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Abstract 
This paper studies computation, estimation, inference and 
testing for linearity in threshold regression with a threshold 
boundary. We first put forward a new algorithm to ease the 
computation of the threshold boundary, and develop the 
asymptotics for the least squares estimator in both the fixed-
threshold-effect framework and the small-threshold-effect 
framework. We also show that the inverting-likelihood-ratio 
method is not suitable to construct confidence sets for the 
threshold parameters, while the nonparametric posterior 
interval is still applicable. We then propose a new score-type 
test to test for the existence of threshold effects. Comparing 
with the usual Wald-type test, it is computationally less 
intensive, and its critical values are easier to obtain by the 
simulation method. Simulation studies corroborate the 
theoretical results. We finally conduct two empirical 
applications in labor economics to illustrate the nonconstancy 
of thresholds.  
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1 Introduction 

In recognition of potential shifts in economic relationships, threshold models have 

become increasingly popular in recent econometric practice. One typical 

application of the threshold model in time series is to illustrate asymmetric effects 

of shocks over the business cycle, see, e.g., Potter (1995). Many other important 

applications of the threshold model in time series are summarized in Hansen 

(2011). Threshold models are also useful in cross sectional applications. For 

example, Hansen (2000a) applies the threshold model to show that depending 

on the starting point, rich countries and poor countries have different growth 

patterns. The popularity of threshold models can be explained by two reasons. 

First, policy makers prefer threshold-type policies. For example, the tax rates 

depend on a few threshold income levels, and the university scholarships depend 

on one or a few threshold GPA levels as well. Second, the threshold model is 

parsimonious and allows for increased flexibility in functional form and at the 

same time is not as susceptible to curse of dimensionality problems as 

nonparametric models. 

The usual threshold model splits the sample based on an observed threshold 

variable q: 

1 1

2 2
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q
y

q

 

 





 
 



x

x
 (1) 

where 
  11, , dx q


  x

, d is the dimension of nonconstant covariates, x is the 

nonconstant covariates except q, β1 and β2 are slope parameters in the two 

regimes defined by q exceeding the threshold point   or not, and all the other 
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variables have the same definitions as in the linear regression framework. Usual 

parameters of interest are 
   1 2, , : ,     

 
   

 or equivalently, 
 2, ,   


 

 

with 1 2   
. Under the mean independence assumption 

[ | , ] 0, 1,2x q  
, 

the usual estimator of θ is the least squares estimator (LSE). 

A theory of estimation and inference is fairly well developed in this usual setup of 

threshold regression, see, e.g., Chan (1993), Hansen (2000a) and Yu (2012) 

among others. However, this setup of threshold regression has a key limitation, 

namely, the threshold point is the same for all subgroups of population. We use 

the classical return-to-schooling example to illustrate this point. As in Mincer’s 

(1974) model, suppose y is the log wage, q is the education level, and x includes 

experience and experience squared. Model (1) states that for different levels of 

education, the returns to schooling are different. However, it is common to 

believe that the threshold levels of education for men and women should be 

different; in other words, it is better to model the threshold as 1 21( )q D  
, 

where 1(·)  is the indicator function, and D is a dummy for female. Note that it is 

impossible (when D is continuous as in our two empirical applications in Section 

7) or quite burdensome (when D is discrete) to express such a model as a usual 

threshold regression with multiple threshold points. For example, in the return-to-

schooling example above, the threshold model with a binary D and 2 0 
 can be 

re-written as 

     
1 1 1

1 1 2 2 1 2

22 2

, if ,

1 , if ,

if .,

q

y D D q

q

  

     

 



 



  


      
 

x

x x
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That is, the regressors in each regime are different and there are cross-regime 

restrictions on the slope parameters. When the sign of 2  is unknown, it is 

impossible to rewrite the original model in this way. When D takes more than two 

values, the re-expression is even more burdensome. As a result, we will consider 

threshold regression with a threshold boundary in the following way, 
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1 1

2 2

, ,
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[ | , , ] 0, 1,2,

q
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x q z

  

  



 

 

  
 

 

 

x z

x z  (2) 

where 
1

1 2(1, ) , ( , )kz         z
, and there may be overlap between x and z. 

The threshold boundary 1( )q  z  can be treated as a normalization of the usual 

threshold crossing model with a linear index. Specifically, the threshold boundary 

can be written as 1( 0) Z γ , where (1, , )q z  Z  and 1 2( , , )q     γ
 with γq 

normalized as 1. A similar normalization also appears in the maximum score 

estimation (see, e.g., Abrevaya and Huang (2005)) or the quasi-likelihood 

estimation (see, e.g., Klein and Spady (1993)) of the binary choice model, but the 

threshold boundary does not include an error term and all variables in Z are 

observable. An alternative normalization of γ  is 
1γ
 as in the maximum score 

estimation (Example 6.4) of Kim and Pollard (1990). In this normalization, we do 

not need to know which component of 
 ,q z




 has a nonzero coefficient but need 

to estimate one more unknown parameter. Also, the setup (2) has some 

computational advantage (e.g., it is hard to embody 
1γ

 in our algorithm of 

searching for the estimator of γ ) so is the focus of this paper. 

Threshold boundary also marks a key difference between threshold regression 

and the structural change model. It is well known that these two groups of 

models share many similarities. However, threshold boundary is unique to 

threshold regression since the threshold variable in the structural change model 

is the time index so that the form of the threshold can only take the form 01( )t t
, 

where t is the time index and t0 is the true structural change point. 

Due to the nonregularity of model (2), asymptotics for the usual estimator, e.g., 

the LSE, are as yet not developed. Seo and Linton (2007) avoid this technical 

difficulty by using a ”smoothed” threshold boundary and put forward a new 

estimator called the smoothed least squares estimator (SLSE). The asymptotic 

Acc
ep

te
d 

M
an

us
cr

ipt



distribution of the SLSE is normal but its convergence rate is slower than the 

conventional convergence rate n. We fill this gap of literature by developing the 

asymptotics for the LSE directly in both the fixed-threshold-effect framework of 

Chan (1993) and the small-threshold-effect (or shrinking-threshold-effect) 

framework of Hansen (2000a). Specifically, we show that the asymptotic 

distribution of the LSE in the former framework is related to a compound Poisson 

field and in the latter framework related to a two-sided Brownian field. We also 

extend the model to the nonlinear setup in the conditional mean of y and the 

threshold boundary. We consider two frameworks rather than concentrate on one 

of them because we need to further discuss the inference of γ. When 1z , the 

small-threshold-effect framework is more convenient since the asymptotic 

distribution of the likelihood ratio (LR) statistic is accessible such that the 

confidence set based on inverting the LR statistic in Hansen (2000a) is easy to 

construct. However, this is not the case when there is a threshold boundary; we 

show that the current asymptotic distribution is too complicated to be used for 

inference. On the other hand, the nonparametric posterior interval (NPI) of Yu 

(2015), which is justified in the fixed-threshold-effect framework, can still be used 

to construct a confidence interval (CI) for each component of γ. 

Besides estimation of the threshold boundary, we also consider the test for a 

threshold effect (i.e., whether there is a threshold boundary). This test for linearity 

is special because under the null, the nuisance parameter   cannot be identified 

so that the usual three asymptotically equivalent tests are not applicable; see 

Davies (1977, 1987), Andrews (1993), Andrews and Ploberger (1994) and 

Hansen (1996) for some classical references when 1z . Although a Wald-type 

test can be applied, i.e., check whether 1 2 
 for each γ, it is computationally 

troublesome when the dimension of z is large. To circumvent this problem, we 

propose a score-type test which is constructed under the null, so no sample 

splitting appears in the construction of the test statistic. Given that the asymptotic 

null distribution is not pivotal, we propose a simulation method to obtain the 

critical values. 
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In an independent work by Lee et al. (2018), the authors consider similar 

problems as in this paper in the time series scenario, but this paper has at least 

three differences from Lee et al. (2018). First, different from the usual threshold 

regression, computation of the LSE of γ is not trivial. In Section 2, we suggest to 

use a simulation method based on the MCMC algorithm to search for the LSE, 

while Lee et al. (2018) suggest to use the mixed integer optimization (MIO) 

algorithms. Second, Lee et al. (2018) do not discuss the asymptotics in the fixed-

threshold-effect framework, which turns out to be quite challenging. As a 

corollary, Lee et al. (2018) do not discuss the inference on γ because their 

asymptotic distribution is too complicated. Third, we suggest to use the score test 

to test for a threshold effect while Lee et al. (2018) suggest to use the LR test. It 

seems that our test is more computationally efficient because out test does not 

need to calculate the likelihood ratio for each γ in the parameter space and 

needs only to run a single linear regression. On the other hand, Lee et al. (2018) 

discuss two important problems which are not covered in this paper. We briefly 

discuss these two issues at the end of our conclusion section. In summary, this 

paper and Lee et al. (2018) are more complements than substitutes. 

The rest of the paper is organized as follows. First, we develop an algorithm to 

compute the LSE in Section 2. Section 3 includes the asymptotics for the LSE in 

the two frameworks and Section 4 discusses the inference of γ. Section 5 

constructs the new score-type test and simulates the critical values. Section 6 

contains some Monte Carlo simulation results. Section 7 presents two empirical 

applications in labor economics. Section 8 concludes. Mathematical proofs of the 

theorems are presented in the Appendix. To save space, all supporting lemmas 

are collected in an online supplement. 

Some notations are collected here for future reference. The letter C denotes a 

generic positive constant whose value may change in each occurrence. The 

symbols   and   are min and max operators, i.e., 

   min , , max ,a b a b a b a b   
. 

·
 denotes the Euclidean norm. For a matrix 
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A, A   means every element of A is finite and A > 0 means it is positive 

definite. Parameters with subscript 0 denote their true values. In the small-

threshold-effect framework, the true values of   and δ may depend on n; we still 

use β0 to denote the true value of β but use δn to denote the true value of δ. 

Since the problem is trivial if q can be perfectly predicted by z, we define 

0q   z
. 1 0 2 01( ) 1( )q q        z z

 is the error term of the outcome 

equation.  signifies weak convergence over a compact metric space. [ , ]U a b  is 

the uniform distribution on an interval [ , ]a b . The symbol  is used to indicate the 

two regimes in (2) and, to simplify notation in what follows, the explicit values ”

1,2 ” are often omitted. 

2 Computation of the Threshold Boundary 

Suppose the data 
 

1

n

i i
w

  are i.i.d. (independent and identically distributed) 

sampled, where 
( , , , )i i i i iw y x z q  

. In (2), the LSE of γ is usually defined by a 

profiled procedure: 

 ˆ arg min  ,nM


 


  

where Γ is the parameter space for γ, and 

 
1 2,

1

1
: min  ( | ),

n

n i

i

M m w
n 

 


   

with 

   
2

1 2| 1( ) 1( ) .m w y q q           x z x z  

When  1, nM z
 reduces to the objective function of LSE in the usual threshold 

regression model (1). It is well known that there is an interval of γ minimizing 

 nM 
 in this case. Most literature uses the left-endpoint LSE (LLSE), while Yu 
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(2012, 2015) shows that the middle-point LSE (MLSE) is more efficient in most 

cases. It is interesting to define the counterpart of the MLSE in the general case. 

