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Abstract
Wedesign quantumcompression algorithms for parametric families of tensor network states.Wefirst
establish an upper bound on the amount ofmemory needed to store an arbitrary state from a given
state family. The bound is determined by theminimumcut of a suitableflownetwork, and is related to
theflowof information from themanifold of parameters that specify the states to the physical systems
inwhich the states are embodied. For given network topology and given edge dimensions, our upper
bound is tight when all edge dimensions are powers of the same integer.When this condition is not
met, the bound is optimal up to amultiplicative factor smaller than 1.585.We then provide a
compression algorithm for general state families, and show that the algorithm runs in polynomial
time formatrix product states.

1. Introduction

Quantumdata compression [1, 2] is one of the pillars of quantum information theory. At the foundational level,
it establishes the qubit as the basic unit of quantum information. At themore practical level, it provides a
blueprint for the efficient transmission of quantumdata in future quantum communication networks, with
applications to distributed quantum computing [3] and quantum cloud computing [4].

The ultimate limit for compressing sequences of independently prepared quantum states was initially
established in the pure state case [1] and later extended tomixed states [5–7]. Universal compression protocols
for the scenariowhere the average state of each system is unknown, except for an upper bound on its von
Neumann entropy, were provided in [8]. In recent years, there has been an interest in developing compression
protocols for identically prepared systems [9–13]. Such systems occur in awide range of tasks, including
quantum tomography [14, 15], quantum cloning [16, 17], estimation [18, 19], and quantummachine learning
[20]. Compression protocols for identically prepared systems have found applications in quantummetrology
[21] and inspired new results in quantum state estimation [22]. An instance of compression for identically
prepared systemswas experimentally demonstrated in [23].

Most of the existing compression protocols assume that the input systems are in a product state. However,
many relevant scenarios involve correlated systems, whose state cannot be expressed as a tensor product of
single-system states. The ability to store correlated states into a smaller amount of quantumbits is important for
the simulation ofmany-body quantum systems on small andmedium-size quantum computers. For example,
Kraus et al showed that nlog qubits are enough to simulate several families of n-qubitmany-body states [24–26].
In particular, the result of [24] led to an experimental simulation of a 32-spin Ising chain using only 5 qubits [27].
In addition to quantum simulations,many-body states are relevant to quantummetrology, where they can serve
as probes for unknown quantumprocesses [28, 29]. In this context, compression protocols formany-body states
could be useful to transmit such probes fromone location to another, or to store them in a quantummemory
until further processing is required.
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In this paperwe address the compression of tensor network states, a broad class that includes cluster states
[30, 31], matrix product states (MPSs) [32–34], projected entangled pair states (PEPS) [35, 36], tree tensor
networks [37], andmulti-scale entanglement renormalization ansatz (MERA) states [38].

First, we provide an efficiently computable upper bound of the number of qubits required to compress
unknown states from a given parametric family of tensor network states. The upper bound can be interpreted as
a bottleneck for the information flow from the parameters specifying the states to the physical systems inwhich
the states are embodied. For the family of all tensor network states with given network topology and given edge
dimensions, this upper bound is tight whenever all the edge dimensions are powers of the same integer. In
general, the upper bound is tight up to amultiplicative factor of atmost »log 3 1.585.

Second, we design a quantumalgorithm that implements the compression protocol, andwe show that the
algorithm runs in polynomial time for families ofMPSs. Formore general state families, we provide sufficient
conditions for the algorithm to run in polynomial time. Informally, the conditions express the fact that the linear
span of the state family contains a ‘sufficiently dense’, yet polynomial-size set of states that can be efficiently
prepared on a quantum computer.

One of the state families considered in our paper involves translationally invariantMPSs [33], hereafter
abbreviated as TIMPS.We show that a completely unknownTIMPS of n identical systemswith given bond
dimension can be compressedwithout errors into a number of logical qubits growing atmost as O nlog( ). Our
result enables a compressed simulation of variousmodels ofmany-body quantum states, such as the one-
dimensional Isingmodel [39] and theAKLTmodel [40]. The logarithmic scaling of the totalmemory is optimal,
as the set of TIMPSs includes the set of all identically prepared states, for which the optimal compression
protocol is known to require W nlog( )memory qubits, both for exact [11] and approximate compression
protocols [12, 13]. The same result holds for higher dimensional lattices, and for a broader class of tensor
network states for which the correlation tensors are site-independent: a generic site-independent n-particle state
with a given bond dimension can be perfectly stored into O nlog( ) logical qubits.We also consider tensor
network states with the property that all tensors except those on the boundary are constant. For every subset of
systems in the bulk, we show that the exact compression protocol satisfies an area law: the number of logical
qubits used to compress the systems in the chosen subset is proportional to the size of its boundary.

This article is structured as follows. In section 2we introduce the graphical notations for tensor networks. In
section 3we state ourfirst result on thememory usage of exact compression of tensor network states and apply it
to a case-wise study of tensor network state families in section 4.We extend our results frompure states to
marginal andmixed states in section 5. Section 6 provides a compression protocol forMPSswith variable
boundary conditions, which can be realized by logarithmic-depth circuits explicitly constructed from the
description of theMPS. In section 7we construct a quantumalgorithm realizing compression protocols for
general efficiently preparable states, and discuss its applicability to tensor network states. Finally, we conclude
with discussions on howour results can provide bounds for coding theory in section 8.

