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Nonparametric learning is able to make reliable predictions by extracting information from similarities
between a new set of input data and all samples. Here we point out a quantum paradigm of nonparametric
learning that offers an exponential speedup over the sample size. By encoding data into quantum feature
space, the similarity between the data is defined as an inner product of quantum states. A quantum training
state is introduced to superpose all data of samples, encoding relevant information for learning in its
bipartite entanglement spectrum. We demonstrate that a trained state for prediction can be obtained by
entanglement spectrum transformation, using the quantum matrix toolbox. We further work out a feasible
protocol to implement the quantum nonparametric learning with trapped ions, and demonstrate the power
of quantum superposition for machine learning.
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Introduction.—Machine learning extracts useful infor-
mation from data for prediction. The extraction can be
categorized into parametric and nonparametric learning
[1,2]. Parametric learning distills knowledge of data into
parameters of a function, e.g., neural networks. However,
the form of the function may set a model bias or a
limitation. Without a predetermined form of a function,
nonparametric learning can make predictions by extracting
information of similarities between new data and all
samples, with the appropriate weighting of each sample
being related to a correlation of samples. This can utilize a
self-defined kernel that may better capture the similarity
between data, while on the other hand, it requires a large
number of samples and the runtime is polynomial with the
sample size, which is time consuming for big data.
In a quantum setting, machine learning can be enhanced

with quantum information processing [3–13]. While quan-
tum algorithms of nonparametric learning were studied for
Gaussian processes [14–17], we focus on fundamental
aspects on nonparametric learning and its enhancement
by exploiting quantum advantages. First, encoding classical
data x into a quantum state jψxi can take advantages of
quantum-enhanced feature spaces for highly nonlinear
feature map [12,13,18], which is desirable for complicated
machine learning tasks. Second, all data of samples can be
superposed, and querying of similarities can be achieved in
a quantum parallel way. Moreover, correlations of data can
be extracted and transformed more efficiently with the
quantum matrix toolbox [5,7,19], including density matrix
exponentiation and matrix inversion.

In this Letter, we illustrate a quantum paradigm for
nonparametric learning by elaborating on a regression task
and its physical implementation. With a superposition of
all samples into a quantum training state jψAi defined
later [20], we show that relevant important information for
learning is represented by the bipartite entanglement
spectrum of jψAi [21], and different kinds of regression
can be proposed by choosing different types of entangle-
ment spectrum transformation. The transformation involves
quantum algorithm for matrix inversion using auxiliary
qumodes (continuous variables) [21,22]. We further pro-
pose a feasible scheme to implement this quantum non-
parametric learning with trapped ions [23–25], and
demonstrate the power of quantum superposition for
machine learning. Our work provides a new insight for
machine learning by exploiting the entanglement structure
of quantum superposed training data.
Nonparametric regression.—Let us first introduce non-

parametric learning. Given a training dataset of M points
fxðmÞ; yðmÞg (with m ¼ 1; 2 � � �M), where xðmÞ ∈ RN is a
vector of N features and yðmÞ ∈ R is the target value, the
goal is to learn an input-output function, which can be used
to predict ỹ for new data x̃. A parametric regression is to
find a function fðxÞ, e.g., a linear model, fðxÞ ¼ wTx,
parametrized by a matrix w. A nonparametric learning,
instead, directly establishes a prediction based on a
weighted average over the similarity between new data x̃
and each training data, namely,
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ỹ ¼
XM

m¼1

αmκðxðmÞ; x̃Þ; ð1Þ

where κðxðmÞ; x̃Þ defines the similarity between data
and can be chosen beforehand. The weighting α ¼
ðα1;…; αMÞT , for instance, can be determined by minimiz-
ing the least-square loss function

LðαÞ ¼
XM

m¼1

ðỹðmÞ − yðmÞÞ2 þ χ
XM

m¼1

α2m: ð2Þ

Here the χ term is a L2 regularization term and it makes a
constraint on the weighting of each sample, which is
necessary for avoiding overfitting. The combination of
Eqs. (1) and (2) is a kernel ridge regression. The solution
turns to be α ¼ ðK þ χIÞ−1y, where K is the covariance
matrix with elements Km1;m2

