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Abstract

This study estimates and manages the stochastic traffic dynamics in a bi-modal transporta-

tion system, and gives hints on how increasing data availability in transport and cities can

be utilized to estimate transport supply functions and manage transport demand simulta-

neously. In the bi-modal system, travelers’ mode choices are based on their perceptions of

the two travel modes: driving or public transit. Some travelers who have access to real-time

road (car) traffic information may shift their mode based on the information received (note

that real-time information about public transit departures/arrivals is not considered here).

For the roadway network, the within-day traffic evolution is modeled through a Macroscopic

Fundamental Diagram (MFD), where the flow dynamics exhibits a certain level of uncer-

tainty. A non-parametric approach is proposed to estimate the MFD. To improve traffic

efficiency, we develop an adaptive pricing mechanism coupled with the learned MFD. The

adaptive pricing extends the study of Liu and Geroliminis (2017) to the time-dependent case,

which can better accommodate temporal demand variations and achieve higher efficiency.

Numerical studies are conducted on a one-region theoretical city network to illustrate the

dynamic evolution of traffic, the MFD learning framework, and the efficiency of the adaptive

pricing mechanism.
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1 Introduction

The traffic equilibrium approach to planning and operation issues has been adopted for

decades since it was firstly proposed by Wardrop (1952). To account for the time-varying

traffic conditions and congestion dynamics, many efforts have been dedicated to the dy-

namic traffic assignment problem (Friesz et al., 1993; Lo and Szeto, 2002; Yildirimoglu and

Geroliminis, 2014; Long et al., 2015). In particular, the within-day dynamic traffic patterns

are governed by travelers’ trip-timing choices, which have been modeled with the bottle-

neck model firstly proposed by Vickrey (1969). The bottleneck model has been extended by

many studies (Arnott et al., 1990; Lindsey, 2004; Yang et al., 2013; Zhang et al., 2017; Liu,

2018) due to its analytical tractability to study a number of policy issues such as congestion

pricing, user heterogeneity, commuter parking, shared-rides, and autonomous vehicles.

Other than within-day dynamics, traffic can vary from day to day. The day-to-day traffic

dynamics can refer to the system traffic variations that occur between successive reference

periods, as pointed out by the study of Cascetta and Cantarella (1991). A series of studies

have modeled the day-to-day traffic evolution process for both single-mode systems (Smith,

1984; Watling, 1999; Bie and Lo, 2010; Cantarella, 2013; Smith and Watling, 2016; Guo

and Huang, 2016) and multi-modal systems (Cantarella et al., 2015; Li and Yang, 2016; Liu

and Geroliminis, 2017; Guo and Szeto, 2018). Some researchers have developed a doubly

dynamical system (Ben-Akiva et al., 1984; Iryo, 2008; Liu et al., 2017; Guo et al., 2018;

Yildirimoglu and Ramezani, 2019), which can describe the day-to-day evolution of within-

day dynamic traffic patterns. However, existing studies along this direction, while insightful,

often rely on simplified network or demand settings or traffic flow models (e.g., single origin-

destination pair, single-mode systems, and point-queue traffic models).

Recently, there is a growing interest in modeling the impacts of information provision on

traffic patterns. This is partly due to the rapid development of information technologies and

devices (e.g., smart-phone, wearable devices, and connected vehicles), and the widespread use

of smart navigation services and social media platforms. These emerging services and plat-

forms now provide new opportunities for travelers to access traffic information and predicted

conditions. Moreover, they can affect travelers’ behaviors and decisions significantly, which

further complicate the evolution of traffic and user choices in an integrated multi-modal

transportation system. Analyzing the impacts of information provision/sharing becomes

both necessary and relevant. However, little has been explored for day-to-day traffic evolu-

tion under real-time information provision, especially when the within-day traffic dynamics

are very complex. Recent efforts towards these directions are made by e.g., Xiao and Lo

(2016) for information sharing among travelers, and by e.g., Liu and Geroliminis (2017) for
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real-time information provision through advanced smart services. A series of studies have ex-

plored the impacts of traffic information with static traffic models (Iryo, 2016; Bifulco et al.,

2016; Li et al., 2018), while some studies are based on traffic simulators when examining the

impacts of information provision (Mahmassani and Liu, 1999; Liu et al., 2017).

This study explores a stochastic dynamical process for the bi-modal transportation sys-

tem and examines how the provision of real-time car traffic information can affect travelers’

mode choices and the stochastic system traffic dynamics. Particularly, two types of users

are considered, i.e., travelers using “smart services” and travelers not using any “smart ser-

vices”. Those using “smart services” have access to real-time road traffic information and

their travel choices are affected by the real-time information. Therefore, both their past

experiences and real-time information provision affect their choices, which is similar to the

study of Liu and Geroliminis (2017). Those not using these services do not have access to or

are not affected by real-time information. Different from the study of Liu and Geroliminis

(2017) that assumed all users to have access to and be affected by information services, the

treatment of multiple types of users in this study is more general.1 In this paper, we focus on

the impacts of real-time car traffic information, while the real-time information about public

transit departures/arrivals is not considered. This means that the public transit service is

the same for both types of travelers. Since information provision does not involve the public

transit side, it does not save travelers’ waiting time at transit stops.

The within-day traffic dynamics are modeled through the concept of Macroscopic Fun-

damental Diagram (MFD), which is supported by empirical evidence (Geroliminis and Da-

ganzo, 2008). The MFD framework can capture hyper-congestion (Gonzales, 2015; Arnott

et al., 2016; Lehe, 2017). Many studies based on the MFD concept assumed that the net-

work outflow has an explicit relationship with the travel production and the trip length

(Ramezani et al., 2015; Geroliminis, 2015; Liu and Geroliminis, 2016; Saeedmanesh and

Geroliminis, 2016). Differently, this study only assumes a network/region speed function

(speed-accumulation relationship). Similar to the studies of Arnott (2013), Fosgerau (2015),

Leclercq et al. (2017), Mariotte et al. (2017), and Lamotte and Geroliminis (2018), this

study uses a trip-based approach to reproduce the travel process of car traffic on roads.

A discrete-time approximation for the trip-based approach was adopted in the numerical

studies. Moreover, this study considers that the regional speed-accumulation relationship is

subject to certain levels of random variations. The variability of the MFD relationship has

been reported by many studies (e.g., Mazloumian et al., 2010; Daganzo et al., 2011; Gayah

1Firstly, the process of reaching 100% penetration for smart services can take a long time, even though
it might be reached in the future. Secondly, the population is generally heterogeneous. While information
services are growing rapidly, they may appear different in their accessibility, reliability etc. to different
travelers (e.g., different age groups and education backgrounds).
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and Daganzo, 2011; Geroliminis and Sun, 2011; Saberi and Mahmassani, 2012; Leclercq and

Geroliminis, 2013; Gayah et al., 2014; Dakic and Menendez, 2018; Ambühl et al., 2018).

Note that the stochasticity in the speed-accumulation relationship should not be extremely

large. Otherwise, the MFD-based approach may be inappropriate since the regional speed-

accumulation relationship may not exist in this case (when it is too random). For a recent

review of MFD models, one may refer to Aghamohammadi and Laval (2018).

Beyond the developed day-to-day evolution model with stochastic traffic dynamics, we

propose a data-driven and non-parametric approach to estimate the stochastic MFD (i.e.,

the speed-accumulation relationship in the paper) for the city road network. The proposed

approach uses widely adopted smoothing strategies to translate the discrete data observa-

tions regarding traffic accumulation and the corresponding speed into numerical curves or

approximations for the speed-accumulation relationship. It does not need prior knowledge

regarding the functional form for the speed-accumulation relationship. This means that the

approach is relatively general and can be adapted to cases with different speed-accumulation

functions. To illustrate this, numerical tests for different speed functions were conducted.

Based on the learned MFD, we develop a similar adaptive pricing strategy as that in the

study of Liu and Geroliminis (2017) while we further extend it to the time-dependent case.

Moreover, different from their study, a deterministic equilibrium flow pattern does not exist

in the stochastic dynamical system modeled here, and thus the adaptive pricing strategy can

no longer rely on stationary traffic conditions in a single day. Instead, the pricing strategy

relies on average traffic conditions for a certain number of days to alleviate the random

effects.

This study expands the literature on modeling and managing doubly dynamical systems

in several ways. Firstly, this study integrates network-level stochastic within-day traffic

dynamics into the day-to-day evolution modeling framework, which is very challenging and

has rarely been explored in the literature. Secondly, time-dependent traffic conditions are

incorporated into travelers’ decision process, where we further extend the study of Liu and

Geroliminis (2017) to a general case by considering two types of travelers, i.e., those with

and without smart information services. Thirdly, we propose a non-parametric estimation

approach for the regional MFD, which can take advantage of system traffic observations. This

estimation approach is integrated with the day-to-day evolution modeling framework, which

is novel compared to the literature. Fourthly, the learning mechanism for the MFD is further

integrated with an adaptive pricing strategy, where we extend the time-independent pricing

of Liu and Geroliminis (2017) to the time-dependent pricing case. This helps to accommodate

time-varying demand conditions and further enhances system efficiency. Overall, this paper,

by proposing a combined MFD learning/estimation and pricing adjustment framework, gives
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hints on how increasing data availability in transport and cities can be utilized to estimate

transport supply functions and manage transport demand simultaneously.

The remainder of the paper is organized as follows. Section 2 describes the basics of the

bi-modal commuting problem, and introduces the regional speed-accumulation relationship

with uncertainties. In Section 3, the day-to-day learning behaviors of travelers and the traffic

adjustment process, the learning/estimation process of the MFD, and the adaptive pricing

mechanism based on the estimated MFD are presented and discussed. Section 4 reports the

numerical illustrations of the proposed models and mechanisms. Finally, Section 5 concludes

the paper.

2 Basic Considerations

We now present the basic considerations for the rush-hour commuting problem with two

modes to serve the travel demand. We consider the city of one region in Figure 1, where

there are a roadway network system and a public transit system with a dedicated right-of-

way.2 Each location in the city/region can be indexed by its x-coordinate and y-coordinate,

i.e., (x, y), and can be an origin and/or a destination. Let w be the origin-destination (O-D)

pair and W be the set of all O-D pairs, and thus w ∈ W . Figure 1 is illustrative while there

are indeed multiple origins and destinations. For each O-D pair w, travelers can either drive

through the roadway network (private car: mode a) or take the public transit to reach their

destinations (public transit: mode b). A list of major notations is provided in Appendix A.