The estimation of β is invariant to the estimation of γ as long as the sample 

splitting is the same. To express the β estimator in matrix notation, define the 

1n  vectors Y by stacking the variables yi, and the ( 1)n d   matrices 
X   and 

X   by stacking the vectors 
1( )i i iq  x z

 and 
1( )i i iq  x z

. Let 

 

 
 

 

 1 2

1

1

1,
1

2

ˆ
1

arg min  | ;
ˆ

n

i

i

X X X Y
m w

n X X X Y

  

 

  

 


 


 

  


 
  

  
   
    

  

then the LSE of β is defined as 
      1 2 1 2

ˆ ˆ ˆ ˆ ˆˆ ˆ, : ,      
 

    
, and 

 ˆˆ ˆ ,  


 
. 

Also, 

      
2

1 2

1

1 ˆ ˆ: 1( ) 1( ) .
n

n i i i i i i i

i

M y q q
n

         



     x z x z  

2.1 Difficulties in the Calculation of ̂  

To appreciate the difficulty in calculating the LSE of γ, consider the following 

simple example, 

1 21( );y q z     (3) 

in other words, 11, 1 x
 and 2 0 

 are known, and 0  . A similar example is 

considered in Section 2 of Yu (2012). Such a simplification can focus attention on 

the estimation of   and also avoid the complexities introduced by 


. The left 

panel of Figure 1 shows ten data points sampled from the specification that z 

follows [0,1]U , ϵ follows [ 0.5,0.5]U   and is independent of z, and 10 20 1  
. As 

shown in the right panel of Figure 1, the choice of ̂  that is consistent with the 

data is not unique. Note here that although γ0 is identified by a set in finite 

samples, the set will shrink to a point asymptotically, so the problem here is point 

Acc
ep

te
d 

M
an

us
cr

ipt



identified rather than partially identified. In Figure 1, we also draw four extreme 

cases that ̂  can take in this dataset. The identified set is defined by the convex 

hull of the four extreme points. This is generally correct for a linear boundary 

specification 1( )q  z . It is natural to define the counterpart of the MLSE as the 

center of gravity of the identified set, which is defined as 

 

 

argmin

argmin

.
n

n

M

M

d

d









 






 

Since 
 arg min nM 

 is a convex set, the centroid reduces to the average of the 

extreme points. In Figure 1, such an estimate is shown as a blue dot, which is 

quite close to 0 (1,1) 
, the red open circle in the figure. On the contrary, the 

counterpart of the LLSE, the two solid boundaries of the convex set, seems less 

favorable since it may be far from the true value and is not uniquely defined. In 

what follows, the arg min  operator always means the centroid of the minimizing 

set if the set includes more than one points. Finally, note from Yu (2012, 2015), γ 

can be treated as a boundary of q. However, this boundary is different from the 

boundary studied in Hirano and Porter (2003), Chernozhukov and Hong (2004) 

and Knight (2006) – the boundary there is defined by the jump in the conditional 

density of q ”directly”, while the boundary in threshold regression is defined ”

indirectly” by the jump in the conditional expectation of another variable y . This 

is also why the boundary in Hirano and Porter (2003) and Chernozhukov and 

Hong (2004) can be identified uniquely in finite samples while the boundary here 

cannot. 

There are two specialities for this simple example, which need not hold in the 

general case. First, γ0 must fall in the identified set; second, the identified set can 

be easily calculated. To appreciate these difficulties in the general case, assume 

0
 is known in (2). Then 
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   0
ˆ arg min  ,n nn M M


       

where 

   

 

   

     

n n 0

2
2

10 201 1

1 0 2 01 1

1 0 2 01 1

n M -M

1( ) 1( )

1 1

1 0 1 0

n n

i i i i i i i ii i

n n

i i i i i i i ii i

n n

i i i i i ii i

y q q

Z q Z q

Z Z

 

    

   

   

   

 

   

 

 

 

  

     

     

       

 

 

 

x z x z

z z z z

z z

 (4) 

with 

10 0 20 0

1 0 1 0 0 2 0 2 0 0

1( ) 1( ) ,

2  and 2 .

i i i i i i i i

i i i i i i i i i i

y q q

Z Z

    

       

   

     

    

    

x z x z

x x x x x x
 (5) 

It is obvious that ̂  depends on 
 

1

n

i i
Z

  and is very complicated to compute. 

Figure 2 shows one set of possible (random) jumping locations of 

   0n nn M M    , where we center the figure at γ0, the red dashed lines 

represent the jumping locations for 
  1 01

1 0
n

i i ii
Z  


   z

, the blue solid 

lines represent the jumping locations for 
  2 01

1 0
n

i i ii
Z  


   z

, and the 

details for the specification of the distributions of ϵ and z are given in Section 3.1. 

On each convex set defined by these lines, we assign a random jump size 

defined by partial summation of 
 

1

n

i i
Z

 . We then determine on which set 

   0n nn M M     is minimized. Obviously, 0̂ 
 need not be the convex set 

covering (0, 0). 

2.2 Minimization Using the MCMC Algorithm 

Given these difficulties, we suggest to use a simulation method to achieve the 

minimization. A similar method is employed by Chernozhukov and Hong (2004) 

in different contexts. Specifically, we use the following algorithm. 
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Algorithm M: 

Step 1: Define 

 
 

 

exp ( ) 1( )
,

exp ( )

n

n

n

M
p

M d

 


 


 



 

which is the (concentrated) quasi-posterior of γ with a uniform prior on Γ. 

Step 2: Draw a Markov chain 

 (1) ( ), , ,BS    

whose marginal density is approximately given by  np 
. 

Step 3: For each 
( ) , 1, ,b b B  , calculate 

( )( )b

nM 
. Define 

ˆ arg min ( )I n
S

M


 



 as 

the initial estimation of γ. Note that 
ˆ

I  may be a set of γ values. 

Step 4: Refine the simulation set in Step 1 from Γ to a neighborhood of 
ˆ

I . For 

example, replace Γ by 

1

1: max ,min ,k

l l l l lS S 


       

where lS
 is the collection of the lth entry of S which is smaller than the 

corresponding entry of 
ˆ

I  (or minimum if 
ˆ

I  is a set), lS
 is the collection 

of the lth entry of S which is larger than the corresponding entry of 
ˆ

I  (or 

maximum if 
ˆ

I  is a set), δl is a small number, and   defines the product 

set in each dimension. 

Step 5: Repeat Step 2 and 3 to get an updated set of γ estimation, say, 
ˆ

N . Then 

̂  is defined as the average of the points in 
ˆ

N , which approximates the center of 

gravity of the identified set. 

The idea of our algorithm is simple – first get a rough idea where the identified 

set is and then refine the simulation in its neighborhood. We give a few 
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comments on Algorithm M. First, comparing to the grid search, our simulation 

method is more efficient since the probability to be simulated for γ values such 

that 
( )nM 

 is small is high. As a result, more γ values are drawn on (and around) 

the identified set, which is exactly what we want – depict the shape of the 

identified set as precisely as we can. Second, in Step 2, the MCMC method such 

as the Metropolis-Hastings sampler or the slice sampler can be used to simulate 

S. Because specification of transition probability functions and stopping rules in 

MCMC algorithms is standard nowadays (see, e.g., Robert and Casella (2004) 

and Rubinstein and Kroese (2017) for recent reviews), we omit the details here 

but mention some specifics of our implementation in the simulation section below 

(i.e., Section 6). Third, for the MCMC algorithm in Step 2, we need to specify a 

starting point. A natural choice is the LSE or LADE of q on z which guarantees 

that each regime contains about half of the observations. In Step 5, we can use 

ˆ
I  as the starting point for the MCMC algorithm. Fourth, when B is large enough, 

we can guarantee that the global minimizer of 
( )nM 

 is achieved in Step 3. This 

is because when B goes to infinity, the density of 
 ( )

1

B
b

b


  from Step 2 would 

converge to 
( )np 

 (see, e.g., Section 7.3.2 of Robert and Casella (2004) for the 

Metropolis-Hastings algorithm and Section 8.3 for the slice sampler which is used 

in our simulation), while the minimizing set of 
( )nM 

, say 
ˆ

n , is the mode of 

( )np 
 so that 

 ˆ 0n np  
. In practice, B is finite; how a finite B affects the 

minimizer of Algorithm M, e.g., 
ˆ

I , is a complicated question and beyond the 

scope of this paper. We leave it as a future research topic. Fifth, Steps 4 and 5 

are designed for practical rather than theoretical purpose. In practice, even if B = 

1000, some points in 
ˆ

n  were drawn, so we can concentrate on the 

neighborhood of 
ˆ

n  (rather than the whole Γ) to draw 
( )b  more efficiently and 

get a better idea on the shape of 
ˆ

n . To improve the preciseness of the identified 

set, we can increase B in Step 4 or conduct a further refinement in Step 5. Sixth, 

in Step 4, δl can be set as 0.1 times the range of the lth element of S, which is 
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used in our simulation. Also, to avoid missing points in the identified set, l  can 

be chosen by the method of trial and error. 

2.3 Discussions 

First, we discuss the specification of Γ in practice. In the usual threshold 

regression, Γ is often specified as 1 2( ) ( )[ , ]n nq q  , where ( )lq
 is the lth order statistic 

of 
 

1

n

i i
q

 , and α2 is often specified as 11 
 and 1 0.05,0.1,0.15 

 or 0.2. In the 

general case, it is hard to find all γ values such that each regime includes at 

least, say, 15%, of all data points. Actually, even if the set of all such γ’s can be 

found, it is not compact. Nevertheless, the specification of Γ does not need to find 

all possible γ’s. To illustrate this point, we consider an extremely simple example. 

Suppose we have only five data points of (q, z) as shown in the left panel of 

Figure 3, and we must guarantee that each regime has at least two points to fit a 

straight line. Then Γ can be the set 

2

22

22 2

21

22 2

22

2

if ( , 1),[ 1,2),

if [ 1, 0.5),[ , 2),

if [ 0.5,0),[ , 4 ),

if 0,,

if (0,0.25],[ 4 , ),

if (0.25,2],[ 1, ),

if (2, ),[ 1,2),





 



 





  
   


 


 
 



  

 

which is shown in the right panel of Figure 3 as the area encompassed by the 

blue solid and dashed lines, where   means the empty set. Obviously, this 

parameter space is not compact. This result is generic since for any data set, γ2 

can diverge to   although γ1 must be bounded. This choice of Γ is the largest 

but not necessary. Actually, the number of possible sample splittings determined 

by Γ is quite limited. In the right panel of Figure 3, we also mark the ”typical” 

combinations of γ1 and γ2 for all possible sample splittings by red circles, so 

totally only four sample splittings are possible (note that in theory, the total 
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possible number of splitting is 
2

5 10C 
, much larger than the actual number 4, 

due to the special sample realization). As a result, choosing Γ as a compact set 

can generate all possible sample splittings. Specifically, if 
ˆ L  is the LSE or LADE 

of q  on z, then first set 
1

2
ˆ ˆ,k L L

l l lC C 

 
     

 for a properly large C as the 

parameter space for 
  , where 

   is γ excluding the intercept γ1, and then 

choose the parameter space for γ1 given a specific value 
   as 1( ) 

 such that 

at least α1 portion of data are contained in each regime with 1 0.05,0.1,0.15 
 or 

0.2; in other words, the whole parameter space Γ need not take a Cartesian 

product form like 1  
. When k = 0, then 1  

 is exactly the specification of Γ 

in the usual threshold model. We can easily code the MCMC algorithm to let 

( )np 
 concentrate on Γ (see Section 6 for a concrete example). One advantage 

of Algorithm M is that it does not require a precise specification of Γ as long as it 

is a large compact set containing ̂  because it can automatically guarantee each 

regime contains at least α1 portion of data and seach for ̂  efficiently. On the 

other hand, grid search is generally impractical. First, when k > 1, grid search is 

not applicable due to the curse of dimensionality. Second, in grid searching, we 

need to discard the points in the initial chosen Γ when one regime contains less 

than 1k   data points, while the MCMC algorithm can adaptively discard such 

points. As a last comment, note that the problem of specifying the parameter 

space is not unique to threshold regression; any non-concave maximization 

method, e.g., the usual maximum likelihood and nonlinear GMM, involves this 

problem. 

