different O-D pairs but with the same origin is only required to be handled once in our solution 
methodology, whereas each common link is required to be handled more than once in the STOCH 
algorithm (The number of times required to handle one common link equals the number of sub-
networks with the same origin including this link). Therefore, our proposed algorithm is more 
computationally efficient. 

4. Numerical studies 
 
4.1. Multiple solutions to the bi-level problem 
 
To illustrate that optimal solutions to the upper level problem (18)-(20) may not be unique, an 
example transit network as shown in Figure 3 was developed with θ = 0.1 and τ = 6. The feasible 
range of frequency was set to be from 4.5 veh/h to 20 veh/h. The feasible range of the fares was 
set to be from HK$ 0 to HK$ 25. The parameters of the demand function are base

rdq  = 500 and ψrd 
= 1.2.  
 

 
Figure 3. Example transit network I 

 
Due to the simple network topology, the flat, sectional, and distance based fares are identical. The 
example was solved using the Excel Solver. Three different optimal fare and frequency settings 
are shown in Table 4. As revealed in Figure 3, L1 and L2 are the two common lines of link S1. 
Since their optimal fares at node A have reached their upper bound (i.e., 25 HK$), the total 
expected link cost of S1 calculated by Eqs. (3)-(9) and the total profit calculated by Eq. (18) do 
not change if the sum of the frequencies of L1 and L2 remains unchanged. Therefore, the solution 
stays optimal when  L1 L2 9.96f f+ =  veh/h. This example shows that under certain network 
settings, multiple optimal solutions to the bi-level fare and frequency design problem exist. 
 

Table 4. Multiple optimal solutions 

Route Decision variable Optimal solutions 
1 2 3 

L1 
Fare charged at 
node A (HK$) 25 25 25 

Frequency (veh/h) 4.5 4.98 5.46 

L2 
Fare charged at 
node A (HK$) 25 25 25 

Frequency (veh/h) 5.46 4.98 4.5 
 
4.2. The effect of the unit operating cost 
 
Figure 4 shows a small example transit network with in-vehicle travel time (in min) indicated 
next to each link. Nodes 1 to 5 are origin nodes and nodes 6 and 7 are destination nodes. There 

A A A B 
S1 (L1, L2) 
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are 10 O-D pairs in total. There is a transfer node T where passengers can make transfers. This 
example network is used for the numerical examples in Section 4 unless specified otherwise. 
 
The base demand of each O-D pair is given in Table 5. The linear demand function as presented 
in Eq. (2) with ψ = -1.07 was used for all O-D pairs. This demand setting is used for the numerical 
examples in Section 4 unless specified otherwise. The transit network presented in Figure 4, its 
fixed routes, and their flat fares shown in Table 6 are used in this example. In this example, the 
maximum and minimum allowable frequencies of each route were assumed to be 40 veh/h and 
4.5 veh/h, respectively. Unless specified otherwise, the heuristic for the numerical examples in 
Section 4 was coded and compiled using Dev C++ 5.11 and ran on a personal computer with a 
3.4-GHz Core processor and 16 GB RAM. 
 

 
Figure 4. Example transit network II 

 
 

Table 5. The base demand (pass/h) of each O-D pair in the network 
O               
D 1 2 3 4 5 

6 576 300 218 108 177 
7 782 268 288 145 178 

 
Table 6. Fixed routes and flat fares 

Route Stop sequence Flat fare (HK$) 
1 5-4-T-7 10 
2 5-4-T-6 10 
3 2-3-4-T-7 10 
4 1-3-4-T-6 10 

 
When θ = 0.1, the total (optimal) vehicle mileage of all routes against the unit operating cost τ for 
each route is plotted in Figure 5. Since the operating cost of each route is directly related to the 
frequency and length of the route, when the value of τ increases, the total vehicle mileage tends 
to be lowered to reduce the operating cost. However, the total vehicle mileage obtained is not 
always decreasing with the increase in the value of τ. When τ is sufficiently large, the total vehicle 
mileage obtained is bounded by the minimum frequency constraint. This result is consistent with 
the finding of Proposition 8. 
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Figure 5. Optimal total vehicle mileage against τ  

 

 
Figure 6. Total profits obtained under different values of θ against τ  

 
Figure 6 displays the total profits obtained under different values of θ against τ. As shown in the 
figure, for any given value of θ, the total profit obtained decreases as the value of τ increases. It 
is because for a given set of frequencies, the revenue is fixed under a given set of fares but a 
higher value of τ gives a larger total operating cost. When τ is sufficiently large, the optimal 
frequencies are bounded by the minimum frequency constraint (which means that the optimal 
frequencies remain unchanged) and therefore the total profit obtained decreases linearly against 
τ. However, when τ is not sufficiently large, the optimal frequency setting and hence the revenue 
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change with τ in addition to the operating cost. Consequently, the total profit decreases nonlinearly 
against τ. This result is consistent with the finding of Proposition 7. 
 
Figure 6 also reveals that the total profit obtained decreases as the value of θ increases. It is 
because when passengers have little information about their actual travel cost (i.e., when the value 
of θ is small), they may choose unreasonably expensive routes, which can increase the total profit. 
The difference in the total profits obtained under different values of θ can be significant. For 
example, when τ = 3 and θ = 0.1, the profit is HK$ 3376.73; when θ increases to 3, the profit is 
HK$ 2583.52, in which the difference is about 23%. It is therefore important to estimate the value 
of θ accurately to determine the total profit in reality.  
 
4.3. A comparison of the three fare structures 
 
To compare the three different fare structures, their optimal solutions were obtained based on the 
transit network presented in Figure 4, the demand setting and fixed routes in Section 4.2. 
 

  

 
Figure 7. Total profits obtained by different fare structures against θ 

 
The total profits obtained by different fare structures against θ is shown in Figure 7. As reflected 
by the figure, the total profit obtained by the sectional fare structure is the highest while the total 
profit obtained by the flat fare structure is the lowest.  
 
For the comparison between the sectional and flat fare structures, the result is in line with 
expectation: the optimal objective value obtained by the sectional fare structure is not worse than 
that by the flat fare structure as stated in Proposition 1. 
 