Figure 1: The city and transport system

2It is of our interest to extend the current model to the multiple-region case, where a network can be
partitioned into multiple regions with a well-defined Macroscopic Fundamental Diagram (MFD) for each
region by the approaches in the study of, e.g., Saeedmanesh and Geroliminis (2016). Multiple-region pricing
strategies or controllers have to be adopted for improving traffic efficiency, such as those in the studies of,
e.g., Ramezani et al. (2015), Kouvelas et al. (2017) and Haddad and Zheng (2018).
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Now we move to the travel demand side. For a given departure time t and a given

O-D pair w, the total travel demand rw(t) is assumed to be fixed and given. Thus, it

does not change from day to day. Furthermore, we consider that there are two types of

travelers among the demand: the first type (type s to refer to those with “smart services”)

has access to real-time car traffic information and is affected by the real-time information

when making decisions, and the second type (type u to refer to those not using or not

complying to “smart services”) does not have access to or is not affected by the real-time

information. Suppose the proportion of type s travelers is θs = θ, where 0 ≤ θ ≤ 1, and the

proportion for type u is then θu = 1− θ. Therefore, we have rws (t) = θs · rw(t) = θ · rw(t) and

rwu (t) = θu · rw(t) = (1 − θ) · rw(t). While we will present the results of sensitivity analysis

and examine the impact of different values for θ in the later part of this paper, we do not

consider the endogenous evolution of θ in this paper. Moreover, we consider an identical

θ value for travelers between each O-D pair and with each departure time (however, this

can be easily relaxed with the current modeling framework). We denote those among type

k ∈ {s, u} choosing mode m ∈ {a, b} by rwk,m(t), where rwk,a(t)+rwk,b(t) = rwk (t). The modeling

duration is [0,∆], and thus t ∈ [0,∆].

Based on the above, the set of the feasible flows for private car and public transit modes

for different types of travelers can be given as follows:

Ω ≡

{
rwk,m (t) ≥ 0,∀k,m,w, t

∣∣∣∣∣∑
m

rwk,m (t) = rwk (t) , rwk (t) = θk · rw(t)

}
. (1)

It is evident that the feasible flow set Ω is closed and convex. Note that the realized traffic

flow rwk,m(t) on each day can be different. This will be discussed in Section 3 when we present

the day-to-day evolution process.

2.1 Road Traffic Dynamics

We now describe the road traffic flow model for the private car mode. For the roadway

network in the region (we consider a single region city), instead of modeling a detailed node-

link network, we adopt an aggregate approach based on the recently proposed Macroscopic

Fundamental Diagram (MFD), see the paper by, e.g., Geroliminis and Daganzo (2008).

Particularly, the regional speed has a relationship with the regional traffic accumulation as

follows:

va = v (n) , (2)
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where va is the regional space-mean speed, n is the regional traffic accumulation, and v(·)
is the speed function. The MFD framework defines region-based relationships among speed,

traffic density/accumulation, and traffic flow. Alternatively, we can assume that the speed

has a relationship with the regional traffic density. However, given the same roadway network

setting and total road length, we can simply adopt the speed-accumulation relationship v−n,

where network characteristics (e.g., the total road length, the road network topology, and

the systematic signal setting) are input parameters. Since we adopt an aggregate traffic flow

approach without detailed network setting, later we frequently use ‘region’ to refer to the

roadway system or network.

A regional speed-accumulation relationship in Eq. (2) requires that the region modeled

has a well-defined MFD with relatively low dispersion. In this paper, we assume a well-

defined MFD for the region but with certain levels of variations or uncertainties (for the

variability or uncertainty of an MFD, see the papers by, e.g., Geroliminis and Daganzo,

2008; Mazloumian et al., 2010; Daganzo et al., 2011; Gayah and Daganzo, 2011; Geroliminis

and Sun, 2011; Saberi and Mahmassani, 2012; Leclercq and Geroliminis, 2013; Gayah et al.,

2014; Dakic and Menendez, 2018; Ambühl et al., 2018). Generally speaking, a deterministic

v − n curve may not always be appropriate. Indeed, the MFD can be affected by changes

in the road network itself or systematic signal plan changes or changes in management

strategies. Moreover, the data observations to estimate an MFD may contain some random

noises.3

In this study, we adopted the following functional form for the speed-accumulation rela-

tionship in the numerical analysis in Section 4:

v (n) ≡

vcri · e
(
1− n

ncri

)
if n ≥ ncri,

vcri if n < ncri,
(3)

where vcri and ncri are the critical (maximum) speed and the critical accumulation, respec-

tively. Beyond the critical accumulation, the speed (as well as travel production) starts to

decrease with accumulation. To capture the stochasticity in the MFD-based traffic dynamics,

we assume that vcri and ncri are both random variables.

We would like to highlight here that the above speed function in Eq. (3) is for reproduc-

ing traffic patterns in the modeled region. Different cities and regions may have different

3This raises our interest to develop a framework that can estimate the stochastic MFD of the network.
Moreover, based on the MFD estimation that is updated over time, we can develop coupled adaptive man-
agement strategies to improve system traffic efficiency. An important advantage of doing so is that the
management of the network system relies little on prior knowledge regarding the network, and can be adap-
tive and robust to system changes or variations.

6



functional forms for the speed-accumulation relationship. It has to be learned/estimated

based on available data and the proposed learning/estimation mechanism. We will intro-

duce a non-parametric estimation approach in Section 3.3 without requiring prior knowledge

of the functional form for the regional speed-accumulation relationship. It is worth mention-

ing that different speed-accumulation functions can be readily accommodated in this paper

(some numerical tests are presented in Appendix B3 for a different speed function than Eq.

(3)). We adopt the current form because of three reasons. Firstly, it has been widely adopted

in the literature. Secondly, it reflects the cases where speed remains approximately constant

when there is no congestion (e.g., the speed may be subject to the speed limit in the city road

network). Thirdly, it brings an important advantage that the speed is always non-negative,

given that vcri and ncri are non-negative random variables.

2.2 Public Transit

For the public transit system, we assume that there are services with a dedicated right-of-

way to serve each O-D pair w. Therefore, there is no direct interaction between car traffic

and public transit vehicles. If the flow interaction between cars and transit vehicles was to

be incorporated, similar frameworks such as the 3D-MFD in the studies of e.g., Geroliminis

et al. (2014), Chiabaut (2015), and Loder et al. (2017) could be adopted. The new challenges

associated with the 3D-MFD include, e.g., how to appropriately model a stochastic 3D-

MFD, and how to estimate such a 3D-MFD. While the direct flow interaction between the

two modes is not considered, the travelers’ mode choices can affect traffic conditions, and in

return affect other travelers’ mode choices.

The transit service frequency is fwb , the transit fare is pwb , and the transit speed is vb. Note

that vb is the average/commercial speed after taking into account pick-up and drop-off delays,

intersection delays, and so on. Moreover, vb is assumed to be constant (flow-independent).

fwb and pwb are also assumed to be constant over clock time. However, time-dependent transit

frequencies and/or fares are straightforward to be incorporated. Moreover, the transit service

frequency and fare are fixed (do not change from day to day), while a future study may

consider responsive services over (calendar) time (Zhang et al., 2014, 2016; Li and Yang,

2016; Zhang et al., 2018). These simplifications for transit services allow us to focus on the

stochasticity and dynamics for the private car mode in the context of a doubly dynamical

system.
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3 Day-to-day Traffic Dynamics, Learning the Stochas-

tic MFD, and Adaptive Pricing

Section 2 presents the background information regarding the travel demand and the two

transport modes to serve the demand. Different from conventional bi-modal traffic equilib-

rium studies, this study, as mentioned in Section 1, models the day-to-day traffic evolution

under stochastic MFD-based traffic dynamics and adjusts the congestion pricing levels adap-

tively from period to period. Therefore, we have to consider three time-scales. Firstly, we

consider that the calendar time is divided into multiple periods and each period contains a

number of days (and the clock time is considered in each day). At the beginning of each pe-

riod, the road manager or operator may adjust the congestion pricing levels (period-to-period

scale). Note that the MFD relationship for the region concerned has to be re-estimated in

each period for adjusting the pricing levels. Secondly, given the updated pricing levels at

the beginning of a period, we consider that the travelers may adapt their travel choices from

day to day (day-to-day scale). Thirdly, for a given day, we model the interactions between

commuters’ travel choices and the (clock) time-varying traffic conditions (within-day scale).

To alleviate the notation burden, we may either omit or include the indexes for (clock) times,

days, and periods in different occasions.

In Section 3.1, we model the day-to-day evolution of commuters’ travel choices under

traffic information provision. This involves both the day-to-day and within-day scales. In

Section 3.2, we present a detailed formulation for travel costs resulting from the within-day

MFD dynamics. This mainly involves the within-day scale. In Section 3.3, we present the

methodologies to learn from the traffic observations to provide an estimate for the MFD (of

the studied region) that exhibits uncertainty, and develop methodologies to take advantage

of the updated MFD estimation and observable traffic conditions to adjust the pricing lev-

els. This mainly involves the period-to-period scale, and also involves the within-day scale

when calculating the price adjustment based on the within-day road traffic conditions. For

capturing the “big picture” of the overall modeling framework, readers may refer to Figure

4 at the end of Section 3.3.

3.1 Day-to-day Evolution Model

We consider a discrete-time day-to-day evolution model where the calendar day is denoted

by q. For given O-D pair w and departure time t, the mean perceived travel cost on day

q for mode m is denoted by cp,wk,m(t, q). Similarly, the experienced cost is ce,wm (t, q), and

the predicted cost based on real-time information is cr,wm (t, q) (“real-time instantaneous cost
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estimate” hereafter). Note that here p, e, and r refer to perceived, experienced, and predicted

costs, respectively. There is no k (=s or u) index for the experienced cost and predicted

cost, since the experienced costs are the same for both types of travelers as discussed in the

following, and the predicted costs are not available to type u travelers.

For type s travelers who have access to real-time traffic information, the mean perceived

travel cost of departing at time t on day q + 1 is updated as follows:

cp,ws,a (t, q + 1) = ηp · cp,ws,a (t, q) + ηe · ce,wa (t, q) + ηr · (cr,wa (t, q + 1)− cr,wa (t, q)), (4)

where ηp > 0, ηe > 0, and ηr > 0 are three learning parameters associated with the previous

perceived cost, experienced cost, and predicted cost, respectively, and ηp + ηe = 1. Eq.