Second, Algorithm M provides an alternative to the MIO algorithm suggested by 

Lee et al. (2018), but a detailed comparison between these two algorithms is 

beyond the scope of this paper. A comprehensive comparison between Algorithm 

M and the MIO algorithm (e.g., by simulations) is left as a future research topic. 

Third, note that the MCMC algorithm is only auxiliary to the minimization 

problem. Different from Chernozhukov and Hong (2003a) and Jun et al. (2015) 
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where the original objective function is smoothed, we did not change our 

objective function in Algorithm M. The construction of 
( )np 

 in Step 1 of 

Algorithm M is only to simulate the possible minimizers in Step 2, and we then 

check in Step 3 which of these possible minimizers minimizes the original 

objective function. 

Finally, we mention one mistaken algorithm which may be suggested by some 

practitioners. In the usual threshold regression, we check only qi in   to find ̂ . 

Since such qi’s are also sample quantiles of q, one may suggest to check all 

coefficients in the quantile regression of q on z. It seems reasonable because all 

possible sample splittings based on the conditional quantiles of q are checked. 

However, this is not correct because 0


z
 need not be any conditional quantile of 

q given z. So the quantile interpretation of the threshold point in the usual 

threshold regression cannot be extended to the general case. For illustration, 

check the simple data set in Figure 3. The red dot-dashed line shows all possible 

coefficients in quantile regression of q on (1, )z 

. But they define only one 

qualified sample splitting among the four. 

3 Asymptotics for the LSE 

In this section, we derive the asymptotic distributions of ̂  in two frameworks of 

the threshold effects. 

3.1 Asymptotics with Fixed Threshold Effects 

Before stating the asymptotic theory for the LSE, we first specify some regularity 

conditions. 

Assumption D: 
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1. 
2: d k

iw       
 are i.i.d. sampled.  is compact. 

1 1, ,d kB B     
 and Γ are compact, and 0

 and 0  are in 

the interior of 
B

 and Γ, respectively. 

2. 00 1( )q          xx z z
 and 00 1( )q          xx z z

 for all 

  . 

3. In the fixed-threshold-effect framework, 0 0 00 | ,q z         xx z
 for 

z  , and in the small-threshold-effect framework, replace δ0 by 
/ | |n n 

. 

4. | ( | )q zf q z
 is continuous on  for each z  , and |0 ( | )q zf f q z f    

 

for each z   and 
 | |q z z   

. 

5. 
4[ ]  

 and 
4[ | | ] x

. 

6. The conditional distribution of 
( , ) 
x

 given i iq  z
 and iz z

 is 

continuous in γ for γ in a neighborhood of 0  and z  . 

7. z is not multicollinear, i.e., there does not exist a nonzero vector 
1kv   

such that ( 0) 1P v  z . 

8. 
 2

10 1 0     xx
, and 

 2

20 1 0     xx
. 

9. 1iZ
 and 2iZ

 have absolutely continuous distributions, where iZ
 follows the 

conditional distribution of iZ
 given 

0i   and zi, and iZ
 is defined in (5). 

We denote iZ
 as 

 | , 0i i iZ z 
. 

Assumption D1 is standard. We can relax the compactness of 
B

 given that the 

objective function is a convex function of 


. Nevertheless, such an assumption 

simplifies our proof and seems suitable when [ | , ]y x q  is extended to be a 

nonlinear function of β. Assumption D2 guarantees that the sample splitting by 

any    would not degenerate. The corresponding assumption in the usual 

threshold regression is 
1( ) 0q          xx xx

 for all   , which is not 

suitable to be extended as 
1( ) 0q           xx xx z

 for all    because the 
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collection of events q  z  ( q  z ) and 0q    z z
 ( 0q    z z

),   , 

need not be the same if 1z  given that z  and 0


z
 may cross each other when 

0 
. The version of Assumption D3 in the usual threshold regression is 

0 0 0| 0q      xx
, which excludes the continuous threshold regression 

(CTR) of Chan and Tsay (1998) (see also Hansen (2017)). Assumption D3 also 

excludes the CTR in the current setup. For example, if z  , x = z, 

 0 100, 1 , (0,0,1) 
   

 and 20 (0, 1,0)  
, then 

 | , 1( 0) 1( 0)y q z q q z z q z     
, which is continuous at the threshold 

boundary q z  . Such a specification is excluded by Assumption D3 because 

      0 0 0| , 0,1,1 1, , 1, , 0,1,1 0q z z z z z  
         xx z

. Obviously, Assumption 

D3 requires more than 0  0
. Note also that Assumption D3 requires less than 

0| , 0q z    xx z
 because x may be the same as z such that the rank of 

| ,q z   xx z
 is d rather than d + 1. Assumptions D4 and D5 guarantee that 

such quantities as 

2
, 0z 

 
x

 and 

2 2 , 0z 
 

x
 are finite Pz almost 

surely. Assumption D4 can be relaxed along the line of Yu and Zhao (2013). 

Assumption D6 states that the distribution of x keeps stable in the neighborhood 

of 0 
 so the threshold effect is captured only by the changes in the 

conditional mean of y and the distribution of the error term ε. We can relax this 

assumption with more complicated notations (e.g., in Assumption D9); see 

Hansen (2000b) for relaxing this assumption in the structural change testing 

problem. Assumption D7 guarantees that there is no redundancy in z. This 

assumption can ensure that the asymptotic distribution of ̂  is well defined. 

Assumption D8 is a regularity assumption guaranteeing the asymptotic 

distribution of ̂  nondegenerate. Assumption D9 guarantees that the LSE 

defined in the last section is asymptotically unique. 

Theorem 1. Under Assumption D, 
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10

ˆ arg min ( ) : ,
k

d

v
n D v Z 


    

and 

        
        

1

2

1 1
2

1 10 1

1 1
2

2 20 2

ˆ 0, 1 0 1 0 1 0 : ,

ˆ 0, 1 0 1 0 1 0 : ,

d

d

n N Z

n N Z





  

  

 
  

 
  

               

               

xx xx xx

xx xx xx

 

where 

   

 
 

 

1 1 1 2 2 2

1 1

1
1 1 11 1

| 1

2

2 2 21 2

| 2

( ) 1 0 1 0 ,

,  ,
0 |

,  ,
0 |

i i i i i i

i i

i
i i i

z i

i

i i i

z i

D v Z v J Z J v

J
f z

J
f z

 
 

 

     

    

   

 z z

 

 1 2 1
,i i i



  are independent unit exponential variables and independent of 

   1 2 1 2 1
, , , , | , 0i i i i i i i ii

z z Z Z Z Z z



 

 with iz
 following the same distribution as zi, 

(1, )i iz  z
, and the i.i.d. copies of  1 1 1

,i i i
z Z



  is independent of the i.i.d copies of 

 2 2 1
,i i i

z Z


 . Furthermore, 1
,Z Z   and 2

Z  are independent of each other. 

We provide a few comments on Theorem 1. First, D(v) is a generalization of the 

compound Poisson process in the usual threshold regression, and we call (·)D  a 

”compound Poisson field”. In the usual threshold regression, 
1i z

, so 

 0|i i iZ Z q  
 and 

   | 00 |z i qf z f 
. As a result, D(v) can be rewritten as 

1

2

( )

1

1

( )

2

1

, if 0,

( )

, if 0,

N v

i

i

N v

i

i

Z v

D v

Z v
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where 
 1 2 11

, , (·)i i i
Z Z N

  and 2 (·)N
 are independent of each other, and  ·N

 is a 

Poisson process with intensity 0( )qf 
. Note that 1(·)N

 and 2 (·)N
 in the usual 

case and 
 1 11 0i iv J  z

 and 
 2 21 0 i iJ v  z

 in the general case determine the 

jumping locations of (·)D . From Assumption D7, z is not multicollinear, which 

implies 
arg min ( )v D v

 is a bounded set such that the center of gravity of 

arg min ( )v D v
 is well defined. Figure 2 illustrates a set of jumping locations of 

(·)D  when k = 1 and 
~ [0,1]iz U

. Note that there is no multicollinearity between z 

and 1; otherwise, if z is a constant, then all lines in Figure 2 are parallel, and 

arg min ( )v D v
 is not bounded. Although in the usual threshold regression, jumping 

locations and jump sizes ( 1iZ
 and 2iZ

 ) are independent, they are correlated 

(through 1iz
 and 2iz

) in the general case. Also, for a given sampling path, a fixed 

v can appear in both summations of D(v), which cannot happen in the usual 

case. Second, (·)D  is more complicated than 2  in Chernozhukov and Hong 

(2004) because it cannot be expressed as an integral with respect to the Poisson 

random measure (·)N  given that 1iZ
 and 2iZ

 include extra randomness than 1iz
 

and 2iz
, where 

   1 1 2 21 1
(·) : 1 , · 1 , ·

n n

i i i ii i
J z J z

 
          N

. This is also why (·)D  

is not easy to simulate as suggested in Remark 3.1 of Chernozhukov and Hong 

(2004) in their case. Third, we provide some intuition here on why the asymptotic 

distribution of ̂  involves (·)D . This intuition is similar to that in Section 3.2 of 

Chernozhukov and Hong (2004). From (4), 

 0
ˆ arg min  ( ),n

v
n D v    

where 

     1 2

1 1

1 0 1 0 .
n n

n i i i i i i

i i

D v Z v n Z n v 

 

      z z  
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Suppose ϵi follows the double exponential distribution with density 
 

1
exp

2


, 

which corresponds to a ”generalized” boundary model with the density at the 

boundary equal to 
 |

1
0 |

2
zf z 

. For a given v, the behavior of 
( )nD v

 is 

determined by the order statistics of ϵi in the neighborhood of 0 – (1) (2), ,n n 

 

in the left neighborhood and (1) (2), ,n n 

 in the right neighborhood. Note that the 

density of ϵi in the neighborhood of 0 is one half of the standard exponential 

distribution, so the Reny representation allows these rescaled order statistics to 

be represented almost surely as 2 times 

11 11 12 11 12 13

21 21 22 21 22 23

, , , ,
1 1 2

, , , ;
1 1 2

n n n

n n n

n n n

n n n

     
  

  
  

 

see, e.g., Embrechts, et al. (1997, p. 189), where i ’s are defined in Theorem 1. 

