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Abstract
● Artemisinin, also named qinghaosu, is a family of 
sesquiterpene trioxane lactone originally derived from 
the sweet wormwood plant (Artemisia annua), which 
is a traditional Chinese herb that has been universally 
used as anti-malarial agents for many years. Evidence 
has accumulated during the past few years which 
demonstrated the protective effects of artemisinin and 
its derivatives (artemisinins) in several other diseases 
beyond malaria, including cancers, autoimmune 
disorders, inflammatory diseases, viral and other parasite-
related infections. Recently, this long-considered anti-
malarial agent has been proved to possess anti-oxidant, 
anti-inflammatory, anti-apoptotic and anti-excitotoxic 
properties, which make it a potential treatment option for 
the ocular environment. In this review, we first described 
the overview of artemisinins, highlighting the activity of 
artemisinins to other diseases beyond malaria and the 
mechanisms of these actions. We then emphasized the 
main points of published results of using artemisinins 
in targeting ocular disorders, including uveitis, 
retinoblastoma, retinal neurodegenerative diseases 
and ocular neovascularization. To conclude, we believe 
that artemisinins could also be used as a promising 
therapeutic drug for ocular diseases, especially retinal 
vascular diseases in the near future.
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INTRODUCTION

A rtemisinin and its derivatives (artemisinins) are isolated 
from the one ancient Chinese plant Artemisia annua 

(more commonly known as sweet wormwood), which have 

been used in traditional Chinese medicine (TCM) for fevers 
and chills[1]. Following the isolation of the active agent 
by Dr. You-You Tu’s group from the Chinese Academy of 
TCM in the 1970s, artemisinin-based combination therapies 
have joined the currently established standard treatments 
of malarial parasites around the world[2-4]. Interestingly, 
abundant evidences have also demonstrated that artemisinins 
might also be of therapeutic value for many other diseases 
beyond malaria, including cancers, autoimmune disorders, 
inflammatory diseases as well as other infectious conditions[5]. 
Recently, many ophthalmologists and researchers have 
also showed their great interest in artemisinins, especially 
artesunate and dihydroartemisinin (DHA) and their potential 
protective effects on ocular disorders. Herein, we present an 
overview of research advances of artemisinins as potential 
therapeutic methods for ocular diseases, including uveitis, 
retinoblastoma, retinal neurodegenerative diseases, especially 
ocular neovascularization (NV). In this review, we also 
emphasize some important points regarding the potential 
applications of artemisinins in ocular disorders to provide a 
platform for additional study. 
OVERVIEW OF ARTEMISININS
History and Origins  The medicinal herb Artemisia annua 
was first recognized by one Chinese physician, Hong Ge 
(born in the year 283) for its fever-reducing properties[6]. 
Led by the Chinese project 523 in the 1970s, Dr. You-You 
Tu’s group first successfully isolated artemisinin, a non-toxic 
extract of Artemisia annua, identified the active component 
of this extract in 1972 and further identified its stereostucture 
(sesquiterpene lactones) in 1975[1]. In the 1980-90s, further 
studies conducted in humans confirmed the recognition of 
artemisinin-based combination therapies as the first-line option 
to treat malaria[2-4]. This novel anti-malaria therapy has been 
used universally with great efficacy and safety for a long 
time and helped Dr. You-You Tu win the 2015 Nobel Prize in 
Physiology or Medicine for her outstanding achievements[7].
Chemical and Pharmacological Characteristics  It was Dr. 
You-You Tu who first clarified the molecule extracted from 
the herbaceous plant Artemisia annu to be a sesquiterpene 
lactone endoperoxide by using the combined method of mass 
spectroscopy, spectrophotometry, X-ray crystallography 
and polyarithmetic analysis[8]. Those clinically important 
artemisinins include artesunate, artemether, arteether, and DHA 
(Figure 1), discovered and developed in 1986[1]. Among which 
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artesunate is the most important analog, which shows a more 
favorable pharmacological profile because of its greater water-
solubility and high oral bioavailability due to the additional 
hemisuccinate group[9].
Beyond Malaria: Activity of Artemisinins to Other 
Diseases  While the efficacy and low toxicity of artemisinins 
to treat malaria is well-recognized around the world, they 
have currently been reported to have a great therapeutic 
value beyond malaria[10]. These capacities include protective 
functions in non-malaria parasitic infections[11-14], anti-viral[15-17] 
and anti-fungal properties[18-19], anti-cancer functions[20-24], as 
well as anti-inflammatory[25-27] and anti-allergic effects[28-29] 
(Figure 2). Recent results further indicated that artemisinins 
might also reduce glucose, thus exerting a protective effect on 
diabetes mellitus[30].
Mechanisms of Actions of Artemisinins  Although 
artemisinins are long known and effectively used as anti-
malaria drugs, their specific biological action is poorly 
identified and understood. Current in vivo and in vitro studies 
have proposed numerous possible mechanisms of the actions, 
which include 1) oxidative stress, 2) induction of apoptosis[31], 
3) inhibition of angiogenesis[32-33], 4) arrest of cell cycle at G0/G1

