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Abstract
The discovery of cancer stem cells caused a paradigm shift in the concepts of
origin and development of colorectal cancer. Several unresolved questions
remain in this field though. Are colorectal cancer stem cells the cause or an effect
of the disease? How do cancer stem cells assist in colorectal tumor dissemination
to distant organs? What are the molecular or environmental factors affecting the
roles of these cells in colorectal cancer? Through this review, we investigate the
key findings until now and attempt to elucidate the origins, physical properties,
microenvironmental niches, as well as the molecular signaling network that
support the existence, self-renewal, plasticity, quiescence, and the overall
maintenance of cancer stem cells in colorectal cancer. Increasing data show that
the cancer stem cells play a crucial role not only in the establishment of the
primary colorectal tumor but also in the distant spread of the disease. Hence, we
will also look at the mechanisms adopted by cancer stem cells to influence the
development of metastasis and evade therapeutic targeting and its role in the
overall disease prognosis. Finally, we will illustrate the importance of
understanding the biology of these cells to develop improved clinical strategies to
tackle colorectal cancer.

Key words: Cancer stem cell; Colorectal cancer; Tumor microenvironment; Metastasis;
Extracellular matrix; Tumor heterogeneity; Resistance; Stemness; Quiescence;
Recurrence
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Core tip: With the advancement of technology, the importance of deciphering the roles of
stem cells in normal and malignant intestinal biology has grown tremendously. Aided by
several molecular and environmental factors, evidence suggests that colorectal cancer
stem cells exploit the intestinal cellular framework causing the development and spread
of the disease, simultaneously promoting a poor prognosis through drug resistance and
recurrence-based events. Only by a better understanding of the biology of these cells can
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there be an improvement in the strategies associated with clinical monitoring and
therapeutic targeting required for disease management.
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INTRODUCTION
Colorectal cancer (CRC) is a heterogeneous disease. Approximately three decades
ago, the genetic roadmap for the origin and development of CRC was identified[1].
Since then, massive technological progress has allowed the identification of numerous
genetic  and  epigenetic  components  of  the  disease,  further  improving  our
understanding of the heterogeneity associated with CRC. We now know that not only
does CRC exhibit a highly complex inter-tumor heterogeneity across multiple cases,
warranting the need for personalized medicine[2], but it also displays a component of
intra-tumor heterogeneity (morphological, genotypic, and phenotypic differences
within  the  same  tumor)[3].  The  overall  picture  was  further  complicated  by  the
discovery of cancer stem cells (CSCs) that led to an altered component of intra-tumor
heterogeneity (i.e. heterogeneity between clonal populations), owing to the highly
dynamic nature of CSCs. Major components affecting this behavior of CSCs include
tumor genetics, epigenetic signals, and most importantly, the surrounding tumor
microenvironment[4]. Notably, these factors have brought a landmark change in our
understanding of the landscape of CRC development and progression. Considering
these  developments,  here  we  review  the  current  understanding  as  well  as  the
evolving concepts of CSCs in the context of origin, development, and outcome of
CRC. At the outset, we wish to clarify that the understanding of several aspects of
CSCs, particularly within the field of CRC, is still at its infancy. Regardless, we aim to
provide critical shreds of evidence from clinically relevant discoveries that would
attempt to bridge, if not all, certain knowledge gaps existent within this field.

THE STEM CELL NICHE: PERSPECTIVES OF THE ADULT
INTESTINE
An insight  into  the  biology  of  intestinal  stem cells  (ISCs)  will  fuel  our  existing
knowledge of the regulatory mechanisms of development and function of colorectal
CSCs, owing to the similarities in several signaling pathways within normal and
cancerous stem cells[5,6]. Structurally, the intestinal epithelium is organized into several
finger-like villi protrusions extending into the gut lumen that is surrounded at the
base by multiple glandular invaginations, the crypts of Lieberkühn, that extend into
the  extracellular  matrix.  The  villus  architecture  comprises  of  non-dividing
differentiated  polyclonal  cells  with  divergent  functions  of  nutrient  absorption-
enterocytes, protective mucus barrier secretion - goblet cells, and gastrointestinal
hormone secretion-enteroendocrine cells;  all  of which, including the post-mitotic
Paneth  cells  that  reside  at  the  bottom  of  the  crypt,  are  generated  from  the
undifferentiated, rapidly proliferating multipotent stem cells residing as monoclonal
compartments within the crypts. Unequivocally, the exorbitant rate of proliferation
exhibited by the ISCs within the crypts is responsible for providing a high rate of self-
renewal to the intestinal epithelium; essential to protect it by the persistent fusillade
from physical, chemical, and/or biological insult[7].