(4) means that the travelers’ mean perceived cost on day q + 1 is a linear combination of

previous day’s mean perceived cost and experienced cost, and plus the difference between

the predicted costs for days q + 1 and q. While the first and second terms in the right-hand

side of Eq. (4) take travelers’ past perceptions and experiences into account, respectively,

the third term assumes that travelers compare the current traffic conditions with the ones

he or she received from the previous day, and evaluate whether the situation today is worse

or better. In particular, cr,wa (t, q + 1) − cr,wa (t, q) > 0 indicates that the travel cost estimate

based on the current traffic condition on day q + 1 is larger than that on the previous day,

which leads to an increase in the perceived cost since ηr > 0, and vice versa. A similar

traveler learning model has been studied by Liu and Geroliminis (2017), which shows the

potential for information to help the system traffic to converge to an equilibrium state or

a fixed point, where the C-logit based stochastic user equilibrium was adopted by Liu and

Geroliminis (2017). This is also verified in a recent study of Li et al. (2018) with static

within-day traffic. Eq. (4) is a more general traveler learning model than that in, e.g., Bie

and Lo (2010), where real-time traffic information has not been considered, i.e., ηr = 0.

Different from Liu and Geroliminis (2017), we further consider that there are type u

travelers (the proportion in the whole population is θu). The mean perceived travel cost of

departing at time t on day q + 1 is updated as follows:

cp,wu,a (t, q + 1) = ηp · cp,wu,a (t, q) + ηe · ce,wa (t, q), (5)

where we still have ηp > 0, ηe > 0, and ηp + ηe = 1. Note that here we assume identical

learning parameters ηp > 0, ηe > 0 for both types of travelers, which can be easily relaxed.

Eq. (5) means that the type u travelers’ perceived cost on day q + 1 is a linear combination

of day q’s perceived cost and experienced cost. This is in line with existing learning models
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(Watling, 1999; Bie and Lo, 2010) for travelers without real-time information. These travelers

do not have access to or are not affected by real-time information/forecasts. Note that the

perceived travel cost of travelers contain random terms, where cp,wk,a in Eq. (4) or Eq. (5)

is the mean value. The random terms of the perceived cost can be taken into account by

using an appropriate discrete choice model (corresponding to the distributions of the random

terms).4

For type k travelers (where k ∈ {s, u}), the proportion choosing mode m is based on

Prwk,m(t, q + 1) = Φw
k,m (cpk(t, q + 1)) , (6)

where Prwk,m(t, q + 1) ≥ 0 and
∑

m Pr
w
k,m(t, q + 1) = 1. Note that Φw

k,m (·) depends on the

distribution of the random terms associated with the perceived travel cost. The expectation

of flows on day q + 1 at time t can be written as follows:

E
(
rwk,m(t, q + 1)|{r(τ, q), τ ∈ [0,∆]; r(τ, q + 1), τ ∈ [0, t)}

)
= rw(t) · Prwk,m(t, q + 1) · θk, (7)

where E (·) denotes the expectation conditional on the realized traffic r(τ, q) on day q and

r(τ, q + 1) on day q + 1 before time t. Eq. (7) simply says that the expected modal-split of

travel demand at the current time is conditional on the realized traffic and demand conditions

up to the current time point.

The above dynamical system defined by Eqs. (4)-(7) can be written in a vector-matrix

form as follows:{
cps(t, q + 1)

cpu(t, q + 1)

}
= ηp ·

{
cps(t, q)

cpu(t, q)

}
+ ηe ·

{
ce(t, q)

ce(t, q)

}
+ ηr ·

{
cr(t, q + 1)− cr(t, q)

0

}
, (8)

and

E (r(t, q + 1)|{r(τ, q), τ ∈ [0,∆]; r(τ, q + 1), τ ∈ [0, t)}) =

{
Φs(c

p
s(t, q + 1)) ·R(t) · θs

Φu(c
p
u(t, q + 1)) ·R(t) · θu

}
,

(9)

where ce(t, q) = Ce(r(τ, q), τ ∈ [0,∆]), cr(t, q) = Cr(r(τ, q), τ ∈ [0, t)), cr(t, q + 1) =

Cr(r(τ, q + 1), τ ∈ [0, t)), R(t) is a vector for total demand over different O-D pairs w at

departure time t (rw(t) for different w). Ce(·) and Cr(·) are the cost functions, which are

based on the physical characteristics of the roadway system and the transit systems (speed-

4To this point, we would like to summarize that there are two types of random terms in our modeling
framework. The first type is related to the traffic flow model, i.e., the critical speed and accumulation, i.e.,
vcri and ncri given in Eq. (3). The second type is related to travelers’ perceptions of travel costs, which
results in the utilization of a certain discrete choice model.
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flow relationship etc.), and the operations (toll charges, fares, frequencies etc.).

Note that the flow vector r(t, q + 1) is a random vector that cannot be exactly pre-

dicted in advance. If we ignore the random fluctuations in demand or supply and suppose

r(t, q + 1) ≡ E ({r(τ, q), τ ∈ [0,∆]; r(τ, q + 1), τ ∈ [0, t)}), Eq. (8) and Eq. (9) together be-

comes a deterministic process. For discussions regarding the fixed points of the deterministic

dynamical system, one may refer to the study of Cantarella and Cascetta (1995).

This study focuses on the stochastic case, i.e., the dynamical system defined by Eq. (8)

and Eq. (9). According to Cantarella and Cascetta (1995), if Φk(·) where k ∈ {s, u} is block-

wise positive and continuous, and Ce(·) and Cr(·) are continuous, the resulting stochastic

process is expected to be regular. As discussed by Cantarella and Cascetta (1995), r(t, q + 1)

in Eq. (9) can be determined through Monte-Carlo simulation based on the probability

distributions of the stochastic process.

In this study, for simplicity, we adopted the following steps to replicate the traffic un-

certainty and dynamics. Firstly, we adopted the binomial Logit-model for both type s and

type u travelers for mode choices in the numerical experiments (i.e., the distribution of the

perceived cost is known and identical every day). Specifically, we have

Prwk,m(t, q + 1) =
e−β

w
m·c

p,w
k,m(t,q+1)∑

m′ e
−βw

m′ ·c
p,w

k,m′ (t,q+1)
. (10)

Note that the coefficient βwm is mode and O-D pair specific. For simplicity, in the numerical

studies we adopted an identical value for all. The underlying assumption for the above Logit

choice model is explained as follows. Let the random term associated with the perceived

cost be εwm , where cp,wk,m is the mean perceived cost. The binomial logit model assumes that

all εwm are identically and independently distributed with a Gumbel probability distribution

function, where the mean is zero and the variance is 1
6
π2βwm. Empirically, the Logit-model

above can reasonably reproduce the mode choice behavior if its parameters can be fitted with

real observations. Secondly, the determination of the mean perceived travel cost cp,wk,a (t, q + 1)

depends on the predicted cost, which is governed by the realization of roadway performance

over time (e.g., the speed in this paper). In this paper, it is determined through a single-run

Monte-Carlo simulation for speed at every time point on the day considered. This simulation

indeed replicates the traffic process at an aggregate level (where the probability distributions

of speed at different times are independent of each other).
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3.2 Traffic Performance and Cost Components

Now we discuss how the experienced cost and real-time instantaneous cost estimates (which

simulate the input of real-time information) can be determined for the bi-modal system.

Experienced conditions and costs. For all travelers between O-D pair w, suppose

the trip distance is lwm for mode m. While the trip distance is O-D pair and mode specific,

we consider that for different types of travelers and departure times, the trip distance is

identical. Based on the regional speed-accumulation relationship, the experienced private

car travel time (driving time) Twa (t) can be determined by solving the following equation

(the driving time is in the upper limit of the integral):∫ t+Tw
a (t)

t

vea (τ) dτ = lwa , (11)

where vea(τ) is the realized speed at time τ for the region, and lwa is the driving distance, which

is time-invariant. Eq. (11) says that for a traveler between O-D pair w who departs at time t,

the distance traveled between time t and time t+Twa is equal to his or her trip distance. This

is a trip-based approach, which is similar to the studies of e.g., Fosgerau (2015), Lamotte

and Geroliminis (2018), and Mariotte et al. (2017). Under such a trip-based concept, only a

regional speed-accumulation relationship v (n) is adopted, while arrivals to destinations are

specific to individual trips based on Eq. (11). Specifically, at every time t
′

in the simulation,

we check if
∫ t′
t
vea (τ) dτ = lwa numerically. If yes, it means that these travelers, i.e., rwk,a(t),

have arrived at their destination at time t
′
, and should be counted as a part of the total

outflow. Differently, in the study of Liu and Geroliminis (2017), an MFD-based outflow

model is further assumed, i.e., the outflow or arrival rate to destination is proportional to

the travel production v(n) · n and is inversely proportional to the trip distance, which is

usually more accurate in steady state conditions.5

Following the above discussion, flows departing before time t arrive before time t+Twa (t).

5There are at least two advantages of taking a trip-based approach in this study. Firstly, as discussed in
Mariotte et al. (2017), the trip-based approach is generally more accurate than non-trip-based approaches
(or accumulation-based approaches) when demand and congestion conditions change quickly over time. This
means that the trip-based approach better fits the doubly dynamical modeling framework in this paper, which
is to model traffic dynamics that can change quickly. Secondly, within the trip-based modeling framework,
the experienced travel time of each trip is calculated as a byproduct (to check whether a trip is completed),
which can then be directly utilized for updating travelers’ choices on the following day (day-to-day evolution
framework). However, it should be noted that when compared to the non-trip-based approach in the study
of Liu and Geroliminis (2017) under a similar doubly dynamical system, the trip-based approach requires
longer computation time since trips have to be tracked.
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For traffic between O-D pair w, the cumulative outflow and inflow satisfy

Ow(t+ Twa (t)) =
∑
k

Rw
k,a (t) , (12)

where Ow(t+ Twa (t)) is the cumulative outflow for O-D pair w at time t+ Twa (t) and Rw
k,a (t)

is the cumulative inflow at time t for type k drivers between O-D pair w. By taking the

first-order derivative of Eq. (12) with respect to time t, we have

ow(t+ Twa (t)) =

∑
k r

w
k,a (t)

1 + dTw
a (t)
dt

, (13)

where ow(t+ Twa (t)) is the outflow for O-D pair w at time t+ Twa (t) and rwk,a (t) is the inflow

at time t for type k drivers between O-D pair w. This is similar to that in the study of, e.g.,

Chow (2009) under a continuous-time model formulation. Together with traffic conservation,

the accumulation in the network can be determined. Note that in this paper we focus on a

single city region, and we consider that cars can always enter the network even if the road

network is already very congested (inflows are not restricted) and there is also no rigid upper

bound for the outflows (however, outflows are governed by the speed). Nevertheless, it is

more realistic to include boundary capacities in the formulations, especially when we extend

the current framework to multiple-regions (e.g., when one region is extremely congested, the

inflows to that region should be restricted).