2. Preliminaries

2.1. Compression of parametric state families
Consider a quantum system P withHilbert spaceP, and denote by S P( ) the set of density operators onP.
Let r ÍÎ Sx x P{ } ( )X be a parametric family of quantum states, labeled by a parameter x in a givenmanifold X.
For example, x could be a parameter that determines theHamiltonian of the system, and rx could be the ground
state of theHamiltonian parametrized by x.

Given a parametric family r Îx x{ } X, the goal of compression is to store the states of the family into a quantum
memory M, whose dimension is smaller than the dimension of the initial system P. A compression protocol for
the states r Îx x{ } X is specified by an encoding channel   S S: P M( ) ( ), and by a decoding channel

  S S: M P( ) ( ), whereM denotes theHilbert space of the quantummemory.Mathematically, the
channels are described by completely positive trace-preserving linearmaps. Both channels  and  are required
to be independent of the parameter x, meaning that the compression operationsmust work ‘blindly’, without
any knowledge of which state is being compressed.

In the followingwewill consider exact compression protocols, that is, protocols satisfying the condition

r r= " ÎD E x 1x x( )( ) ( ) X

For pure state families, with r = Y ñáYx x x∣ ∣ for all Îx X, the simplest compression protocols are defined by
isometries  V : in M from the input subspace Y ñ ÍÎ x xin P≔ {∣ }Span X to thememory spaceM. An
optimal compression protocol is a protocol that uses amemory systemwhose dimension is exactly

= d dimM in( ). In this case, the isometry  V : in M is actually a unitary.
In theory, constructing compression protocols for families of pure states is straightforward: one only needs

to determine the input subspacein, and to define an isometryV fromin to amemory space M in . In

2

New J. Phys. 22 (2020) 043015 GBai et al



practice, the efficiency of this construction is an issue.When the input system consists ofmany particles,
constructing the isometryVmay be computationally unfeasible, because it requiresmanipulations of
exponentially long vectors. The situation is different when the subspacein exhibits some specific structure that
can be used to efficiently identify it and to construct the encoding operations. An example of this situation is the
totally symmetric subspace f f= ñ ñ ÎÄ n

sym P{∣ ∣∣ }Span , for which an efficient compression exists [9] and is
based on the Schur transform [41, 42]. In this paper wewill identify other scenarios inwhich the compression
operations can be constructed efficiently, taking advantage of the tensor network structure.

2.2. Graphical notation for tensors
Herewe introduce the graphical notation used in the rest of the paper. Our notation coincides, up tominor
changes, with other notations used in the literature on tensor networks [43–45].

Vectors andmatrices.Avector is represented as a box connected to an open edge. A column vector has an
outgoing edge, while a row vector has an ingoing edge. Amatrix is represented as a boxwith both an ingoing edge
and an outgoing one. In the following examples, ñv∣ is a d-dimensional column vector, áv∣ is the adjoint of ñv∣ , áv∣
is the transpose of ñv∣ , andA is a ´d d matrix

ð2Þ

For amatrix, the placewhere an arrow is attached to the boxmatters. Here we assume that the left side ofA
corresponds to its row index, and the right side its column index. For a vector, the attachment position is
unimportant, because the vector has only one index.

Multiplication.An edge connecting two tensors represents a summation over the corresponding index.With
this notation, one can conveniently representmultiplications betweenmatrices and vectors

ð3Þ

The outgoing open edge indicates that the result of themultiplication is a column vector.
Tensor product.A tensor networkwith several disconnected components is a tensor product of the

components (or an outer product of vectors)

ð4Þ
Trace.The trace of amatrix is represented by connecting its two indices:

ð5Þ

In general, a networkwith no open edges evaluates to a scalar.
Higher-order tensors.Higher order tensors can describe states and linear operations involvingmultiple

systems. To represent them, one uses boxes withmore than two edges. For example, the following
graph represents an order-3 tensorT, where ñ ñ ñi j k, ,{∣ } {∣ } {∣ }are orthonormal bases in their corresponding
spaces

ð6Þ

We label the edges by i j, and k to indicate their correspondence to the first, second and third index ofT,
respectively. In the following, the indices will be sometimes omitted in the graphical notation.

Reversal of edges.Multiplication by the unnormalisedmaximally entangled state å ñ ñI i ii∣ ⟫ ≔ ∣ ∣ or its adjoint
å á áI i ii⟪ ∣≔ ∣ ∣does not alter the elements of a tensor, but it converts a column index to a row index and vice versa.

We represent amultiplicationwith I∣ ⟫by a reversal of the direction of the arrow involved in themultiplication

ð7Þ

Wealways assume that theHilbert space of each edge comeswith a default basis, so that for each edge, the
maximally entangled state is uniquely defined.

Vectorization. If we reverse all ingoing edges of a tensor, we obtain a tensor with only outgoing edges, which is
a column vector on the tensor product of theHilbert spaces corresponding to all the edges. For example
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ð8Þ

In a tensor network, reversing non-open edges does not affect the values assigned to thewhole network. For
example,

ð9Þ
for every A B, and ñv∣ .

2.3. Tensor networks
Informally, a tensor network is a set of tensors connectedwith each others. In the followingwe introduce a few
formal definitions that will become useful later in the paper.