For the comparison between the sectional and distance-based fare structures, since the transit 
network instance satisfies the condition stated in Proposition 2 where all destinations of 
passengers are located at the two transit terminals, the obtained objective value using the sectional 
fare structure is higher as expected.  
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For more general transit networks with multiple destinations along a transit route, the flat fare 
structure is still a special case of the sectional fare counterpart. Therefore, the optimal objective 
value obtained by the sectional fare structure is always not worse than that by the flat fare structure. 
However, since the same sectional fare is charged to the passengers boarding at the same stop 
regardless of their trip lengths, the distance-based fare structure is no longer a special structure of 
the sectional fare counterpart.  
 
In order to make a further comparison between the distance-based and sectional fare structures 
without the assumption that all passengers alight at the same destination, a small example network 
was developed as presented in Figure 8. There are two O-D pairs in the network (i.e., O-D pairs 
(A,B) and (A,C)) with different demand levels and one transit line serving the network (i.e., L1) 
with a fixed frequency of 5 veh/h. The setting of line L1 is given in Table 7. Note that there is no 
demand from node B to node C, and hence the sectional fare at node B does not affect the flow 
pattern and is not a decision variable in this example. It is also noted that the sectional fares on 
using the two links are the same because both links start from the same node. 
 
Let 1l  and 2l  be the lengths of S1 and S2, respectively. The following three cases are considered: 
in case 1, the lengths of S1 and S2 and the maximum allowable fare are fixed while the ratio of 
the demand between O-D pair (A,B) to that between O-D pair (A,C) is varying; in case 2, the 
demands between O-D pairs (A,B) and (A,C) and their maximum allowable fare are fixed while 
the ratio of the length of S1 and to that of S2 is varying; in case 3, the demands between O-D 
pairs (A,B) and (A,C), and the lengths of S1 and S2 are fixed while the maximum allowable fare 
is varying. In each case, there are different numbers of subcases as shown in Table 8. The detailed 
characteristics of each subcase are also presented in Table 8. The optimal fare settings under both 
the sectional and distance-based fare structures were obtained in each subcase, assuming θ = 0.5 
and ψ = 0.5. 

 
Figure 8. Example transit network III 

 

Table 7. The setting of line L1 
Stop sequence A – B – C 

Links A-B (S1, l1); A-C (S2, l2) 
Distance-based fares distance 1lρ ⋅ ; distance 2lρ ⋅  

Sectional fares A,sectionalp ; A,sectionalp  
 
  

A A A A B C 
S1(L1) 

S2(L1) 
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Table 8. The cases’ characteristics  

 Demand (pass/h)  The in-vehicle travel time 
of each link (min)  

Maximum 
allowable 

fare 
(HK$)  

Case 1 
(varying 

passenger 
demand) 

(A,B): 300; (A,C): 100  (
AC

AB AC
q

q q
=

+
0.25) 

(A,B): 200; (A,C): 200  

(
AC

AB AC
q

q q
=

+
0.5) 

(A,B): 100; (A,C): 300  

(
AC

AB AC
q

q q
=

+
 0.75) 

S1: 40; S2: 80 50 

Case 2 
(varying 

the lengths 
of links) 

(A,B): 100; (A,C): 300 

S1: 10; S2: 190 ( 1

2

l
l
= 0.05) 

S1: 50; S2: 150 ( 1

2

l
l
= 0.25) 

S1: 100; S2: 100 ( 1

2

l
l
= 0.5) 

S1: 150; S2: 50 ( 1

2

l
l
= 0.75) 

S1: 190; S2: 10 ( 1

2

l
l
= 0.95) 

50 

Case 3 
(varying 

the 
maximum 
allowable 

fare) 

(A,B): 100; (A,C): 300 S1: 40; S2: 80 
25 
50 
75 

 
The optimal profit obtained in each case using each of the two fare structures is shown in Figure 
9. The corresponding fare setting of each case is shown in Table 9. This table also gives the fare 
settings for all the subcases if they are different.  As shown in Table 9, in all cases, the optimal 
fares reach the upper bound. As a result, the distance-based fare for the short-distance trip (i.e., 
O-D pair (A,B)) is lower than the sectional fare for that trip in all cases. Note that for the example 
network presented in Figure 8, all passengers board L1 at node A, and hence the sectional fare is 
equivalent to the flat fare. This implies that the conclusion is also applicable to the comparison 
between the flat and distance-based fare structures. 
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Table 9. The optimal fare setting of each case and subcase 
 Sectional fare (HK$) Distance-based fare (HK$) 

Case 1 S1: 50; S2: 50 S1: 25; S2: 50 

Case 2 S1: 50; S2: 50 

S1: 2.5; S2: 50 
S1: 12.5; S2: 50 
S1: 25; S2: 50 

S1: 37.5; S2: 50 
S1: 47.5; S2: 50 

Case 3 
S1: 25; S2: 25 
S1: 50; S2: 50 
S1: 75; S2: 75 

S1: 12.5; S2: 25 
S1: 25; S2: 50 

S1: 37.5; S2: 75 
 

 
 (a) (b) 

 
(c) 

Figure 9. Optimal profits obtained by both fare structures in (a) case 1, (b) case 2, and (c) case 3 
 
In case 1, as shown in Figure 9(a), as the proportion of long-distance-demand (i.e., qAC) increases, 
the optimal profit obtained by the distance-based fare structure increases significantly. At 
qAC/(qAB+qAC) = 0.75, the optimal profit obtained by the distance-based fare structure is higher 
than that by the sectional fare structure. This result is consistent with the observation by Ling 
(1998), by which the flat fare structure (the sectional fare structure in our case) is not favorable 
in terms of revenue maximization when the number of long trips is significantly greater than that 
of short trips under a fixed operating cost. 
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In case 2, as shown in Figure 9(b), the optimal profit obtained by the sectional fare structure 
monotonically decreases as 1 2l l increases; the optimal profit obtained by the distance-based fare 
structure first increases and then decreases as  1 2l l increases; at 1 2l l  = 0.5, the optimal profit 
obtained by the distance-based fare structure is higher than that by the sectional fare structure. 
This result implies that the performance of the two fare structures is also affected by the geometry 
of the network. 
 