¼ κðxðm1Þ;xðm2ÞÞ, and y ¼
ðyð1Þ;…; yðMÞÞT . The prediction can be written as
ỹ ¼ yTðK þ χIÞ−1κ, where κm ¼ κðxðmÞ; x̃Þ.
Nonparametric regression on a quantum computer can be

reformulated to exploit quantum properties. First, classical
data x is encoded into a quantum state jψxi, which exploits
the representation power of feature Hilbert space with a
highly nonlinear feature map [12,13,18]. The similarity
between two data is defined as Km1;m2

¼ hψxðm1Þ jψxðm2Þ i.
Second, training and prediction can be performed
on superposed quantum states of all training data. To
illustrate this idea, we take a superposition of the training
dataset fxðmÞg→M−ð1=2ÞP

m jmijψxðmÞ i≡ jψAi, fyðmÞg →
jyj−ð1=2ÞPm yðmÞjmi≡ jyi. The prediction is done by
evaluating an overlapping between two states [20,21]:
the query state for a set of new data, y ⊗ x̃ → jψRi≡
jyijψ x̃i, and a trained state jψAþi that evolves from
jψAi, i.e.,

ỹ ¼ hψRjψAþi: ð3Þ

A derivation is shown in the Supplemental Material [26].
Equation (3) represents a quantum version of nonparamet-
ric learning, serving as a generalization of quantum linear
regression in Refs. [20,21] to nonlinear cases.
Therein, learning is manifested in a proper trained state

jψAþi. A naïve choice of jψAþi ¼ jψAi means all training
data have equal weighting, which fails to take correlations
between training data into consideration. A wisdom from
quantum information is to investigate the entanglement
structure of the bipartite state jψAi. Correlations between
data can be revealed in a Schmidt decomposition of the
training state, jψAi ¼

P
i λijuiijvii. For a least-square loss

in Eq. (2), the trained state jψAþi ¼ c
P

i gðλiÞjuiijvii,
where gðλÞ ¼ ðλ=λ2 þ χÞ [21] (see the Supplemental
Material [26]). The transformation of Schmidt coefficients
λ → gðλÞ can be considered as entanglement spectrum

transformation [28], and different choices of gðλÞ may
correspond to different types of regression [29].
It is inspiring to investigate the role of entanglement

entropy S of bipartite quantum state jψAi for machine
learning. For illustration, we use squeezing-state encoding
with a varied squeezing factor s for the Boston dataset [30].
The similarity function between two samples is Km1;m2

¼
e−s

2jxðm1Þ−xðm2Þj2 , and samples are less distinguishable for
smaller s. As seen from Fig. 1, S increases with the number
of samples and saturates faster for a smaller s. Moreover,
the fitting quality (mean-square error) decreases with S,
indicating that the entanglement entropy may be related to
the model capacity that quantifies the ability to fit com-
plicated data (see the Supplemental Material [26]).
Matrix inversion.—An efficient quantum algorithm can

be developed to obtain jψAþi from jψAi. Note that the
covariance matrix can be evaluated as ρK ¼ K=TrK ¼
Tr1jψAihψAj (which is a partial trace of the addressing
registers jmi) and I ⊗ ρKjψAi ¼ λ2i jψAi. Then, the
required operator for evolution is given by

jψAþi ¼ I ⊗ B−1jψAi: ð4Þ
where B ¼ ρK þ χI.
The nonunitary operator B−1 is a matrix inversion and

its quantum algorithm can exhibit exponentially speed-up.
We take an approach for the matrix inversion of B by
writing it into a combination of unitary operators [31,32].
Inspired by b−1 ¼ R∞

−∞ dxδðbxÞ ¼ R∞
−∞ dxdy expðibxyÞ,

we consider Bjbi ¼ bjbi, then we have

B−1 ¼
Z

∞

−∞
dqxdqy expðiBqxqyÞ

∝ h0px
jh0py

j expðiBq̂x q̂yÞj0px
ij0py

i; ð5Þ
where j0ip is zero momentum eigenstate. It can be seen that
B−1 can be written as an average of unitary operator