Definition 1.A tensor network template [46] is a triple = G d V, , filled( )Temp , where

• =G V E,( ) is an oriented7 graph, with set of verticesV and set of edges Í ´E V V

•  +d E: is a function that associates each edge ewith an integer d e( ), called the dimension of the edge e

• ÌV Vfilled is a subset of vertices, called the filled vertices, such that each vertex inV Vfilled⧹ is adjacent to one
and only one vertex, and that vertex is inVfilled.

A tensor network is obtained froma tensor network template by filling all vertices inVfilled with tensors:

Definition 2.A tensor network is a pair =N T,( )Temp , where Temp is a tensor network template, andT is a
functionmappingfilled vertices Îv Vfilled into tensorsT v( ), with the order of the tensor T v( ) equal to the
number of edges incident on v. Each edge e incident on afilled vertex represents an index of the corresponding
tensor, and the values of the index range from1 to d e( ).

Graphically, wewill represent a tensor network as a diagramwhere thefilled vertices are represented by
boxes, and the empty verticesV V Vempty filled≔ ⧹ are omitted. An illustration is shown infigure 1.

In the following, wewill associate each edge Îe E with aHilbert spacee of dimension d e( ).With this
notation, the tensor network defines an operator from the totalHilbert space associated to the ingoing edges to
the totalHilbert space associated to the outgoing ones:

Definition 3. Let Î Î ÎE u v E u V v V, : ,in empty filled≔ {( ) } ( Î Î ÎE u v E u V v V, : ,out filled empty≔ {( ) }) be
the set of ingoing (outgoing) edges of a tensor networkN, and let Î e E ein in

≔ ⨂ and Î e E eout out
≔ ⨂ be

the correspondingHilbert spaces. The tensor network operator of a tensor networkN is a linear operator
 N : in out* obtained from contracting the tensors ÎT v v Vfilled

{ ( )} according to the connections specified by
the network template.

For example, the tensor network operator associated to the tensor network infigure 1 is

ååå ååå= Ä*
= = = = = =

N T T T k i j1 2 3 10
i j k l m n

ilm jln mnk
1

4

1

2

1

7

1

2

1

2

1

3

( ) ( ) ( ) ∣ ⟩⟨ ∣ ⟨ ∣ ( )
⎡
⎣⎢

⎤
⎦⎥

When a given operatorA arises from the contraction of tensors in a tensor networkwith template Temp, we
say that the operatorA is compatible with that template:

Figure 1.On the left: a tensor network template Temp. The number on each edge eäE indicates the dimension d(e) of that edge.
Boxes represent vertices inVfilled={1, 2, 3} and circles represents vertices inVempty. On the right: a tensor network =N T,( )Temp .
Each vertex inVfilled is assigned a tensor by themappingT. Vertices inVempty are omitted, resulting into open edges.

7
We recall that an oriented graph is a directed graph inwhich no edge is bidirected, namely, for every two vertices u and v, atmost one of the

ordered pairs u v,( ) and v u,( ) is an edge in the graph.
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Definition 4.Anoperator Î Î A: e E e e E ein out
⨂ ⨂ is compatiblewith the template Temp if there exists a

tensor network =N T,( )Temp such thatA is the tensor network operator associated toN, namely =A N*.

2.4. Pure tensor network states
If a tensor networkNhas only outgoing edges but no ingoing ones, its operator N* is a vector on the tensor
productHilbert spaceout. A pure quantum state Yñ Î out∣ is a tensor network state if its amplitudes are
represented by a tensor network, namely, Yñ = N*∣ for some tensor networkNwith no ingoing edges.

An example of tensor network states is provided by theMPSs [32–34].MPSs can be used to represent the
ground states of one-dimensional chains of particles with local interactions, including the one-dimensional
Isingmodel [39] and the AKLTmodel [40]. In addition,manyMPSs, including the AKLT state, are a resource for
measurement-based quantum computation (MBQC) [47].

As an example, consider the class ofMPSswith open boundary conditions [33] and assume for simplicity
that every physical system in theMPS has the same dimension. Any suchMPS is specified by

1. n physical systems, each of dimension dp

2. a correlation spacec of dimension dc, called the bond dimension

3. a set of ´d dc c matrices Ai
k{ }[ ] , labeled by an index Î ¼k n1, ,{ }and another index Î ¼i d1, , p{ }

4. two vectors ñL∣ and ñR∣ inc, called the boundary conditions.

Explicitly, theMPS is the d n
p -dimensional vector

åY = ¼
¼ =

L A A A R i i i... , , , 11L R A A
i i

d

i i i
n

n, , ,...,
, , 1

1 2
1 2n

n

n
1

1

p

1 2
∣ ⟩ ⟨ ¯∣ ∣ ⟩ ∣ ⟩ ( )[ ] [ ] [ ][ ] [ ]

Weassume that the norms of the vectors ñL∣ and ñR∣ are chosen in such away that the overall vector
Y ñL R A A, , ,..., n1∣ [ ] [ ] is normalized. TheMPS (11) is described by a tensor network of the following form:

ð12Þ

where for each k, we regard the set =Ai
k

i
d

1
p{ }[ ] as anorder-3 tensor ofdimension ´ ´d d dp c c, denoted as A k[ ]. The

vertical arrowscorrespond to the physical systems,while horizontal ones correspond to the correlation spaces.
MPSswith periodic boundary conditions [33] are defined by replacing the boundary conditions with the

maximally entangled state, as the following:

ð13Þ

where å ñ ñ=I i ii
d

1
c∣ ⟫ ≔ ∣ ∣ represents the unnormalisedmaximally entangled state.