For a given v, essentially only a stochastically bounded number of order statistics 

matters in 
( )nD v

. Hence 1iJ
 and 2iJ

 are the limits of these order statistics as 

n  and follow gamma distributions with the common scale factor 2, i.e., 

2i iJ 
. In general, the density of ϵi ’s may vary near zero, which changes the 

hazard rates of the limit gamma variables, resulting in the division of 1i  and 2i  

by varying hazard rates 
 | 10 |z if z

 and 
 | 20 |z if z

. Since ̂  is asymptotically 

determined by only a small portion of the entire sample near 
0i  , its asymptotic 

distribution is independent of those of regular parameters β1 and β2; see, e.g., 

Lemma 21.19 of van der Vaart (1998) or Section 4.3 of Resnick (1986). Fourth, 

there are two difficulties in deriving the asymptotic distribution of ̂ . (i) in deriving 

the finite-dimensional limit of 
(·)nD

, it is hard to check the weak convergence of 

the Poisson point process. Fortunately, the proof method in Theorem 3.1 of 

Chernozhukov and Hong (2004) can be adapted to solve this problem; most of 

the technicalities can be found in Chapter 3 of Resnick (1987). (ii) in deriving the 
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weak limit of ̂ , the weak convergence of 
(·)nD

 on a compact set is hard to 

check since the stochastic equicontinuity condition on the D-space cannot be 

easily extended to the multi-dimensional case. In this case, the epi-convergence, 

which is weaker than the usual weak convergence and is popularized by Geyer 

(1994), Rockafellar and Wets (1998), and Knight (1999), can be used to apply 

the argmax theorem. Fifth, the asymptotic results for ̂  can be extended to 

nonlinear models. For example, suppose 

1 1

2 2

( , ; , ) , ( ; ),

( , ; , ) , ( ; ),

[ | , , ] 0, 1,2,

m x q q g z
y

m x q q g z

x q z

   

   



 
 

 

 

 (6) 

where λ is the parameters that remain the same in the two regimes, m  is a 

smooth function in the parameters, and g specifies a nonlinear threshold 

boundary. In this case, the corresponding (·)D  for the nonlinear LSE of γ is 

0 0
1 1 2 2

1 1

( ; ) ( ; )
( ) 1 0 1 0 ,i i

i i i i

i i

g z g z
D v Z v J Z J v

 

 

 

 
 

    
             
   

where iZ
 and iJ

 take the same form as in Theorem 1 but i  is redefined as 

0( ; )i iq g z 
 and iZ

 is redefined as 

   

   

2

1 10 0 20 0 1 10 0 20 0

2

2 10 0 20 0 2 10 0 20 0

2 ( , ; , ) ( , ; , ) ( , ; , ) ( , ; , ) ,

2 ( , ; , ) ( , ; , ) ( , ; , ) ( , ; , ) . 

i i

i i

Z m x q m x q m x q m x q

Z m x q m x q m x q m x q

        

        

   

    
 

3.2 Asymptotics with Shrinking Threshold Effects 

In this subsection, we assume 10 20n   
 shrinks to zero. This framework is 

suitable to the case where the threshold effects are relatively small for the given 

sample size. Note that different from what happens in the fixed-threshold-effect 

framework, the asymptotic distribution of ̂  does not depend on which point is 

taken as 
 arg min nM 

. 
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Theorem 2. Under Assumptions D1-D8 and 
| | 0n 

, 
| |nn  

, 

 
10

ˆ arg min ( ),
k

d

n
v

a C v 


   

where n n na n 
, 

1
( ) ( ) ( ).

2
C v B v I v   

I(v) and B(v) are defined as follows: 

1 2( ) ( ) ( )I v I v I v   

which is positive when 0v  , where 

|

1

|

2

1 2

| , 0 (0 | ) 1( 0)
( ) lim ,

| , 0 (0 | ) 1( 0)
( ) lim ;

( ) ( ) ( )

n z n

n
n n

n z n

n
n n

z f z v v
I v

z f z v v
I v

B v B v B v

 

 

 

 

   



   



     


     


 

xx z z

xx z z
 

is a Gaussian process with a positive variance when 0v  , where 1( )B v
 and 

2 ( )B v
 are two independent Gaussian processes with 

 

2

1 |

1

2

2 |

2

2

1 |

1 1 1 2

| , 0 (0 | ) 1( 0)
( ( )) lim 0,

| , 0 (0 | ) 1( 0)
( ( )) lim 0,

| , 0 (0 | )
( ), ( ) lim

n z n

n
n n

n z n

n
n n

n z

n

z f z v v
Var B v

z f z v v
Var B v

z f z v
Cov B v B v

  

 

  

 

 

   



   



  



     
 

     
 

  


xx z z

xx z z

xx z

 
 

1 2 1 2

2

2 | 1 2 1 2

2 1 2 2

1( 0)
,

| , 0 (0 | ) 1( 0)
( ), ( ) lim .

n

n n

n z n

n
n n

v v v

z f z v v v v
Cov B v B v



 

  

 

  



     



    

       


z z z

xx z z z z
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for any v, v1 and v2 in 
1k
. Furthermore, 1̂  and 2̂  have the same asymptotic 

distributions as in Theorem 1, and 1̂ , 2̂  and ̂  are asymptotically independent 

of each other. 

We provide a few comments on Theorem 2. First, if 1z , C(v) reduces to 

0

0 1 1

0

0 2 2

( )
( ) ( ) ,

if 0,2
( )

( ) if 0,
( ) ( ) ,

2

q

q

q

q

f
f V B v D v

v
C v

f v
f V B v Dv








  

 
 



 

where 

2

0 0lim | / , lim | /n n n n n n n n
n n

D q V q               

 
         xx xx

, and 

( ), 1,2B v 
, are two independent standard Brownian motions defined on [0, ) . 

In other words, C(v) is the two-sided Brownian motion in the usual threshold 

regression. If we assume n cn  
 as in Hansen (2000a), then the convergence 

rate is 
1 2n 

. We generalize the setup of δn in Hansen (2000a) by allowing for 

each component of δn to converge to zero in different rates and the convergence 

rates are unknown a priori. Now, the asymptotic distribution of ̂  is determined 

by the components of δn with the slowest converging rate to zero. In this way, we 

do not need to know α in Hansen (2000a) a priori and can estimate the 

convergence rate by 
ˆ ˆn   with 1 2

ˆ ˆ ˆ   
. Second, scrutinizing C(v), we can see 

that it cannot be expressed in the form of the two-sided Brownian motion. This is 

because there are nonconstant covariates in z such that for some values of v, 

some z  satisfy 0v z  and others satisfy 0v z . As a result, for such v’s, both 

1( )I v
 ( 1( )B v

) and 2 ( )I v
 ( 2 ( )B v

) are involved. This is parallel to the fact about ( )D v  

in Theorem 1 that both summations of D(v) are involved for some values of v. 

Similar to (·)D , we call (·)C  a ”two-sided Brownian field”. In some sense, C(v) is 

like a continuous approximation of D(v); see Yu and Phillips (2018b) for a 

rigorous statement for such an approximation when 1z . Third, our assumption 

that I(v) > 0 and ( ( )) 0Var B v   when 0v   does not lose generality. For a given 
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0v  , this can be guaranteed by 
   0 0 0P v P v    z z

. If there is 

multicollinearity among z such that for some vo, 
 0 1oP v  z

, then both I(v) and 

( ( ))Var B v  (and thus C(v)) are zero at vo. Since 1min ( )kv
C v  is quite possible to 

be zero, 1arg min ( )kv
C v  is not unique given that 

( ) 0oC av 
 for any a . This 

is why Assumption D7 excludes multicollinearity among z. Fourth, the results in 

Theorem 2 can be extended to the nonlinear model (6) by replacing 

10 0 1( , ; , ) /m x q    
 for x, 0( ; ) /g z   

 for z and 0( ; )q g z 
 for ϵ. 

4 Inference Methods for   

Since the inference for β is standard, we concentrate on the inference for γ in this 

section. In the usual threshold regression, there are two dominating inference 

methods for γ; see Section 4.1 of Yu (2014) for a thorough summary on the 

existing inference methods. The first method is through inverting the likelihood 

ratio (LR) statistic (see, e.g., Hansen (2000a)); the second method is to use the 

nonparametric posterior interval (NPI) (see, e.g., Yu (2015)). As argued in 

Section 4.1 of Hansen (2000a), the straightforward Wald-type confidence set by 

inverting the asymptotic distribution of ̂  in Theorem 2 performs unsatisfactorily 

in finite samples due to the identification failure when 
0n 

. The difficulties in 

inverting the asymptotic distribution of ̂  in Theorem 1 are discussed in Section 

4.1 of Yu (2015). 

Although the LR statistic in the usual threshold regression is asymptotically 

pivotal after some transformation, this is not the case in the general setup. This 

complication is mainly because of the existence of nonconstant covariates in z 

(such that B(v) and I(v) in C(v) cannot be simplified). As a result, we must 

simulate a Gaussian process with a complicated covariance kernel to find the 

asymptotic distribution of the LR statistic. For example, we need to estimate 

2 | , 0 , | , 0z z        xx xx
 and | (0 | )zf z

 for all z   to simulate the 
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Gaussian process. Fortunately, the NPI can still be applied. Specifically, we use 

the following algorithm to construct the CI for each component of γ. 

Algorithm G: 

Step 1: Compute the LSE 
 ˆˆ , 


 

 and the corresponding residuals 

   1 2
ˆ ˆˆ ˆ ˆ1 1 , 1, ,i i i i i i i iy q q i n            x z x z

. 

Step 2: Obtain a uniformly consistent estimator of the joint density f  of 

 : , , ,x q z


 w
 by kernel smoothing, and denote the estimator as  f̂ w

. 

Step 3: Define the estimated likelihood function as 

   

     

 

1 2

1

1 2

1 1

ˆ ˆˆ ˆ( ) , , , 1( ) , , , 1( )

ˆ ˆˆ ˆexp 1( ) ln , , , 1( ) ln , , ,

ˆ: exp ( ) .

n

n i i i i i i i i i i i i i i

i

n n

i i i i i i i i i i i i i i

i i

n

f y x q z q f y x q z q

q f y x q z q f y x q z

L

    

   



   



   

 

      
 

 
      

 





 

x z x z

z x z x

 

Step 4: Draw a Markov chain 

 (1) ( ), , ,BS    

whose marginal density is approximately given by 

 
 

 

ˆexp ( ) 1( )
ˆ .

ˆexp ( )

n

n

n

L
p

L d

 


 






 

Step 5: Take out the lth component of S, denoted as 
 (1) ( ): , , B

l l lS  
. Then the 

(1 )  CI for γl is constructed as ( /2) (1 /2)[ , ]l l    , where ( )l 
 is the τth quantile of 

Sl. 
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When x and/or z contain discrete variables, we can extend the method in Racine 

and Li (2004) from nonparametric regression to density estimation. Another 

problem is that when the dimension of x and z is large, the estimation of f̂  

suffers from the curse of dimensionality, so some simplification in the DGP 

specification is required. A popular simplification is to assume that ε is 

independent of ( , , )x q z  

. In such a setup, we need only estimate the density of 


 based on 

ˆ
i
, and denote the estimator as 

f̂
, where 1

ˆ
i  is the 

ˆ
i  such that 

ˆ
i iq  z

, and 2
ˆ

i
 is the rest of 

ˆ
i . 

