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Abstract In the era of computation and data-driven re-
search, traditional methods of disseminating research are
no longer fit-for-purpose. New approaches for disseminat-
ing data, methods and results are required to maximize
knowledge discovery. The “long tail” of small, unstructured
datasets is well catered for by a number of general-purpose
repositories, but there has been less support for “big data”.
Outlined here are our experiences in attempting to tackle
the gaps in publishing large-scale, computationally inten-
sive research. GigaScience is an open-access, open-data
journal aiming to revolutionize large-scale biological data
dissemination, organization and re-use. Through use of the
data handling infrastructure of the genomics centre BGI,
GigaScience links standard manuscript publication with
an integrated database (GigaDB) that hosts all associated
data, and provides additional data analysis tools and com-
puting resources. Furthermore, the supporting workflows
and methods are also integrated to make published arti-
cles more transparent and open. GigaDB has released many
new and previously unpublished datasets and data types,
including as urgently needed data to tackle infectious dis-
ease outbreaks, cancer and the growing food crisis. Other
“executable” research objects, such as workflows, virtual
machines and software from several GigaScience articles
have been archived and shared in reproducible, transparent
and usable formats. With data citation producing evidence
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of, and credit for, its use in the wider research community,
GigaScience demonstrates a move towards more executable
publications. Here data analyses can be reproduced and built
upon by users without coding backgrounds or heavy compu-
tational infrastructure in a more democratized manner.
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1 Introduction

In a world where zettabytes of electronic information are
now produced globally each year [53], quick and easy access
to this information is becoming increasingly important in
realizing its potential for society and human development.
For scientific data in particular, removing silos and open-
ing access to enable new data-driven approaches increase
transparency and self-correction, allow for more collabora-
tive and rapid progress, and enable the development of new
questions—revealing previously hidden patterns and connec-
tions across datasets.

On top of a citation advantage [62], public access to data
has had other measurable benefits to individual fields, such as
rice research [90]. Further, pressing issues led by the stresses
of a growing global population, such as climate change, rapid
loss of biodiversity, and public health costs, require urgent
and rapid action. Unfortunately, shrinking research budgets
in much of the world mean that the access and use of research
data that is already being collected need to be maximized as
much as possible. There is growing awareness and uptake
of open access publishing, with some estimates that up to
half the papers currently being published are now free-to-
read [83]. Browsing the narrative is only the first step, but
key to maximizing the utility of publicly funded research is
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the ability to access the supporting data and build upon the
contents—an area that needs more development.

Funding agencies, such as the US National Science Foun-
dation, have started to mandate data management and share
plans for all funded projects, and the NIH is likely to go a
step further—investing through their “Big Data to Knowl-
edge” program in the development of a biomedical and
healthCAre Data Discovery and Indexing Ecosystem, or
“bioCADDIE” (http://biocaddie.ucsd.edu/). The data dis-
covery index enabled through bioCADDIE aims to achieve
data what PubMed has achieved for the literature, like
Pubmed and PubMed Central, should provide infrastruc-
ture and momentum towards mandatory data archiving. In
Europe, the Directorate General for Research and Innova-
tion and OpenAIRE (http://www.openaire.eu/) requires grant
recipients to make their publications Open Access. They
also have an Open Research Data Pilot for selected H2020
projects that mandates a Data Management Plan and deposi-
tion of data funded by the grant in a research data repository,
such as Zenodo or the upcoming European Open Science
Cloud for Research infrastructure. The UK Research Coun-
cils (RCUK) are also drafting a Concordat on Open Research
Data (http://www.rcuk.ac.uk/research/opendata/) that pro-
motes making research data open and usable, but does not
act as a mandate. The lack of mandate at the RCUK level is
indicative of the general approach of broad, abstract state-
ments in support of open access and data, but with little
hard line necessity. This and the lack of cross-border agree-
ment greatly limits the uptake of such policies in international
research.

The other key stakeholders are journals, and while they
have supposedly been tightening their policies (culminating
in cross publisher schemes, such as the Joint Data Archiving
Policy in Ecology Journals [87]), there is still a very long way
to go in terms of compliance. Although there are encouraging
signs that some open access publishers are starting to address
this issue [8]. While a recent survey found 44 out of the top 50
highest impact journals have made policy statements about
data sharing, data are available for only a minority of articles
[1], and in some cases access to raw data can be as low
as 10 % [72]. With increasing dependence on computational
methods, code availability policies are unfortunately even
more poorly adhered to than data release policies [77].

These deficiencies have led to a ‘reproducibility gap’,
where most studies cannot be reproduced based on limited
available information in the published paper. Systematically
testing the reproducibility of papers across various research
fields, Ioannidis and others determined that the proportion of
published research findings are false or exaggerated, and an
estimated 85 % of research resources are wasted because of
this [33]. For example, an evaluation of a set of microarray
studies revealed that only 1 out of 9 could be reproduced
in principle [34], and similar results have been seen in pre-
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clinical cancer research, where scientific findings could be
confirmed in only 11 % of cases [6]. These sorts of figures
have been reported in a number of studies, and an analysis
of past preclinical research studies indicates that the cumula-
tive prevalence of irreproducible preclinical research exceeds
50 %; in other words, the US$28 B/year spent on preclinical
research is not reproducible [24]. With increasing rates of
retraction of published work (particularly correlating with
supposed ‘higher impact’ journals [21]), it is important to
stem these deficiencies, not only to prevent the waste and
even incorrect answers to health and environmental issues
that could have deadly consequences, but also to prevent
undermining public confidence in science.