Wewill sometimes restrict our attention to SIMPSs [33], that is,MPSswhere thematrices Ai
k[ ] are independent

of k.Hence, the set ofmatriceswill be simply denoted as =Ai i
d

1
p{ } . In the site-independent case, equation (11)becomes

åY = ¼
¼ =

L A A A R i i i... , , , 14L R A
i i

d

i i i n, ,
, , 1

1 2

n

n

1

p

1 2∣ ⟩ ⟨ ¯∣ ∣ ⟩ ∣ ⟩ ( )

SIMPSswith periodic boundary conditions (13) are called translationally invariantMPSs [33], and have the
following form.

ð15Þ

3.Memory bound for the storage of tensor network states

In this sectionwe apply the framework offlownetworks to bound the amount ofmemory qubits needed to
compress a given family of tensor network states.We illustrate this approach for various families of tensor
network states, includingMPSs and PEPSs.
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3.1. Parametric families of tensor network states
Aparametric family of tensor network states is specified by a tensor networkwhere some of the tensors depend
on the values of the parameters. For example, consider the following family ofMPSswith variable boundary
conditions

ð16Þ

for some parameter Îx X and somemappings ñL x L: x∣ and ñR x R: x∣ . Here, the vectors ñLx∣ and ñRx∣
are variable, while the tensorA isfixed.

Using vectorization, the tensor network can be rearranged in such away that all the variable tensors are
column vectors. The tensor productHilbert space associated to the edges of the variable tensorswill be called the
parameterHilbert space andwill be denoted byX. The tensor productHilbert space associated to all the
physical systems in the networkwill be called the physical Hilbert space andwill be denoted byP.

With the above notation, every parametric family of tensor network states can be represented as

Y ñ = ñN v , 17x x*∣ ∣ ( )

where ñvx∣ is a vector inX,N is the tensor network consisting of the fixed tensors, and  N : P* X is the
tensor network operator associated toN. An example of this parametrisation is provided in the following,

ð18Þ

where the operator N* arises from the tensor networkN inside the dashed frame.
It is clear from equation (17) that the dimension of the input subspace = Y ñ xin {∣ }Span is upper bounded

by the rank of N*. Hence, the (logarithmof the) rank of N* provides an upper bound on the number of qubits
needed for the optimal compression. However, thematrix N*may generally have an exponentially large number
of columns and rows, and its rankmay not be efficiently computable. Oneway to address this problem is to
search for efficiently computable upper bounds on the rank of N*, by inspecting the internal structure of the
tensor networkN. In the following subsectionwewill exploit a connection between tensor networks and flow
networks to construct useful bounds on the rank of N*, and therefore, on the number of qubits needed for
compression.

3.2. Flownetworks andmemory bounds
Wenowprovide a construction that associates tensor network templates withflownetworks, and provide a
memory bound valid for all families of tensor network states with a given template.

Aflownetwork [48] =~
N G c s t, , ,( ) consists of a directed graph =G V E,( ), with set of verticesV and set

of edges E, a function  Î+  c E x x: 00 ≔ { ∣ }, associating each edge Îe E with a non-negative number
c e( ), called its capacity, and two distinguished vertices, s and t, called the source and the sink, respectively.

Aflownetwork can be intuitively understood as a pipe systemwith edges being pipes and vertices being
junctions. Fluid enters in the pipe system from the source s and exits at the sink t. At any time, theflux in each
pipe is nomore than the capacity of the pipe, while at each junction, the total amount offluid is conserved,
meaning that the totalflux going into the junction equals to the totalflux going out. This idea is captured by the
mathematical notion offlow. A flow  +f E: 0 in aflownetwork is an assignment of non-negative numbers
to the edges of the network, subject to the following conditions.

1. For every edge e, the flow is upper bounded by the capacity, namely f e c e( ) ( ).

2. For every vertex v other than the source and the sink, the total flow entering in the vertex v is equal to the
totalflow exiting from it, namely å = åÎ Î Î Îf u v f v u, ,u V u v E u V v u E, , , ,( ) ( )( ) ( ) .

In the pipe system analogy, f e( ) represents the amount offluid that isflowing through the pipe e.
The value of the flow f, denoted by fs, is the totalflow exiting from the source, namely

å=
Î Î

f f s v: , 19s
v V s v E, ,

( ) ( )
( )

6
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Themaximumof fs over all possibleflows is called themax-flow of the network, and is denoted as

=N f: 20
f

s- ( ˜ ) ( )max flow max

Intuitively, fs represents themaximumamount offluid that can enter into a pipe system. This amount can be
upper bound by considering that all the fluid entering from the source has to exit from the sink, and, in order to
do so, it has to pass through the pipes between the source and the sink. A cut of theflownetwork is a cross-
section of the pipe system that separates the source and the sink. Formally, a cut is a partition of the vertices into
two disjoint subsets ÌC Vs and ÌC Vt , with Îs Cs and Ît Ct .Wewrite the cut as =C C C,s t( ). An edge
u v,( ) is called a cut edge if u belongs toCs and v belongs toCt.