Two functionally unique ISC populations are characterized within human and mice
small intestine, the quiescent DNA label-retaining ISC (LRCs) identified at the +4
crypt position (characterized by the high expression of the polycomb complex protein
Bmi1[8], homeodomain-containing protein Hopx[9], Tert[10], and Lrig1[11,12] markers), and
the leucine-rich repeat–containing G protein-coupled receptor 5 (Lgr5+) expressing
crypt base columnar cells (CBCs)[13]; both of which exhibit a self-renewal ability (self-
renewal) as well as the potency to differentiate into cells of the intestinal epithelium
(multi-potency), certifying them as true stem cells[7,14]. The identification of these ISC
markers has been hugely possible through lineage tracing studies employing mouse
models. Evidence from clonal analysis and knock-in experiments suggests that the
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Lgr5+  CBC cells  represent  the  actively  cycling  stem cell  niche  that  gives  rise  to
daughter  cells  that  are  transferred  into  a  transit  amplifying  (TA)  compartment;
subsequently dividing and moving towards the crypt-villus axis as differentiated
cells, promoting intestinal homeostasis[13]. Contrastingly, the Lgr5- ISCs located on the
+4 position of crypts are under 2% proliferative, and consequently serve as a reserve
ISC  pool  that  can  assist  the  LRCs,  directly  or  by  regenerating  the  Lgr5+  cell
population, in case of injury from chemotherapy or radiation to the functional stem
cell population[8,15].  Indeed, through carefully derived genetic models, it has been
shown that selective killing of Lgr5 cells can be restored by Lgr5–/Bmi1+ cells located
anywhere in the crypt[16].

Muñoz et  al[17]  identified,  however,  that the Lgr5+  cells  can also express the +4
markers; suggesting a high degree of plasticity between the two ISC populations.
Furthermore, secretory precursors [including the Paneth cells, enteroendocrine cells,
goblet  cells,  and  Tuft  cells  (IL-25  secreting  chemosensory  cells  that  increase  in
numbers as a type-2 immune response)]  derived from Lgr5+  cells  expressing the
Notch ligand DLL1, have also been shown to generate short-lived clones composed of
differentiated  secretory  cells  of  intestinal  epithelium,  upon  radiation-induced
damage[18]. Yet another regenerative mechanism was identified by Barriga et al[19], who
observed through single-cell  transcriptomics, the existence of a subpopulation of
Lgr5+  cells expressing an RNA-binding protein Mex3a that divides at a relatively
slower rate, making it more resistant to radiation or chemotherapy-induced damage,
and can help regenerate all intestinal lineages. To summarize, the small intestinal
crypt functions as a well-defined network of interdependent cellular niches that serve
as multiple layers of backups to ensure the smooth and continual functioning of the
stem cell machinery to maintain intestinal homeostasis.

Within the ISC research community, while the small intestine has received a major
focus, the colon stem cells lack significant characterization[5]. As compared to the small
intestine, the colon shows large differences with the overall anatomy of the intestinal
epithelium as well as the cellular architecture. The large intestine is devoid of any
finger-like villi protrusions, or crypt based Bmi1+ cells, and Paneth cells[5]. The colonic
stem cell niche has been characterized primarily with cells showing a high expression
of  Lgr5  as  well  as  ephrin  type-B  receptor  2,  olfactomedin-4,  and  achaete-scute
complex homolog-2 markers; which are capable of self-renewal and giving rise to the
cells of the intestinal lineage[13,20-22]. Studies also indicate, however, the presence of
slow-cycling colonic Lrig1+ cells that attempt to replenish the Lgr5 cell population
upon injury[11].  Reports also show the presence of doublecortin-like kinase 1 cells
within the colonic crypts that have been found to be actively proliferating in the
presence  of  growth  factors  and  give  rise  to  intestinal  lineage  cells,  forming
enteroids[23,24]. Furthermore, unlike small intestine where the Paneth cells serve as the
primary source of  wingless/integrated (Wnt) signaling molecules that guide the
renewal of the epithelium, recent work by Degirmenci et al[25] showed the existence of
a group of subepithelial mesenchymal cells expressing zinc finger protein Gli1 that act
as a critical source for Wnt secretion that directs colonic stem cell renewal. Moreover,
the crypt structural elements, specifically the colonocytes, have also been found to
yield a protective function to the proliferating cells within the crypt from potent
metabolites produced by the intestinal microbiota[26]. Notwithstanding these crucial
bits of research, a lot must be done to understand better the colonic crypt and the
associated stem cell niche.