Current formats for disseminating scientific information—
the static scientific journal article—have fundamentally not
changed for centuries and need to be updated for the current,
more data-driven and digital age. Especially so considering
journal articles are the primary method for judging work
achievements and career success. As stated by Buckheit
and Donoho, scholarly articles are merely advertisement of
scholarship, and the actual scholarly artefacts are the data and
computational methods [10]. Further, with particularly inter-
esting and important datasets and tools, curious users outside
of traditional academic environments can also be engaged
and utilized through citizen science. This approach has
already demonstrated novel insights can be gained through
widening the user base to include people with different per-
spectives and a lack of many preconceptions (e.g. Galaxy Zoo
[13]). Making scientific and medical information open access
has educative potential, and also enables informed decision
making by patients, doctors, policy makers and electorates
that may not otherwise have access to this information. It also
provides material for data miners to extract new knowledge,
and enabling open data advocates and developers to build
new infrastructure, apps and tools.

1.1 The need for integrated data publishing

One of the key ways to tackle this reproducibility gap and—
importantly—to accelerate scientific advances is to make
data and code freely and easily available. However, doing
this in the real world is far more problematic than it sounds.
The current mechanism of simply relying on authors to pro-
vide data and materials on request or from their own websites
has been clearly shown not to work. The Reproducibility
Initiative: Cancer Biology Consortium carried out a study to
quantify many of these issues by trying to repeat experiments
from 50 highly cited studies published in 2010-2012. Their
attempt to obtain data using this approach took, on average,
two months to obtain the data for each paper, and in 4 out
of 50 cases, the authors had yet to cooperate after a year
of chasing [84]. Further, based on an assessment of papers
in the ACM conferences and journals, obtaining the code,


http://biocaddie.ucsd.edu/
http://www.openaire.eu/
http://www.rcuk.ac.uk/research/opendata/

Experiences in integrated data and research object...

101

which is essential for replication and reuse, took two months
on average for nearly 44 % of papers [14], and a survey of
200 economics publications found that of the 64 % of the
authors that responded, 56 % would not share supplementary
materials [39].

As an alternative to relying only on authors’ time and
goodwill, funding agencies can play a role in pushing data
and code sharing. However, despite the good intentions of a
few forward thinking organizations, such as the NIH and
Wellcome Trust, most funders around the world do not
enforce this before publication. Journals, therefore, default to
being one of the few stakeholders who can make this happen.
But, with their current focus more on narrative delivery rather
than code and data access, this has also been problematic.

Carrot and stick approaches, however, are not enough.
The hurdles for action need to be lowered, so as to make
data FAIR (findable, accessible, interoperable and re-usable)
[85]. Data management and curation is an expensive and
complicated process that most researchers are simply unable
to deal with. Further, data storage does not come cheap: a
number of studies on disciplinary research data centres in
the UK and Australia, funded by their Research Councils,
found the running costs of these data centres to be roughly
1.5 % of the total research expenditure [29].

While Open Access textual content is being worked
into policies and mandates from research funders, looking
beyond static archived PDFs, a Research Object (RO)-
oriented approach to all the products of the research cycle
is needed. ROs are semantically rich Linked Data aggrega-
tions of resources that provide a layer of structure on top of
this textual information, bundling together essential informa-
tion relating to experiments and investigations. This includes
not only the data used, and methods employed to produce
and analyse that data, but also links and attributes the people
involved in the investigation [3].

There are a growing number of databases that allow scien-
tists to share their findings in more open and accessible ways,
as well as a new generation of data journals trying to lever-
age them. Some areas of biology and chemistry (particularly
those working with nucleic acid or X-ray crystal structure
data) have been well catered for over many decades with
an ecosystem of domain-specific databases, such as those
of the International Nucleotide Sequence Database Consor-
tium (INSDC; GenBank, DDBJ and ENA), and Worldwide
Protein Data Bank. There is also now a selection of broad-
spectrum databases including Zenodo, Dryad, figshare and
the DataVerse repositories. These broad-spectrum databases
have the benefit of not having data-type restrictions, and
researchers can deposit data from the entire set of experi-
ments of a study in a single place. Although these resources
cater well for the ‘long-tail’ of data producers working
with tabular data in the megabyte to gigabyte size range,
researchers working in more data-intensive areas producing

large-scale imaging, high-throughput sequencing and mass
spectrometry may not be as well served, due to their file size
limitations and charges.