Since all the fluid entering from the source has to pass through the cutC, the total capacity of the pipes
associated to cut edges poses an upper bound to the flux. Explicitly, the capacity of the cut C C,s t( ), denoted as
c C C,s t( ) is the sumof the capacities of the cut edges, namely

å=
Î Î Î

c C C c u v, : , 21s t
u C v C u v E, , ,s t

( ) ( ) ( )
( )

and one has the upper bound

~ N c C C, 22s t‐ ( ) ( ) ( )max flow

for every possible cut C C,s t( ). The best bound is obtained by choosing the cut withminimumcapacity. The
minimumof the capacity c C C,s t( ) over all possible cuts C C,s t( ) is called themin-cut, and is denoted by

=N c C Cmin : min , 23
C C

s t
,s t

- ( ˜ ) ( ) ( )
( )

cut

Themax-flowmin-cut theorem states that =~ ~
N N‐ ( ) ‐ ( )max flow min cut [48]. Intuitively, this shows that

themaximumflux a pipe system can carry from s to t is exactly equal to the capacity of theminimal cross-section
of the pipes.

An example of a flownetwork is shown infigure 2.
The analogy of the pipe systemwill be useful to understand the intuitive content of our results, wherewe use

flownetworks tomodel the ‘flowof information’, rather than theflowof amaterial fluid.We imagine
information flowing into the ingoing edges and out of the outgoing edges of the tensor network, and each edge
has a capacity equal to themaximumamount of information it can carry, which is d elog ( ) qubits for an edge e
with dimension d e( ). Given a tensor network template, we relate it to aflownetwork that can be constructed in
the followingway.

Construction 1. Let = G d V, , filled( )Temp be a tensor network template, and let =V V Vempty filled⧹ the set of

empty vertices. Theflownetwork associated to the template Temp, denoted by =
~

G c s t, , ,( )Temp , is
constructed through the following prescriptions.

1. Add the vertices s and t toV.

2. Replace each ingoing edge u v,( ) (with Îu Vempty and Îv Vfilled)with an edge s v,( ). Define the capacity of
the edge s v,( ) as c s v d u v, log ,( ) ≔ ( ).

3. Replace each outgoing edge v u,( ) (with Îv Vfilled and Îu Vempty) with an edge v t,( ). Define the capacity
of the edge v t,( ) as c v t d v u, log ,( ) ≔ ( ).

4. Remove all the vertices inVempty.

Figure 2.Aflownetwork. The numbers on each edge indicate theflow f (e) and the capacity c(e) of the edge, in the form f (e)/c(e). The
dashed line indicates a cut (Cs,Ct), with vertices to its left belonging toCs, vertices to its right belonging toCt.

7
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5. For every internal edge v w,( ) (with both v andw in Vfilled) include also w v,( ) in the set of edges. Define the
capacities = =c v w c w v d v w, , log ,( ) ( ) ( ).

An illustration of the above procedure is provided infigure 3.
Consider the tensor network =N T,( )Temp associated to thefixed tensors in the given state family Y ñx{∣ },

and let
~
Temp be theflow associated to the template Temp via construction 1. Every cut in theflownetwork

~
Temp defines a factorization of the operator N* as =N N N2 1* * *, where N1* and N2* are the operators of the
two subnetworksN1 andN2 on the two sides of the cut, as illustrated infigure 4. Then, one has the bound

* * * N N N dmin , 24C1 2( ) { ( ) ( )} ( )rank rank rank

where dC is the dimension of theHilbert spaceC associated to the edges in the cut. Hence, dlog C⌈ ( )⌉qubits are
sufficient to compress the state family. Recalling that the logarithmof dC is the capacity of the cut, we obtain the
following:

Theorem1. For every cut =C C C,s t( ) of~Temp, the state family Y ñ Îx x{∣ } X can be compressed without errors into
c C⌈ ( )⌉memory qubits. In particular, the state family can be compressed into

= ~
Q 25cut ‐ ( ) ( )⎡⎢ ⎤⎥min cut Temp

memory qubits, where =
~

dmin logC C‐ ( )min cut Temp is theminimum cut of the flownetwork
~
Temp.

Intuitively, theorem1 tells us that, since themaximumamount of information that can flow in the network
is upper bounded by the capacity of themin-cut, the amount ofmemory needed to store this information is also
upper bounded by the capacity of themin-cut. The point of theorem1 is that, while the calculation of N*( )rank
maynot be computationally feasible, theminimumcut can be found efficiently using known algorithms such as
the relabel-to-front algorithm [48], which runs in O V 3(∣ ∣ ) time.

In section 4, wewill provide explicit examples ofminimumcuts for some relevant families of tensor network
states. Before that, wewill discuss the optimality of Qcut as an upper bound on the number ofmemory qubits
needed for compression.

3.3.Optimality forfixed tensor network templates
The amount ofmemory used by the best compression protocol is intuitively related to the flowof quantum
information from the parameters specifying the quantum state to the physical systems inwhich the states are
embodied. Tomake this intuition precise, suppose that wewant to compress a known, but otherwise generic
family of tensor network states with network template Temp, that is, a family of the form ñ ÎN vx x*{ ∣ } X, where N*
is a tensor network operator compatible with the template Temp, and ñvx{∣ } is a generic set of (suitably
normalized) vectors in the parameter spaceX. In theworst case over ñvx{∣ }and N*, it is easy to see that the

Figure 3.Conversion of a tensor network template into a flownetwork. On the left: the tensor network templateTemp. The number
on each edge indicates d(e), the dimension of theHilbert space assigned to each edge. On the right: theflownetwork

~
Temp. The

number on each edge indicates its capacity c(e).