The above formulations and calculations in Eq. (11), Eq. (12) and Eq. (13) are based

on a continuous-time modeling framework. In the numerical case, the (clock) time horizon

is discretized into identical intervals (the length is denoted by δt), and then we need to

use discrete-time approximations. We now briefly discuss the discrete-time approximation

for travel time and outflow in this paper. For the travel time Twa (t) in Eq. (11), we use

a similar approach to that in the study of Liu and Geroliminis (2017) for estimating the

experienced cost (one may refer to “Section 3.2” in their paper), which is summarized as

follows. To avoid additional notation burdens, we still use t to indicate the time interval

after the discretization of the time horizon. The travel time Twa (t) (for departing in time

interval t) can be determined as follows:

Twa (t) = (z1 + z2) · δt, (14)

where z1 is a non-negative integer and z2 is a non-integer (unless it is equal to zero), and
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0 ≤ z2 < 1. The values of z1 and z2 can be determined by solving the following

lwa =


t+z1−1∑
τ=t

[vea (τ) · δt] + z2 · vea (t+ z1) · δt if z1 ≥ 1,

z2 · vea (t) · δt if z1 = 0,

(15)

where 0 ≤ z2 < 1 should always hold, and
∑t+z1−1

τ=t vea (τ)·δt ≤ lwa <
∑t+z1

τ=t v
e
a (τ)·δt for z1 ≥ 1,

and lwa < vea (t) · δt for z1 = 0. It can be verified that the first-in-first-out principle holds

for the inflow between the same O-D pair and with the same trip length, i.e.,
∑

k r
w
k,a (t− 1)

arrives at the destination no later than
∑

k r
w
k,a (t).

Given the travel time in Eq. (14) based on the discrete-time approximation, the outflow

can be determined accordingly. The inflow in time interval t, i.e.,
∑

k r
w
k,a (t), which is

counted in the cumulative inflow
∑

k R
w
k,a (t) in time interval t, arrives at the destination

in time interval t + z1 since z1 · δt ≤ Twa (t) = (z1 + z2) · δt < (z1 + 1) · δt. Therefore,∑
k r

w
k,a (t) is a part of the cumulative outflow Ow(t+z1), and a part of the outflow ow(t+z1)

in time step t + z1. This is a discrete-time approximation of the flow conservation in Eq.

(12). However, it should be noted that ow(t + z1) is not necessarily equal to
∑

k r
w
k,a (t),

i.e., ow(t + z1) 6=
∑

k r
w
k,a (t) may hold. For example, for the inflow

∑
k r

w
k,a (t− 1) in time

step t − 1, if the travel time Twa (t − 1) satisfies (z1 + 1) · δt < Twa (t − 1) < (z1 + 2) · δt (in

this case Twa (t − 1) > Twa (t)), the inflow
∑

k r
w
k,a (t− 1) in time step t − 1 is also a part of

outflow in time step t+ z1 (i.e., t− 1 + z1 + 1), and ow(t+ z1) includes both
∑

k r
w
k,a (t− 1)

and
∑

k r
w
k,a (t). This is indeed a reflection of the continuous-time outflow formulation in Eq.

(13) in the discrete-time approximation (for dTw
a (t)
dt
6= 0).

For both the travel time and outflow, our discrete-time approximation based on the

discretization of the time horizon into multiple intervals can lead to inaccuracy because of

the following. Firstly, within each small time interval after discretization, the accumulation

is assumed constant and so is the speed. Secondly, arrivals occurring at different time points

but within the same time interval are considered to be an outflow in the same time interval

(outflow aggregation). One can expect that the results from our discrete-time approximation

can be very inaccurate unless the length of the time interval δt is sufficiently small.

We now turn to the transit travel time. Based on the setting of the public transit system

in Section 2, the transit travel time, which consists of both waiting time and in-vehicle time,

can be written as

Twb (t) =
1

2fwb
+
lwb
vb
, (16)
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where fwb is the service frequency, 1
2fwb

is the average waiting time6, lwb is the trip length of

taking the transit, and vb is the average speed of transit services. Note that here the transit

cost is simplified where walking/access time, transfer time etc. have not been incorporated,

and the values of waiting time and in-vehicles time are treated equally, while the extension

to accommodate these issues would be straightforward, see the paper by, e.g., Amirgholy

et al. (2017). Also, heterogeneous travelers such as those in the studies of Liu et al. (2014)

and Amirgholy and Gonzales (2017) are not taken into account.

For travelers between O-D pair w and departing at time t, the experienced travel cost of

mode m is the sum of travel time cost and monetary cost, which is given by

ce,wm (t) = α · Twm(t) + pwm(t), (17)

where α is the value of time (VOT), Twm(t) is the travel time of mode m, and pwm(t) is the

monetary cost.

The monetary cost pwa (t) should generally include parking fees, congestion charges etc.

In the current study, we let it be the congestion charge, which is a variable that can be

optimized (parking fees etc. can be readily incorporated by adding a constant or variable

price). It follows that pwa (t) is the congestion charge for the travelers between O-D pair w

entering the network at time t. pwb (t) is simply the public transit fare, which in this study is

considered time-invariant, i.e., pwb (t) = pwb .

Predicted conditions and costs. We now discuss the instantaneous cost estimate

based on real-time traffic conditions. The instantaneous cost estimate for private cars can

be determined in a similar way as the experienced cost. We need to replace the experienced

speed vea(τ) in Eq. (11) with the speed vea(t) at departure time t to have an instantaneous

estimation of travel time. It then follows

cr,wa (t) = α ·
[
lwa
vea(t)

]
+ pwa (t), (18)

where lwa
vea(t)

is the travel time estimate of private cars, and pwa (t) is still the congestion charge.

While the above instantaneous speed based cost estimates are indeed studied and used

in the literature and practice, these estimates are generally different from the experienced

costs (as the speed can vary during the journey). Current smart information services already

6Note that the real-time information provision considered in this paper is about road (car) traffic condi-
tions, but not public transit departure/arrival information. Therefore, for both types of travelers, the transit
travel time includes a waiting time. If we consider that those travelers with information services know the
exact public transit departure/arrival times, the waiting time is zero (or a small constant in practice), and

we have Tw
b (t) =

lwb
vb

for these travelers.
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provide the prediction that takes into account the variations in the traffic condition of the

network within the duration of the individual trips (e.g., Herrera et al., 2010; Hofleitner

et al., 2012). A vast literature in travel time estimations indicates that the discrepancy

between the experienced time and the instantaneous estimation of travel time for smoothly

varying traffic conditions may be in the range of 5-10%, see the paper by, e.g., Yildirimoglu

and Geroliminis (2013). It is necessary and relevant to consider how different types of

predictions may affect traveler choices and traffic dynamics differently. It is of our interest

to combine historical data and real-time data or to utilize simulations to produce other types

of predictions and compare them in our future study. Recent efforts along this line can be

found in Liu et al. (2017) and Li et al. (2018). As pointed out by Bifulco et al. (2016) and Li

et al. (2018), less accurate traffic predictions may result in larger variations in traffic patterns

and a larger traffic instability. It was also pointed out by Li et al. (2018) that very inaccurate

information provision could result in non-compliance with the predicted conditions. In this

case, information provision becomes obsolete.

For the public transit, besides assuming a dedicated right-of-way, it is further assumed

that the transit service has a constant (commercial) speed (over the clock time). We then

have cr,wb (t) = ce,wb (t). This treatment has simplified the dynamics and stochasticity in the

public transit side, which allows us to focus on the dynamics and stochasticity for car traffic.7

3.3 Learning the Stochastic MFD and Adaptive Pricing

We now discuss in detail the learning/estimation mechanism for the stochastic MFD and

the coupled adaptive pricing strategy.

Learning the MFD. After observing traffic conditions from day ONE to day q′, the

historical data regarding accumulation and speed can be determined. Let ne(t, q) and vea(t, q)

be the realized accumulation and speed at time t on day q, respectively, for q = 1, 2, ..., q′.

These become known and available after day q′. Note that in this paper, how to obtain

ne(t, q) and vea(t, q) from traffic data is not discussed but it can be found in the study of

Geroliminis and Daganzo (2008). The relationship between vea(t, q) and ne(t, q) can then

be estimated accordingly. We adopt a data-driven and non-parametric estimation approach

7The dedicated right-of-way and constant speed assumptions for public transit indicate that the transit
service is unchanging. Therefore, the effect of gaining real-time information about the schedule and operation
of the transit mode becomes less relevant, as both travelers with and without real-time information know
the service schedule (the experienced condition is the same as the predicted condition). Future study may
incorporate stochasticity in the transit side. Obtaining real-time information may reduce waiting time for
travelers at origin stops. In principle, these features could be easily accommodated within the current
modeling framework. However, more types of inter-correlated impacts of information provision for both
modes on the bi-modal system should be considered, which is challenging. We will more comprehensively
explore this issue in the future.
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without any prior assumption regarding the v − n curve adopted in Section 2. That is, for

the estimation process, we do not assume any functional form for the v − n relationship,

and we do not assume any distribution for the random variables involved. Doing so makes

our approach more general such that it can be applied to different cases where the v − n

relationship may vary. As one may imagine, the data points (vea(t, q), n
e(t, q)) are discrete

points in the feasible domain, i.e., (vea(t, q), n
e(t, q)) ∈ H. This suggests that some smoothing

strategies are needed to estimate the curve for the v−n relationship. We discuss this in the

following.

The first and simplest way is to estimate v(n) and v(n) · n through the local averages

similar to the simple moving average method. We can define a critical gap value for accu-

mulation, i.e., δn. If n− δn ≤ ne(t, q) ≤ n+ δn, we include the data point (vea(t, q), n
e(t, q))

in the set Hn, i.e., (vea(t, q), n
e(t, q)) ∈ Hn ⊂ H. Then we can calculate the mean values as

follows:

E (v(n)) =

∑
vea

|Hn|
;E (v(n) · n) =

∑
vea · ne

|Hn|
, (19)

where |Hn| is the size of Hn (the number of elements in the set Hn). Note that δn should

be sufficiently large such that Hn is not an empty set. We can then determine the critical

accumulation as follows:

ncri ≡ arg max
n
{E (v(n) · n)}. (20)

Accordingly, we can let vcri = E(v(ncri)).

The second way is through Nadaraya-Watson kernel regression (Nadaraya, 1964; Watson,

1964), which is to estimate v(n) and v(n) · n as locally weighted averages using a kernel as

the weighting function. Particularly, we use the Gaussian kernel, where the Gaussian Kernel

Function is K(µ) = 1√
2π
· exp−

1
2
·µ2 . As the weighted average for v(n) · n can be determined,

ncri can be calculated similar to Eq. (20), and vcri can be further determined accordingly.

Note that we tested both ways (based on simple moving averages and Nadaraya-Watson

kernel regression) in the numerical analysis, where we found that the estimation through the

second way was smoother, and thus we used the Nadaraya-Watson kernel regression based

approach for our MFD learning in the numerical examples.