[34] 
(Figure 3). As a matter of fact, these functional pathways may 
overlap in a number of ways.
Oxidative Stress  Reactive oxygen species (ROS) are the 
natural byproduct of aerobic metabolism, whose levels can 
dramatically elevate during times of environmental stress. 
Studies in various tumor cell lines have proved ROS to have 
an important role in artemisinins-induced apoptosis[31]. These 
studies covered neuroblastoma[32], breast cancer[33], T-cell 
lymphoma[34], embryonal rhabdomyosarcoma cells[35], and 

glioblastoma[36]. In a recent study on human hepatocellular 
carcinoma cells, artesunate was shown to be able to induce 
ROS-dependent apoptosis via Bax-mediated intrinsic 
pathway[37]. Similarly, DHA was shown to alleviate oxidative 
stress in bleomycin-induced pulmonary fibrosis[38].
Induction of Apoptosis  Apoptosis, or programmed cell 
death, is a regulated cellular suicide mechanism involving the 
degradation of cellular components, which can be initiated via 
the intrinsic pathway and the extrinsic pathway[39]. Artemisinins 
could trigger apoptotic cell death through both pathways[40-41]. 
In human colon cancer cell line (HT29), B-cell lymphoma 2 
associated X protein (BAX) was proved to be activated by 
artemisinins, inducing the release of cytochrome C, which led 
to apoptosis in cancer cells[42]. In human prostate cancer cell 
line (DU145), cleavage of procaspases 3 and 9 was found to be 
induced by artesunate, inducing the release of cytochrome C 
and the subsequent caspase-dependent apoptosis[43]. In human 
breast cancer cell line (MCF-7), apoptosis was also induced 
via a caspase-related mechanism under the effect of a semi-
synthetic derivative of artemisinin[44].
Inhibition of Angiogenesis  Various models have accumulated 
mounting evidences, demonstrating the involvement 
of inhibiting aberrant angiogenesis in the actions of 
artemisinins[45-46]. In mouse embryonic stem cells, artemisinin 
was shown to be able to reduce the levels of hypoxia inducible 
factor (HIF)-1α and vascular endothelial growth factor 
(VEGF), suggesting the mechanism of artemisinin might 
involve the inhibition of angiogenesis[47]. Artemisinin was also 
found to be able to significantly reduce lymph-angiogenesis via 
downregulating the expression of VEGF-C in C57BL/6 mouse 
Lewis lung carcinoma model[48]. Similarly, in a rat glioma model, 

Figure 1 Chemical structures of artemisinins.
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artemisinins were shown to have the effect of reducing VEGF 
and angiogenesis[49]. Moreover, artesunate was proved to be 
able to suppress osteoclastogenesis and aberrant angiogenesis, 
thus attenuating anterior cruciate ligament transection (ACLT)-
induced osteoarthritis[50]. 
Arrest of Cell Cycle at G0/G1  Artemisinins have been 
shown by accumulating current studies to have the potential 
application in cancer drug development for its action on 
inducing growth arrest at various stages of cell division 
cycle[51-53]. In prostate cancer cells (LNCaP), phosphorylated 
retinoblastoma protein (pRB), a mediator cooperating with 
E2F transcription factors and cyclin-dependent kinases (CDKs) 
to push forward the cell cycle progression through G1 into S 
phase was shown to be ablated by artemisinin, inducig G1 
cell cycle arrest, thus inhibiting cell division[54]. Willoughby 
et al[55] has also demonstrated that artemisinin could disrupt 

specificity protein 1 (Sp1) transcription factor from binding to 
CDK4 promoter and inhibiting CDK4 gene expression, thus 
blocking prostate cancer growth and cell cycle progression. 
Wu et al[56] have further proved the growth inhibition effect 
of artemisinin in nasopharyngeal carcinoma cell lines by 
suppressing the level of cyclin D1, cyclin E, CDK2, CDK4, 
CDK6 and upregulating the inhibitors of cell cycle division 
(p16, p27). 
POTENTIAL APPLICATION IN OCULAR DISEASES
Recently, many ophthalmologists and researchers have noticed 
the potential protective effects of artemisinins on ocular 
disorders. Recent findings have shed light on the potential 
applications of artemisinins as promising therapeutic agents 
in ocular diseases. In this review, we are going to highlight 
the main points of published results of using artemisinins in 
targeting ocular disorders.