Figure 4.The cutC divides the networkN into two subnetworksN1 andN2. The combinedHilbert space of all cut edges is C .
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minimumnumber ofmemory qubits necessary for compression is Nlog *⌈ ( )⌉rank . Indeed, the vectors ñvx{∣ }
could form a spanning set for the parameter spaceX, so that the dimension of the input space

= ñ Î N vx xin *{ ∣ }Span X is exactly equal to the rank of N*. It is then immediate to conclude that every exact
compression protocol will require at least Nlog *⌈ ( )⌉rank memory qubits. Taking theworst case over N*, we
obtain the following

Proposition 1.Theminimumnumber ofmemory qubits required for the exact compression of a generic state family
of tensor network states with templateTemp is

= ~
Q max 26min ⌈ - - ( )⌉ ( )quantum flow Temp

where
~‐ ‐ ( )quantum max flow Temp is the quantummax-flow [46], defined as

=~
*

*

Nmax : max log 27
N

- - ( ) ( ) ( )quantum flow Temp rank

themaximumbeing over all tensor network operators N* compatible with the templateTemp8.

Now, an important question is whether the compression protocols of theorem 1 can reach theminimum
number of qubits (26), in theworst case over all state families compatible with a given network template. In other

words, the question is whether the equality =
~ ~‐ ‐ ( ) ‐ ( )⎡⎢ ⎤⎥ ⎡⎢ ⎤⎥quantum max flow Temp min cut Temp holds. Such

equality would follow from a quantumversion of themax-flowmin-cut theorem [49], whichwould state the
equality =

~ ~‐ ‐ ( ) ‐ ( )quantum max flow Temp min cut Temp . Remarkably, [46] shows that such quantumversion
does not always hold, and in general the quantummax-flow is only a lower bound on themin-cut

~ ~max min 28- - ( ) - ( ) ( )quantum flow Temp cut Temp

Nevertheless, the equality holds in the case where all dimensions are powers of the same integer [46]. In this case,
the validity of the quantummax-flow-min-max theorem implies the following optimality property:

Proposition 2. Let Temp be a network template with =d e bn e( ) ( ) for some fixed integer b and for some integer-
valued function  n E: . Then, =Q Qcut min, meaning that the number of qubits used in theorem 1 isminimum
in theworst case over all state families with the given network template.

Proposition 2 guarantees that, under the assumption that each dimension d e( ) is an integer power of b, the
amount of qubits used in theorem 1 is optimal for the least compressible family of tensor network states
compatible with the given template. In the general case, we show that the amount of qubit used by the
compression protocol of theorem 1 is atmost log 3 times theminimumnumber needed for compression. This
result, provided in the following proposition, is based on a general relation between themin-cut and the
quantum-max-flowof a generic tensor network:

Proposition 3. For every network template = G d V, , filled( )Temp , one has the bound
~ ~min log3 max 29- ( ) ( ) - - ( ) ( )cut Temp quantum flow Temp

As a consequence, one has the bound

+Q Qlog3 1 30cut min( ) ( )

which implies that, asymptotically, the number of qubits used in the compression protocol of theorem 1 is atmost log 3
times theminimumnumber Qmin.

The proof is provided in appendix A. In conclusion, the number of qubits used in theorem 1 is either
minimum (if all dimensions are power of the same integer), orwithin a factor »log 3 1.585( ) of theminimum
(if some dimensions are not power of the same integer). Equippedwith this result, in the next sectionwewill
analyze the number of qubits needed to compress various families of tensor network states.

4. Exponentially compressible families of tensor network states

In this sectionwe apply thememory bound of theorem1 to various families of tensor network states. In all these
examples, the amount ofmemory qubits required to store the states is exponentially smaller than the original
number of physical particles inwhich the states are embodied.

8
Note that the quantummax-flow adopted here is the logarithmof the quantummax-flowdefined in [46].

9

New J. Phys. 22 (2020) 043015 GBai et al



4.1.MPSswith variable boundary conditions
Consider the following family ofMPSswith variable boundary conditions:

ð31Þ

Here, the tensors ¼A A A, , , n1 2[ ] [ ] [ ] arefixed and known, and the free parameters are the components of the
vectors ñL∣ and ñR∣ .We consider the case where =d O nc ( ( ))poly , namely the the bond dimension dc grows at
most polynomially with n, which is true forMPS approximations of ground states one-dimensional gapped
Hamiltonians [50–52]. In cases of the one-dimensional Isingmodel [39] and the AKLTmodel [40], dc is even
constant. In equation (31), we regard the tensors surrounded by the dashed line as the tensor networkN, andwe
write Y ñ = ñ Ä ñN L RL R, *∣ (∣ ∣ ).

In order to apply theorem1, thefirst step is to convertN to aflownetwork, as illustrated infigure 5. Then,
theorem1 guarantees that the states Y ñL R,{∣ }can be compressed into a number of qubits equal to the capacity of
theminimumcut. For the flownetwork infigure 5, there are two candidates for theminimumcut C C,s t( ).

(i) Cs contains only s, whileCt contains all the other vertices. This cut has capacity d2 log c.

(ii) Ct contains only t, whileCs contains all other vertices. This cut has capacity n dlog p.