It is worth mentioning that rather than estimating or approximating the v − n curve

based on all available data from day ONE to day q′, it may be necessary to restrict the

data set to only contain traffic observations within a certain number of days before day q′.

This makes the learning mechanism “adaptive” or “dynamic”. That is, we utilize relatively

updated data to estimate the MFD; in case the MFD itself changes over (calendar) time

due to network variations, the mechanism itself always provides an updated and accurate

estimation. In the numerical studies, we utilized traffic observations for 15 days to estimate
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the regional MFD, and a period also contains 15 days.

The procedure for estimating ncri and vcri through Nadaraya-Watson kernel regression is

described in the following. However, to save space, we omit the estimation procedure based

on the moving average method.

Algorithm Nadaraya-Watson kernel regression based MFD estimation

1: Establish nmin = min{ne} and nmax = max{ne} for (vea, n
e) ∈ H

2: h = 50 . bandwidth for the Gaussian kernel
3: N = 1× 104 . number of steps for the interval [nmin, nmax] and δn = nmax−nmin

N−1
4: n = linespace[nmin, nmax, N ] . n = [n1, n2, ..., nN ]
5: for i = 1 : N do

6: ni · v(ni) =
∑

ne K
(

ni−ne

h

)
·ne·vea∑

ne K
(

ni−ne

h

) . K(·) is the Gaussian Kernel Function

end
7: icri = argmaxi ni · v(ni)
8: ncri = nicri and vcri = v(ncri)

Adaptive Pricing. Now we turn to discuss the adaptive pricing scheme, which takes

advantage of the estimated MFD and observed system traffic conditions (system feedback).

When reading through the proposed adaptive pricing strategy in the following, readers are

suggested to keep in mind that under the MFD framework, later travelers can also create

additional congestion for earlier travelers and travelers entering the network at different

times can affect each other’s experienced traffic conditions. This is because under the MFD

framework, the regional speed depends on all traffic in the region. Three key aspects are

specified in the following before we formulate the pricing adjustment scheme.

The stochastic MFD might be re-estimated from day to day once new observations be-

come available, as discussed in the above. However, the pricing scheme should generally not

change too frequently, mainly due to two reasons. Firstly, it takes time for travelers to sta-

bilize their choices from a day-to-day point of view given a pricing scheme; secondly, system

operators should not let travelers get frustrated by frequently changing prices. Therefore,

the pricing scheme should only be adjusted from period to period, where a period contains

a certain number of days, e.g., one month, and we can adjust the price at the beginning of

each period. Let g be the period. For the ease of presentation, we add the period index g

rather than the day index q to the prices. Thus, we have pwm(t, g).

The second aspect is that, for a (departure) time t, the adjustment of pricing may rely

on not only traffic conditions observed at time t but also the conditions relevant to this

time point. This is explained as follows. Firstly, as t is the departure time and the pricing

level is departure-based, the pricing level affects the number of users departing at time t and

therefore the traffic conditions at time points following time t. This means that we may need
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to consider traffic conditions after time t as system feedback for the pricing adjustment at

time t. Secondly, if before time t, traffic conditions are already in a congested and inefficient

state, we may also want to increase the price at time t to avoid further worsening congestion,

and vice versa. This means that traffic conditions before time t may also be incorporated in

the pricing adjustment. Indeed, for every t, we can define a time duration γt, where t ∈ γt,
during which the observed conditions are considered in updating the pricing level at time

t. To appropriately set the length of γt is an interesting direction for future research, but

an initial estimate can be twice of the average travel time for users departing around time t

(travelers departing at time points outside this time window have a marginal effect as most

of them should have little interaction with travelers departing at time t in the network).

In addition to the above, there is another aspect to be considered, i.e., how many days of

observed conditions should be taken into account so that we can have a good approximation of

system performance under certain pricing schemes. This is necessary as the traffic dynamics

and traveler choices are all stochastic. On one side, generally we expect that the traffic

conditions on the days too far away from the current day are less relevant to the traffic

condition on the current day, and therefore the number of days to consider should be upper-

bounded. On the other side, it seems reasonable to include at least a number of days to

alleviate the random effects of traffic conditions in a single day. Let us define a critical day

gap as δq, and we consider conditions from day max{1, q′ − δq + 1} to day q′ to compute

the estimate/expectation for conditions given the same pricing scheme. In this study, the

value of δq is given, and the MFD learning and adaptive pricing framework does not involve

the determination of δq. However, the sensitivity analysis regarding δq can be conducted to

identify an appropriate δq. In the numerical studies, we used 5 days.

We now can present the congestion charge adjustment as follows:

pwa (t, g + 1) = pwa (t, g)

+pwa,0 ·
∫
τ∈γt

max{0, ne,gave(τ)− ngcri}dτ

−pwa,0 ·
∫
τ∈γt

max{0, ngcri −max
τ∈γt
{ne,gave(τ)}}dτ

, (21)

where pwa (t, g + 1) is the pricing level at time t for period g + 1 (next period); pwa (t, g) is the

pricing level for period g (current period); pwa,0 is the coefficient for pricing adjustment (which

indeed translates delays into prices, as will be discussed shortly); ngcri is the estimated critical

accumulation for period g; and ne,gave(τ) is the average condition for period g that takes into

account only a number of days at the end of the period (from day max{1, q′− δq+ 1} to day

q′ as mentioned earlier). If we plot ne,gave(τ) and ngcri in Figure 2, the second and third terms
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in Eq. (21) can be well interpreted as follows.

We take the two time points t1 and t2 in Figure 2 as examples and firstly highlight the

shadow areas’ association with the terms in Eq. (21). For time t1 and t2, suppose both γt1

and γt2 are identified by the dotted-dashed lines. For the case of t1, based on the average

values over a few days, the considered duration is congested (at least for some duration within

γt1 , n
e,g
ave goes beyond the critical value). We then calculate the size of the shadow area, which

is exactly the second term on the right-hand side of Eq. (21) without the coefficient pwa,0.

This area is indeed the additional congestion delays due to the fact that the accumulation

goes beyond the critical value. Note that in this case, the third term on the right-hand side

of Eq. (21) is zero. Now let us move to the case of time t2. As one can see, during the

considered duration γt2 characterized by the two dotted-dashed lines, the average value ne,gave

is always below the critical value. In this case, the second term on the right-hand side of

Eq. (21) becomes zero, while the size of the corresponding shadow area is the total number

of additional vehicles (aggregated over time) that can be allowed into the network without

causing the maximum accumulation to go beyond the critical level. The area corresponds

to the third term on the right-hand side of Eq. (21) but again without the coefficient pwa,0.

It now becomes evident that the price in the new period is based on the last price (the

first term on the right-hand side), the additional congestion delays (the second term on the

right-hand side), and the wasted roadway capacity (the third term on the right-hand side).

The procedure to determine the pricing adjustment is shown in the flowchart in Figure 3.

Figure 2: Graphical explanation of the pricing adjustment
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Figure 3: Procedure for determining the pricing adjustment

The adaptive pricing scheme tends to drive the region to operate at the critical accu-

mulation (with minimum congestion and without capacity waste), where we decrease the

pricing level during an un-congested duration and we increase the pricing level during a

congestion duration. Operation at critical accumulation is generally beneficial, which has

been discussed in the literature (Gonzales and Daganzo, 2012; Liu and Geroliminis, 2016).

It is worth mentioning here that for every t, we can define a different γt for it. However, for

the ease of implementation, in practice, we should discretize the time horizon into multiple

time intervals, and for each time interval, we should adopt the same price, and we can then

define a time duration that is related to the pricing level updating for this time interval. The

simplest case would be that the pricing level during one time interval would depend on only

the conditions observed for this time interval itself. Our numerical studies later indicate that

this simplest approach indeed already leads to significant efficiency gains.

21



Figure 4: The overall framework

We summarize the combined framework for day-to-day traffic evolution and period-to-

period MFD estimation and pricing adjustment in Figure 4. Note that the details for the

MFD estimation and pricing adjustment have already been discussed earlier, where fewer

details are included in Figure 4.
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4 Numerical Studies

This section presents some numerical experiments to illustrate the proposed model. Partic-

ularly, we firstly describe the discretization of time and space for numerical experiments and

list the benchmark numerical settings. Based on these, we then illustrate the day-to-day

evolution process, the learning mechanism for the MFD, and the adaptive pricing scheme

with numerical examples. In particular, we test how different levels of randomness in ncri

and vcri may affect the bi-modal system dynamics, and the learning of MFD, and the adap-

tive pricing strategy. We also illustrate the impact of the penetration of smart information

services. Moreover, we include some additional numerical results in Appendix B to further

demonstrate the applicability of the proposed model in different contexts.

4.1 Numerical setting

We now present the numerical setting. Firstly, we describe the discretization of time and

space and summarize some common parameters or variables in Table 1. Secondly, we provide

the descriptions of the numerical settings for the public transit service, MFD uncertainty,

the parameters involved in the MFD learning/estimation, and the setting for the adaptive

pricing scheme. Thirdly, we describe the demand information, including demand intensity

and trip lengths.

Table 1: Summary of basic numerical settings

Parameters or Functions Specification

Transit fare, frequency, and speed pwb = 2 (EUR/trip); fwb = 10 (veh/hr); vb = 25 (km/hr);

Parameters for v(n) vcri ∼ U(36, 44); ncri ∼ U(9000, 11000);

Value of time α = 25 (EUR/hr);

Learning parameters ηp = 0.5; ηe = 0.5; ηr = 0.8;

Coefficient in the logit model βwm = 0.40;

Proportions of the two types of users θ = 0.75; 1− θ = 0.25;

Parameters for estimating the MFD δn = 50 (veh); δq = 5 (days);

Coefficient for adaptive pricing pwa,0 = 4× 10−4;

While the analytical model assumes the (clock) time and the space (location) to be

continuous, for numerical analysis, the time horizon (within a day) is discretized into multiple

small time intervals, and the city is discretized into multiple small areas. In particular, the
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time horizon (within-day) [0,∆] is discretized into M time intervals for each day, and the

length of each interval is δt so that M · δt = T . Specifically, we let T = 4 (hours) and

δt = 1 (min), and thus M = 240. We consider a square city region with a size of 5km ×
5km. The city is evenly divided into 25 small squares (sub-regions) with a size of 1km ×
1km. Therefore, there are 25 origins and 25 destinations, and 25 × 25 O-D pairs. Note that

the ‘square city region’ used here is a theoretical region and the data used to fit the MFD

corresponds to simulated data.