 ˆˆ , , ,i i i i if y x q z x
 in Step 3 is replaced by 

 ˆˆ
i if y  x

 in each regime. If the number of data points in either regime is not 

large enough for the density estimation, we can further assume 
e 

, where e 

is independent of ( , , )x q z  

. In other words, the difference between f1 and f2 is 

completely controlled by σ1 and σ2. Now, we need only estimate the density of e 

based on îe
, and the estimator is denoted as 

ˆ
ef , where 

   
1 2

ˆ ˆ
ˆ ˆˆ 1 1

ˆ ˆ
i i

i i i i ie q q
 

 
 

    z z  

with 
   2

1 1 1
ˆ ˆ ˆ ˆ1 / 1

n n

i i i i ii i
q q    

 
   z z

 and 

   2

2 1 1
ˆ ˆ ˆ ˆ1 / 1

n n

i i i i ii i
q q    

 
   z z

. Then 
 ˆˆ , , ,i i i i if y x q z x

 in Step 3 is 

replaced by 

ˆ1 ˆ
ˆ ˆ

i i

e

y
f



 

 
 
 

x

. Note also that when ε is independent of ( , , )x q z  

, 

the discreteness of x  and/or z is out of consideration in the estimation of f. In 

practice, it is strongly suggested to employ this simplification to alleviate the 

curse of dimensionality. As to the bandwidth selection in the estimation of 
f̂

 and 

ˆ
ef , see the discussions in Section 6. Finally, uniform consistency of f̂  can be 

shown as in Silverman (1978) or Hansen (2008), and the validity of the NPI can 

be shown along the line of Theorem 4 of Yu (2015), so the details are omitted. 
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Another important inference method is proposed by Seo and Linton (2007) in a 

similar framework as in this paper. As mentioned in the introduction, their method 

is based on smoothing the least squares objective function and the convergence 

rate is slower than n. When the threshold is constant, the simulation studies in Yu 

(2015) show that the performance of their CI for   is not as good as Hansen’s 

LR-CI or our NPI, while those in Seo and Linton (2007) show that their CI 

outperforms Hansen’s LR-CI for large threshold effects. Seo and Linton (2007) 

did not study the finite-sample performance of their CI when the threshold is not 

constant; we will study this scenario in Section 6.2. To our knowledge, the CI 

based on the SLSE and our NPI are the only two available CIs for γ in the 

framework of this paper. 

A corollary of Algorithm G is the semiparametric empirical Bayes estimator 

(SEBE) of Yu (2015), e.g., the posterior mean or median based on  ˆ ·np
. As 

shown in Yu (2015), the SEBE is an adaptive estimator of γ in the fixed-

threshold-effect framework of the usual threshold regression. Such an 

adaptiveness result is ready to extend to the general case. The efficiency 

improvement of SEBE relative to the LSE is confirmed in the simulation studies 

of Section 6.2. 

5 Testing For A Threshold Effect 

To use the LSE to estimate γ in model (2), we must first guarantee that there 

indeed exist a threshold effect. For such a testing problem, it is more convenient 

to reparametrize the model (2) as 

 1( ) , | , , 0.oy q x q z          x x z  

where the true threshold parameter γ0 is unknown, 2o 
 and 1 2   

. The 

null hypothesis is 

0 10 20 0: 0 or 0H       
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and correspondingly, the alternative is 

1 10 20 0: 0 or 0H       

and the local alternative is 

1/2

1 10 20: .c

nH n c       

Under the null, the model is linear, so this is also called a testing for linearity 

problem. Usually, a Wald-type test is suggested, that is, estimate β1 and β2 for 

each possible sample splitting of    and then test whether 1 2 0  
 based 

on the supremum or average of the Wald test statistics among all   . 

Specifically, define Wn as a random function on Γ, 

         
1/2

1 2 1 2
ˆ ˆˆ ˆ( ) , ,nW V V n       



     

where  1̂ 
 and  2̂ 

 are defined in Section 2, and 

 

 

1 1

2

1

1 1 1

1 1

2

2

1 1 1

1 1 1ˆ ˆ1( ) 1( ) 1( ) ,

1 1 1ˆ ˆ1( ) 1( ) 1( ) .

n n n

i i i i i i i i i i i i i

i i i

n n n

i i i i i i i i i i i i i

i i i

V q q q
n n n

V q q q
n n n

    

    

 

     

  

 

     

  

     
        
     

     
        
     

  

  

x x z x x z x x z

x x z x x z x x z

 

The test statistic is a functional of Wn. In practice, two test statistics are most 

popular. The first is the Kolmogorov-Smirnov sup-type statistic 

2
sup ( ) ,nKS W





  

and the second is the Cramér–von Mises average-type statistic 

2
( ) .v nC M W d 
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Both test statistics can be written as functionals 
( )ng W

, where (·)g  maps 

functions on Γ to . A key problem associated with such tests is that  ̂ 
 for 

all    need be computed, which is quite time-consuming especially when the 

dimension of Γ is large. When the threshold boundary is nonparametric such as 

( )q g z , we can think of the dimension of Γ as infinity, and the computational 

problem is particularly severe; see Yu et al. (2018) for the test for a threshold 

effect in this nonparametric case. The LR test in Lee et al. (2018) suffers a 

similar problem (and also different from the Wald test and our score test, their 

null asymptotic distribution is not a functional of a chi-square process when the 

error is heteroskedastic so their test may suffer from a power loss). In the 

following, we propose a score-type test which can avoid this problem. 

5.1 Test Construction and Asymptotics 

Our test statistics are based on the score of the LS objective function under the 

null. For the testing purpose, it is more convenient to rewrite the objective 

function as 

   
2

1

1
; , 1( ) .

n

n o i i i i i o

i

Q y q
n

       



    x z x  

The score function of 
 ; ,n oQ   

 with respect to δ and evaluated at δ = 0 is 

 
1

1
1( )

n

n i i i oi

i

S q
n

  



 x z  

after discarding the constant terms, where oi
 equals i  under H0 and contains 

some extra bias under H1, and can be estimated by 
ˆˆ

oi i i oy   x
 with 

ˆ
o  being 

the coefficients in the regression of yi on ix
. Our score-type tests are based on 
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1/2

1 1 1 2

1 1

1

1/2 1

1

1

ˆ ˆ ˆ ˆ ˆ1( ) 1( )

ˆ ˆ ˆ· 1( ) , ,

n

n i i i i i i i i oi

i

n

i i i i oi

i

T n q Q Q q Q Q

n q Q Q

     

   




    



  



 
     
 

   
 





x z x x z x

x z x

 

where 
  1

1

1

ˆ 1( )
n

i i i i

i

Q n q   



 x x z

 and 

1

1

ˆ
n

i i

i

Q n 



 x x

. Different from Wn, we need 

only run one regression of y on x  to construct Tn, so the computation burden is 

significantly lightened. 

Note that our score test is different from the Lagrange multiplier (LM) test in 

Hansen (1996). The LM test there is still a Wald-type test since the test statistic 

is constructed under the alternative, and only the residuals in the regression 

score are constructed under the null. On the other hand, our score test is similar 

in spirit to the LM test in Hansen (1990) where the test statistic is constructed in 

the structural change context. Note also that although 

  1 1/2

1

1

ˆ ˆ ˆ (1), 1( )
n

i oi p i i i

i

Q Q n o q    



 x x z

 is recentered by   1

1
ˆ ˆ

iQ Q 
x

. This is 

because the effect of 
ˆ

o  will not disappear asymptotically so the asymptotic 

distribution of 

1/2

1

ˆ1( )
n

i i i oi

i

n q   



x z

 differs from 

1/2

1

1( )
n

i i i oi

i

n q   



x z

 under H0. 

Recentering is to offset the effect of 
ˆ

o . 

Given 
(·)nT

, we can similarly construct the Kolmogorov-Smirnov sup-type 

statistic or the Cramér–von Mises average-type statistic. Define 
( )n ng g T

, 

where g is the functional defined in KS or vC M
. The following theorem states the 

weak limit of gn under 1

cH
, which implies the asymptotic null distribution and the 

consistency of the tests. 

Theorem 3. Under 1

cH
, 
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( ),
d

c

n cg g g T   

where 

      1/2 1

1 0 1 1 0( ) ( , ) ( ) ,cT H S Q Q Q Q c               

     1 0 0 1 11( ) , ,Q q Q Q Q                     xx z z xx
, and ( )S   is a 

mean zero Gaussian process with covariance kernel 

     1 1 2

1 2 1 1 1 2 1 2( , ) 1( ) 1( ) .H q Q Q q Q Q      


        
 

x z x x z x  

In some special cases, Tn can be simplified. For example, if ix
 is independent of 

( , )i iq z  

, then  nT 
 can be simplified as 

     
1/2

2
1 2 1/2

1 1

ˆ ˆ1( ) 1( ) 1( ) 1( ) ,
n n

n i i i i oi i i i oi

i i

T n q q n q q      



      

 

 
       
 
 x x z z z z x  

where 

1

1

1( ) 1( )
n

i i

i

q n q   



  z z

. 

5.2 Simulating Critical Values 

The asymptotic distribution in Theorem 3 is not pivotal, but the simulation method 

in Hansen (1996) can be extended to the current case to obtain critical values. 

Given that Tn is easier to compute than Wn, the simulation method for Tn is also 

computationally less intensive. More specifically, let 
 

1

n

i i


  be i.i.d. (0,1)N  

random variables, and set 

       

 

1/2

1 1 1 2

1 1

1

1/2 1

1

1

ˆ ˆ ˆ ˆ ˆ1( ) 1( )

ˆ ˆ ˆ· 1( ) , .

n

n i i i i i i i i oi

i

n

i i i i oi i

i

T n q Q Q q Q Q

n q Q Q

     

    




     



   



 
     
 

   
 





x z x x z x

x z x

 7) 
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Our test rejects H0 if gn is greater than the (1 ) th conditional quantile of 
( )ng T 

. 

Equivalently, the p-value transformation can be employed. Define 
1 ( )n n np F g  

, 

and 01 ( )n np F g 
, where nF 

 is the conditional distribution of 
( )ng T 

 given the 

original data, and F0 is the asymptotic distribution of 
( )ng T

 under the null. Our 

test rejects 0H
 if np  

. The following theorem states the validity of the above 

procedure. 

Theorem 4. Under the assumptions of Theorem 3, 
(1)n n pp p o  

 under both H0 

and 1

cH
. Hence 01 ( )

d

n c cp p F g    under 1

cH
, and [0,1]

d

np U  under H0. 

By stochastic equicontinuity of the 
( )nT 

 process, we can replace Γ by finite grids 

Γn with the distance between adjacent grid points going to zero as n  (see 

Section 6 for more implementation details). Also, the conditional distribution can 

be approximated by standard simulation techniques. More specifically, the 

following algorithm is used. 

Algorithm S: 

Step 1: Generate i.i.d. N(0, 1) random variables 
 

1

n

ij i


 . 