For all other cuts, the cut edges necessarily contain at least two edges of capacity dlog c and one edge of capacity
dlog p, leading to a capacity larger than that of (i). For sufficiently large n, as we have assumed dc is no larger than

a polynomial of n, we have d n d2 log logc p, and (i) is theminimumcut. Therefore the states Y ñL R,{∣ }can be
compressed into a number of d2 log c⌈ ⌉qubits, which is O nlog( ) assuming =d O nc ( ( ))poly .

Note that althoughwe consideredMPSswith open boundary conditions, ourmemory bound applies also to
other cases. For example, it applies toMPSwith periodic conditions (13).More generally, the bound holds for
any set of states Y ñB{∣ }of the form Y ñ = ñN BB *∣ ∣ , where ñ Î Ä B c c∣ is a generic vector on the jointHilbert
space of the boundary conditions.

In section 6wewill provide an explicit compression protocol that achieves thememory bound d2 log c⌈ ⌉and
can be implemented efficiently on a quantum computer.

4.2. Site-independentMPS
Another important family ofMPSs is the family of SIMPSs [33]. Suppose that we knownothing about anMPS
except that it is site-independent (14), has a constant bond dimension dc, and has a constant physical dimension

dp. A constant bond dimension can be observed in some systemswhere the interactions are local, such as the
one-dimensional Isingmodel [39] and the AKLTmodel [40]. A generic state of this form can be expressed as

ð32Þ

Note that the entries of the tensorA are free parameters, like the entries of the vectors ñL∣ and ñR∣ .We now
provide an alternative tensor network representation of the state Y ñA L R, ,∣ . To this purpose, we can convert the

tensorA into a vector of dimension d dc
2

p, denoted by ñ Î A d dc
2

p
∣ . The vectorization is implemented by

inserting copies of the unnormalisedmaximally entangled state å ñ ñ=I i ii
d

1
c∣ ⟫ ≔ ∣ ∣ , as in the following picture:

Figure 5. Flow network associated to the states (31), and the two candidateminimum cuts. Except the edges connected to the source s
or the sink t, all edges aremade bidirectional. The dashed lines indicate theminimum cuts.When n is sufficiently large, as dc is
assumed to grow polynomially with n, d n d2 log logc p, and the left-hand one is theminimumcut.
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ð33Þ

Now, note that the vector ñÄA n∣ belongs to the symmetric subspace of Ä
d d

n
c
2

p
, which has dimension

+ -

-

n d d

d d

1

1
c
2

p

c
2

p

⎛
⎝⎜

⎞
⎠⎟. Let  be aHilbert space of dimension

+ -

-

n d d

d d

1

1
c
2

p

c
2

p

⎛
⎝⎜

⎞
⎠⎟. Then, there exists an isometry VS

such that, for any ñA∣ , there exists a vector ñ Î SA∣ satisfying ñ = ñÄA V Sn
AS∣ ∣ . Using this fact, we can replace

ñÄA n∣ by ñV SAS∣ , thus obtaining a new tensor network representationwith smallerminimumcut:

ð34Þ

For sufficiently large n, theminimumcut is illustrated by the dashed line in equation (34). The cut edges are

the outgoing edges of L,R and SA, and their combined dimension is =
+ -

-
 d

n d d

d d
dim

1

1
C c

2 c
2

p

c
2

p

⎛
⎝⎜

⎞
⎠⎟. Hence,

theorem1 implies that the total number of qubits to encode the states Y ñA L R, ,{∣ } is -  d dlog dim 1C c
2

p⌈ ⌉ ⌈( )
+ - +n d d dlog 1 2 logc

2
p c( ) ⌉.

4.3.Memory bounds for other families of tensor network states
In appendix Bwe derivememory bounds for several families of tensor network states, including PEPS (either
with variable boundary conditions or site-independent) andMPS/PEPS generated by an unknownunitary gate
acting identically on the physical particles, a scenario that is relevant to the use ofMPS/PEPS in quantum
metrology. The results of appendix B are summarized in table 1.

Cases 1 and 3 deal with the compression ofmultipartite states where the tensors responsible for the
correlations between particles are known, while the boundary condition is unknown. The scaling of thememory
sizemanifests an area law: the number of qubits needed to encode the state is proportional to the size of the
boundary. The area law can be immediately read out from the graphical representation of the states, as theorem1
states that thememory size equals to theminimumcut between the system and the variable terms, and in this
case the variable terms are only on the boundary.

Cases 2 and 4 consider a site-independentmultipartite systemwithfixed bonddimension.A logarithmic
scaling canbeobserved: thememory size isO nlog( ) for a systemofnparticles. The same scaling is also observed in
the compression of identical uncorrelated systems [13]. Cases 5, 6, 7 and8 exemplify a tensor network state under

anunknownglobal transformation. The totalmemory usage equals to afixed term + -
+ -

n dlog 1
d d 2

2 p
p
2

p ( ) plus
thememory for the tensornetwork state. Thefixed termcanbe interpreted as the amount of information contained
in the unknown transformation ÄUg

n.

5. Local compression of bipartite states

In this sectionwe extend theorem1 to the scenario where some of the physical systems are inaccessible, and the
task is to compress the accessible part, whilemaintaining the correlations in the overall system.