In case 3, as shown in Figure 9(c), the optimal profits obtained by both fare structures 
monotonically increase as maxp  increases. The distance-based fare structure outperforms the 
sectional fare counterpart in terms of profitability at maxp  = 50 and maxp  = 75, but is worse off at 

maxp  = 25. As shown in Table 9, the fares charged to long-distance passengers (i.e., qAC) using 
both fare structures are the same and equal to the upper bound while the distance-based fare 
charged to passengers on link S1 (i.e., short-distance demand) is fixed to half of the sectional fare.  
This implies that the difference in the resultant profit comes mainly from the fare charged to the 
short-distance demand (i.e., qAB). It is because maxp  affects the fare charged to passengers on Link 
S1 due to the fare structure requirement, which in turn affects the demand level on S1 due to 
demand elasticity.  
 
Concluding from the three cases, the choice between sectional and distance-based fare structures 
is affected by the geometry of the network (e.g., route structure and distance between stops), the 
demand distribution, and the maximum allowable fares. While using the sectional fare structure 
can yield a better profit compared to using the other two fare structures in certain kinds of 
networks, the number of decision variables in the sectional fare structure (i.e., roughly equal to 

bI B× ) is significantly larger compared to that in each of the other two fare structures (i.e., B ). 
Therefore, a longer computational time is expected for the optimization process of the sectional 
fare structure. 
 
4.4. The influences of the passenger perception of travel cost 
 
We consider two cases of the effects of the passenger perception of travel cost θ. Firstly, the 
transit network presented in Figure 4 and the fixed routes shown in Table 10 are used for the 
sensitivity analysis of θ in the lower level problem. We set τ  = 3. The example was solved using 
the Excel Solver. 
 

Table 10. Fixed routes  
Route Stop sequence Fare (HK$) Frequency (veh/h) 

1 1-4-T-7 10 5 
2 5-4-T-6 10 5 
3 2-3-T-6 10 5 
4 2-4-T-7 10 5 

 
The plot of total ridership in the network against θ is shown in Figure 10. As demonstrated in the 
figure, the total ridership decreases as the value of θ increases. When the value of θ is sufficiently 
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large, the SUE condition is equivalent to the UE condition and therefore the total ridership 
approaches the UE limit.  

 

 
Figure 10. Total ridership under different values of θ 

 
Secondly, for the bi-level optimization problem, we can observe from Figure 6 and Figure 7 that 
the optimal profit obtained decreases as the value of θ increases. This result implies that from the 
transit operator’s point of view, providing better information to the passengers may not be good 
in terms of profitability. 
 
4.5. An optimal solution of the TSW instance 
 
In this example, a bilevel profit maximization model was developed and solved based on the bus 
network of Tin Shui Wai (TSW), a suburban residential area in Hong Kong, as shown in Figure 
11(a). Trunk buses serve as the main transportation mode for the residents in TSW working in the 
urban areas of Hong Kong. Currently, all the trunk bus routes pass through the Tai Lam Tunnel 
(TLT) from the TSW area to the urban areas. Free transfers can be made at the bus interchange at 
TLT (marked as “I” in Figure 11). A simplified transit network of the TSW area is presented in 
Figure 11(b). The TSW network consists of 23 origin nodes (i.e., nodes 1-23), 5 destination nodes 
(i.e., nodes 24-28), and a transfer node “I”. The in-vehicle travel times (in minutes) between nodes 
are also shown in the figure. There are 115 O-D pairs in the network and the maximum demand 
of each O-D pair is shown in Table 11. The maximum demands are adopted from the fixed 
passenger demand data used by Szeto and Jiang (2014b). The O-D demand function is linear as 
described by Eq. (2).  
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Figure 11. The TSW network (Szeto and Jiang, 2014b) 
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Table 11. The base demand (pass/h) and the slope of demand function of each O-D pair in the 
network 

D          
O 24 25 26 27 28 

1 384 296 204 188 298 
2 108 78 76 44 108 
3 94 80 76 54 110 
4 66 44 42 28 60 
5 200 148 156 112 204 
6 174 154 142 92 226 
7 226 152 142 92 206 
8 200 152 142 94 234 
9 192 126 98 68 170 
10 66 48 38 30 68 
11 38 28 28 18 46 
12 312 268 228 138 330 
13 354 210 180 156 286 
14 126 96 72 58 118 
15 204 162 126 78 186 
16 506 340 300 254 426 
17 56 40 40 28 54 
18 152 126 116 76 142 
19 68 50 44 28 60 
20 118 78 60 52 98 
21 72 46 44 30 56 
22 66 50 40 32 56 
23 412 368 294 192 418 
ψd -0.6 -0.5 -0.6 -0.5 -0.6 

 
Table 12. Fixed routes  

Route Stop sequence 
1 20, 19, I, 25 
2 1, 6, 8, 16, 17, 18, 23, 22, 21, I, 28  
3 9, 10, 11, 5, 6, 8, 16, 17, 18, 23, 22, I, 27  
4 7, 6, 1, 2, 3, 4, 11, 12, 13, 19, I, 24  
5 14, 15, 8, 9, 10, 12, 13, 19, I, 26 

 
The TSW network instance satisfies the condition stated in Proposition 2. As pointed out in 
Proposition 1 and Proposition 2, the sectional fare structure is always better than the flat and 
distance-based fare structures. Therefore, the optimization of the fare and frequency setting was 
performed based on the sectional fare structure only. The total base demand of the instance is 
15924 pass/hr. In the TSW network instance, the numbers of links and approaches equal 206 and 
783, respectively. The fixed routes in the instance are presented in Table 12. The feasible range 
of frequency of each route was set to be from 1 veh/h to 60 veh/h. The feasible range of fare of 
each route was set to be from 0 HK$ to 25 HK$. The initial fare and frequency settings are shown 
in Table 13. An optimal solution was obtained based on the parameters of θ = 0.5 and τ = 50. 
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Table 13. The initial fare and frequency settings of the fixed routes  

Route The fare at each stop (HK$) Frequency 
(veh/h) 

1 0 1 
2 0 1 
3 0 1 
4 0 1 
5 0 1 

 
The objective value (i.e., total profit) as well as 

, k Z∇
p f

 over iterations are plotted in Figure 12 

and Figure 13, respectively. As we can see, the proposed solution scheme converges quickly (i.e., 
within 9 iterations). It took 104.2 seconds to obtain a convergent solution. The optimal fare and 
frequency settings are presented in Table 14. The optimal profit obtained under these fare and 
frequency settings is 214650.5 HK$/h.  