Figure 2 Various biological activities of artemisinins and potential applications in different diseases (Bubble map).
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Uveitis  Uveitis is the inflammation of the uvea whereas the 
anti-inflammatory effects of artemisinins have already been 
recognized in the past few decades[57]. Artesunate has been 
reported by Li et al[58] to have a protective effect on sepsis 
mouse model by decreasing serum endotoxin release and toll-
like receptors (TLR)4, TLR9 expressions, also suppressing 
nuclear factor-kappa B (NF-κB) activation. Xu et al[59] also 
reported that in human rheumatoid arthritis fibroblast-like 
synoviocytes, artesunate was able to inhibit TNF-α expression 
and decrease the secretion of pro-inflammatory cytokines. 
Based on those experimental results, the question of if 
artesunate could reduce the release of inflammatory cytokines 
in some type of inflammatory ocular diseases was raised and 
further investigated. Wang et al[60] studied the protective effect 
of artesunate by using endotoxin-induced uveitis (EIU) rat 
model, which has been generally considered as an experimental 
model for human uveitis[61]. In their study, artesunate of three 
concentrations (1, 10, 100 mg/kg) were intravenously injected 
in male Long-Evans rats whereas prednisolone (10 mg/kg) was 
used as positive control and their results showed that artesunate 
(10 mg/kg and 100 mg/kg) could suppress infiltrating cells and 
protein concentration in the aqueous humor, suggesting that 
artesunate treatment could suppress the inflammation of EIU 
by inhibiting the production of inflammatory mediators[60]. 
More future studies will be needed to clearly define the specific 
cellular mechanisms of the therapeutic effects. The role of 
artemisinins in modulating ocular inflammatory responses 
might be of great interest in the future. 
Retinoblastoma  In recent years, artemisinins have been 
shown to exert protective effects in various types of cancer[62-66]. 

Retinoblastoma (RB) is an eye cancer, which is most common 
among children[67]. Zhao et al[68] tested the anti-neoplastic 
activity of artesunate against RB to see whether artesunate 
might be a good candidate to treat RB. Using epithelial retina 
cell line as normal counterpart, the cytotoxic activity and 
specificity of artesunate were analyzed in an RB cell line, 
which showed a dose-dependent manner concerning the 
cytotoxic activity specific to RB cells, with low toxicity in 
normal retina cells and high cytotoxicity in RB cells[68]. Their 
results also demonstrated that artesunate, even at low doses, 
could block the cell cycle progression at the G1 phase[68]. 
Artesunate is practically suitable for long-term treatments with 
few side-effects. Therefore, artesunate could be considered as a 
promising option for RB treatment. Further randomized studies 
in vivo need to be done to provide better insights regarding the 
efficacy as well as efficiency of the novel treatment. 
Retinal Neurodegenerative Diseases  Retinal neurodegeneration 
is a retinopathy which consists in the deterioration of the retina 
caused by the progressive death of its neuronal cells[69]. There 
are several reasons for retinal neurodegeneration, including 
age-related macular degeneration (AMD), diabetic retinopathy 
(DR), and retinal artery or vein occlusion[69]. Zeng et al[70] 

studied the neurogenic effects of artemisinin and their findings 
indicated that artemisinin at low concentration could induce 
neurite outgrowth as well as promote neuronal differentiation 
in PC12 cells. 
Accordingly, Chong and Zheng[71] demonstrated that 
artemisinin was able to suppress hydrogen peroxide (H2O2)-
induced oxidative stress in D407 retinal pigment epithelium 
(RPE) cells, which are first damaged in retinal diseases owning 