Still, beyond storage, there needs to be more incentive to
make this still difficult activity more worthwhile: data and
method producers need to be credited doing so [15]. Effec-
tively, wider and more granular methods of credit such as
micro- or even nano-publication need to be accepted [60],
and new platforms and infrastructure are required to enable
this information to be disseminated and shared as easily and
openly as possible.

To establish such a mechanism for providing this type
of credit, along with data storage and access, code avail-
ability, and open use for all of these components, BGI,
the world’s largest producer of genomics data, and BioMed
Central, the world’s first commercial open access publisher,
built a novel partnership and launched the open access, open
data, open code journal GigaScience. This aims to provide
these elements for biological and biomedical researchers
in the era of “big-data [28]. BGI, with extensive computa-
tional resources, has a long history of making its research
outputs available to the global research community, while
BioMedCental has an established open access publishing
platform. Bringing these together allowed the creation of
a journal that integrates data publishing via the journal’s
database, GigaDB, a method/workflow/analysis sharing por-
tal based on the Galaxy workflow system (‘GigaGalaxy’),
and standard narrative publishing. Through this, GigaScience
aims to finally provide infrastructure and incentives to credit
and enable more reproducible research [76]. Here we out-
line our experiences and approaches in attempt to enable
a more fit-for-purpose publishing of large-scale biologi-
cal and biomedical data-heavy, and computational-intensive
research.

2 The GigaScience approach

Integrated with the online, open access journal GigaScience
is a database, GigaDB, that is deployed on an infrastructure
provided by BGI Hong Kong, that hosts the data and soft-
ware tools associated with articles published in GigaScience
[75]. In a similar manner to Zenodo using the CERN Data
Centre, the ability to leverage the tens of petabytes of storage
as well as the computational and bioinformatics infrastruc-
ture already in place at BGI makes the start-up and ongoing
overhead of this data publishing approach more cost effec-
tive. On top of the integrated data platform, another feature
differentiating GigaScience from most other data journals is
the in-house and on-hand team of curators, data scientists
and workflow management experts to assist and broker the
data and method curation, review and dissemination process.
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Working with the British Library and the DataCite con-
sortium (http://www.datacite.org), each dataset in GigaDB
is assigned a Digital Object Identifier (DOI) that can be
used as a standard citation in the reference section for use
of these data in articles by the authors and other researchers.
Using the DOI system already familiar in publishing, the
process of data citation, in which the data themselves are
cited and referenced in journal articles as persistently identi-
fiable bibliographic entities, is a way to acknowledge data
output [17]. Digital Curation Centres (DCC) best prac-
tice guidelines for formatting and citation [2] are carried
out, and as much metadata as possible is provided to Dat-
aCite to maximize its discoverability in their repository
and in the Thomson-Reuters Data Citation Index (http:/
thomsonreuters.com/data-citation-index/).

GigaDB further removes unenforceable legal barriers by
releasing all data under the most open Creative Commons
CCO waiver that is recommended for datasets as it prevents
the stacking of attribution requirements in large collections
of data [30]. Taking such a broad array of data types, we
have also tried to aid data interoperability and integration by
taking submissions in the ISA-TAB metadata format [71].
To increase the usability further, we are also working on
providing programmatic access to the data by the provision
of an application programming interface (API) to GigaDB.
Figure 1 illustrates the submission and peer-review work-
flow of GigaScience, GigaDB and GigaGalaxy (Fig. 1). With
curation of data and checking of software availability by the
in-house team, information about the study and samples is
collected and collated, and checked for completeness. This
information forms the basis of the DOI, and upon passing
review, the data files are then transferred to the GigaDB
servers from the submitter. Care is taken to ensure files are
in appropriate formats and correctly linked to the relevant
metadata. Finally, a DOI is minted and release of the data
through the GigaDB website can occur.

3 GigaScience experiences

At time of writing, GigaDB has issued 220 DOISs to datasets,
the largest (by volume) from “Omics” fields, including
sequence-based genomics, transcriptomics, epigenomics,
and metagenomics, as well as mass spectrometry-based tech-
nologies such as proteomics and metabolomics. A growing
number of datasets are from imaging technologies such as
MRI, CT and mass spectrometry imaging, as well as other
techniques such as electrophysiology and systems biology.
Smaller in size, but not in novelty are workflows, virtual
machines and software platforms. Roughly 30TB of data is
currently available to download from the GigaDB servers,
with the largest datasets being sets of agricultural (379 cattle
[80] and 3000 rice strains [81], as well as human can-
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cer genomes [37] in the 10—15TB range. Much of the raw
sequencing data has been subsequently moved to the subject-
specific INSDC databases, but GigaDB hosted them during
the initial curation and copying processes, and continues
to host intermediate and analysed data for reproducibil-
ity purposes. Subscribing to Aspera (http://asperasoft.com)
to speed up data transfers demonstrated an up to 30-fold
increase in transfer speeds over FTP if users downloaded
and installed the free Web browser plug-in. Most datasets
are in the 1-10GB range, but many are pushing 100GB,
making them impossible to host in other broad-spectrum
databases. On top of datasets of relevance to human health
(cancer, diabetes, hepatitis B and other human pathogens),
many plant genomes of agricultural importance (sorghum,
millet, potato, chickpea, cotton, flax, cucumber and wheat)
are also available and released without many of the restric-
tions and material transfer agreements that the agricultural
sector often imposes.