Step 2: Set 
( )j

n lT 

 as in (7), where l 
 Γn. Note here that the same 

 
1

n

ij i


  are 

used for all γl, 
1, ,l L . 

Step 3: Set 
( )j j

n ng g T 
. 

Step 4: Repeat Step 1-3 J times to generate 
 

1

J
j

n j
g 

 . 

Step 5: If 

1

1
1( )

JJ j

n n nj
p J g g   


  

, we reject H0; otherwise, accept H0. 

6 Simulations 

In this section, we conduct some Monte Carlo simulations to check the 

performance of the estimators and tests described in the previous sections. 
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Given that Algorithm M, G and S are quite time-consuming, we will consider only 

the following simple DGP 

1 21( ) ,ny q z        

where 
 1 2 ~ [ 0.5,0.5]q z U    

,  ~ 0,1 , ~ (0,1)z U N
, and  , ,z 

 are 

independent of each other. This setup is the same as (3) except that an error 

term ε is added in. We use this simple setup to emphasize the new feature of the 

model in this paper, i.e., the threshold depends on covariates, and neglect the 

other popular features of TR models, e.g., threshold effects depend on 

covariates, error variances depend on regimes, etc. The sample size n = 200, 

and the number of repetitions is set as 500. The true threshold parameter 

0 (1,1) 
. In specification testing, 

1/2

n cn 
 with 0,1, ,10c  . In estimation, we 

consider two n ’s with c = 10 and 20 which roughly correspond to the small-

threshold-effect framework in Section 3.2 and the fixed-threshold-effect 

framework in Section 3.1. 

The following simulation study serves three purposes: (i) check the effect of the 

specification of Γn on size and power of the specification tests; (ii) check the 

performance of our LSE in different frameworks; (iii) check the coverage of the 

NPI in different frameworks. In other words, we concentrate on the new aspects 

of the threshold model considered in this paper; other simulation results which 

are much expected are referred to the existing literature in the references. 

We provide more details on our implementation here. First, we specify our   as 

follows. From Section 2, the set of all possible γ’s is unbounded, so we first 

restrict 2 [0,2] 
 – a compact set. Note that this range of γ2 is actually 

2 21, 1m m     , where 2

m
 is the slope in the (population) median or mean 

regression of q on  1, z
. We also tried 2 2

ˆ ˆ1, 1m m      as the parameter space for 

γ2 and all the simulation results barely change, where 2
ˆm

 is the estimate of 2

m
 in 
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sample. As to γ1, we implicitly restrict it such that each regime contains at least 

30 data points. In the test for linearity, we use a MCMC algorithm to simulate 

from the uniform distribution on Γ (i.e., replace 
 exp ( )nM 

 in 
( )np 

 of 

Algorithm M by 1) and the resulting approximation set of Γ is used as Γn. Second, 

a MCMC algorithm must be employed in simulating Γn, 
( )np 

 in Algorithm M and 

ˆ ( )np 
 in Algorithm G. We use the Matlab function slicesample for our purpose. In 

the function slicesample, the arguments are some initial value and a posterior 

function form that is not necessarily normalized as a density; unlike in the 

Metropolis-Hastings sampler, the transition probability function is not required. 

We use the LADE of q on  1, z
 as the starting value, and draw 1000 samples 

from the posterior after discarding the first 200 ”burn-in” draws. We refer to Neal 

(2003) for a concrete description of the slice sampling. Third, in Algorithm G, 

since ε is independent of (q, z), we need only estimate the density of  . We use 

the Matlab function ksdensity to carry out this estimation. The function ksdensity 

uses by default the standard normal kernel and the optimal bandwidth when the 

true density is normal to get a smoothing density; see Section 3.4.2 of Silverman 

(1986) for details of this bandwidth selection. To improve the finite-sample 

performance, we instead use the Mablab function kde.m provided by Zdravko 

Botev to select the bandwidth adaptively and then plug in ksdensity to estimate 

f ; see Botev et al. (2010) for the details. 

We also compare the performance of the SLSE and the associated CI of Seo 

and Linton (2007) with our LSE/SEBE and NPI. Note that the objective function 

of SLSE in our DGP is 

 
2

1 2

1

1
,

n

i i

n i n

i

z q
M y K

n h

 
 



    
      
  

which just replaces 1 21( 0)i iz q   
 in  nM 

 by 

1 2 i iz q
K

h

   
  

, where as 

suggested by Seo and Linton (2007), ( ) ( ) ( )K x x x x    with   and   being 
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the standard normal cdf and pdf respectively, and the bandwidth log /h n n . 

Seo and Linton (2007) propose another SLSE, but their theoretical analysis and 

simulation studies show that this SLSE is better when the above (·)K  and h are 

used. In searching for the minimizer of  nM 
, we can utilize Algorithm M, 

replacing  nM 
 by  nM 

 and neglecting Steps 4 and 5 since 
 arg min nM 

 is 

unique. However, if we bootstrap the SLSE, then Algorithm M is too time-

consuming. As an alternative, we just grid search  nM 
 over 201 × 201 points 

uniformly distributed on  [0,2] 0,2
. This grid search is possible since dim( ) 2   

in the current DGP. The (·)K  function in 
(·)nM

 allows that each regime need not 

contain at least k + 1 data points, which is very different from the LSE. In CI 

construction, we report only the CIs based on the bootstrap-t method to gain the 

finite-sample refinement as suggested in Seo and Linton (2007), where the 

number of bootstrap repetitions is set to be 399. Compared with our LSE/SEBE 

and NPI, the SLSE and the associated CI have three drawbacks. First, they are 

less practical. When dim( )  is large, only Algorithm M can be used, but then only 

the asymptotic CI can be used while the bootstrap CI is too time-consuming. 

Second, their performance critically depends on the choice of h which is not 

easily determined in real applications. Third, the SLSE has a slower convergence 

rate than our LSE, which implies higher risk and longer CI. 

6.1 Testing for Linearity 

In the testing for linearity, we let 
#( )n , the number of   in Γn, be O(n). Three 

choices are checked – / 2, ,2n n n . This specification of Γn is motivated by the fact 

that in the usual threshold regression, the number of all possible sample 

splittings is ( )O n . This simulation is to check whether different approximations of 

  have significant effects on size and power. Given that the specification of Γn 

may have a large impact on the average-type statistic, we consider only the sup-

type statistic here. In Algorithm S, 500J  . The size and power are evaluated at 
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the 5% nominal level. In this simple setup,   1

1
ˆ ˆ1( )i i i iq Q Q   x z x

 in nT
 reduces 

to 
1( ) 1( )i iq q    z z

, and 
ˆ

oi
 reduces to 

1

1

n

i i

i

y n y



 
. 

We report the simulation results in the left panel of Figure 4; two results of 

interest are as follows. First and importantly, 
#( )n  does not have significant 

effects on the size and power of our score test. Actually, the power curves 

associated with the three 
#( )n  are almost identical. Second, the size of our test 

matches the nominal level and the power is reasonably good. For comparison, 

we also report the performance of the sup-Wald test in the right panel of Figure 

4. Comparing with the score test, the Wald test is oversized and 
#( )n  seems to 

have relatively larger impacts on the power. The phenomenon of oversizedness 

in the Wald test also appears in, e.g., Hansen (1996), and the power difference 

between these two tests seems due to the size distortion in the Wald test. Also, 

the Wald test indeed takes much longer time to execute in our simulation. One 

practical implication of this simulation is that we do not need to pay much 

attention to the specification of Γn in our score test as long as 
#( )n  is reasonably 

large. 

6.2 Estimation 

In this simple setup, the asymptotic distribution of ̂  in Theorems 1 and 2 can be 

much simplified. In Theorem 1, i iJ 
 follows a Gamma distribution since 

 | 10 | 1,
2

n

z i i if z Z


   
, and 

2
2

n

i iZ


 
, where i



 and i


 follow the same 

distribution as  . Because zi is always positive, the number of jumps in the first 

term of D(v) goes to infinity when 1 2v v 
, and the number of jumps in the 

second term of D(v) goes to infinity when 1 2v v 
. In Theorem 2, 

 2 2 2

1 2 1 1 2 2 1 1 1 2 1 2 1 2( ) 1( 0) , ( ) 1( 0) , ( ( )) ( ), ( ( )) ( ), ( ), ( ) 1( 0)I v v v I v v v Var B v I v Var B v I v Cov B v B v v v v v                          z z z z z z z z

, and 
   2

2 1 2 2 1 2 1 2( ), ( ) 1( 0)Cov B v B v v v v v         z z z z
, where  2 1Var  

. 
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The RMSEs of the SLSE, LSE and SEBE are reported in Table 1, where we use 

the posterior mean to represent the SEBE, and the performance of the posterior 

median is similar. From Table 1, the following conclusions can be drawn. First, as 

expected, when δn gets larger, the risks of all   estimators are smaller. Second, 

the risk of the updated estimator 
ˆ

N  are smaller than that of the original estimator 

ˆ
I , but the difference is only marginal, so at most one updating in Algorithm M is 

needed in practice. Third, as expected, the LSE has a smaller risk than the 

SLSE, especially when δn is large (when c = 10, 1,
ˆ

SLSE
 has a smaller risk than 

1,
ˆ

I
, but its risk is similar to 1,

ˆ
N

 and larger than the SEBE). Fourth, the risk of the 

SEBE are smaller than those of the LSEs and SLSE, especially when δn is large. 

In summary, the SEBE performs the best in all circumstances and is suggested 

in practice. As to the computational time, we find Algorithm M is faster than 

Algorithm G; both algorithms take seconds for each repetition. 

The length and coverage of the bootstrap-t CI based on the SLSE and our NPI 

are summarized in Table 2, where the coverage level is set as 95%. From Table 

2, a few conclusions can be drawn. First, as expected, when n  gets larger, the 

coverage of both CIs for both γ1 and γ2 is better and the length is shorter. 

Second, the bootstrap- t CI has a similar coverage as the NPI, but is much longer 

than the latter, which matches the efficiency comparison in Table 1. Third, it 

seems that the slope 2  is harder to estimate than the intercept 1  – larger risks 

and longer CIs. 

7 Empirical Applications 

In this section, we apply our estimation and testing methods to two examples in 

labor economics. The first application is about tipping point in dynamic 

segregation and the second is about CEO compensation; z   in both 

applications are continuous. These two applications have been among the most 

debated topics in the general public as well as academics. 
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7.1 Tipping Points in Dynamic Segregation 

Since the seminal work by Schelling (1971), dynamic segregation models have 

been intensively studied in the literature. For instance, Card et al. (2008) 

estimate a dynamic segregation model of neighborhood racial composition 

between 1970 and 2000; Pan (2015) investigates how tipping points impact the 

dynamics of occupational gender segregation in the labor market between 1940 

and 1990. 