 
Figure 12. The objective value at each iteration 

 

  
The no. of iterations 

Figure 13. The length of the vector of descent directions 
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Table 14. The optimal fare and frequency settings of the fixed routes  

Route The fare at each stop (HK$) Frequency 
(veh/h) 

1 25 – 24.52 – 15.68 43.48 

2 25 – 24.22 – 23.03 – 21.51 – 18.99 – 16.47 – 13.93 – 10.53 – 7.14 – 
3.74 60 

3 25 – 24.56 – 24.08 – 23.59 – 22.53 – 21.12 – 19.54 – 16.76 – 13.98 – 
11.18 – 7.50 – 3.82 20.41 

4 25 – 24.44 – 23.26 – 21.30 – 19.32 – 17.34 – 15.36 – 13.38 – 10.72 – 
7.47 – 4.19 38.98 

5 25 – 24.95 – 23.94 – 21.81 – 19.54 – 17.27 – 13.79 – 9.58 – 5.32 60 
 

5. Conclusion 
 
In this paper, a bi-level profit maximization model is developed to determine the optimal fare and 
frequency settings under approach-based SUEED. The sensitivity analysis-based descent search 
method that takes into account approach-based SUEED is proposed to solve the model. The 
derivatives of the passenger link flows in the approach-based SUEED assignment problem with 
respect to the frequency and fare variables were derived and used in the proposed solution method. 
The effectiveness of the proposed solution method is also illustrated based on the TSW transit 
network instance. 
 
Mathematical analysis and numerical tests were carried out to investigate the model properties 
and compare flat, distance-based, and sectional fare structures in terms of profitability. It is proven 
that the lower level approach-based SUEED assignment problem has exactly one solution. 
However, it is shown by an example that the bi-level problem can have multiple optimal solutions. 
It is proven that when all destinations are located at transit terminals, the sectional fare structure 
is always more profitable than the other two fare structures. For more general networks, the 
sectional fare structure is always better than the flat fare structure, but the choice between the 
sectional and distance-based fare structures depends on the geometry of the network (e.g., route 
structure and the distance between stops), the demand distribution, and the maximum allowable 
fares. The results also show that from the operator’s point of view, providing better information 
to the passengers may not be good in terms of profitability. The results further demonstrate that 
the optimal profit increases as the unit operating cost decreases, and that the optimal total vehicle 
mileage is monotonically decreasing with respect to the unit operating cost. These relationships 
are also confirmed by mathematical proofs. 
 
Our findings should be interpreted with the following limitations. Our model is frequency-based 
and is suitable for long-term planning purposes from the perspective of private operators. It omits 
some detailed operation issues such as vehicle scheduling and fleet size determination for 
simplicity. Moreover, in the proposed model, the congestion and overcrowding issues are 
captured using the congestion cost function approach. This approach cannot explicitly restrict the 
maximum number of passengers boarding/sitting in a transit vehicle. As a result, it is only suitable 
for planning purposes at the design stage of the transit service when the service decisions are still 
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subject to changes. Furthermore, this study assumes that all passengers are homogenous but they 
are not in reality. In addition, this paper only presents three typical fare schemes but other special 
fare schemes (e.g., daily/monthly pass tickets, student/elderly tickets) are not considered by our 
study. Several future research directions are therefore suggested as follows: 
- Consider the schedule-based extension of the transit assignment problem with hard capacity 

constraints to evaluate short-term transit network design strategies and determine the optimal 
fleet size and vehicle schedules; 

- Consider multi-class passenger demand to capture different age groups of passengers and their 
preferences in transit network design; 

- Develop formulations of special fare schemes (e.g., daily/monthly pass tickets, student/elderly 
tickets) for multi-class transit network design problems. 
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Appendix A 
 
This appendix gives the proofs of Propositions 1-7. 
 
Proposition 1 The flat fare structure is a special case of the sectional fare structure. 
 
Proof:  According to the definition of flat fares, let ( )* *

flat flat
bρ=ρ  with *

flat max0 b pρ≤ ≤ be a 

feasible fare setting under the flat fare structure. Then the fare charged at stop i of route b  ( )*
,1

b
ip  

can be calculated by 
* *

,1 flat ,   ,b b b
ip i I b Bρ= ∀ ∈ ∈ . (37) 

 
Then we can always find a vector ( )* *

sectional , sect
b
iρ=ρ  calculated by 

* *
, sect flat ,   ,b b b b

i i i I b Bρ δ ρ= ⋅ ∀ ∈ ∈ , (38) 

where 1b
iδ =  if i is the last stop of route b, b

iδ  = 0 otherwise. Note that *
, sect

b
iρ  satisfies 

constraints (7) and (8). 
 
Based on Eqs. (9) and (38), the fare charged at stop i of route b under the sectional fare structure 
can be expressed as 

* * * * *
,3 , sect ', sect flat ,1

'

,   ,
b
i

b b b b b b
i i i i

i I

p p i I b Bρ ρ ρ
+∈

= + = = ∀ ∈ ∈∑ , (39) 

which means that the sectional fare structure can be expressed as a flat fare structure as a special 
case. This completes the proof. □ 
 
Proposition 2 When the destinations of all passengers are located at the last stop of each transit 
route, the distance-based fare structure is a special case of the sectional fare structure. 
 
Proof:  Let b

il  be the length of the link connecting node i and its next stop along route b. Note that 

0b
il =  if i is the last stop of route b, 0b

il >  otherwise. According to the definition of distance-

based fares, let ( )* *
dist dist

bρ=ρ  with * max
dist0

b

b
b
i

i I

p
l

ρ

∈

≤ ≤
∑

 be a feasible fare setting under the distance-

based fare structure. Then the fare charged at stop i of route b can be calculated by 

* *
,2 dist '

'

,   ,
b
i

b b b b b
i i i

i I

p l l i I b Bρ
+∈

 
= ⋅ + ∀ ∈ ∈  

 
∑ . (40) 

 
Then we can always find a vector ( )# #

sect , sect
b
iρ=ρ  calculated by 

# *
, sect dist ,   ,b b b b

i il i I b Bρ ρ= ⋅ ∀ ∈ ∈ , (41) 

and #
, sect

b
iρ  satisfies constraints (7) and (8). 