We now provide some further discussions for the setting in Table 1. As can be seen, for

the transit service, we consider a homogeneous service in the city region such that transit

fare, frequency, and speed are identical (this is often the case in the city center region).

Moreover, vcri and ncri are uniformly distributed within ±10% of the average values (we

refer to it as “variation level” later in the paper), which are 40 and 10000, respectively.

Later we will fix the mean value for both vcri and ncri and change the variation levels for

sensitivity analysis. To facilitate reading, when we test the system with different levels of

variations in ncri and vcri, we refer to it as “Varying MFD Uncertainty”.

For estimating the critical parameters of the MFD, we let δn be 50 (for the moving

average), which is 1% of the mean value for the critical accumulation ncri. For the Nadaraya-

Watson kernel regression based approach, the parameters utilized are specified in Section

3.3, where h = 50 (bandwidth for the Gaussian kernel) and N = 1 × 104 (number of steps

for discretizing the continuous variable “accumulation”). The data used for estimating the

regional MFD comes from the observations (about speed and accumulation) in the numerical

simulation from the past 15 days. The data used to estimate the average system performance

under the given pricing strategy in a period comes from the last five days (δq = 5).

For the adaptive pricing, the price adjustment coefficient is pwa,0 = 4 × 10−4. Note that

this coefficient should be appropriately chosen in practice to avoid a big fluctuation (i.e., a

too big coefficient) and to avoid non-effective price update (i.e., a too small coefficient). A

reasonable coefficient may be obtained by comparing the relative magnitude of the toll level

in practice to the average user travel delays in the network. More importantly, instead of

adopting a different price for every time point, we divide the modeling duration into 8 time

intervals (the length of each equals 30 minutes), and adopt the same price for a single time

interval. Moreover, only the traffic conditions in a time interval are used for updating the

pricing level in that time interval. Other parameters or settings, if not mentioned in Table

1, will be explicitly specified in the text.

Now we turn to the demand side, which is assumed to be identical for every day. The

aggregate demand (relative intensity) profile over the clock time is displayed in Figure 5,

where the modeling duration is 4 hours. Demand is relatively low outside the peak (before
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t = 0.4h and after t = 3.2h), and demand is peaked in the middle of the duration for 1.6

hours. The demand distributions (relative intensity) over origin and destination are further

displayed in Figure 6. As can be seen, demand intensity is higher if the origin is further away

from the city center; and demand heading for the locations closer to the center is higher.
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Figure 5: Travel demand pattern (relative intensity) over time (1=625 persons per minute)
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Figure 6: Travel demand pattern (relative intensity) over space

As the benchmark case, the proportions of type s and type u travelers are 75% and 25%

(listed in Table 1), respectively. The value of 75% can be regarded as the penetration of real-

time information services. To analyze how this penetration may affect system dynamics, we

tested different values. To facilitate reading, we will refer to the case where we test the sys-

tem with different penetrations of real-time information services as “Varying Information

Service Penetration”.
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The trip length of travelers between a given O-D pair w is given as follows:

lwa = max {1.6, 1.6 · ||w||}

lwb = max {1.8, 1.8 · ||w||}
, (22)

where ||w|| is the Euclidean distance between the origin and the destination of O-D pair w.

Note that the city was discretized into twenty-five 1km × 1km square areas in the numerical

studies, and ||w|| was measured based on the distance between the geometric centers of the

origin and destination. The minimum values (1.6 and 1.8) for trip lengths in Eq. (22) are

for trips within a single 1km × 1km square area or sub-region.8 Moreover, we consider that

lwb > lwa as transit lines usually make detours to serve passengers from a large area.

To facilitate reading, we now summarize the two typical cases mentioned earlier: the

Varying MFD Uncertainty case and the Varying Information Service Penetration

case. In the Varying MFD Uncertainty case, the proportion of type s travelers (or the

penetration of information services) was fixed at θ = 0.75, but the variations in vcri and ncri

changed from ±0% to ±10%, and then to ±20%, where ±10% is the benchmark level. In

the Varying Information Service Penetration case, we fixed the variation at ±10% for

both vcri and ncri. However, we changed the proportion of type s travelers (penetration of

real-time information services), i.e., θ = 60% → 75% → 90%, where 75% is the benchmark

level. Other numerical settings are identical.

4.2 Day-to-day evolution

Under the numerical setting in the above, we now examine the day-to-day stochastic traffic

evolution process. For the benchmark case where the variations in ncri and vcri are within

±10% and the proportion of type s travelers (or the penetration of information service) is

θ = 0.75, we examine the evolution of car traffic inflow and outflow, the private car mode

share, and the speed profile over both the clock time and the calendar time, which are shown

in Figure 7. Note that the car traffic inflow and outflow and the private car mode share are

aggregate values for all O-D pairs and all types of travelers.

8In this study, we consider the trips that have the same sub-region as both origin and destination.
However, we do not consider the route choices of travelers (i.e., we do not consider which sub-regions a
traveler may drive through to reach his or her destination). Also, traffic flow is governed by a single MFD
for the whole region. Therefore, whether origin and destination sub-regions are the same or not does not
affect the approach to modeling traffic dynamics. The only difference is that the trip lengths for different
O-D pairs can be different. Recent studies have examined the estimation of regional trip length distributions,
e.g., Batista et al. (2019).
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Figure 7: Evolution of modal-split, car traffic inflow and outflow, and speed over the clock
time and the calendar time

In Figure 7, the x-axis and y-axis correspond to the clock time and the calendar time,

respectively. There are several observations, which are explained as follows. Firstly, for the

first two days (corresponding to 1 and 2 in the y-axis), the initial traffic condition of the

system is far from traffic conditions in later days (e.g., day 11 to day 15). The inflow and

outflow, the private car mode share, and the speed profile are thus much more different than

those on the other days. As travel choices evolve over time, the system approaches similar

conditions in later days. This is further verified by Figure 8, where we show the discrepancy

between flows and costs for two consecutive days. Secondly, by comparing car traffic inflow

with the speed profile, there is a (within-day) time-lag between inflow and congestion, i.e.,

the congestion follows after traffic inflow. Thirdly, the private car mode share is generally

positively correlated with the speed profile. This is expected as a higher speed implies a

lower travel time for travelers. Fourthly, during the most congested period (between hour 1

and hour 3), the outflow is at a medium level (marked by a mix of green and yellow in the
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figure), which is indeed higher than that in the very un-congested period (before hour 0.5

and after hour 3.5). This is because during these very un-congested durations, travel demand

is very low even if the private car mode share is high (please also refer to the demand profile

in Figure 5).

To compare the flows and experienced costs for two successive days, i.e., we define the

following discrepancy in system states for day q′ + 1:

εq′+1 =

∫
t

∑
w

∑
m

[∑
k

|rwk,m(t,q′+1)−rwk,m(t,q′)|
rwk,m(t,q′))

+
|ce,wm (t,q′+1)−ce,wm (t,q′)|

ce,wm (t,q′)

]
dt

2 · |W | ·∆
. (23)

The discrepancy in Eq. (23) is the summation of percentage errors for both realized flows

and experienced costs (the first term and second term in the denominator in Eq. (23)),

which is averaged over mode, O-D pair, and departure time. Note that alternatively we can

evaluate εq′+1 based on average flow and cost values, e.g., averages over 5 days; in this case,

the magnitude of εq′+1 is approximately reduced to 1
5

of its value presented in this paper.

We fixed the proportion of type s travelers (or the penetration of information services)

at θ = 0.75 but changed the variations in vcri and ncri (with three levels: ±0%, ±10%,

±20%, where ±10% is the benchmark level), i.e., the Varying MFD Uncertainty case.

Specifically, Figure 8 shows the evolution of the discrepancy defined by Eq. (23) for the

system under different levels of variations. As can be seen, when the variation is smaller,

the discrepancy can approach smaller values with a faster speed (a smaller discrepancy

value given the same calendar time). This is expected as when the uncertainty of network

performance is smaller, the traffic patterns in the network approach more similar states for

consecutive days after a certain period of the traveler learning process.
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Figure 8: Evolution of ε over the calendar time under different variations in vcri and ncri
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Figure 9: Evolution of ε over the calendar time under different values of θ

We fixed the variation at ±10% for both vcri and ncri as described in Table 1. However,

we changed the proportion of type s travelers (penetration of real-time information services),

i.e., θ = 60% → 75% → 90%, i.e., the Varying Information Service Penetration case.

Figure 9 displays the discrepancy defined by Eq. (23) for the system under different values

of θ (note that the benchmark value is 75%). As can be seen, when θ is larger (75% > 60%

and 90% > 60%), generally the system approaches more similar states in a faster way (a

smaller discrepancy value given the same calendar time). However, while the penetration

is already relatively large (i.e., θ = 75%), the reduction in the discrepancy (in the average

sense) becomes marginal if we further increase θ (see the case with θ = 90%).

29



4.3 Learning of an MFD and the period-to-period pricing

In this section, we firstly examine the learning of an MFD and then illustrate the adaptive

pricing scheme. We start with illustrating the learning of an MFD. Particularly, we explore

the learned curve v′(n) against the observed values. An example of the observed data for

each of the relationships v − n and v(n) · n− n is shown in Figure 10, where the variations

are within ±10%.
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Figure 10: Observations for estimating an MFD (for 15 days)

In Figure 10, the circles are observations from different days (with different colors), the

blue solid line is the weighted average based on Nadaraya-Watson kernel regression, and

the red solid line is the simple moving average. These two estimates are close to each

other while the weighted average based on Nadaraya-Watson kernel regression appears to be

slightly smoother. Later we will only present the results based on the weighted averages.

The determination of ncri and vcri can be updated over days once new observations

become available, for which an example is shown in Figure 11 under different levels of

uncertainty (±0%,±10%,±20%), i.e., we again look at the Varying MFD Uncertainty

case.

Particularly, Figure 11 displays the estimated ncri and vcri over the calendar time. Note

that while these estimations can be updated on each day, it does not mean that the pricing

level is updated every day (indeed the pricing level is updated from period to period and each

period contains 15 days in the example). As one can see from Figure 11, the estimations tend

to approach a constant value after a number of days/iterations. Moreover, when the variation

is larger (±0% → ±10% → ±20%), the estimation deviates more from the expectation. It

is further observed that for a variation level of ±20%, the variation interval is indeed 40%
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of the mean value (for both vcri and ncri simultaneously). The relative error for the critical

accumulation estimation approaches a value less than 20%. A similar trend can be observed

for the critical speed estimation, which can be seen from Figure 11. Moreover, similar

observations can be identified for a variation level of ±10%.
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Figure 11: Evolution of the estimations for critical speed and accumulation

There are two additional observations from Figure 11 for the non-parametric estimation

approach. Firstly, the critical accumulation tends to be overestimated and the critical speed

tends to be underestimated accordingly. This is related to the speed functional form in Eq.