3.1 Positive signs in data publishing and citation

GigaScience are keen to promote the use of alternative mea-
sures for research assessment other than the impact factor.
Google analytics and DataCite resolution statistics show
our datasets are receiving over five times the UK DataCite
average number of accesses, with some reaching over 1000
resolutions a year, and much higher levels of page views and
FTP accesses.

One of the main aims of data citation is to incentivise
and credit early release of data, i.e. prior to the publica-
tion of the analyses of the data (which can sometimes take
years). Here, to promote this activity, GigaDB also includes
a subset of datasets from BGI and their collaborators that
are not associated with GigaScience articles, many of which
were released pre-publication. For example, the Emperor and
Adelie penguin, and polar bear genomes were released nearly
3 years before they were formally published in research arti-
cles. This has enabled, previously impossible, early use of
large resources to the scientific community. The polar bear
genome [43], for example, has accumulated a number of
citations in population genetics [11] and evolutionary biol-
ogy studies [55] that have benefited from its availability. The
polar bear genome analysis was eventually published in May
2014 (nearly three years after its data was publicly released),
and is a very encouraging example for authors concerned of
“scooping” and negative consequences of early data publi-
cation and release. In addition, it highlights the benefits of
Data Citation, where despite being used and cited in at least
5 analysis papers, this did not prevent it from a prestigious
publication and feature on the cover of Cell [44]. Particu-
larly as at that time, Cell Press was the only major biology
publisher, to state in a survey carried out by F1000, that they
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Fig. 1 GigaScience publication pipelines, with curation and review
of data and associated pipelines in BGI Hong Kong’s ftp servers, and
eventual publication in GigaDB. If computational methods and results

would see the publication of data with a DOI as potential
prior publication [18].

Most important of all are datasets that assist the fight back
against disease and conservation efforts that also have educa-
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presented in the paper are suitable to implemented in the Galaxy work-
flow system (and the results in the paper can also be replicated in review),
these are also integrated into the paper via DOIs

tive potential, and can inspire new more open ways of doing
research. What follows are few examples of the most influen-
tial and demonstrative datasets we have released, and outline
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of some of the downstream consequences that the data pub-
lication has set in motion.

3.2 The 2011 E. coli 0104:H4 outbreak genome: fighting
disease outbreaks with “the tweenome”

An excellent example of the utility of pre-publication release
of data was from our first dataset and DOI minted—the
genome of the deadly E. coli 0104: H44 outbreak in Ger-
many that killed over 50 people, infected thousands more,
and caused mass panic in Europe in summer of 2011 [43].
Upon receiving DNA from the University Medical Centre
Hamburg-Eppendorf, our colleagues at BGI were the first to
sequence and release the genome of the pathogen responsible
using “Ion Torrent” rapid bench-top sequencing technology.
Due to the unusual severity of the outbreak, it was clear that
the usual scientific procedure of producing data, analysing it
slowly and then releasing it to the public after a potentially
long peer-review procedure was inappropriate. By releasing
the first genomic data into the public domain within hours of
completion of the first round of sequencing, and before it had
even finished uploading to the NCBI sequencing repository,
the immediate announcement of its availability on twitter,
promoted its use. The microbial genomics community around
the world immediately took up the challenge to study the
organism collaboratively (a process that was dubbed by some
bloggers as the first “Tweenome”).

Using these data, within the first 24 h of release,
researchers from Birmingham University had released their
own genome assembly in the same manner, and a group in
Spain released analyses from a new annotation platform and
set up a collaborative GitHub repository to provide a home
to these analyses and data [58]. Within days of the initial
release, a potential ancestral strain had been identified by a
blogger in the US [51], helping clear Spanish farmers of the
blame. Importantly for the treatment side, the many antibiotic
resistance genes and pathogenic features were much more
quickly and clearly understood. Additionally, releasing the
data under a CCO waiver allowed truly open-source analysis,
and the UK Health Protection agency, and other contributors
to the GitHub group, followed suit in releasing their work
in this way. Within two weeks, two dozen reports were filed
in the repository, with contributions spanning North Amer-
ica, Europe, Australia, Hong Kong and Egypt, including files
from bloggers without formal biology training [31].

While the authors gained much good feeling and positive
coverage from this (despite some inevitable disagreement
over credit and what exactly was achieved [82]), they still
wanted and, under current research funding assessment
systems, required the more traditional form of scientific
credit—publication in a prestigious journal. At the time
of releasing these data, the consequences of doing so in a
citeable form before the publication of associated manu-
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scripts were unclear, especially with varying journal editorial
policies regarding pre-publication dissemination of results.
Particularly relevant to this is a commonly acknowledged
editorial guideline of the New England Journal of Medicine
outlining limitations on prepublication release of information
known as the “Ingelfinger rule” [52]. This policy has made
many researchers wary of publicizing preliminary data, as
it states that a manuscript may not be considered for pub-
lication if its substance has been reported elsewhere, which
can include release in press or other non-scientific outlets. In
this digital era, however, this policy is looking increasingly
out of touch with growing use of social media, blogging and
pre-print servers, and with new funder mandates and poli-
cies regarding open access to data. It is, therefore, unclear
as to how this restriction can be reconciled with various
communities’ code of practice regarding pre-publication data
deposition in public databases.