 
Based on Eqs. (41) and (9), the sectional fare charged at stop i of route b can be formulated as 
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( )# # # * *
,3 , sect ', sect dist dist '

' 'b b
i i

b b b b b b b
i i i i i

i I i I

p l lρ ρ ρ ρ
+ +∈ ∈

= + = ⋅ + ⋅∑ ∑  

* *
dist ' ,2

'

,   ,
b
i

b b b b b
i i i

i I

l l p i I b Bρ
+∈

 
= ⋅ + = ∀ ∈ ∈  

 
∑ , (42) 

which means that when the destinations of all passengers are located at the last stop of each transit 
route, the sectional fare structure can be expressed as a distance-based fare structure as a special 
case. This completes the proof. □ 
 
Proposition 3 The approach probabilities calculated using Eqs. (10) to (12) satisfy the logit-

based SUE condition: 
( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd
y

y
y Y

c
y Y r R d D

c

θ
α

θ
∈

− ⋅
= ∀ ∈ ∈ ∈

− ⋅∑
. 

 
Proof: Let ( )expy ye cθ= − ⋅  be the exponential function of the expected path cost of path y ( yc ). 
From Eqs. (10) and (13), we have 

( ) ( )exp exp exp ,   , ,
y y y y

ij
y s s s s

s S s S s S s S

e c c c e y Y i j Nθ θ θ
∈ ∈ ∈ ∈

   
= − ⋅ = − ⋅ = − ⋅ = ∀ ∈ ∈   

   
∑ ∑ ∏ ∏ . (43) 

 
The following equation can be proved using mathematical induction: 

( ( ))
( ) ( ( )) ,   , ,

h u a d

d d
a u a h u a y i

y Y

W e e a A i N d Dδ +

∈

 
= ⋅ + ∀ ∈ ∈ ∈  

 
∑ . (44) 

Let {in, in-1, …, ik, …, i2, i1, d} be the sequence of the nodes of sub-networks formed by idS , 
where the subscript of node i  is the topological order of that node. We assume that 

( ( ))
( ) ( ( )) ,   

k
h u a d

d d
a u a h u a y i

y Y

W e e a Aδ +

∈

 
= ⋅ + ∀ ∈  

 
∑  is true for the kth node and its succeeding nodes (i.e.,

' , 'ki k k≤ ) in the sequence. Then for the (k+1)th node in the sequence, based on Eqs. (11) and 
(43), we have 

( )

( )( )

( ( ')) ( ( '))

( ( "))
( ( '))

( ( "

' ( ') ( ( ')) " ( ') "
" "

( ') ( ") ( ( "))
"

( ') ( ")

exp

exp

h u a h u a

h u a d
h u a

h u a

d d d d
a u a h u a a u a a

a A a A

d
u a u a h u a y

a A y Y

u a u a y
y Y

W c W e W

e e e

e c c

θ δ

δ

θ

+ +

+

∈ ∈

∈ ∈

∈

   
= − ⋅ ⋅ + = ⋅   

   
   

   
 = ⋅ ⋅ +        

= ⋅ − ⋅ +

∑ ∑

∑ ∑

))
( ( '))" d

h u aa A+∈

  
      
∑ ∑

 

( ( '))
( ')

h u a d
u a y

y Y

e e
∈

= ⋅ ∑ ,  
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where '( ( ')) , 'kh u a i k k= ≤  and 1( ') kt s i += . Therefore, it is also true for the (k+1)th node and its 

succeeding nodes in the sequence. When 1k = , we have ( )* ( *) ( *)expd
a u a u aW c eθ= − ⋅ = , where 

1( ( *)) , ( ( *))t u a i h u a d= = . Therefore, 
( ( ))

( ) ( ( ))
h u a d

d j
a u a h u a y

y Y

W e eδ
∈

 
= ⋅ +  

 
∑ , , ,ia A i N d D+∀ ∈ ∈ ∈  is 

true. 
 
From Eqs. (43) and (44), we have 

( )( )
( ( )) ( ( ))

( ) ( )exp
h u a d h u a d

i i i

d
a u a y u a y

a A a A y Y a A y Y

W e e c cθ
+ + +∈ ∈ ∈ ∈ ∈

    
= ⋅ = − ⋅ +            

∑ ∑ ∑ ∑ ∑  

( )exp ,   ,
id

y
y Y

c i N d Dθ
∈

= − ⋅ ∀ ∈ ∈∑ . (45) 

 
Let yS  be the set of links on path y, , ,idy Y i N d D∈ ∈ ∈ . We consider three cases when 
combining Eqs. (10) to (12), (43), and (45): (i) When * ys S∈  and *( )t s i= , we have 

*( )*

*

*

( )
( )

h s d

id
i

s yd
y Ym sd

dm s
a y

a A y Y

e e
W

W e
α

+

∈

∈ ∈

 
 ⋅
 
 = =

∑

∑ ∑
, (46) 

where *( )
0d

h s
δ = . (ii) When # ys S∈  and #( )h s d= , we have 

# #

#

#( )#( )

( )
( )

t s d
t s

d
m sd s

dm s
a y

a A y Y

W e
W e

α
+∈ ∈

= =
∑ ∑

, (47) 

where #( )
1d

h s
δ = . (iii) For all the other intermediate links ys S∈ , we have  

( )

( )
( )

( )
( )

h s d

t s d
t s

s yd
y Ym sd

m s d
a y

a A y Y

e e
W

W e
α

+

∈

∈ ∈

 
⋅  
 = =
∑

∑ ∑
, (48) 

where ( ) 0d
h sδ = . 