ROLE OF INTESTINAL STEMNESS IN THE ORIGIN OF CRC
The original model for colorectal carcinogenesis and progression, the “Vogelgram”,
was laid down rather elaborately by Fearon and Vogelstein[1]. It provided a schematic
in which loss of the adenomatous polyposis coli (APC) tumor suppressor gene would
result in an adenoma and subsequently mutations in KRAS, TP53, phosphoinositide 3-
kinase (PI3K), and other genes would cause the development of a metastatic disease.
A principal feature of CRC identified through this model was the monoclonal origin
of the disease (i.e. CRC originates from the clonal expansion of one hyperproliferating
cell). Importantly, the involvement of the crypt and the corresponding ISCs residing
within  them as  CRC initiators  were  debated upon,  since  the  analysis  of  several
spontaneous adenomas found dysplastic cells with mutations in APC  only on the
luminal surface of the colon, while the underneath crypt and the ISCs were normal[27].
This finding caused the development of the ‘top-down’ model of tumor initiation that
begins at the top of the crypt, in the intra-cryptal zones between crypt orifices, and
then spreads laterally and downward, displacing the normal epithelium of crypts[27].
Though  this  was  true  for  patients  with  familial  adenomatous  polyposis  (FAP),
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immunohistochemical studies of early sporadic colorectal adenomas have shown
proliferative adenomatous epithelium with nuclear beta-catenin within the entire
crypt;  pointing at  the role  of  crypt  based stem cells  as  progenitors  of  CRC[28].  In
parallel, the Wright lab also examined the mucosa from FAP patients post-surgery
and found that both sporadic and FAP adenomas originate as a uni-cryptal adenoma,
with dysplastic  lesions  in  a  single  but  entire  crypt,  and grows ‘bottom-up’  by a
division of the crypt at the base, termed as crypt fission. Although the lateral and
downward spreading model was not completely excluded, several studies pointed
out that crypt fission is the primary mode of adenoma progression in FAP[29,30] as well
as sporadic adenomas[31]. Indeed, an alternative explanation for the top-down model
was suggested by Shih et al[27]  wherein the stem cells at the base of a single crypt
develop the neoplasm, which subsequently transforms and migrates up the crypt and
become a part of the superficial mucosae, which then spreads laterally and downward
into adjacent crypts.

It has been shown in the past that the severity of intestinal cancer depends largely
on the initiation than the progression, indicating the importance associated with the
early events of CRC development[32,33]. Importantly, the identification of ISC specific
expression  markers  has  allowed  for  functional  techniques  that  can  be  used  to
determine if they can function as progenitors of colorectal carcinogenesis. In 2007,
O’Brien et al[34] characterized the first tumor stem cell marker, CD133, and pointed
towards a CSC model of tumor initiation driven by CD133+ cells in CRC. A plethora of
studies has indicated that specific deletion of APC in ISCs expressing Lgr5, LRIG1, or
CD133 markers can induce rapid adenoma generation[11,35-37]. Moreover, activation of
the β-catenin pathway within these cells as well as BMI1+ cells resulted in a similar
outcome, indicating that ISCs are the primary cells of origin of CRC[8].  Mutations
within key signaling pathways, including Wnt, Notch, and Hedgehog pathways, can
dislodge the wild-type ISCs from the control of regulatory signals, allowing them to
develop  precursor  lesions[38,39].  Most  of  these  approaches,  however,  caused  the
generation of intestinal adenomas in mice that commonly occur in the small intestine
and  do  not  generally  progress  to  carcinoma[40,41].  In  contrast,  human  intestinal
malignancies mostly occur in the colon. Additionally, the development of human
CRC is  also strongly dependent  on environmental  factors  such as  inflammatory
conditions[42], which are lacking in genetic mouse models[5].

Owing to multiple differences between carcinogenesis in genetically modified mice
and human patients, several studies have looked at the dynamics of stem cells in
response to key genetic mutations and its influence on the development of CRC to
improve our grasp on the actual mechanisms of CRC origin. Mutations within the
intestine were assumed to arise due to several factors, including DNA replication
errors and environmental factors such as carcinogen exposure, inflammation, etc.
Since the TA cells represent the most actively proliferating population within the
crypt, they are more prone to mutations; although given the short life span of these
cells and the mild phenotype of the mutation, mutated TA cells offer a lower risk of
serving as tumor initiators[43]. Indeed, it was shown that the wild-type ISC division
follows the neutral drift principle to replace randomly any of the other crypt ISC
populations[44,45].  Although  oncogenic  mutations  aim  towards  preventing  this,
Vermeulen et al[46]  and Snippert et al[47]  suggest that the mutated cells can also be
stochastically replaced by wild-type ISCs. What this means is that the likelihood of an
inactivating mutation in a key tumor suppressor, like APC, to get fixed is less than
50%, making the mutated cell highly susceptible of getting lost in the continuous
process of  replacement[43].  Such a low probability makes CRC an extremely slow
disease, postulated to take over a decade for cellular mutations to accumulate that
could drive the initiation and progression of the malignancy[48].  Importantly,  the
presence of accompanying conditions such as intestinal inflammation tends to allow
the mutated cells to prevail, pointing at the importance of environmental factors in
conjunction with genetic factors in playing a critical role in CRC initiation[46].  Not
surprisingly, while a competition exists between the normal and the mutated ISCs
during the tumor initiation process, disease progression is associated with a rivalry
between  the  CSCs,  with  stronger  clones  characterized  by  a  larger  number  of
accumulated mutations and resistance to environmental factors such as therapy[5].