We use Pan (2015) to illustrate the econometric methodology in this paper. The 

basic empirical specification in Pan (2015) is 

 , , 10 , 10 , 10 , 10 , 10 ,1( ) ,isrj t isrj t rj t isrj t rj t isrj t isrj tDm p f f d f f X    

           (8) 

where ,isrj tm
Z ,isrj tm

 and , 10isrj tf   are the shares of male and female employment in 

occupation i, state s, region r, and the group of white-collar or blue-collar 

occupations j in year t or t – 10, respectively. The dependent variable ,isrj tDm
 is 

the net change in male employment growth, defined as the difference between 

male and female employment growth rate between year t and t – 10. The , 10rj tf 

  

represents the tipping point at the region r and the white-collar or blue-collar level 

j; (·)p  is a fourth-order polynomial function; , 10isrj tX   includes white-collar region 

fixed effects, occupation characteristics (average age, education, and log male 

wages) in the initial period, and one-digit occupation fixed effects; ,isrj t
 is the 

error term. Pan (2015) adopts a two-step method as in Card et al. (2008). First, 

she estimates the time specific discontinuity point , 10rj tf 

  from the data. 

Specifically, she uses two different methods with similar results; the first is a 

structural break method as in Hansen (2000a) and the second method is a “fixed-

point” procedure suggested in Card et al. (2008). Second, she feeds the 

estimates of , 10rj tf 

  to (8) and carries out the regression analysis. 
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From the results for the pooled sample in Table 6 of Pan (2015), the higher the 

male prejudice, the lower the tippling point, where higher male prejudice 

represents more male-prejudiced attitude toward the appropriate role of women 

among men. So we modify the model (8) as 

 , , 10 , 10 , 10 , 10 ,1( ) ,isrj t isrj t isrj t rj t isrj t isrj tDm p f d f X   

       z  (9) 

where we estimate the tipping point as a function of , 10rj tz
. Following Pan (2015), 

we include a constant and a male prejudice variable in , 10rj tz
. 

First, we use our score test to check whether the tipping point indeed exists. It 

turns out that the p-values are all zero for every ten-year period between 1940 

and 1990, so there are strong evidences that threshold effects are present. 

Second, we report our estimates of γ and d. Table 3 contains the γ estimates and 

the associated 95% NPIs, where only the updated LSE of γ in Algorithm M is 

reported as the LSE. From Table 3, the estimated threshold location is negatively 

correlated with the male prejudice for each decade, and the negative correlation 

is statistically significant. This is consistent with the results in Table 6 of Pan 

(2015). Table 4 contains the estimates of d in model (9). It estimates a 

discontinuous decline in net male employment growth at tipping points for all 

decadal periods. The magnitude and the time trend of the decline are mostly 

consistent with the results in Table 3 of Pan (2015). 

In summary, the results from the application of our methods confirm the tipping 

behavior of the occupation gender segregation in the labor market, and the 

tipping points are lower in regions with higher male prejudice. 

7.2 Executive Compensation 

Executive compensation has been one of the most debated topics among the 

general public as well as academics (see, e.g., Murphy (1999) and Edmans et al. 

(2017) for extensive review and discussion). In determining the executive 
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compensation, the classic principal-agent theory suggests Relative Performance 

Evaluation (RPE). That is, the risk neutral principal (shareholders) should bear all 

risks which are out of the executive’s control, called “luck” for short. The 

executive should be compensated for her performance relative to a benchmark to 

filter out the effects of such luck component. However, some empirical 

researches find executives are paid for performance beyond their control. 

Bertrand and Mullainathan (2001) find CEO compensation is positively and 

significantly correlated with luck. They also find such “pay for luck” might be 

asymmetric: CEOs might not be punished by bad luck as much as rewarded for 

good luck. Findings in Garvey and Milbourn (2006) confirm this asymmetry. 

Using the methodology developed in this paper, we investigate the pay to luck 

asymmetry in a more general framework. Specifically, we test and estimate the 

following econometric model, 

1 1 1

2 2 2

, ,

, ,

L X L
y

L X L

   

   

 

 

   
 

  

z

z
 (10) 

where y is the executive compensation, L is luck, X contains controls for skills, 

gender, age, tenure and total market value of the firm, and 


 is the 

unobservable noise term in each regime. The variable z can be a constant or a 

vector specified below. If we restrict 1 2 
 and 0 z , then it is essentially the 

model used in Garvey and Milbourn (2006) where they find 1 2 
. 

We use the compensation data drawn from Standard and Poor’s ExecuComp on 

2306 executives over the 1992-2012 period. We decompose the firm 

performance P (measured by one-year percentage stock return) into two 

components, luck and skill, following Bertrand and Mullainathan (2001) and 

Garvey and Milbourn (2006). As in Garvey and Milbourn (2006) when estimating 

the executive compensation (10), the dependent variable is the change in the 

logarithm of total compensation, which includes salary and bonus. 

Acc
ep

te
d 

M
an

us
cr

ipt



We first use our score test to check whether there are threshold effects for the 

two specifications of z. First, 1z , i.e., the threshold is constant. The p-value is 

zero in this case. Second, we assume the threshold may vary with the firm size, 

(1, )z z , where z is is the total market value of the firm measured in millions of 

dollars. The p-value is also zero in this case. In both cases, our tests indicate that 

there are strong threshold effects. 

Table 5 reports the point estimates and 95% NPIs of γ for the two specifications 

of z, where we only report the updated LSE of   in Algorithm M. The results for 

the first specification are reported in the first column of Table 5. Combined with 

the first two columns of Table 6, these results are consistent with the asymmetric 

compensation for luck as found in Bertrand and Mullainathan (2001) and Garvey 

and Milbourn (2006), i.e., there are two regimes of luck as in (10) such that 

1 2 
. On the other hand, we find the benchmark luck level is 0.108 or 42% of 

one standard deviation above zero. That is, only if luck is good enough are 

executives rewarded, so the assumption that the threshold is zero in Garvey and 

Milbourn (2006) is not justified in our data. The results for the second 

specification are reported in the second column of Table 5, which shows a 

negative correlation between the firm size and the threshold, after controlling for 

the firm fixed effects. Such negative correlation is both statistically and 

economically significant. When the firm’s market value increases one million 

dollars, the threshold for rewarding good luck decreases by 0.044 or 17.2% of 

the standard deviation. If the firm’s market value increases one standard 

deviation which is ten million dollars, then the threshold decreases by more than 

one and a half standard deviation. Bertrand and Mullainathan (2000) discuss a 

positive correlation between larger firms and poorer governance, while poorer 

governance indicates more vulnerable to skimming from executives (see, e.g., 

Bertrand and Mullainathan (2001)). Our results are consistent with their 

discussions and findings. 
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Table 6 reports the point estimates and 95% CIs for 
 ,  

 under the two 

specifications of z , where the splitting is based on the posterior mean of γ 

estimation. We will not discuss the details of these estimates but emphasize that 

different from the specification in Garvey and Milbourn (2006), 1  and β2 are 

quite different in both specifications of z . Rigorously, we test whether 1 2 
 

using the Wald test. The p-values in both specifications are zero, so 

incorporating the threshold effects in X is necessary in this study. We further test 

1 2 
 against 1 2 

 using the t -test; the resulting p-values are 0.0047 and 

0.0013, respectively, i.e., 1  is indeed less than α2, which confirms the result in 

Garvey and Milbourn (2006). 

In summary, our results confirm the existence of asymmetric benchmark in the 

executive compensation and find this asymmetric benchmark is significantly 

higher than the presumed level of zero in the previous literature. We also find a 

statistically significant and economically large difference in this benchmark by the 

firm size, which could be explained by the skimming model. 

8 Conclusion 

This paper discusses the computation, estimation, inference and specification 

testing in threshold regression with a threshold boundary. The contribution of this 

paper is better understood in comparison with the results in the usual threshold 

regression. First, different from the usual threshold regression, computation of 

the threshold boundary is nontrivial, so we develop an algorithm for this purpose. 

Second, the asymptotic distribution of the LSE is not related to a compound 

Poisson process or a two-sided Brownian motion as in the usual threshold 

regression, but an extension of them – a compound Poisson field or a two-sided 

Brownian field. Third, unlike in the usual threshold regression, the method of 

inverting the LR statistics is not easy to apply in constructing confidence sets for 

the threshold parameters, while the NPI is still applicable. Fourth, in specification 

testing, the computational burden of the Wald-type test is much heavier in the 
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general threshold regression, so we develop a score-type test to alleviate the 

problem. 

There are many interesting extensions of the model studied in this paper which 

are not covered due to space limitations. We list only a few here. First, the 

analysis for the LSE in this paper can be easily extended to the maximum 

likelihood estimator of Yu (2012) and the integrated quantile threshold regression 

estimator of Yu (2013). Second, combining with the analysis in Porter and Yu 

(2015), Yu and Phillips (2018a) and Yu et al. (2018), we can estimate the 

nonparametric threshold regression with a nonparametric threshold boundary, 

1 1

2 2

( , ) , ( ),

( , ) , ( ).

[ | , , ] 0, 1,2;

m x q q g z
y

m x q q g z

x q z







 
 

 

 

 

see Knight (2001) for estimation of the usual nonparametric boundary. Note that 

if we linearly approximate g in each neighborhood of z, then the model locally 

has a parametric linear boundary as discussed in this paper. On the other hand, 

different from the parametric model in this paper, we need to carefully handle the 

bias in linearly approximating (·)g  locally; see Wang and Lee (2019) for a 

detailed analysis where (·)g  is locally approximated by a constant. Third, we can 

extend our analysis to the case with multiple boundaries. For illustration, suppose 

there are only two boundaries. Then these two boundaries take the form 

, 1,2q  z
. If 1 2q q

 and 1 2z z
, then this is a natural extension of Bai 

(1997) and Bai and Perron (1998). If 1 2q q
, i.e., there are two threshold 

variables, then this is an extension of Chen et al. (2012) and Chong and Yan 

(2015). Fourth, our arguments can be extended to the threshold autoregressive 

(TAR) model with a threshold boundary. For example, the TAR(1) model with a 

threshold boundary is like 

11 12 1 1 1 1 2 2

21 22 1 2 1 1 2 2

, ,

, ,

t t t t

t

t t t t

y y y
y

y y y
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where 
, 1, ,t t T 

, are i.i.d. innovations. Fifth, the boundary setup of our model 

can be used in an alternative of threshold regression – smooth transition 

regression (see Teräsvirta (1998), Teräsvirta et al. (2010) and van Dijk et al. 

(2002) for surveys). For example, the transition function can take the form 

q
G





 
  

z

, where G is a cumulative distribution function. As  , this smooth 

transition model reduces to the sharp transition model in this paper. Sixth, we did 

not discuss how to select relevant threshold variables z among many potential 

variables. In practice, the choice of z is usually based on economic intuition. A 

statistical method such as an information criterion or a penalization approach to 

choose z is an interesting research topic. Seventh, we did not consider how to 

conduct inference when q and z are estimated rather than observed. Now, the 

threshold boundary q  z  would contain an estimation noise which makes the 

asymptotics more difficult. For these last two issues, see Lee et al. (2018). 
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Appendix: Mathematical Proofs 

First, some notations are collected for reference in all lemmas and proofs. 

n n na n 
. Pn is the empirical measure. 
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The following formulas are used repetitively in the following analysis: 
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Proof of Theorem 1. We use Theorem 1 of Knight (1999) to show this theorem. 

From Lemma 5, 
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x

. It will be 

proved that 

 : ,
d

nZ Z Z Z    

with 
 

1 2
,Z Z Z  

. We need to check three conditions to finish the proof. 