Therefore, from a publishing perspective, the release of
these data in a citeable format was a useful test case of how
new and faster methods of communication and data dissemi-
nation can complement and work alongside more traditional
systems of scientific communication and credit. Fortunately,
the open source analysis was eventually published in the New
England Journal of Medicine, ironically the journal respon-
sible for the Ingelfinger rule [69]. It was positive to see that
maximizing the use of the data by putting it into the pub-
lic domain did not trump scientific etiquette and convention
that allowed those producing the data to be attributed and get
credit.

While these data and approach aided the development
of rapid diagnostic methods [23] and targeted bactericidal
agents to kill the pathogen [73], the project’s potentially
biggest legacy may be as an example of open-science, data-
citation, and use of CCO data. After releasing the data under a
CCO waiver, this allowed truly open source analysis. Further-
more, a team at the sequencing company Pacific-Biosystems
quickly followed this style of sharing by releasing their data
openly and speedily without wasting time on legal wrangling
[12]. The lessons from this have subsequently been used to
influence UK and EU science policy, with the Royal Society
in the UK using the E. coli crowdsourcing as an example of
“the power of intelligently open data”, and highlighting it on
the cover of their influential “Science as an Open Enterprise”
report [70].

3.3 Promoting data: bird genomes lead the way

The first Data Note we published was a first-pass genome
assembly covering 76 % of the genome of the rare Puerto
Rican Parrot, crowdfunded with money raised from pri-
vate donations, art and fashion shows in Puerto Rico [57].
The social and traditional media attention that the authors
attracted from this paper enabled the authors to receive even
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more sponsorship, and using this has funded an improved
higher coverage version of the genome, as well as compar-
ative genomics studies [63]. The bird genomics community
has embraced rapid data publishing, and following the Puerto
Rican Parrot example, a number of our first datasets released
were bird genomes. These datasets eventually became part of
the Avian Phylogenomics Project, utilizing the genomics of
modern birds to unravel how they emerged and evolved after
the mass extinction that wiped out their dinosaur ancestors
66 million years previously. The decision by this community
to release these data, in some cases up to 3 years prior to
the main consortium publications—in 2011 for the Adelie
and Emperor Penguins [91,92], the Pigeon (eventually pub-
lishedin 2013) [74], and Darwin Finch (released in 2012, and
as yet unpublished) [59]—was a positive step demonstrat-
ing the benefits of early data release. Along with the extra
early release of these first species, the remaining 42 avian
genomes for this interdisciplinary, international project were
released seven or eight months before the project was pub-
lished. Releasing one bird genome per day on Twitter and
Facebook doubled the traffic to these datasets on GigaDB
over the month, and generated many retweets and positive
comments from other avian researchers. In addition to releas-
ing the data, GigaScience also published two Data Notes
alongside the over thirty other consortium papers in Science
and various BMC Journals. The two Data Notes presented a
more narrative-style way to publish data, where the authors
described the details of data production and access for all of
the comparative genomics data [91] and phylogenomics data
[35] from the bird species that supports all of these studies.
On top of the 4TB of raw data in the SRA repository, we
hosted 150GB of data from all of the assemblies in GigaDB,
and many other datasets that do not have subject-specific
repositories, such as the optical maps for the Budgie and
Ostrich [25,95], including the thousands of files used in the
phylogenomic work. Two DOIs in GigaDB [36,92] collect
together all of the individual bird genome DOIs, and also
provide a link to a compressed single archive file for those
who wish to retrieve the complete set.

3.4 Real-time research: rapid advances in new
technology through data access

Another place where fast and open dissemination of large-
scale data can promote scientific advance is in areas of new
technology that undergo quick changes and cannot wait to be
disseminated via standard publishing venues. An example is
the release of data from the Oxford Nanopore Min[ON™
portable single-molecule sequencer in 2014 on GigaDB.
Being a new and rapidly improving technology with regu-
lar chemistry changes and updates, there was much demand
for access to test data, but few platforms or repositories ready

and able to handle the volumes and un-standardized formats
of data produced by it.

While the first publication presenting on the data was quite
negative about the quality, due to the difficulties in sharing it,
there was a lack of supporting evidence provided [54]. Other
groups claimed to have had more success, but there was a
need and much demand to share these early data to resolve
these arguments. While groups were able to share individual
reads via figshare [45], the raw datasets were 10—100x larger
than the size restrictions set by this platform. Working with
authors at Birmingham University, we helped them release
the first reference bacterial genome dataset sequenced on the
MinlON™ in GigaDB on September 10th 2014 [64]; and
after peer review, published the Data Note article describing it
just over five weeks later [65]. Being 125GB in size, this was
a challenging amount of data to transfer around the world,
and our curators worked with the EBI to enable their pipelines
to take the raw data. But, this only became possible several
weeks after the data were released.