In addition to a stem cell-based CRC origin model, a few studies have indicated a
role of differentiated cells in serving as the cell of origin for the disease. Like the ISC
to  colorectal  CSC model,  most  of  these  studies  also  indicate  that  genetic  events
combined with environmental factors can favor the development of CRC. A loss of
APC in the tuft cells accompanied by microenvironmental disturbances was found to
induce  colonic  tumors[49].  Moreover,  transgenic  mice  models  have  shown  that
intestinal epithelial cells can also dedifferentiate into tumor-initiating stem cells under
the influence of enhanced Wnt and the inflammatory nuclear factor-kappa B (NFκB)
signaling pathway[50]. Alternatively, accumulation of mutations such as KRASG12D that
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activates inflammatory signaling, accompanied with a loss of APC that results in the
activation of Wnt pathway, yielded similar tumor initiation from the differentiated
cells[50].  Taken together,  the studies indicate that while CRC can have a stem cell
(primary) or  a  non-stem cell  (secondary)  origin,  the contributing factors include
accumulation of mutations as well as environmental factors to confer a functional
advantage for the development and progression of the tumor.

INFLUENTIAL PATHWAYS REGULATING THE COLORECTAL
CSCs
There exists a molecular network surrounding the complex development of CSCs
associated with CRC, and they are only recently emerging. Deciphering this network
will not only improve our understanding of the role of stem cells in the origin and
pathogenesis of CRC, rather will provide better therapeutic avenues to deal with the
malignancy. Although several signaling pathways have been implicated, notable ones
that have been found to play crucial roles in the growth and functional maintenance
of CSCs include the Wnt, Notch and Hedgehog, and the bone morphogenetic protein
(BMP) pathways.

The canonical Wnt signaling pathway has been identified as a hallmark in the
regulation  of  stem  cells–from  maintenance,  proliferation,  differentiation  to
apoptosis [ 5 1 ] .  Under  normal  signaling,  binding  of  the  Wnt  ligand  to  the
transmembrane receptors tends to stabilize and allows the nuclear translocation of β-
catenin causing transcriptional activation of important targets including c-Myc, Axin2,
Lgr5, and ASCL2 that govern stem cell fate, proliferation, as well as maintenance[52-56].
Specifically, within the intestine, active Wnt signaling is essential to maintain the stem
cell niche within the crypt and promote gut homeostasis[57]. Intuitively, abnormal Wnt
signaling has  been implicated in  several  cancers,  including CRC[58].  Inactivating
mutations  in  APC  and  consequently  a  hyperactive  Wnt  signaling  or  activating
mutations in  β-catenin have been found in most  of  the CRC cases  and has  been
identified as one of the initiating steps in tumor development[59]. In line with the ISC
as the CRC cell of origin theory, Vermeulen et al[60] reported that CD133+ CRC cells
growing  as  tumor  spheres  in  culture  contain  a  subpopulation  of  cells  with
constitutively high Wnt signaling. However, only a subset of these cells with the
highest Wnt signaling was observed to show nuclear localization of β-catenin and
behaved as  CSCs.  Denoted as  the  “β-catenin paradox”[61],  the  existence  of  intra-
tumoral heterogeneity of Wnt signaling indicated that the pathogenesis of CSCs in
CRC required contribution from other factors in addition to the loss of APC, such as
KRAS mutations[62], PI3K[63], Notch[64] and Hedgehog signaling[65]. Moreover, mutations
in essential Wnt pathway components, including the R-spondin/Lgr5/RNF43 module
have been identified in almost 1/5th of CRC cases, which commonly co-occur with
APC inactivation/deletion[66].

Importantly, Lgr5+ cells have been found to propagate CSCs within colon adenoma,
and subsequently, Lgr5 has been identified as an important CSC marker[67].  More
recently, studies have pointed out that while Lgr5- cells can revert into an Lgr5+ cell
phenotype, allowing the development, maintenance, and metastasis of the growing
tumor[68]; inhibition of Lgr5 strongly suppressed the growth of patient-derived tumor
organoids[69]. These findings suggest that Lgr5+ CSCs are detrimental for the growth
and propagation of CRC. Furthermore, Myant et al[70] show that following APC loss,
the small GTPase RAC1 helps in the propagation of Lgr5+ CSCs in colon cancer by
activating reactive oxygen species production, which activates NFκB signaling that
promotes Wnt signaling. Co-activation of NFκB signaling and Wnt signaling has also
been shown to promote colorectal  tumorigenesis  by causing dedifferentiation of
intestinal cells into stem cells[50].

Cross-talk has also been observed between the Wnt signaling pathway and critical
members of the Notch pathway. Like Wnt, Notch signaling is predominantly higher
within  the  stem  cell  populations  of  the  crypt  and  gradually  decreases  in  the
differentiated  compartment,  suggesting  that  Notch  also  contributes  to  ISC
maintenance.  An early  study by the  Clevers  group[71]  on  ApcMin  mice  carrying a
heterozygous mutation for APC that causes multiple intestinal neoplasia, identified a
collaboration between active Notch signaling and Wnt pathway that is indispensable
to maintain the proliferative adenoma cells. Moreover, suppression of Notch signals
by deletion or by inhibition with a γ-secretase inhibitor resulted in an increase in the
levels Math1, a basic helix-loop-helix transcriptional activator of cell differentiation in
the intestine[72], consequently causing the arrest of cell proliferation within the crypt
and the conversion of the crypt cells into differentiated secretory goblet cells[71]. It has
been indicated, however, that goblet cells are commonly absent in CRC and show
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downregulated expression of Hath1, the human orthologue of Math1, suggesting an
active Notch signaling in most CRC cases[73].