FIG. 1. Entanglement entropy of the training state vs the
number of samples, where 40 randomly sampled datasets are
chosen for each specified number of samples. The insert shows
that the mean-square-error decrease with the entropy.
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expðiBq̂x q̂yÞ over the infinite squeezing state j0px
ij0py

i of
momentums px and py.
The state transformation jψAi → jψAþi can be imple-

mented as follows: B−1 performs on the initial state
jψAij0px

ij0py
i, and then project two qumodes onto

j0px
ij0py

i. To implementB−1, we can write expðiBq̂x q̂yÞ¼
expðiρKq̂x q̂yÞexpðiχq̂x q̂yÞ. The first part expðiρKq̂x q̂yÞ
can be generated by density matrix exponentiation by
sampling from multiple copies of quantum software
state jψAi [7,33]. The second part is just a basic two-
qumode gate.
Quantum algorithm.—We now turn to work out a

quantum algorithm for nonparametric regression, basically
following techniques in Ref. [21]. The main steps are show
in Fig. 2, where steps 1–4, illustrated in Fig. 1(a), transform
jψAi to jψAþi, and step 5, illustrated in Fig. 2(b), imple-
ments the prediction. (1) State preparation. Prepare the data
state jψAi, the query state jψRi, and a two-qumode state
jsipx

jsipy
, where jsip ¼ s1=2π−1=4

R
dpe−s

2p2=2jpip. jψAi
can be prepared efficiently with a quantum random access
memory [34]. It uses the addressing state

P
m jmi to access

the memory cells storing quantum states jϕxðmÞ i in training
data registers. Also, two qumodes are initialed in a finite
squeezing state jsipx

jsipy
. (2) Quantum phase estimation.

Perform U ¼ expðiρKq̂x q̂yÞ on jψAijsipx
jsipy

, where U is
constructed with the density matrix exponentiation method
[7,22,33]. The quantum state becomes

X

i

Z
dqxdqy

λie−ðq
2
xþq2yÞ=2s2

s
juiijviijqxiqx jqyiqyeiλ

2
i qxqy :

ð6Þ

(3) Regularization. Perform eiχq̂x q̂y on two qumodes. Here χ
is a preset hyperparameter. The state is the same as Eq. (6)
by changing the phase factor to eiðλ2iþχÞqxqy . (4) Singular-
value transformation. Project two qumodes into the squeez-
ing state jsipx

jsipy
, and the state turns to be jψ 0

Aþi ¼P
i fðλi; s; χÞjuiijvii, approximating jψAþi, where

fðλi; s; χÞ ¼ ðλi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4=s4Þ þ ðλ2i þ χÞ2

p
Þ. (5) Prediction.

For a new data x̃, the prediction ỹ ∝ hψRjψ 0
Aþi can be

accessed with a swap test. After the conditional swap
operation, an entangled state is obtained, jΨi ¼
ð1= ffiffiffi

2
p Þðj0i ⊗ jψ 0

AþijΨRi þ j1i ⊗ jΨRijψ 0
Aþi. Then, a

Hadamard gate is performed on the qubit, followed with
a projection into j0i, whose success rate p ¼ 1

2
ð1þ

jhψ 0
AþjψRij2Þ is used to infer the prediction ỹ ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p − 1

p
,

up to a sign.
Quantum advantages.—We now elaborate that the above

algorithm has an exponential speed-up. Using quantum
random access memory jψAi can be prepared in a runtime
ofOðlogMÞ. It takesOðε−1Þ copies of jψAi, thus a runtime
of Oðε−1 logMÞ to perform expðiρKq̂x q̂yÞ [21,22], for a
desired accuracy ε. The success rate of homodyne detection
is Oðs−4Þ and this procedure thus requires Oðs4Þ (see the
Supplemental Material [26]). In total, the runtime scales as
Oðs4ε−1 logMÞ. The exponential speed-up relies on the
capacity of superposition. If randomly chosen M0 < M
training data are superposed for each copy [35], then the
number of copies should be increased OðM=M0Þ times. To
retain exponential speed-up requires M0=M ∼Oð1Þ.
Another potential quantum advantage comes from quan-

tum feature map when encoding x into jϕxi. Remarkably, a
continuous variable provides infinite dimension Hilbert
space with highly nonlinear feature maps. For instance,
encoding into a Gaussian state, such as jϕxi ¼⊗i jxiic
(jxiic denotes a coherent state with a displacement xi),
corresponds to a Gaussian kernel, since hϕujϕvi ¼
e−ju−vj2=2. Instantaneous quantum polynomial or continuous
variable instantaneous quantum polynomial circuits for
classically intractable feature map are pursued [36,37].
Moreover, a promising direction is to find encoding schemes
that can better represent similarities between data for
specified tasks, and thus require less training data and better
generalization, such as predicting ground state energies for
molecules [38,39].
Quantum operations required in trapped ions.—