Figure 3 Overview of mechanisms of actions of artemisinins  - indicates inhibition and + indicates activation.
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to their critical support functions for photoreceptors. The 
findings of Yan et al[72] also demonstrated that artemisinin 
could prevent RPE cells from oxidative stress via the MAPK/
CREB pathway. 
These recent results all shed light on the promising therapeutic 
value of artemisinin as a candidate drug for the treatment of 
many retinal neurodegenerative disorders. Though, its specific 
effects on the retinal neuronal cells need to be further explored. 
Ocular Neovascularization  Ocular NV is one of the major 
causes of blindness among ocular disorders. Substantial 
evidences have demonstrated that VEGF played an essential 
part in its pathogenesis[73]. Currently for the treatment of ocular 
NV, anti-VEGF agents such as ranibizumab and bevacizumab 
are widely used[74-75]. However, these drugs both have a large 
molecular weight and resistance to these drugs is usually seen 
in approximately 20%-30% ocular NV patients[76]. Moreover, 
because of the short aqueous half-life, the recurrence rate is 
high after anti-VEGF treatments which may also increase 
the risk of endophthalmitis owning to frequent intravitreal 
injections[77]. Abundant studies have already demonstrated the 
anti-angiogenic effects of artemisinins in tumors[78]. The known 
mechanisms of artemisinins in inhibiting angiogenesis include 
downregulating several growth factors, inducing apoptosis 
of vascular endothelial cells, upregulating angiogenesis 
inhibitors, depleting the levels of the flt-1 and KDR/flk-
1-receptors[79-80]. In human umbilical vein endothelial cell 
(HUVEC) lines, artesunate was shown to inhibit angiogenesis 
through downregulating the levels of the VEGF receptors[81]. 
Similar protective effects were also investigated in lymphatic 
endothelial cells and Lewis lung carcinoma cells with the 
treatment of DHA[82]. In the science of ophthalmology, Cheng 
et al[83] demonstrated that artesunate could inhibit corneal NV 
by inducing ROS-dependent apoptosis in animal models. 
Their results suggested that artesunate could markedly inhibit 
angiogenesis by specifically inducing apoptosis via an iron/
ROS-dependent p38 MAPK-mitochondrial pathway in 
vascular endothelial cells[83]. Zong et al[84] further investigated 
the use of artesunate in retinal NV and found that retinal NV 
could be remarkably inhibited under the effect of artesunate 
via downregulating the expression of VEGFR2, and PDGFR. 
Compared to bevacizumab, artesunate could remarkably 
inhibit retinal NV in rabbits with more durable efficacy. 
These two published animal evidences indicated the potential 
role of artesunate as a promising drug candidate to manage 
ocular NVs. As a newly-discovered anti-angiogenesis drug, 
artemisinins are worthwhile to be further explored due to a 
host of advantages. 
Compared to the currently used anti-VEGF drugs, the 
advantages of artesunate are as follows: 1) Small molecule 
size: artesunate is a 384 Da molecule less than one-hundredth 

the size of bevacizumab (149 kDa); 2) Safety and low toxicity: 
artesunate has been widely used for many years as anti-
malarial agents, with few adverse side effects and proven safety 
records; 3) Multi-targets: artesunate was proved to possess not 
only anti-angiogenetic effects targeting multi-growth factors 
(VEGF, FGF, HIF-1ɑ, and Ang-1), but also anti-inflammatory 
and anti-apoptotic effects. 
Thus, we postulate that artesunate might be a potential novel 
treatment option for retinal vascular diseases such as AMD, 
DR, retinal artery or vein occlusion, especially when given 
intravitreously or being formulated into eye drops. 
LIMITATIONS OF ARTEMISININS
The present studies of artemisinins have several limitations. 
While applying artemisinins for treatments beyond malaria, 
different research groups have reported inconsistent effective 
doses even for similar cell lines or animal models. Progress 
for further clinical trials could be hampered for the lack of 
a concerted effort to confirm the efficacies of artemisinins 
in different models. Another limitation is the lack of acute 
and chronic toxicological studies for acute as well as chronic 
exposure to artemisinin in ocular diseases, which is necessary 
for future application in ocular diseases.
CONCLUSION
To date, researches on artemisinins and its applications in 
ocular diseases are still limited, and much more will need to 
be studied. Further understanding of the protective activities of 
artemisinins beyond malaria might lead to improved treatments 
for ocular disorders.
In this review, we summarized recent studies on artemisinins 
in treating ocular diseases and we believe that this anti-malaria 
agent could also be used as a promising therapeutic drug for 
ocular diseases, especially retinal vascular diseases. 
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