In contrast to the Wnt and the Notch pathways, the Hedgehog and BMP pathways
are primarily active within the differentiated cells of the crypt. Although Hedgehog
genes are commonly upregulated in CRC[74,75], numerous studies indicate that Gli-
dependent  canonical  Hedgehog pathway antagonizes  Wnt  signaling  promoting
tumor  cell  differentiation[65,76,77].  This  makes  it  difficult  to  treat  CRC with  drugs
targeting members of the Hedgehog signaling since this strategy seemed to promote
Wnt-based proliferation of CSCs[78,79]. However, recently, Regan et al[80] clarified that
while the Gli-dependent Hedgehog signaling downregulates Wnt signaling, the non-
canonical PTCH1-dependent Hedgehog signaling promotes Wnt signaling to allow
the maintenance of CSCs in CRC. This breakthrough lets physicians target the two
pathways (Hedgehog and Wnt) independently, allowing improved management of
the disease.

Like Hedgehog, the transforming growth factor (TGF)-β/BMP pathway has been
found to have diverse associations with the Wnt signaling network: From inhibition -
by promoting cell differentiation and apoptosis[81], and to collaboration - by causing
CRC tumorigenesis[82]. More recently, it was demonstrated that BMP signaling inhibits
Lgr5  stem  cell  signature  through  a  Wnt  signaling  independent  mechanism  by
SMAD1/SMAD4 recruitment of histone deacetylase that blocks transcription of key
factors essential to maintain the stemness of CSCs[83].  Indeed, germline mutations
within the BMP receptor type I or its downstream effector SMAD4 have been shown
to have a high risk of CRC[84,85]. Additionally, Whissell et al[86] reported a key role for
the zinc-finger transcription factor GATA6, which was found to help maintain the
Lgr5+ CSCs in adenoma, simultaneously suppressing BMP signaling by blocking the
binding of β-catenin/TCF4 transcriptional complex to a regulatory region of the
BMP4 locus within the differentiated tumor cells. In vivo knockdown of GATA6 was
found to upregulate BMP signaling, suppressing CRC development.

Put together, these pathways offer a telescopic view of the multiple mechanisms of
regulation of stem cells in the origin and development of CRC. Only by improving
our  understanding  of  these  mechanisms  of  CSC regulation  can  we advance  the
therapeutic strategies required to deal with the progress of the disease.

ROLE OF STEMNESS IN CRC METASTASIS
Since stem cells have been implicated as the primary cell of origin of CRC, it is safe to
assume that CSCs originating from ISCs would play a crucial role in the maintenance
as well as the spread of the disease to distant sites. In 2010, our laboratory published
the earliest account of a subpopulation of CD26+ CSCs from a primary CRC tumor
responsible for the development of distant metastasis[87]. An important observation
was the discovery of the ability of CD26+  CSCs isolated from the CRC tumor of a
patient  with  liver  metastasis  to  cause  the  formation  of  liver  metastasis  in  mice,
regardless of their CD133 or CD44 expression status. High expression of CD26 was
also found to be associated with advanced tumor staging and poor overall survival of
the  patients[88].  While  CSCs  were  considered  as  the  key  factors  responsible  for
branching and spreading of the primary tumor, it was interesting to note that only
small sub-populations of CSCs could initiate metastasis. Indeed, Brabletz et al[89] had
deduced the existence of two subgroups of colorectal CSCs: The stationary CSCs that
remain active within the primary tumor yet cannot disseminate to newer sites and,
The mobile CSCs that are derivatives of stationary CSCs, but can form metastatic
colonies. Importantly, for a CSC to be considered within the second group, the CSCs
must have undergone epithelial-mesenchymal transition (EMT) to disseminate and
form metastases while retaining its self-renewal capacity, heterogeneity acquired from
the asymmetric division, as well as plasticity to adapt to the newer environment[89,90].
Moreover, a higher number of mobile CSCs at the tumor-host interface associated
with the EMT phenotype has been found to correlate with an overall poor disease
prognosis[91,92].

While  distinct  populations  of  CSCs  initiated  tumor  progression,  it  was  also
essential  to  identify  whether  the  same group of  cells  colonized target  organs  at
random  or  through  a  tight-knit  molecular  pathway.  Since  the  colorectal  CSCs
commonly enter the mesenteric circulation, metastasis is more often observed in the
liver, followed by the lungs[93]. An elegant study by Gao and colleagues characterized
CRC-specific migrating CSCs responsible for organ-specific metastasis[94]. The authors
identified a specific group of CSCs expressing CD110, the thrombopoietin receptor
that  caused  liver  metastasis;  considering  that  liver  is  the  primary  site  for
thrombopoietin production and hence serves as a chemotactic signal for the CD110+
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CSCs. Furthermore, CSCs expressing CUB-domain-containing protein 1 could alone
colonize  the  lungs  by  homing  to  the  lung  endothelial  cells[94].  Thus,  metastatic
colonization not just depends on the existence of specific markers on the initiator cells
but requires a specific complement of the target biological organ with prometastatic
functions.