Being the first MinlON™.-generated genome in the public
domain, it was immediately acquired and used as test data
for tools [46] and teaching materials [56]. Further, being able
to rapidly review and disseminate this type of data, Giga-
Science also published the first MinlON™ clinical amplicon
sequencing paper and data in March 2015 [38]. The clinical
applications of this tool continue to grow, with the Birming-
ham group recently demonstrating the utility of MinION™
sequencing via involvement in the Ebola crisis in the field in
West Africa [67]. The “real-time” nature of this type of tech-
nology demonstrates that publishing needs to become more
real-time to keep up.

3.5 Tools for taxonomy 2.0: sea urchins, earthworms
and multi-data type species descriptions of the
“cyber centipede”

The rate of species extinction is lending increasing urgency
to the description of new species, but in this supposedly net-
worked era, the process of cataloguing the rich tapestry of
life is little changed since the time of Linnaeus. Fortunately,
this process is being dragged into the twenty-first century,
as the procedure of describing animal species finally entered
the electronic era in 2012 with the acceptance of electronic
taxonomy publication and registration with ZooBank, the
official registry of the ICZN [32]. Concerned with growing
disappearance rates, some scientists have encouraged mov-
ing to a so-called ‘turbo taxonomy’ approach, where rapid
species description is needed to manage conservation [68].
A demonstrative collaboration between GigaScience and
Pensoft Publishers has pushed the boundaries of opening
up by the digital era further still, presenting an innovative
approach to describing new species by creating a new kind
of ‘specimen’, the ‘cybertype’ [78]. This consists of detailed

@ Springer



106

S.C. Edmunds et al.

and three-dimensional (3D) computer images of a specimen
that can be downloaded anywhere in the world and a swathe
of data types to suit modern biology, including its gene cata-
logue (transcriptome), DNA barcodes, and video of the live
animal, in addition to the traditional morphological descrip-
tion. This approach has been illustrated by the description
of a newly discovered cave centipede species from a remote
karst region of Croatia—the ‘cyber centipede’ Eupolyboth-
rus cavernicolus, with all of the data hosted and curated and
integrated using ISA-TAB metadata in the GigaDB database
[79].

This digital representation of an exemplar type specimen
shows there is the potential for new forms of collections
that can be openly accessed and used without the physical
constraint of loaning specimens or visiting museum collec-
tions. It also means digital specimens can also be viewed
alive and in three dimensions. While this new species sub-
terranean lifestyle may protect it from some of the threats
on the surface, this new type of species description also pro-
vides an example of how much previously uncharacterized
information, including animal behaviour, internal structure,
physiology and genetic makeup, can potentially be preserved
for future generations [17].

While museum specimens can degrade, this “cybertype”
specimen has the potential to be a digital message in a bot-
tle for future generations that may not have access to the
species. This publication encouraged further submissions
and publications from this community, such as 141 magnetic
resonance imaging scans of 98 extant sea urchin species [96],
three high-resolution microCT scans of brooding brittle stars
[40], as well as a coordinated publication with journal, PLOS
One [22], publishing the nearly 40GB of microCT data sup-
porting a paper describing, in high resolution and 3D, the
morphological features commonly used in earthworm taxon-
omy [41]. Despite some of the folders being close to 10GB in
size, the data reviewers were able to retrieve each of those in
as little as half an hour using our high-speed Aspera internet
connection.

3.6 Executable data: publishing software, workflows
and other Research Objects

The growth in “big data” has led to scientists doing more
computation, but the nature of the work has exposed lim-
itations in our ability to evaluate published findings. One
barrier is the lack of an integrated infrastructure for dis-
tributing reproducible research to others [61]. To tackle
this, in addition to data, we are also hosting the materials
and methods used in the data analyses reported in papers
published in GigaScience in our repository, GigaDB. Pub-
lishing Technical Notes describing software and pipelines,
all associated code is released under OSI (Open Source
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Initiative)-compliant licenses to allow software to be freely
used, modified, and shared.