 
By combining Eqs. (14), (43), and (46) to (48) and canceling out the repeated terms, we have 

* # #

*
( *)

( ') ( )( ) ( ') ( )

'
'

... ...

h s d

id d d d d d
y m s m sm s m s m s

ys
y Y

e e

α α α α α α

∈

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 
⋅   
 

=

∑
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' '
'

'
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...
h s d
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s y
y Y

y
y Y

e e

e
∈

∈

 
⋅   
 

⋅ ⋅

∑

∑
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'
' t s d

y
y Y

e
∈
∑

( )
'

' h s d
s y

y Y

e e
∈

 
⋅   
 

⋅

∑

( )
'

' t s d
y

y Y

e
∈
∑

#
#( ')

''
'

...
h s d

ys
y Y

e e
∈

 
 ⋅
 
 

⋅ ⋅

∑

#( ')

'

' t s d

y

y Y

e
∈

∑
#

#( )

'

' t s d

s

y

y Y

e

e
∈

⋅
∑
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* # #' '

' ' '
' ' '

... ... y

id id id

s
s s ys s s s S

y y y
y Y y Y y Y

ee e e e e e
e e e

∈

∈ ∈ ∈

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = =

∏
∑ ∑ ∑

 

( )
( )( )'

'

exp
,   , ,

exp
id

y id

y
y Y

c
y Y i N d D

c

θ

θ
∈

− ⋅
= ∀ ∈ ∈ ∈

− ⋅∑
, (49) 

where 's  is the preceding link of link s and ( ') ( )h s t s= ; # 's  is the preceding link of link s# and 
# #( ') ( )h s t s= . Therefore, when i r R= ∈ ,  we have 

( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd
y

y
y Y

c
y Y r R d D

c

θ
α

θ
∈

− ⋅
= ∀ ∈ ∈ ∈

− ⋅∑
. (50) 

This completes the proof. □ 
 
Proposition 4 The passenger demands calculated using Eqs. (1) and (15) satisfy the logit-based 

elastic demand condition: ( )( )1 ln exp ,   ,
rd

rd rs
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . 

 
Proof: From Eq. (45), when i r R= ∈ , Eq. (15) becomes 

( )1 1ln ln exp ,   ,
rd

r

rd d
a y

a A y Y

C W c r R d Dθ
θ θ+∈ ∈

   
= − ⋅ = − ⋅ − ⋅ ∀ ∈ ∈        

∑ ∑ . (51) 

By substituting Eq. (51) into Eq. (1), we have 

( )( )1 ln exp ,   ,
rd

rd rd
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . (52) 

This completes the proof. □ 
 
Proposition 5 The approach-based SUEED problem is equivalent to the path-based logit 

SUEED problem: 
( )
( )( )'

'

exp
,   , ,

exp
rd

yrd rd rd rd rd
y y

y
y Y

c
h q q y Y r R d D

c

θ
α

θ
∈

− ⋅
= ⋅ = ⋅ ∀ ∈ ∈ ∈

− ⋅∑
 and 

( )( )1 ln exp ,   ,
rd

rd rs
y

y Y

q Q c r R d Dθ
θ ∈

  
= − ⋅ − ⋅ ∀ ∈ ∈      

∑ . 

 
Proof: Consider the subnetwork formed by the links used between O-D pair rd, rds S∈ . By 
definition, for an intermediate node i in the sub-network formed by rdS , the probability that sub-
path idy Y∈  is used is equal to the sum of the probabilities of the paths using sub-path y over the 
sum of the probabilities of paths passing through node i, written as 
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|

,

'
'

'
'

,   , , ,
rd y

rd i

rd
y

y Yid id rd
y rd

y
y Y

y Y i N r R d D
α

α
α

∈

∈

= ∀ ∈ ∈ ∈ ∈
∑

∑
, (53) 

where |rd yY  is the set of paths connecting origin r and destination d using sub-path y; ,rd iY  is the 
set of paths connecting origin r and destination d passing through node i. 
 
Based on the logit assumption and Eq. (43) and canceling out the repeated terms, Eq. (53) can 
become 

|
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'
' '
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rd y

rd i rd
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y Y yid
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∈
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y Y
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  
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y Y

e
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'
'

,   , , ,
id

y id rd

y
y Y

e
y Y i N r R d D

e
∈
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∑

. (54) 

 
Let rd

sv  be the flow from origin r to destination d using link s. Based on Eq. (14), the path-based 
logit-based SUEED solution satisfies  

( )

( ) ( )

( )
( ') ( )

'

rd rd rd
s s s

rt s h s dy

rd rd rd rd rd rd
s y y y

y Y y Y y Y

rd d d h s d
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y Y y Ys S

v h q q
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α α
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∑ ∑∏
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'rt s y
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m s m s

y Y s S

q α α
∈ ∈

  
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∑ ∏ , (55) 

where  
( )

( )

h s d

h s d
y

y Y

α
∈

 
  
 
∑  equals 1 by definition. 

 
When rs A+∈ , we have 

( )
rd rd d
s m sv q α= ⋅ . (56) 

 
When rds S∈  and ( )t s r≠ , we have 

( )
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'
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rd rd d d
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y Y s S
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s A y Y s S
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∑ ∏

∑ ∑ ∏
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( )
( )

' ( )
' t s

rd d
s m s

s A

v α
−∈

= ⋅∑ . (57) 

 
Substituting Eqs. (56) and (57) into Eq. (55), we obtain 

( )
( )

' ( )
'

,   , ,
t s

rd rd r rd d rd
s s s m s
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v q v s S r R d Dδ α
−∈

 
 = ⋅ + ⋅ ∀ ∈ ∈ ∈
 
 

∑ , (58) 

where 1r
sδ =  if ( )t s r= , 0r

sδ =  otherwise. Therefore, we have 

( ) ( )
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' ( )
' t s

d rd rd r rd d
s s s s m s

r R r R r R s A

v v q vδ α
−∈ ∈ ∈ ∈

 
 = = ⋅ + ⋅
 
 

∑ ∑ ∑ ∑  

( )
( )
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' ( )

'

,   ,
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t s d d d
s m s

s A

q v s S d Dα
−∈

 
 = + ⋅ ∀ ∈ ∈
 
 

∑ . (59) 

Note that ( ) 0t s dq =  if ( )t s R∉ .  
 