Although CSCs were hypothesized as the primary force for CRC progression and
metastasis, it was not clear how this trait was orchestrated. What are the genetic or
epigenetic or environmental mechanisms forcing the conversion of CSCs from tumor
instigators to propagators? A crucial step towards malignancy is the induction of the
EMT pathway–A fundamental process of embryonic development as well as cancer
metastasis,  characterized  by  the  loss  of  the  epithelial  morphology  and  the
accompanying markers simultaneously acquiring the mesenchymal phenotype. The
process is  primarily driven by the activation of  a  cohort  of  transcription factors,
including  snail,  zinc-finger  E-box  binding  factor,  twist,  and  several  others[95].
Accumulation of key genetic mutations and epigenetic changes in combination with
an invasive environmental signal triggers the formation of migratory CSCs that show
a high  expression  of  genes  critical  for  EMT as  well  as  for  maintaining  the  CSC
phenotype, such as Slug, β-catenin, N-cadherin, as well as Lgr5, CD133, and CD44[90].
Importantly, Brabletz et al[89] suggested that microenvironmental alterations have a
greater say over genetic factors in inducing EMT, since a reduction of these signals at
the target site reverses the EMT pathway, allowing organ colonization. Indeed, the
presence of pro-CSC microenvironmental cytokines, including, stromal cell-derived
factor 1, osteopontin, and hepatocyte growth factor, promote the activation of PI3K
and  nuclear  accumulation  of  β-catenin,  causing  a  concomitant  increase  in  the
migratory metastatic  CSC pool[96,97].  In  fact,  the pro-CSC cytokines are known to
induce CSC plasticity by causing the dedifferentiation of  tumor cells  into a CSC
phenotype that may subsequently adopt the metastatic CSC feature[60,97].

Another study identified the influence of tumor-associated macrophages secreted
milk-fat  globule-epidermal growth factor-VIII  in conferring the CSC with a self-
renewal and chemoresistance ability, by activating the Stat3 and Sonic Hedgehog
pathways in CSC populations[98].  Contrarily, increase in the levels of the BMPs, a
tumor suppressive cytokine, promotes CSC differentiation, inhibits the Wnt pathway
by upregulating the phosphatase and tensin homolog and suppressing PI3K[99], and
limits  the  expression  of  CD44v6;  a  diagnostic  marker  of  metastatic  CSCs[97].
Interestingly, the BMPs belong to the TGF-β superfamily and tend to inhibit tumor
progression, while Todaro et al[97] suggest that TGF-β may contribute to the metastatic
activity of CD44v6+ cells. Indeed, TGF-β serves as a key microenvironmental factor
that plays dual roles, serving as a tumor suppressor during the early transformation
phase and subsequently playing a pivotal role as an oncogene during the progression
phase; a switch catalyzed by the accumulation of key mutations, such as p53[100] and
SMAD4[101].

An  early  study  by  Calon  et  al[102]  showed  that  the  migratory  CSCs  ready  for
colonization can instruct the stroma of the host organ, by inducing an increase in the
levels  of  TGF-β  either  via  active  secretion  or,  indirectly  by  the  recruitment  of
macrophages,  cancer-associated  fibroblasts  or  platelets  that  produce  TGF-β.
Moreover,  by  activating  the  Smad  proteins,  specifically  Smad2,  Smad3,  and
Smad1/5/8, TGFβ1 has been shown to induce both EMT as well as stemness in CRC
cells, leading to liver metastasis[103]. Additionally, a functional loss of Smad 4, a critical
member of the TGF-β/Smad signaling, has been found to correlate with an increase in
EMT signaling characterized by the loss of E-cadherin, leading to distant metastasis
and  overall  poor  patient  prognosis[104-106].  Oncogenic  TGF-β  has  been  found  to
cooperate with a hyperactive Raf/mitogen-activated protein kinase pathway to cause
an EMT phenotype[107]. Moreover, a collaboration between the loss of the epithelial E-
cadherin protein and an increase in Wnt/β-catenin signaling, with an increased TGF-
β release, allows cells to maintain the mesenchymal phenotype in the EMT process[108].
Following dissemination of the CSCs to the target organs, the new microenvironment
is generally hostile towards the incoming tumor cells, which may affect the stemness
as well as the survival of the cancer cells. CSCs in CRC have been reported to suffer
apoptosis almost immediately after reaching the liver[102].  Survival environmental
signals in the form of cytokines and growth factors are hence generated by infiltrating
cells from the primary tumor, along with the activation of stemness promoting Wnt as
well as Notch pathways, to promote the creation of pre-metastatic niches within the
target  organs  and  improve  the  endurance  of  CRC based  CSCs  as  well  as  allow
colonization. A model of the role of stem cells in the normal colon, CRC development,
as well as metastasis is shown in Figure 1.
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Figure 1