On top of archiving snapshots of code and scripts in our
GigaDB servers and to allow more dynamic source code man-
agement, we also have a journal GitHub page for tools that
are not in a code repository (see many examples in http://
github.com/gigascience). In addition, we have developed a
data reproducibility platform based on the popular Galaxy
workflow system to host histories and workflows and com-
municate computational analyses in an interactive manner
[26]. GigaGalaxy is a project prototyping the use of Galaxy
to enable computational experiments to be documented and
published with all computational outputs directly connected,
allowing readers to inspect intermediate data and analysis
steps, as well as reproduce some or all of the experiment, and
modify and re-use methods. Specific analyses of data from
selected papers are re-implemented as Galaxy workflows in
GigaGalaxy using the procedure shown in Fig. 1, in which all
of this technical reproducibility work is done in-house. Mak-
ing data analyses available using the popular Galaxy platform
democratises the use of many complicated computational
tools. Users do not need knowledge of computer program-
ming nor do they need to learn the implementation details of
any single tool, and can run much of it off our computational
resources. It also enables more visual and easy-to-understand
representations of methods, an example being the test cases
from our publication demonstrating a suite of Galaxy tools
to study genome diversity [4]. We provide further documen-
tation in GigaGalaxy on data analyses as well as diagrams
generated by cytoscape.js to visualize how input datasets,
workflows and histories are related to each example analysis.
Plus for the sake of additional citability and reproducibility,
the Galaxy XML files are also hosted in GigaDB [4]. More-
over, there are implemented workflows from other papers,
including a case study in reproducibility from our SOAPde-
novo?2 paper [49] that managed to exactly recreate all of the
benchmarking results listed in the paper [27].

With open source software environments such as R and
Python continuing to grow in popularity, there are a number
of reporting tools being integrated into it, such as Knitr and
Jupyter. These tools enhance reproducible research and auto-
mated report generation by supporting execution embedded
within various document formats. One example was a paper
publishing a huge cache of electrophysiology data resources
important for studying visual development [19]. On top of
the 1GB of supporting data and code being available from
GigaDB, the authors also produced the paper in a dynamic
manner, creating it using R and the Knitr library. Following
the reproducible research paradigm, this allows readers to
see and use the code that generated each figure and table and
know exactly how the results were calculated, adding con-
fidence in the research output and allowing others to easily
build upon previous work [20].
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Another approach in disseminating more accessible and
dynamic research outputs is through the use of virtual
machines, giving reviewers and future users the ability to
reproduce the experiments described in a paper, without
the need to install complex, version-sensitive and inter-
dependent prerequisite software components. With a number
of submitters following this approach we have reviewed and
published a number of virtual machines, one example being
a paper publishing novel MRI tools and data [88]. Publish-
ing and packaging the test data alongside tools, scripts and
software required to run the experiments, this is available
to download from GigaDB as a “virtual hard disk™ that will
specifically allow researchers to directly run the experiments
themselves and to add their own annotations to the data set
[89]. A related, but more lightweight approach is to use con-
tainers, such as Docker, applying virtualisation techniques
to encapsulate analysis workflows to make them indepen-
dent from the host it is executed on. GigaScience recently
published its first example of a containerized analysis work-
flow that can be executed virtually anywhere using a Docker
container of metagenomics data and pipelines [9].

Submitting code, workflows and these more dynamic
research objects can be complicated, but being based at a
research institute and having curators, data scientists and
workflow management experts in-house enables us to help
authors curate these resources if they are unable to. Leverag-
ing the functionality that many of these open source platforms
(e.g. GitHub and DockerHub) provide for cloning their con-
tents as an archive makes it a relatively trivial task for us
to take these snapshots. Referees are asked, and in most
cases do carry out thorough data reviews, validation and
reproducibility checks, although if they are unable to do this
sufficiently rigorously, our in-house team often steps in as
an additional reproducibility referee. These additional over-
heads are covered through combined Open Access Article
and Data Publishing charges, as well as support from exter-
nal funders, such as China National Genebank (a non-profit
institute supported by the government of China). Being able
to take advantage of the tens of petabytes of storage and com-
putational infrastructure already in place at BGI and China
National Genebank keeps the overheads low enough to pro-
vide these value-added services.

3.7 Lessons learned in reproducible data publishing

In the three and half years since the formal launch of the
journal, we have published an extremely diverse range of
data types, and our publishing pipelines and practices have
evolved significantly in this time. Looking back at the suc-
cesses and difficulties over this period, there are a number of
lessons that are worth sharing. Being a journal focussing on
“big data”, the challenges of data volumes are the most obvi-
ous one. While the “long tail” of small, unstructured datasets

is easy to handle by ourselves and others, our chosen niche
focussing on the small proportion of data producers and fields
generating the bulk of global research data volumes has been
challenging. While demonstrating it is possible to publish a
10TB+ dataset such as the 3000 rice genomes [81], it sub-
sequently took DNAnexus a month to download these data
from our FTP servers. In the subsequent year after publi-
cation, the processed data and analyses carried out on the
DNAnexus platform has now taken the total data volumes to
120TB. This has been made publically available in the cloud
as an Amazon Web Services (AWS) Public Dataset, but if we
were going to host this in our GigaDB server it would take
one user at least one year to download (https://aws.amazon.
com/public-data-sets/3000-rice-genome/), given the speed
DNAnexus received the data from us. Similarly, a number
of the terascale datasets we have presented have had to be
shipped to us on hard disks. This method being increas-
ingly impractical if we wanted to send the hard disks on
in the same manner to downstream users. Even datasets in
the 100GB range have been challenging to get hold of from
less-connected corners of the world, where a microCT imag-
ing dataset from South Africa took one month to be copied
to our servers due to bandwidth problems and regular power
cuts at their university, requiring the process to be restarted a
number of times [40]. Popular datasets require greater band-
width, and the E. coli nanopore dataset mentioned above had
to be mirrored in AWS S3 for the first month to cope with
the huge short-term demand [64].