According to the definition of approach probabilities and Eq. (54), we have 

( ( ))
( )

( ( ))
( )

( ( ))

( ( )) ,   , ,
t u a d

u a

t u a d
u a

t u a d

y
y Yd t u a d

a y i
y Y y

y Y

e

a A i N d D
e

α α
∈ +

∈
∈

= = ∀ ∈ ∈ ∈
∑

∑ ∑
. (60) 

 
The following equation can be proved using mathematical induction: 

( ( ))
( )

,   , ,
t u a d

u a

d
y a i

y Y

e W a A i N d D+

∈

= ∀ ∈ ∈ ∈∑ . (61) 

Let {in, in-1, …, ik, …, i2, i1, d} be the sequence of the nodes of sub-networks formed by idS , 
where the subscript of node i  is the topological order of that node. We assume that 

( ( ))
( )

,   
k

t u a d
u a

d
y a i

y Y

e W a A+

∈

= ∀ ∈∑  is true for the kth node and its succeeding nodes (i.e., ' , 'ki k k≤ ) in 

the sequence. Then for the (k+1)th node in the sequence, we have  
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where '( ( ')) , 'kh u a i k k= ≤  and 1( ( ')) kt u a i += . Therefore, it is also true for the (k+1)th node and 
its succeeding nodes in the sequence. When 1k = , we have 
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d
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y Y

e e W
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y Y
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=∑  , ,ia A i N d D+∀ ∈ ∈ ∈  is true. 
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Based on Eq. (61), Eq. (60) can be rewritten as 
 

( ( ))
( )

( ( ))
( ( ))

( ( ))
( ( )) ( ')
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. (62) 

 
From Eq. (61), we can also derive the following: 

( )( )

( )( )
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1 ln exp

1 ln exp
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rd rd
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y Y
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1 ln ,   ,
r

rd d
a

a A

Q W r R d D
θ +∈

  
= − ⋅ ∀ ∈ ∈      

∑ . (63) 

 
According to Eqs. (62) and (63), we can conclude that the solution to the path-based SUEED 
problem also satisfies the approach-based SUEED problem defined by Eqs. (1), (3)-(12), (15), 
and (16). By this conclusion together with the fact that the solution to the approach-based SUEED 
problem satisfies the logit-based (path-based) SUEED condition (implied by Propositions 3 and 
4), we conclude that the approach-based SUEED problem is equivalent to the path-based SUEED 
problem. This completes the proof. □ 
 
Proposition 6 There exists a solution to the approach-based SUEED problem in terms of 
approach probabilities and passenger demands.  Moreover, the solution is unique. 
 
Proof:  
The finding by Cantarella (1997) implies that a solution exists to the path-based SUEED problem. 
Let ( )* * * *( ), ( )a c q c  be a solution to the path-based SUEED problem with the elements ( )* *rd

yα=a

, ( )* *rdq=q , and ( )* *
yc=c ; let ( )* *id id

yα=a  be the vector of the probabilities of sub-paths in the 

subnetwork formed by the links connecting node i and destination d, id rds S S∈ ⊆ , and the 
elements of  *ida  are calculated using Eq. (53). The existence of  ( )* *rd

yα=a  ensures the existence 

of  ( )* *id id
yα=a . Let *α  be the approach probability vector with the elements *d

aα  calculated by 

( ( ))

* * ( ( ))

t u a d

d t u a d
a y

y Y

α α
∈

= ∑ . Then, based on the findings in Proposition 5, ( )* *,α q  is a solution to the 

approach-based SUEED problem defined by Eqs. (1), (10)-(12), (15), and (16). Moreover, the 
existence of  ( )* *id id

yα=a  ensures the existence of *α . Therefore, we can conclude that the 
solution existence of the path-based SUEED problem ensures that a solution to the approach-
based SUEED problem also exists. 
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We assume that there is more than one solution to the approach-based SUEED problem. Let 
( )# #,α q  with the elements ( )# #d

aα=α  and ( )# #rdq=q  be another solution to the approach-based 

SUEED problem and ( ) ( )# # * *, ,≠α q α q ; let #a  be the corresponding path choice probability 

vector with the elements #rd
yα  such that  

( ( ))

# # ( ( ))

t u a d

d t u a d
a y

y Y

α α
∈

= ∑  and #id
yα  satisfies Eq. (53). Then 

by Propositions 3 and 4, ( )# #,a q  is a solution to the path-based SUEED problem. According to 
Eq. (60), the mapping from path choice probability to approach probability is surjective. Hence, 
we have ( ) ( )# # * *, ,≠a q a q . However, ( ) ( )# # * *, ,≠a q a q  contradicts the solution uniqueness of the 
path-based SUEED problem (see Cantarella, 1997). As a result, the approach-based SUEED 
problem has exactly one solution in terms of approach probabilities and passenger demands. This 
completes the proof. □ 
 
Proposition 7 The optimal profit increases as the unit operating cost τ decreases. 
 
Proof: Let * *( , )ρ f  and Z* * *( , )ρ f  be an optimal fare and frequency setting and the optimal 
objective value when * 0τ τ= > ; let # *τ τ τ= −  and # , 0τ τ > . Obviously, * *( , )ρ f  is a feasible 
solution to the maximization problem when #τ τ= . When #τ τ= , the objective value *'Z  at 

* *( , )ρ f  is  

( )*' * * # * * * * *

* * * * *

b b b b
s s s s

s S b B s S b B
b b b b

s s
s S b B b B

Z v p f l v p f l

v p f l f l

τ τ τ

τ τ
∈ ∈ ∈ ∈

∈ ∈ ∈

= − ⋅ = − − ⋅

= − ⋅ + ⋅

∑ ∑ ∑ ∑

∑ ∑ ∑





 

 * * *b b

b B
Z f l Zτ

∈

= + ⋅ >∑ . (64) 

 
Let # #( , )ρ f  and Z# # #( , )ρ f  be an optimal fare and frequency setting and the optimal objective 
value when #τ τ= . Then we have # *' *Z Z Z≥ > . Therefore, the objective value increases when 
the unit operating cost τ decreases. This completes the proof. □ 
 
Proposition 8 The optimal total vehicle mileage is monotonically decreasing over 0τ > . 
 