Figure 1  Role of stem cells in normal colon and CRC. Within the normal colon, ISCs constantly divide to give rise to the differentiated cells within the epithelium
that have a multitude of functions. In colorectal cancer, the ISCs can develop into CSCs that lead to tumor formation. Moreover, the transient amplifying cells as well
as the differentiated intestinal cells can mutate into mature tumor cells that can subsequently dedifferentiate to form CSCs. Owing to genetic, epigenetic or
environmental signals, the stationary CSCs can transform into migratory CSCs that pass via circulation to target organs and colonize. Critical pathways and genetic
events have been shown for the entire process of CRC tumorigenesis and progression. Moreover, key biomarkers have been shown for the ISCs and the CRC based
CSCs, although there is some overlap in this panel. CRC: Colorectal cancer; CSC: Cancer stem cells; ISC: Intestinal stem cell; EMT: Epithelial mesenchymal
transition; Wnt: Wingless/integrated; APC: Adenomatous polyposis coli; KRAS: Kirsten rat sarcoma viral oncogene homolog; BMP: Bone morphogenetic protein; TGF-
β: Transforming growth factor-β; VEGF: Vascular endothelial growth factor; MMP: Matrix metalloproteinase.

THE RELEVANCE OF STEMNESS IN CRC PROGNOSIS AND
THERAPY
Several  factors  affect  the  outcome in  CRC—cancer  spread  (metastases),  chemo-
resistance, and recurrence; all of these being mutually exclusive events. Moreover,
numerous studies have pointed out a stronger involvement of CSCs, accompanied
with  our  current  inefficiency  in  understanding  the  biology  of  these  cells  in  the
malignancy, in allowing the factors to become dominant, leading to poor disease
prognosis.  Traditional  therapy  tends  to  debulk  the  tumor  off  the  mature,
differentiated cells, while the CSCs stay quiescent, and hence become resistant to drug
or radio-therapy, allowing for improved opportunities to promote recurrence. An
early report in this direction identified that the quiescence of CSCs can be attributed
to an increased expression of ATP-binding cassette drug transporters, active DNA-
repair machinery, as well as an innate resistance towards apoptotic cell death[109].
Furthermore, variants of key CSC associated markers including Lgr5, CD44, and
aldehyde dehydrogenase 1A1 have been found to be associated with a shorter time to
tumor  recurrence  in  high-risk  stage  II  and  stage  III  CRC  patients  treated  with
fluoropyrimidine-based therapy;  suggesting the association of  the variants  with
improved survival and chemoresistance abilities of the CSCs[110]. It is important to
realize that  while  traditional  adjuvant  fluoropyrimidine and/or platinum-based
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therapy has been found to be effective in CRC, exposure to these chemical agents may
enrich a pool of CSCs responsible for resistance and recurrence. As proof of principle,
the treatment of patients with unresectable CRC with mFOLFOX6 therapy was found
to increase the levels of several CSC markers in distant metastases[111]. A previous
study  in  this  direction  made  use  of  cyclophosphamide  or  Irinotecan-based
chemotherapy  to  treat  xenogeneic  CRC  tumors  and  subsequently  found  an  en-
richment of a group of drug-resistant CSC populations with elevated levels of ALDH1
that could regenerate tumors[112].

While more aggressive CSCs tend to emerge in tumor development, it is the feature
of plasticity that allows CSCs to pioneer resistance to therapy as well as recurrence. A
study by Kobayashi et al[113] identified the interconversion of CSCs from a proliferative
Lgr5+ state to a quiescent, drug-resistant Lgr5- state in the presence of an anticancer
drug. Following reseeding and drug removal, the Lgr5- cells transitioned back to the
Lgr5+ state, while maintaining the in vivo tumor-initiating properties all the time in
both states. It is hence essential to identify and target key molecular factors that are
common to multiple states of CSCs to achieve a better therapeutic cleanup in CRC.
Indeed, by gene profiling studies the authors demonstrate that an epidermal growth
factor receptor ligand, epiregulin, is expressed by both the Lgr5+ and Lgr5- states that
could be targeted using an anti-epiregulin antibody[113].  Several reports have also
indicated that the resistance and recurrence abilities of CSCs are strongly influenced
by the tumor microenvironment as well as key signaling pathways and epigenetic
modifications. Numerous cytokines and chemokines secreted by cancer-associated
fibroblasts,  particularly the MET receptor ligand hepatocyte growth factor,  were
found to promote CSC proliferation while making them resistant to apoptosis in
response to epidermal growth factor receptor therapy[114].  Overactivation of  Wnt
signaling, a critical signaling network in the growth and development of stem cells,
has been observed in 5-fluorouracil  resistant CRC, while downregulation of Wnt
transcription factor T cell factor 4 increases the sensitivity of the tumor to radiation
therapy[115].