Implementing the above quantum algorithm requires
hybrid discrete and continuous variable quantum comput-
ing. Some promising candidates for quantum computation,
such as superconducting qubits in a circuit QED and
trapped ions, have this property. Here we take trapped
ions as the platform [23–25] to illustrate the details. We
consider trapped ions in a Paul trap, and take L internal
levels of each ions as a qudit to encode the discrete
variables and local transverse phonon modes (along x and
y directions) [40,41] to encode the continuous variables,

FIG. 2. Illustration of the quantum algorithm. (a). Matrix
inversion algorithm for a matrix B ¼ ρK þ χI that transforms
jψAi into jψAþi ¼ B−1jψAi, using two auxiliary qumodes that
are postselected into zero momentum. (b). A swap test that
evaluates the inner product between jAþi and jψRi, which can be
used to infer the prediction for input data ã.
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while the longitudinal collective modes along z direction
serve as the busmodes to connect any two ions.Notably both
internal states and phonon modes are well controllable in
trapped ions [41–48].
We outline quantum operations required for the proposed

algorithm (see the Supplemental Material [26]). We first
address the operations acting on single ion, denoting as the
jth ion. A single qubit gate Rðθ;nÞ ¼ eiθσjn acting on any
two internal levels of the jth ion with high fidelity is
realizable, where σjn is a Pauli matrix along the direction n.

Operations on a motional mode include PαðθÞ ¼ eiθa
†
jαajα , a

displacement operatorDαðhÞ ¼ ehajα−h
�a†jα, and a squeezing

operator SαðsÞ ¼ e−ðln s=2Þða
2
jα−a

†2
jαÞ, with α ¼ x, y [23,45,

49–51], where a†jα ðajαÞ is the creation (annihilation)
operator of the α phonon mode. A controlled phase gate
Cq ¼ eiχq̂

x
j q̂

y
j coupling both motional modes can be realized

by manipulating the trap potential. By using red and blue
side excitations induced by lasers, internal and motional
states can be coupled, e.g., obtaining Dirac type operators
H1 ¼ gq̂xjσ

x
j and H2 ¼ gq̂yjσ

y
j [43,44]. Then the hybrid

operator WðηÞ ¼ eiησ
z
jq̂

x
j q̂

y
j , which is important for quantum

phase estimation, can be constructed by repeatedly apply-
ing 1=ðg2δt2Þ times of the quantum evolution eiH2δteiH1δt

e−iH2δte−iH1δt ¼ e−½H1;H2�δt2 þOðδt3Þ.
As for two ions, besides the standard controlled-

NOT gate [42], a beam splitter defined as BðθÞ ¼
eiθða

†
jαajþ1αþa†jþ1αajαÞ is needed, and it was theoretically

proposed [41] and then experimentally achieved recently
[52]. These two operators thus couple qubit states or
qumodes from different ions. Furthermore, a coupling of
one qubit from an ion and a qumode from another ion is
possible with Dirac type Hamiltonians where spin and
momentum (position) come from different ions. Necessary

quantum operations on three ions include controlled swap
operators, for which one ion provides a qubit to control
a swap for two other ions, either on internal states or
motional states. The former has been realized experimen-
tally in trapped ions [53]. On the other hand, precision
measurement can be implemented for both qubits [23] and
qumodes [54]. Those unitary operators and measurements
serve as building blocks for the quantum algorithm of
nonparametric regression as well as other hybrid quantum
information processing tasks.
Physical implementation with trapped ions.—We illus-

trate the implementation with a simple example. We just
take one ion to encode the training dataset, that is, using
only one ion to represent one copy of state jψAi. To this
end, we choose Lð¼ MÞ internal levels of the ion as a qudit
to encode the M points dataset and two local transverse
phonon modes (along x and y directions) to encode the
continuous variables (N ¼ 2).
The implementation needs four types of ions which we

denote as a, b, c, d ions. (1) An a ion provides a qubit and
two qumodes as auxiliary modes. (2) A b ion is used to
store the state jψAi that encodes all data. L internal levels
and two local motional modes along the x, y directions are
used. On this ion the state will be transformed into the
target state jψAþi. (3) Several c ions, the number of which
depends on the accuracy required for the algorithm, are
used for constructing the unitary operator U on the b ion.
Each c ion is initialized in the state jψAi. (4) A d ion
encodes input data for prediction into quantum state jψRi.
The scheme for nonlinear regression is schematically

shown in Fig. 3(a). In the state preparation, the generalized
Schrödinger cat states jψ jAi ¼