(3), which is briefly explained as follows. The non-parametric estimation approach tries to

identify an accumulation value with the largest production v (n) · n. The overestimation of

ncri (an n larger than the true mean of ncri) is more likely to yield a larger v (n) · n. This is

because, when the value of ncri increases from its mean, for an n smaller than the mean of

ncri, the speed v(n) remains the same (equal to vcri based on Eq. (3)). However, for an n

larger than the mean of ncri, the speed v(n) increases with respect to ncri (when compared

to the case with ncri equals its mean), and the production v(n) ·n increases accordingly. This

is the dominating factor for us to have a larger production value for an n slightly larger than

the mean of ncri. This can be seen from Figure 10b (the maximum production occurs when

accumulation is larger than 1× 104, i.e., the mean of ncri). Given an overestimated ncri, we

have an underestimated vcri = E (v (ncri)). Secondly, even if we have ±0% variations for ncri

and vcri, the estimations still deviate a bit from the exact values and can fluctuate slightly
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over days/iterations. This is due to the following: (i) the speed functional form is assumed

unknown for the estimation process; (ii) there is a non-differentiable and non-smooth point

at ncri for the speed-accumulation curve; (iii) sets of observations used for estimations on

different days/iterations are slightly different.

We now turn to the period-to-period adaptive pricing. Before moving further, we here

summarize several efficiency measures of our interest. Firstly, the total (experienced) cost

of all travelers can be written as

TC =

∫
t

∑
w

∑
m

[
ce,wm (t) ·

∑
k

rwk,m(t)

]
. (24)

Similarly, we can write down the total pricing charges and total transit revenues as follows:

TPm =

∫
t

∑
w

[
pwm(t) ·

∑
k

rwk,m(t)

]
, (25)

where m = a for the pricing charges and m = b for the transit fares. The total social/system

cost can then be determined by

TSC = TC −
∑
m

TPm. (26)

Note that the monetary cost is considered a transfer of money rather than social cost.

Moreover, the operating cost of transit is not included here. However, as public transit

provides the same service for each O-D pair from day to day, the operating cost is identical

and its exclusion does not affect the overall pattern of the total system cost.

For the period-to-period adaptive pricing, we let the period length be 15 days. We

then simulated the day-to-day evolution process and the pricing adjustment process (pricing

adjustment occurs at the beginning of each period). Moreover, we set the initial pricing level

pwa (t) = 2(EUR) for all departure times and O-D pairs, which is equal to the transit fare.

We then explored the evolution of pricing levels, bi-modal system performance, and speed

profiles over time (both the clock time and the calendar time).
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Figure 12: Evolution of pricing levels, system efficiency, and speed profile

Figure 12 displays the evolution of pricing levels over periods and the corresponding

system performance and speed profile for the case with the variation within ±10%. Par-

ticularly, Figure 12a shows the prices for the eight periods of our interest while Figure 12b

shows the prices for the last three periods. As one can see, the time-dependent pricing levels

approached in the later periods are temporally compatible with the time-dependent demand

and observed traffic conditions. This helps to improve system efficiency, e.g., the total system

cost TSC was reduced from 2.81×106 (at the beginning of the first period) to 2.24×106 (at

the end of the last period), which is around 20% of the cost under the initial flow pattern,

as shown in Figure 12c. Note that a period has 15 days and efficiency metrics (e.g., TC and

TSC) have relatively sharp changes after every 15 days (due to the pricing adjustment). It

is also noteworthy that the total cost of travelers TC is reduced through pricing. This is
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due to the reduction in (hyper)congestion. Similar results were observed by Geroliminis and

Levinson (2009) and Liu and Geroliminis (2016). Furthermore, Figure 12d shows the corre-

sponding speed profile under the adaptive pricing in Figure 12a, where the x-axis is the clock

time and the y-axis is the calendar time (thus we present both day-to-day and within-day

dynamics). As can be seen, for the first period (the first 15 days) when the pricing levels

are far from the levels approached in later periods, there is significant congestion between

t = 1h and t = 3h, which is temporally compatible with the demand pattern depicted in

Figure 5. Starting from the second period (i.e., from day 16), with the adjustment of pricing

levels in Figure 12a, the congested duration becomes shorter (the duration with green color

becomes shorter) and the congestion becomes less severe (for some time intervals, the green

color becomes light even if it is still green). Moreover, it can be seen that the speed profile

(within-day) approaches a similar time-dependent pattern at the end of a period (the pricing

levels remain the same within a period), although the exact speed profile varies from day

to day due to the stochastic traffic dynamics. This is consistent with the observations in

Figure 8.

Figure 13 further illustrates the pricing levels and the system performance after we varied

the levels of uncertainty (i.e., ±0%, ±10%, ±20%), i.e., the Varying MFD Uncertainty

case. We omit the results for the pricing level and speed profile as they appear to be very

similar (but with minor differences). For the corresponding total system cost, we can observe

from Figure 13 that when the variations are different, the adaptive pricing scheme leads to

similar system performance (slightly different under different levels of variations), while the

size of variations of system performance is compatible with that of ncri (and vcri).
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Figure 14: Evolution of total system costs under adaptive and constant pricing

Figure 14 displays the evolution of pricing levels over periods and the corresponding

system performance and speed profile for the case with constant pricing (over the clock time)

when the variations are still within ±10% for ncri and vcri, which are similar to those for the

dynamic pricing case in Figure 12. By comparing Figure 12 and Figure 14, we can conclude

that the proposed adaptive pricing scheme with constant pricing still helps improve system

efficiency (Figure 14c) and eliminate congestion (Figure 14d). However, it loses efficiency

when compared with dynamic pricing, which is shown in Figure 14c, where the cost achieved

in later periods is approximately 2.48×106. This efficiency loss ((0.24 = 2.48−2.24)×106) is

around 9% of the total cost under the initial flow pattern, which is due to the inability of the

constant pricing to capture demand variations over (the clock) time. This highlights the need

of the time-dependent pricing strategy. Moreover, by comparing Figure 14d and Figure 12d,
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we further have the following observations. At the end of period 8, in the case with time-

dependent pricing, since pricing levels are different for different time intervals (within-day),

the distribution of congestion over time is relatively uneven, e.g., in Figure 12d green colors

appear around t = 1h (when the demand level starts to be relatively high) and t = 3h (when

the demand level starts to be relatively low) while yellow colors dominate between t = 1.2h

and t = 2.8h. Differently, for the case with constant pricing, since the same relatively high

pricing level applies to all time intervals with different demand levels at the end of period 8,

as long as the time interval with the peak demand (refer to Figure 5) does not involve too

much congestion, the other time intervals with lower demand levels do not involve too much

congestion.

5 Conclusion

This paper proposes a framework for modeling and managing stochastic traffic dynamics in

a bi-modal transportation system. The study has several key features. Firstly, we embed the

network-level stochastic within-day traffic dynamics into the day-to-day framework and de-

velop a stochastic doubly dynamical system. Secondly, time-dependent traffic conditions and

information provision are incorporated in the travelers’ decision process, where both travel-

ers with and without information are modeled. Thirdly, a learning mechanism for the MFD

of the network is developed, which can take advantage of the day-to-day traffic observations.

Fourthly, the learned MFD is coupled with an adaptive and time-dependent pricing strat-

egy. The learning and managing framework holds potential to adaptively enhance network

performance.

This study can be further extended in several avenues. Firstly, in this paper while we

extend the study of Liu and Geroliminis (2017) by considering a two-dimensional city, we do

not consider the route choice of travelers. Future research can extend the modeling frame-

work in this paper to include their route choices. Secondly, the travel demand over time is

assumed to be fixed (but time-dependent) and the departure time choice is not modeled. We

may include the activity schedules of travelers and explore the trip-timing choices in the dou-

bly dynamical system developed. Thirdly, this study assumes a dedicated right-of-way for

the public transit system. Therefore, the direct interaction between private car and public

transit is ignored. If this interaction is to be considered, 3D-MFD models can be utilized. In

this case, how to appropriately estimate the stochastic 3D-MFD will be a challenging issue

since more random variables have to be accommodated. The pricing mechanism has also

to be modified to accommodate the 3D-MFD. Fourthly, the real-time information service

considered in this paper is just one simple and widely used way of information services. In
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the future, we shall consider different types of smart services and model how they affect

travelers’ learning and decision process. Fifthly, due to the complexity of the within-day

stochastic traffic dynamics, it is extremely difficult if not impossible to analytically explore

the properties of the stochastic dynamical process. Future research will look into this issue

by, e.g., simplifying the traffic dynamics, the network setting, or the demand setting. Fur-

thermore, in this paper, the learning parameters in the travelers’ learning mechanism are

constant over time. However, these parameters may be changing over time. Techniques from

the reinforcement learning literature can be utilized to accommodate it. In particular, one

may expect that travelers’ learning can improve over time. We will look into these issues in

a systematic manner in our future study.
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Appendix A. Notations

Table 2: List of main notations

Notations Specification

cp,wk,m(t, q) The mean perceived travel cost of type k travelers between O-D pair w who

depart at time t and choose mode m on day q

cpk(t, q) =
{
cp,1k,a(t, q), c

p,1
k,b(t, q), ..., c

p,|W |
k,a (t, q), c

p,|W |
k,b (t, q)

}T
is the vector of the mean per-

ceived travel costs, where W is the set of all O-D pairs and |W | is the total

number of O-D pairs

ce,wm (t, q) The experienced travel cost of travelers between O-D pair w who depart at

time t and choose mode m on day q

ce(t, q) =
{
ce,1a (t, q), ce,1b (t, q), ..., c

e,|W |
a (t, q), c

e,|W |
b (t, q)

}T
is the vector of experienced

travel costs
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cr,wm (t, q) The predicted travel cost of travelers between O-D pair w who depart at time

t and choose mode m on day q

cr(t, q) =
{
cr,1a (t, q), cr,1b (t, q), ..., c

r,|W |
a (t, q), c

r,|W |
b (t, q)

}T
is the vector of predicted

travel costs

fwb Public transit frequency between O-D pair w

g The period index, where a period consists of a number of days (for the period-

to-period model)

h The bandwidth for the Gaussian kernel

H The set of all data points {(vea(t, q), ne(t, q))} over (t, q)