Proof: Let * *( , )ρ f  and Z* * *( , )ρ f  be an optimal fare and frequency setting and the optimal 
objective value when * 0τ τ= > ; let # *τ τ τ= +  and # , 0τ τ > . When #τ τ= , the objective (18) 
can be rewritten as 

' *max ( , ) b b b b
s s

s S b B b B
Z v p f l f lτ τ

∈ ∈ ∈

= − ⋅ − ⋅∑ ∑ ∑ρ f  . (65) 

 
Let # #( , )ρ f  and ' #Z # #( , )ρ f  be an optimal fare and frequency setting and the optimal objective 
value to the network design problem (19), (20), and (65). Obviously, # #( , )ρ f  is a feasible 
solution to the network design problem (18)-(20) when *τ τ= , and the objective value is denoted 
as # # #( , )Z ρ f . Since * *( , )ρ f  optimizes the problem (18)-(20) when *τ τ= , we have 
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# # # * * *( , ) ( , )Z Z≤ρ f ρ f . (66) 
 

* *( , )ρ f  is also a feasible solution to the network design problem (19), (20), and (65).  The 
corresponding objective value '*Z   at * *( , )ρ f  is given by 

' * * * * * * * *( , ) b b b b
s s

s S b B b B
Z v p f l f lτ τ

∈ ∈ ∈

= − ⋅ − ⋅∑ ∑ ∑ρ f   

* *b b

b B
Z f lτ

∈

= − ⋅∑ . (67) 

 
Since # #( , )ρ f optimizes the problem (19), (20), and (65), we have 

' * * * '  # # #

* * # #

( , ) ( , )
b b b b

b B b B

Z Z
Z f l Z f lτ τ

∈ ∈

≤

− ⋅ ≤ − ⋅∑ ∑
ρ f ρ f
 

 

# * # *b b b b

b B b B
f l f l Z Zτ

∈ ∈

 ⋅ − ≤ − 
 
∑ ∑ . (68) 

 
Combining (66) and (68), we have 

# * # *

# *

0

0

b b b b

b B b B

b b b b

b B b B

f l f l Z Z

f l f l

τ
∈ ∈

∈ ∈

 ⋅ − ≤ − ≤ 
 

− ≤

∑ ∑

∑ ∑



 

# *b b b b

b B b B
f l f l

∈ ∈

≤∑ ∑ . (69) 

Therefore, the optimal total vehicle mileage is monotonically decreasing over 0τ > . This 
completes the proof. □ 
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Appendix B 
 
This appendix gives the derivations of Eqs. (28) and (29). 
 
Derivation of Eq. (28):  
  
Based on Eq. (60) and the quotient rule, we have 

( )

( )( )
( ( ))
( )

( ( ))'

exp

exp

t u a d
u a

t u a d

y
y Y

yd
y Ya

s s

c

c

c c

θ

θ
α

∈

∈

 − ⋅
 

∂  
− ⋅  ∂  =

∂ ∂

∑

∑  

( )
( )( )

( ( ))
( )

( ( ))

exp

exp
t u a d

u a

t u a d

y
y Y

y
y Ys

c

c
c

θ

θ
∈

∈

 
 ∂ − ⋅
     ⋅ − ⋅  ∂  

=

∑
∑

( )( )
( ( ))

2

exp
t u a d

y
y Y

cθ
∈

 
− ⋅  

 
∑

( )
( ( ))
( )

exp
t u a d

u a

y
y Y

cθ
∈

 
 − ⋅
 
 

−

∑
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( ( ))

( ( ))

2

exp

exp

t u a d

t u a d

y
y Y

s

y
y Y

c

c

c

θ

θ

∈

∈

 
∂ − ⋅  
 ⋅

∂

 
− ⋅  

 

∑

∑

 

( ) ( )( )

( )( )

( ( )) ( ( ))
( )

( ( ))

exp exp

exp

t u a d t u a d
u a s

t u a d

y y
y Y y Yd

a
s s

y
y Y

c c

c c
c

θ θ
α

θ

∈ ∈

∈

   
 ∂ − ⋅ ∂ − ⋅    
   − ⋅

∂ ∂
=

− ⋅

∑ ∑

∑
. (70) 

 

When ( ( ))t u as A+∈  and ( )s u a≠ , we have 
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( )
( ( ))
( )

exp
t u a d

u a

y
y Y

d
sa

s
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c
c

θ

α

∈

 
 ∂ − ⋅
 
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=
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∈
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 − ⋅

∂

− ⋅

    
∂ ⋅ ⋅        −     = ⋅

∂− ⋅

∑

∑

∑ ∑

∑
 

( )

( )( )

( ) ( )

( )( ) ( )
( )( )
( )( )
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( ( )) ( ) ( ) ( ( ))
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a y y
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α θ θ
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θ θ

∈ ∈

∈

∈ ∈ ∈

∈ ∈

   
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d
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d d h s d
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y Y

θ

α α α
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⋅ −

 
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 

∑

∑ ( ) ( )( ) .d d
a m sθ α α θ⋅ − = − ⋅ ⋅ −

 (71) 

 
When ( ( ))t u as A+∈  and ( )s u a= , we have 

( ) ( )( )
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( ( )) ( ( ))
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( ( )) ( ) ( )

( ( ))

( )

exp exp

exp

1
exp

1

t u a d t u a d
s s

t u a d

t u a t s h s d

t u a d

y y
y Y y Yd

ad
a s s

s y
y Y

y s yd
y Y y Ya

sy
y Y

d d
a m s

c c

c c
c c

e e e

cc

θ θ
α

α
θ

α
θ

α α

∈ ∈

∈

∈ ∈

∈

   
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    
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∑ ∑
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h s d

h s d
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y Y

α
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 
  
 
∑ ( )θ⋅ −

 

( ) ( )( )1 d d
a m sα α θ= − ⋅ ⋅ − . (72) 
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When ( ( ))h u a ds S∈ , we have 
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Using Eqs. (71)-(73), Eq. (70) can be rewritten as 
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where 1a
sδ =  if ( )s u a= , 0a

sδ =  otherwise; ( ( )) 1t u a
sδ =  if ( ) ( ( ))t s t u a= , ( ( )) 0t u a

sδ =  otherwise. 
 
 
Derivation of Eq. (29):  
 
According to the chain rule, we have 
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From Eq. (51), 
rd

s

C
c

∂
∂

 in Eq. (75) can be calculated by 
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Based on Eq. (50), Eq. (76) can be rewritten as 
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For 0

rs A+∈  (i.e., 0( )t s r= ), we have 
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For all the other links rds S∈  and ( )t s r≠ , we have 
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Therefore, Eq. (77) can be expressed as  
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where 1r
sδ =  if ( )t s r= , 0r

sδ =  otherwise. 
 
Using the linear demand function as stated in Eq. (2) and the above equation, Eq. (75) can be 
rewritten as 
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where 1r
sδ =  if ( )t s r= , 0r

sδ =  otherwise. 
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