On top of data volumes, reproducibility has been the other
major challenge and learning experience. To carry out a
case study in reproducibility we used what we hoped was
one of our most scrutinized papers, the bioinformatics tool
SOAPdenovo?2 [49]. We subjected the publication to a num-
ber of data models including ISA-TAB, Research Object,
and Nanopublications and despite managing to exactly recre-
ate all of the results listed in the paper, it identified a small
number of inaccuracies in the interpretation and discussion
[27]. Due to these deficiencies being uncovered, the authors
produced a correction article to officially communicate the
amendment to their initial report [50]. The open, detailed and
transparent approach to reviewing data and methods used by
GigaScience has also uncovered methodological problems
in companion papers published in other journals. For exam-
ple, in reviewing a Data Note presenting metabolomics and
lipidomics data [47] discrepancies in the previously reported
methods came to light. This leads to an Erratum being pub-
lished in the J Proteome Res explaining care should be taken
when interpreting some of the results [48]. Availability and
scrutiny of code is just as important as data, and our Min-
ION™ sequenced reference bacterial genome Data Note [65]
had to be corrected after an error in a script had been reported
due to a fix supplied by an anonymous online contributor
on Github [66]. While correcting and keeping the scientific
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record accurate, these approaches are expensive in time and
money, and cost—benefit decisions need to be made on how
much effort should expended to maintain this level of repro-
ducibility. Notable among the examples discussed in this
paper, it took about half a man-month worth of resources to
reproduce the results reported in our SOAPdenovo2 paper,
and cost around $1000 of AWS credits to replicate the result
of our “Dockerised” metagenomics data and pipeline paper.
These costs need to be balanced against the US$28 B/year
wasted just on irreproducible preclinical research [24], and
will be much cheaper and more effective if reproducible
practices like version control and workflow management are
carried out by the authors at the time the experiments are
carried out rather than retrospectively by the journal. This
will also make the review process much easier, and take less
time of the external reviewers or in-house team at the journal.
The investments and moves towards distributed computing
infrastructure should also be made in distributing training in
reproducible research practices. Schemes, such as Software
and Data Carpentry [86] are essential to take much of the load
off the peer review and publication process in ensuring the
accuracy and reproducibility of the literature, and the Giga-
Science team has participated in a number of workshops,
hackathons and “bring your own data parties” for these very
reasons.

4 Conclusions

The papers and datasets presented provide examples of how
novel mechanisms of dissemination can aid and speed up
important areas of research, such as disease outbreaks, bio-
diversity and conservation research. Whilst trying to host all
of the supporting materials and methods used in GigaScience
papers in our GigaDB database, it is often the case that this
is still not enough information to understand how the results
of a scientific study were produced. A more comprehensive
solution is required for users to reproduce and reuse the com-
putational procedures described in scientific publications.
This deeper and more hands-on scrutiny in the publication
and review process is likely to identify more methodological
inconsistencies in presented work, and as we have seen from
some of our own published work initially at least, there may
be increase in Errata and Corrections as a result. Rather than
be seen in a negative light as airing out the “dirty laundry”,
journals and authors should see this as an essential part of
the scientific process, and be proud to be part of the self-
correcting nature of the research cycle.

Current publishing practices, which have barely changed
since the seventeenth century, are particularly poorly evolved
to handle this; so beyond data storage, we are looking to pro-
duce more dynamic and executable research objects. To this
end, we have been developing a data reproducibility platform
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based on the popular Galaxy workflow system, and the first
examples of this have already been published. While there
is an archival version of the code hosted in GigaDB, and
dynamic version linked through code repositories, such as
our GitHub page, being able to visualize and execute parts
of the pipelines and workflows allows a totally different per-
spective, allowing reviewers and future users to ‘kick the
wheels’ and ‘get under the hood” of computational meth-
ods and analyses. We are starting also to work with virtual
machines and docker containers to ensure the software pre-
sented always behaves consistently. This will democratize
science further, allowing users without coding experience
or access to high-performance computing infrastructure to
access and utilize the increasingly complicated and data-
driven research that they have funded. As research data
volumes continue to grow near exponentially, anecdotally
demonstrated here from our publishing of growing num-
bers of datasets in the Giga- and Tera-scale, it is becoming
increasingly technically challenging to publish and dissemi-
nate large-scale data to potential users. Alternative strategies
are required, and taking the lead from industry-standard big
data processing approaches used in cloud computing, we and
others need to move from being “data publishers” to “com-
pute publishers”. The proof-of-concept examples presented
here in publishing virtual machines and Docker containers
already demonstrate the feasibility of this, and the next stage
is to make this scalable and standardized. The approaches
of groups, such as the Bioboxes community [7] to create
standardized interfaces that make scientific software inter-
changeable, show a potential path towards doing this, and
GigaScience is focussing its efforts over the coming years to
be at the forefront of these efforts.
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