Hn The set of data points {(vea(t, q), ne(t, q))} over (t, q) where |ne(t, q)− n| ≤ δn

k ∈ {s, u} The user type, where k = s represents the user type with smart information

services and k = u represents the user type without smart information services

lwm The trip length for mode m and O-D pair w

m ∈ {a, b} Travel mode, where m = a represents the private car mode and m = b repre-

sents the public transit mode

n Accumulation: the total amount of traffic in a region

ncri The critical accumulation, where the production v(n) · n is maximized

ngcri The estimated critical accumulation for period g

ne(t, q) The realized regional accumulation at time t on day q

ne,gave(t) The average value of accumulation at time t over a number of days at the end

of period g

N The number of steps for discretizing the accumulation

ow(t) The total amount of car traffic between O-D pair w arriving at the destination

at time t

Ow(t) The cumulative car traffic between O-D pair w arriving at the destination

before or at time t

pwm(t) The monetary cost for travelers between O-D pair w who depart at time t and

choose mode m

pwm(t, g) The monetary cost for travelers between O-D pair w who depart at time t and

choose mode m in period g

pwa,0 A coefficient for pricing adjustments

Prwk,m(t, q) The proportion of type k travelers between O-D pair w who depart at time t

and choose mode m on day q

q or q′ The calendar time, i.e., the day index (for the day-to-day model)

rw(t) The total travel demand between O-D pair w departing at time t
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rwk (t) Type k travel demand between O-D pair w departing at time t, where rwk (t) =

θk · rw(t)

rwk,m(t) Type k travel demand for mode m, O-D pair w, departure time t, where∑
m r

w
k,m (t) = rwk (t)

rwk,m(t, q) The realized rwk,m(t) on day q

r(t, q) =
{
r1s,a, r

1
s,b, ..., r

|W |
s,a , r

|W |,
s,b , r

1
u,a, r

1
u,b, ..., r

|W |
u,a , r

|W |
u,b

}T
is the vector of the realized

travel demand. Note that (t, q) is omitted inside the vector expression to ease

the notation, and |W | is the total number of O-D pairs.

Rw
k,a(t) Cumulative car inflow of type k travelers between O-D pair w and with depar-

ture time t, where
∑

m r
w
k,m (t) = rwk (t)

R(t) =
{
r1(t), r1(t), r2(t), r2(t), ..., r|W |(t), r|W |(t)

}T
is the total demand column vec-

tor for the total travel demand departing at time t

t or t
′

The (clock) time (for the within-day model)

Twm(t) Travel time for travelers between O-D pair w who depart at time t and choose

mode m

v(·) The regional speed function for car traffic

vcri The critical speed, where vcri = v(ncri)

va The regional space-mean speed for car traffic

vea(t) The realized regional (car) traffic speed at time t

vea(t, q) The realized regional space-mean speed at time t on day q

vb The transit speed

w or w′ An O-D pair

W The set of all O-D pairs, where w,w′ ∈ W
(x, y) A point with the coordinates of x and y in the Cartesian coordinate system,

which can be either an origin or a destination

z1 and z2 Parameters to be determined in the discrete-time approximation for travel time

α The value of time

βwm The coefficient in the Logit choice model for mode m and O-D pair w

γt A duration defined for time t, where t ∈ γt
δn The interval length used for discretizing the accumulation n

δq A number of days: during which traffic data is used to measure system per-

formance

∆ [0,∆] is the modeling duration within a day

εwm The random term associated with the mean perceived cost cp,wk,m(t, q)

ηe, ηp, ηr The coefficients associated with the experienced cost, mean perceived cost, and

predicted cost in the equation for travelers’ perception updating
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θk The proportion of type k travelers among rw(t)

τ The (clock) time (for the within-day model)

Φw
k,m (·) The modal-split function for type k travelers between O-D pair w who choose

mode m

Φk (·) =diag
{

Φ1
k,a (·) ,Φ1

k,b (·) , ...,Φ|W |k,a (·) ,Φ|W |k,b (·)
}2|W |×2|W |

is the modal-split ma-

trix, where |W | is the total number of O-D pairs

Ω The feasible flow set defined in Eq. (1):
{
rwk,m (t) ≥ 0,∀k,m,w, t

}

Appendix B. Extended Numerical Results

Now we provide some further numerical tests to show the applicability of the proposed

model in different contexts. Moreover, we use a different approach to estimate the critical

accumulation and speed, where the speed-accumulation functional form is utilized.

Appendix B1. MFD Learning: Varying Variability for ncri and vcri

Firstly, we explore the case when the randomnesses of ncri and vcri can change from day

to day. We consider that the average values of ncri and vcri remain constant, while the

exact distributions of ncri and vcri vary over days. In this context, Figure 15 displays the

estimations for critical speed and accumulation over calendar time, which is comparable to

Figure 11 (where the distributions of ncri and vcri do not vary from day to day). In Figure

15, the star-marked line corresponds to the case where on each day the probability for a

level of uncertainty ±0% is 0.5, and that for ±10% is also 0.5 (for both ncri and vcri); the

circle-marked line corresponds to the case where on each day the probability for a level of

uncertainty ±10% is 0.5, and that for ±20% is 0.5. All other numerical settings are identical

to those in Section 4.
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Figure 15: Evolution of the estimations for critical speed and accumulation with varying
uncertainty levels

By comparing Figure 15 with Figure 11, we have three key observations. Firstly, one

can readily identify that when the distributions of ncri and vcri vary from day to day, there

are more fluctuations in the estimated values. Secondly, a combination of ±0% and ±10%

indicates smaller variations in ncri and vcri than that of ±10% and ±20%, meaning that

the estimated values for the former are more accurate (on average). Thirdly, a combination

of ±0% and ±10% shows larger variations than ±0% but smaller variations than ±10%,

meaning that the estimated values on average are less accurate than those for ±0% and

more accurate than those for ±10%. Similar trends can be observed for a combination of

±10% and ±20%.

Appendix B2. MFD Learning: An Explicit Approach

We now consider that when we estimate the speed-accumulation and/or production-

accumulation curve, the speed function in Eq. (3) is known and explicitly utilized. We

then only need to calibrate two parameters ncri and vcri for the speed-accumulation func-

tion.
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We have all data points (vea, n
e) ∈ H. We solved the following minimization problem:

min
(ncri,vcri)

∑
(vea,n

e)∈H

[vea − v (ne)]2 , (27)

where v(·) is given in Eq. (3).

By adopting the above approach, Figure 16 displays the estimated ncri and vcri over the

calendar time. Similar to Figure 11, three levels of uncertainty are considered, i.e., ±0%,

±10%, and ±20%. Moreover, all other numerical settings are identical to those in Section

4 when generating traffic patterns from day to day. By comparing Figure 16 with Figure

11, we have three key observations. Firstly, for the current explicit estimation approach,

the estimated values sometimes change very little from day to day, and sometimes change

relatively significantly. Overall, there are more fluctuations in the estimated values. This

is explained as follows. The optimization problem in Eq. (27) tries to minimize the error

terms for speed observations. When new observations differ significantly from the average,

the optimization problem tends to adjust the estimated ncri and vcri more sharply. Secondly,

as discussed in Section 4.3, the non-parametric approach proposed tends to overestimate

the critical accumulation and underestimate the critical speed. However, the current ex-

plicit approach is arbitrary. Thirdly, when the variations in ncri and vcri are smaller, the

estimations are more accurate with the explicit approach. This is similar to the proposed

non-parametric approach. In the case of ±0% variation, the estimation is perfectly accurate

with the explicit approach. However, for the non-parametric approach, the estimations still

deviate a bit from the exact values even if we have ±0% variations.

It is worth mentioning that the explicit approach considered here gives estimations with

more fluctuations, but the relative accuracy of the estimated values is comparable to that of

the proposed non-parametric approach. However, this only occurs when we know the exact

and correct functional form for the speed-accumulation function. If we adopt a “wrong”

form for the speed-accumulation function, the explicit approach can result in very large

discrepancies. We omit detailed numerical illustrations to save space.
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Figure 16: Evolution of the estimations for critical speed and accumulation with a closed-
form approach

Appendix B3. Extended Numerical Results for the Northwestern

Speed Model Case

Generally speaking, the modeling framework in this paper does not rely on the speed-

accumulation specification in Eq. (3). To illustrate this, we examine the case with the

Northwestern Model (Drake et al., 1965), which is given as follows:

v (n) ≡ vcri · e
− 1

2
·
(

n
ncri

)2
. (28)

We adopted the uniform distributions for the two parameters in the speed function, vcri ∼
U(45, 55) and ncri ∼ U(9000, 11000), as the benchmark case (i.e., ±10% variation for both

ncri and vcri). All other numerical settings are identical to those in Section 4.1.

Figure 17 shows the estimations for critical speed and accumulation over calendar time.

Similar to Figure 11, with unchanging average values for ncri and vcri , three levels of varia-

tions were examined, i.e., ±0%, ±10%, and ±20%, where ±10% is the benchmark case. It

is evident that a smaller level of variation results in a more accurate estimation (closer to

the real average value). Moreover, the estimated value for the maximum speed varies very

little from day to day, which is different from that under the speed function in Eq. (3). This
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is because, for Eq. (28), vcri is the critical/maximum speed occurring at n = 0. Therefore,

the estimation of vcri can be simply based on observations at n = 0. For Eq. (3), vcri is the

speed at n = ncri, i.e., vcri = v (ncri). Since ncri also varies, the estimated vcri fluctuates

more.
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Figure 17: Evolution of the estimations for critical speed and accumulation: the Northwest-
ern speed model case

Similar to Section 4.3, we now examine the period-to-period adaptive pricing. Figure

18 displays the evolution of pricing levels over periods (Figure 18a and Figure 18b) and

the corresponding system performance (Figure 18c) and speed profile (Figure 18d) for the

benchmark case with a level of variation at ±10%. These results are consistent with those

in Section 4.3 with a different speed function. Particularly, in the current case, the total

system cost was reduced from 3.293 × 106 to 2.630 × 106 through the adaptive pricing. It

is worth mentioning that the speed profile in Figure 18d does not approach the maximum

speed for the peak demand duration (between t = 0.5h and t = 3.2h in Figure 5). This is

because the production (i.e., n · v(n)) is maximized at n = ncri, where the speed based on

Eq. (28) (around 30km/h) is less than the maximum speed (around 50km/h).
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Figure 18: Evolution of pricing levels, system efficiency, and speed profile: the Northwestern
speed model case

Figure 19 further shows the system performance under the period-to-period adaptive

pricing levels after we varied the levels of uncertainty (i.e., ±0%, ±10%, ±20%), which is

similar to that illustrated by Figure 13 in Section 4.3. Similarly, we omit the results for the

pricing levels and speed profile, which are very similar to those in Figure 18 (with minor

differences). As can be seen from Figure 19, when the variations are different, the adaptive

pricing scheme still leads to similar system performance (with slight difference under different

levels of variations). In addition, larger variations in ncri and vcri lead to larger variations in

TSC. These are consistent with observations from Figure 13.
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