P
M
m¼0 jmji ⊗ jϕjðxðmÞÞi,

where jϕjðxðmÞÞi ¼ jxðmÞ
jx ijxðmÞ

jy i for both j ¼ b, c ions,
can be generated with Dirac type operations (see the
Supplemental Material [26]). Also two qumodes of the c

FIG. 3. (a) A quantum procedure that transforms jψAi into jψAþi on b ions, assisted by an a ion providing a qubit for control and two
qumodes for matrix inversion, and many c ions initialized in jψAi serving as quantum software states for quantum phase estimation.
Note the swap only performs on motional states (red dash lines). (b). Density matrix exponentiation where partial training dataset is
superposed. Here RM ¼ 1, 2, 3, 4 stands for the number of randomly chosen samples for each copy. The region with dashed lines
represents accessible zone for a trade-off between error and the number of ions involved, constraint by the maximum available
c ion Nt ¼ 20.
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ion are prepared in a squeezing state jsipx
jsipy

. For the
quantum phase estimation, the unitary operation U ¼
expðiρKq̂x q̂yÞ is constructed with the density matrix
exponentiation method [7,21,22,33],

Trρðeiδtq̂xq̂yScvρ ⊗ ρ0e−iδtq̂xq̂yScvÞ
¼ eiρδtq̂xq̂yρ0e−iρδtq̂xq̂y þOðδt2Þ: ð7Þ

Here ρ ¼ ρK is a mixed state encoded in the motional states
of the c ion (the internal states are traced out), and ρ0 ≡
jψAihψAj is a state on the b ion. The conditional swap
operator eiδtq̂xq̂yScv is constructed from CScvHaWaðδtÞHaCScv
[39], where CScv swaps motional states of the b ion and c ion,
conditioned on the qubit state of the a ion initialized in a jþi
state. The one-qubit-two-qumodes coupling WaðδtÞ per-
forms on the a ion, andHa is a Hadamard gate acting on the
a ion. Multiple copies of the c ion are required and each is
encodedwithmixed state ρ in the internal states. Conditional
swap operations are sequentially performed on the b ion and
a new c ion and swap their motional states, effectively giving
a U operation on the b ion.
After applying U on the b ion, a regularization can be

realized by applying Cq ¼ eiχq̂xq̂y on the two motional
modes of the a ion. A measurement projects two qumodes
of the a ion onto jsipx

jsipy
. The b ion is on target state

jψAþi. After an evolutionU†
R, whereURjgij0bi ¼ jψRi (jgi

the lowest-energy internal state of b ion), a projective
measure on jgij0bi with the success probability p ¼
jhψRjψAþij2 can infer the prediction for new data x̃.
This implementation scheme can demonstrate a remark-

able quantum-enhanced property. The above density matrix
exponentiation can use partial training dataset for each time
[35]; e.g., use ρ ∼

P
m∈RM

jϕjðxðmÞÞihϕjðxðmÞÞj, whereRM
represents randomly chosen RM samples in the training
dataset, and we thus choose L ¼ RM internal levels to
represent state jψAi. Therefore, in the experiments, we can
compare the results of RM ¼ 1; 2 � � �M randomly chosen
data from the dataset for each copy. We calculate the errors
as a function of the number of the c ions, and the results are
shown in Fig. 3(b). Under the condition of same accuracy,
the number of c ions increases with the decrease of RM;
similarly, the errors decrease for a large RM. Therefore, it is
a clear evidence to demonstrate the power of superposition
for quantum nonparametric learning. A remarkable result
presented here is that a Paul trap with around ten ions,
which has been realized in several groups [55–58], can
demonstrate the quantum-enhanced property for quantum
machine learning. (As for the scheme scalability, it is
discussed in the Supplemental Material [26].)
To conclude, we have illustrated a quantum paradigm of

nonparametric learning that can fully exploit quantum
advantages with realistic physical implementation. The
above-proposed experimental scheme has paved the way
for quantum machine learning.
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