(a) epi-convergence in distribution of 
( ) 2 ( )n nD v W u

 to its finite-dimensional limit 

( ) 2 ( )D v W u , where 

   
1 21 2( ) 1 0 1 0 .W u u Z u Z 

            xx xx  

(b) 
(1)n pZ O

, and 

(c) uniqueness of Z. 

(b) is proved in Lemma 3, and the uniqueness is implied by Assumption D8 and 

discussed in the main text. The most difficult task is to show (a) which we now 

turn to. The proof idea is inspired by Part II of the Technical Addendum in 

Chernozhukov and Hong (2003b), but is simpler because of the speciality of the 

threshold model. Because 
( ) 2 ( )n nD v W u

 is separable in u and v, the marginal 

epi-convergence in distribution of 
( )nD v

 and 
( )nW u

 implies the joint epi-

convergence. From the form of 
( )nW u

, it converges in distribution to W(u) with 

respect to the topology of uniform convergence on compacts, and W(u) is 

continuous. Such a uniform convergence in distribution implies the epi-

convergence in distribution; see the discussion on page 5 of Knight (1999) for 

more details. If we can show 
( )nD v

 epi-converges in distribution to D(v), by 

Acc
ep

te
d 

M
an

us
cr

ipt



Theorem 4 of Knight (1999), (a) is proved. In Chernozhukov and Hong (2003b), 

the parameters of the regular and nonregular components have some overlaps, 

so the proof there is messier. 

The remaining task is to show that 
( )nD v

 epi-converges in distribution to D(v). 

Recall that Dn epi-converges in distribution to D if for any closed rectangles 

1, , KR R
 in 

1k
 with open interiors 1 , ,o o

KR R
, and any real 1, , Kr r

: 
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where (2) is implied by the lower-semi-continuity of Dn (recall that a function f is 

lower semi-continuous if 
( ) lim ( )n

n
f x f x




 for any sequence 
 nx

 whose limit is x. 

Lower-semi-continuity of Dn is to guarantee that 
arg min ( )v nD v

 is well defined if 

the minimizer is unique. But this is not the case in our setup.). Note that the 

original Dn need not be lower semi-continuous (l-sc). However, from the definition 

of our LSE, we can adjust the values of Dn on its jumping locations to make it l-sc 

without affecting 
arg min ( )v nD v

. Because we have already proved the fidi-

convergence of 
( )nD v

 in Lemma 7, by Theorem 2 of Knight (1999), we need only 

prove that Dn is stochastically equi-lower-semicontinuous (e-l-sc). Roughly 

speaking, stochastic equi-lower-semicontinuity allows us to approximate the 

distribution of the infimum of Dn over a bounded set B by the distribution of the 

minimum of Dn over an approximate fixed finite set contained in B for all n 

sufficiently large (as analogs, the epi-convergence in distribution is the 

counterpart of the weak convergence when the empirical process is not 

continuous, and the stochastic equi-lower-semicontinuity plays the role of the 
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stochastic equicontinuity.). Such a result is given in Lemma 9. More specifically, 

for each bounded R and 0  , there exists a set of fixed points 
 kjv

 and 

neighborhoods 
 kjV

 which ”center” at 
 kjv

 and cover R such that 

 ,
lim inf ( ) ( ) .

kj
n n kjk jn v V

P D v D v 
 

 
   

 (11) 

For a fixed R and 0  , we can always pick ( )   in Lemma 9 small enough such 

that (11) holds, where   is the sup-distance between the adjacent points of 
 kjv

. □ 

Proof of Theorem 2. The consistency of ̂  is proved in Lemma 2, and the 

convergence rate is shown in Lemma 4. From Lemma 6, 0
ˆ( )na  

 has the same 

asymptotic distribution as 
arg min

v  
( )nC v

, where 
( )nC v

 is defined in (14). We now 

apply Theorem 2.7 of Kim and Pollard (1990) to find the asymptotic distribution of 

0
ˆ( )na  

. We need only check the first two conditions of their Theorem 2.7 since 

the third condition automatically holds. 

(i) 
   1

min( ) k

nC v C v C
, where 

 1

min

k
C

 is defined as the subset of 

continuous functions 
 1

loc(·) kg B
 for which (i) ( )g t   as 

| |t 
 and (ii) 

g(t) achieves its minimum at a unique point in 
1k
, and 

1

loc ( )k
B

 is the space of 

all locally bounded real functions on 
1k
, endowed with the uniform metric on 

compacta. The weak convergence is proved in Lemma 8. We now check 

   1

min

kC v C
. It is not hard to check C(v) is continuous, has a unique 

minimum (see Lemma 2.6 of Kim and Pollard (1990)), and | |
lim
v   ( )C v    almost 

surely (which is true since B(v) is stochastically similar to a two-sided Brownian 

motion indexed by 
| |v

 and 
 ( ) | |I v O v

, and for a Brownian motion W(v), 
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 lim / 0
v

W v v



 almost surely by virtue of the law of the iterated logarithm for 

Brownian motion). 

(ii) 0
ˆ( ) (1)n pa O  

. This is proved in Lemma 4. □ 

Proof of Theorem 3. First, under 1

cH
, 
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where the second term in the last equality converges in probability to 

   1

1 1 0Q Q Q c 

 uniformly in   . In summary, 

 

       

     

1/2 1

1

1

1/2 1 1

1 1 0 1 1 0

1

1

1 0 1 1 0

ˆ ˆ ˆ1( )

1( ) (1)

( ) .

n

i i i i oi

i

n

i i i i i p

i

n q Q Q

n q Q Q Q Q Q Q c o

S Q Q Q Q c

  

      

    

  



   





   

            

    





x z x

x z x  

It is standard to show that under 1
ˆ,c

oH 
 is consistent and 
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uniformly over 
 1 2,   

, which implies 
( , ) ( , )

p

nH H   
 uniformly over 

   under 1

cH
, so the results of the theorem follow. □ 

Proof of Theorem 4. Conditional on the original sample path, 

 1/2 1

11

ˆ ˆ ˆ1( )
n

i i i i oi ii
n q Q Q      


    x z x

 is a zero-mean Gaussian process with 

covariance function 1 2( , )nH  
. From the last theorem, 1 2 1 2( , ) ( , )

p

nH H   
 

uniformly over 
 1 2,   

 under 1

cH
. Also, 

( , ) ( , )
p

nH H   
 uniformly over 

   under 1

cH
. In summary, 

1/2 0( ) ( , ) ( ) ( )nT H S T    


  
 in ( )  , where 



 

signifies the weak convergence in probability. □ 
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Fig. 1 The Threshold Boundary in Finite Samples in a Simple Example 
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Fig. 2 Jumping Locations of 
   0n nn M M     

  

Acc
ep

te
d 

M
an

us
cr

ipt



 

Fig. 3 Parameter Space in a Simple Example 
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Fig. 4 Power Comparison with Different 
#( )n  

 

Table 1 Risk of the Estimators of γ 

1/2

n cn  
  

c = 10  c = 20  

RMSE (
210 )  1  2  1  2  

ˆ
SLSE

  
14.416  25.027  6.949  11.787  

ˆ
I   

14.478  23.628  4.637  8.116  

ˆ
N   

14.427  23.515  4.629  8.113  

Posterior Mean  13.089  21.639  3.631  6.266  
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Table 2 Coverage and Length of the 95% CIs for γ 

1/2

n cn  
  

c = 10  c = 20  

Coverage and Length  1  2  1  2  

Coverage of Bootstrap SLSE  0.928  0.912  0.950  0.968  

Coverage of NPI  0.908  0.920  0.950  0.954  

Length of Bootstrap SLSE  0.609  1.066  0.302  0.522  

Length of NPI  0.411  0.738  0.129  0.236  

 

Table 3 Estimates of γ and the 95% NPI 
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Time Period  1940-1950  1950-1960  1960-1970  1970-1980  1980-1990  

Constant  

0.247

0.245

(0.231,0.264)  

0.325

0.368

(0.318,0.414)  

0.328

0.327

(0.303,0.346)  

0.174

0.183

(0.162,0.194)  

0.277

0.280

(0.265,0.300)  

Male Prejudice 

1.067

1.057

( 1.172, 0.972)





   

0.517

0.598

( 0.856, 0.376)





   

0.763

0.752

( 0.882, 0.624)





   

0.490

0.527

( 0.607, 0.387)





   

0.197

0.202

( 0.346, 0.073)
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Note: the upper value for each coefficient is the LSE, the middle value is the 

posterior mean, and the lower value is the NPI 

 

Table 4 Estimates of d 

Time 

Period 1940-1950  1950-1960  1960-1970  1970-1980  1980-1990  

d  

0.358

( 0.468, 0.247)



 

 

0.452

( 0.582, 0.322)



 

 

0.534

( 0.668, 0.400)



 

 

0.257

( 0.318, 0.195)



 

 

0.193

( 0.228, 0.158)



 

 

Note: nominal 95% CIs are reported in parentheses. 

 

Table 5 Estimates of γ and the 95% NPI 

  1z   1, z


z
 

Constant  

0.108

0.102

[0.091,0.111]  

0.141

0.130

[0.127,0.143] 

 

Market Value

inmillion[dollar]
 





  

0.044

0.040

[ 0.042, 0.029]





   

Note: the upper value for each coefficient is the LSE, the middle value is the 

posterior mean, and the lower value is the NPI 
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Table 6 Estimates of 
 , 




 and Number of Observations in Each Regime 

 1z   1, z


z
 

 Regime I  Regime II  Regime I  Regime II  

Constant  

0.007

( 0.017,0.003)



  

0.015

( 0.003,0.033)  

0.005

( 0.006,0.016)  

0.022

( 0.041, 0.002)



   

Luck  

0.013

( 0.040,0.066)  

0.102

(0.061,0.143)  

0.053

( 0.004,0.111)  

0.168

(0.120,0.215)  

Skill  

0.168

(0.144,0.191)  

0.067

(0.044,0.089)  

0.166

(0.143,0.189)  

0.063

(0.041,0.086)  

Female  

0.012

( 0.085,0.061)



  

0.106

( 0.065,0.278)  

0.022

( 0.105,0.061)



  

0.124

(0.007,0.242)  

Age 10  

0.164

( 0.282, 0.045)



   

0.095

( 0.087,0.277)  

0.143

( 0.261, 0.024)



   

0.022

( 0.172,0.217)  

2 2Age 10  

0.015

(0.006,0.025)  

0.001

( 0.016,0.014)



  

0.014

(0.005,0.024)  

0.003

( 0.012,0.019)  

Tenure 10  

0.067

( 0.108, 0.026)



   

0.136

( 0.193, 0.079)



   

0.076

( 0.114, 0.038)



   

0.110

( 0.182, 0.038)



   

2 2Tenure 10  

0.005

( 0.009,0.020)  

0.025

(0.008,0.041)  

0.008

( 0.004,0.020)  

0.016

( 0.011,0.043)  

Market Value  

0.003

( 0.006,0.000)



  

0.001

( 0.002,0.004)  

0.002

( 0.007,0.003)



  

0.0004

( 0.002,0.001)



  

%ofN

N

 

19,336

74.3%  

6,703

25.7%  

19,137

73.5%  

6,902

26.5%  

Note: nominal 95% CIs are reported in parentheses. 
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