Recently, the role of microRNAs has also been identified as potent modulators of
stem cell signaling within CRC. Notable ones include miR-15a and miR-16-1, which
are frequently deleted in CRC cell lines as well as clinical specimens, are found to be
associated with a greater number of B cells positive for immunoglobulin A (IgA+ B
cells) and shorter survival periods[116]. At the molecular level, deletion/inhibition of
miR-15a/miR-16-1 results in the upregulation of AP4, a c-Myc target[117], through a
double negative feedback loop, resulting in distant metastases and poor survival[118].
MiR-15a has also been found to impact several other key genes implicated in the
origin, maintenance, as well as chemoresistance of CSCs in CRC, including YAP1,
doublecortin-like kinase 1, BMI1, and BCL2[119]. Similarly, the expression of miR-16-1 is
negatively correlated with cyclooxygenase-2 level[120]  which is also a downstream
effector of the Wnt signaling pathway and thus has an active role in regulating the
stem cell  biology in CRC. Altogether, the miR-15a/miR-16-1 complex serves as a
valuable  therapeutic  target  to  specifically  tackle  pathways  associated with  CSC
maintenance in CRC.

Successful CRC targeting requires the inhibition of key pathways and environ-
mental signals that function to promote the self-renewal ability, apoptotic resistance,
stemness, as well as prolonged survival of the CSCs. Several potential CSC targeting
drugs have been identified in the past several years, a few of which are under trial as
well. Studies by Todaro et al[121,122] demonstrated a mechanism of apoptosis evasion by
CD133+ CSCs by expressing IL-4, which could be neutralized by the treatment of the
cells with an anti-IL4 antibody, IL-4DM. Moreover, silencing of the Aurora-A kinase,
a  critical  regulator  of  mitosis,  has  been  found  to  affect  the  colorectal  CSCs  by
inhibiting proliferation, promoting the apoptotic potential, and sensitizing the cells to
chemotherapy[123].  The  role  of  mitochondrial  targeting  molecules  as  potential
therapeutic agents has also been identified. A remarkable study by Colak et al[124]

identified a role of BCLXL in protecting colon CSCs from chemotherapy, determined
by decreased mitochondrial priming. By making use of BH3 mimetics, the authors
successfully inhibit the BCL2 family members, sensitizing the CSCs to chemotherapy.
Additionally, several molecules targeting critical members of Notch signaling[125,126] as
well as the Wnt pathway[127] have been identified.

Although there are many more therapeutic targets as well as potential drugs under
pre-clinical/clinical  trials,  understanding the clinical  phenotype of the patient is
critical to the usage of these drugs. Recent studies focusing on the development of
CSC-targeting  drugs  advise  upon  the  combined  use  of  these  drugs  with  the
conventional adjuvant therapy to maximize the potential (Figure 2). The efficiency of
CSC-targeting drugs is particularly higher on circulating CSCs due to the absence of a
safe  microenvironment  as  well  as  the  presence  of  a  toxic  adjuvant  therapy[5].  In
advanced CRC, debulking of the tumor would not directly correspond to a similar
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loss of volume of the associated CSCs. In addition, in aggressive tumors, combination
therapies increase the stress on tumor microenvironment, which has been known to
contribute to an increase in the CSC pool. The situation is made further complex by
the ability of CSCs and differentiated cells to interconvert. Strategies for monitoring
the efficacy of CSC-targeting are still at infancy. Though several CSC markers have
been identified in CRC, most of them are also expressed by ISCs. The success of CSC-
targeting drugs hence strongly depends on the improvement of CSC monitoring
techniques. Additionally, studying of patient-derived models of CRC is essential to
increase our knowledge of the roles of CSCs and help piece the missing gaps within
this field.

CONCLUSION
The landscape of CRC has progressed from a simple hierarchical model to a complex
setup  interspersed  with  multiple  roles  of  dynamic  CSCs  that  are  modulated
constantly  by  genetic,  epigenetic,  and  specifically,  microenvironmental  factors.
Although  the  discovery  of  CSCs  in  CRC  was  made  roughly  a  decade  ago,  our
understanding of the biology of these cells is still quite limited[34]. With the progress of
technology, our existing knowledge of the complex roles and the dynamic nature of
colonic stem cells, as well as CSCs, is undergoing constant evolution. However, better
techniques for detection and isolation as well as the usage of patient-derived CRC
models is essential to further our understanding of CSCs in CRC.
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Figure 2

Figure 2  Therapeutic strategies in colorectal cancer. Targeting the tumor bulk in colorectal cancer with adjuvant therapy leads to tumor regression, although CSCs
may escape cell death. Such a chemoresistance event leads to tumor recurrence and overall poor prognosis. In contrast, treatment with a combination of adjuvant
therapy and CSC-targeting therapy would also eradicate the CSC population, along with the tumor bulk. In the long term, reduction in CSC volume would kill the
tumor. CSC: Cancer stem cells; ISC: Intestinal stem cells.
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