Consider a family of pure states Y ñ Ì Ä x P E{∣ } of the composite system ÄP E, consisting of a physical
system P (withHilbert spaceP) and of its environment E (withHilbert spaceE). Herewe are interested in
compression protocols where the encoding and decoding operations act only on system P, but still allow one to
recover the joint state Y ñx∣ . Our goal is tofind channels   S S: P M( ) ( ) and   S S: M P( ) ( ) that satisfy

Ä Y Y = Y Y " ÎD E I x, 35x x x xE( )(∣ ⟩⟨ ∣) ∣ ⟩⟨ ∣ ( ) X

where E is the identitymap on system E. An optimal pair of channels  ,( ) is a pair thatminimizes the
memory size, namely the dimension ofM.

We call the above task local compression of the states Y ñ Ì Ä x P E{∣ } . Operationally, local compression is
important in the situationwhere Alice and Bob share a state of the composite system ÄP E, of whichAlice
holds part P, while Bob holds part E. In this scenario, it is interesting to ask howAlice can store her part of her
system in a quantummemory, while ensuring that the correlationswith Bob’s system are preserved.
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Table 1.Memory bounds for tensor network state families.

Case State Expression Parameters Memory (qubits, rounding up)

1 MPSswith variable boundary conditions Y ñL R,∣ (31) L,R d2 log c

2 Site-independentMPSs Y ñA L R, ,∣ (32) A, L,R - + - +d d n d d d1 log 1 2 logc
2

p c
2

p c( ) ( )
3 n×mPEPSswith variable boundary condition Y ñB

PEPS∣ ( ) (figure B1) B +n m d2 2 log c( )
4 Site-independent n×mPEPSs Y ñA B,

PEPS∣ ( ) (figure B2) A,B - + -d d nm d d1 log 1c
4

p c
4

p( ) ( ) + +n m d2 2 log c( )
5 Fixed n-system state under ÄUg

n Y ñÄUg
n

0∣ g + -
+ -

n dlog 1
d d 2

2 p
p
2

p ( )
6 Tensor network state under ÄUg

n ñÄU N vg
n

x*∣ g, x + - +
~+ -

n dlog 1
d d 2

2 p
p
2

p ( ) ‐ ( )min cut Temp where
~
Temp is the flownetwork associatedwithN

7 MPSswith variable boundary conditions under ÄUg
n Y ñÄUg

n
L R,∣ L,R, g + - +

+ -
n d dlog 1 2 log

d d 2

2 p c
p
2

p ( )
8 ´n m PEPSswith unknown boundary condition under ÄUg

nm Y ñÄUg
nm

B
PEPS∣ ( ) B g, + - + +

+ -
nm d n m dlog 1 2 2 log

d d 2

2 p c
p
2

p ( ) ( )
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A local compression protocol can be constructed from a partial isometry  V : P M that satisfies the
following:

Ä Y = Y " ÎV V I x, 36x xE( )∣ ⟩ ∣ ⟩ ( )† X

where IE is the identity operator on system E.
In order to generalize theorem1 to the scenario of local compression, we need to copewith the presence of

the inaccessible environment E. The key idea is to regard the environment not as an output of the tensor
network, but as another source of information, in addition to the parameterHilbert space inwhich the
parameter x is encoded.Mathematically, this change of perspective corresponds to a reversal of the edges
associated to the environment, which become inputs, instead of outputs. After the edges have been reversed, we
apply theorem1, and search for theminimumcut that separates physical systems from the parameter space and
from the environment, as shown infigure 6.

This approach leads to an upper bound on the number ofmemory qubits needed for local compression,
provided in the following proposition:

Proposition 4. Let Y ñx{∣ }be a parametric family of pure states of the form Y ñ = ñN vx x*∣ ∣ , where N :* X

Ä P E is a fixed tensor network operator and ñ Î vx∣ X is some (not necessarily normalized) vector,
parameterized by parameter x. Let =N T,( )Temp be the tensor network associated to the operator N*, each of
whose outgoing edges corresponds to either a physical system (i.e. a subsystem of P) or a part of the environment (i.e. a
subsystem of E). Let ¢Temp be the tensor network template obtained from reversing all open edges of Temp that are

associated to the environment. Let ¢
~
Temp be the flownetwork corresponding to the template ¢Temp via construction

1. For every cut =C C C,s t( ) of ¢
~
Temp , themarginal state on system P of the state family Y ñ Îx x{∣ } X can be

compressed without errors into c C⌈ ( )⌉qubits.

The proof is provided in appendix C.
As an example, consider the scenariowhere Alice holds the leftmost n systems of anMPS andBob holds the

rest ¢n systems, andAlice’s task is to store her systems in a quantummemory, while preserving the correlations
with Bob’s systems.

ð37Þ

WeassumeAlice does not know the boundary conditions ñL∣ and ñR∣ , and therefore her goal is tofind
channels   S S: P M( ) ( ) and   S S: M P( ) ( ) that satisfy

Ä Y ñáY = Y ñáY " ñ ñ   L R, , 38L R L R L R L RB , , , ,( ◦ )(∣ ∣) ∣ ∣ ∣ ∣ ( )

for someHilbert spaceM whose dimension should beminimized.
Using proposition 4, we convert the tensor network in equation (37) to into theflownetwork infigure 7,

with the cut indicated by the dashed line. There are two cut edges, each has dimension dc, and therefore Alice can
still compress her state into = dlogdim 2 logC c⌈ ⌉ ⌈ ⌉qubits, as in the case of compression of anMPSwith
variable boundary conditions (section 4.1). The compression protocol will be presented explicitly in section 6.

Proposition 4 automatically provide upper bounds on the amount ofmemory needed to compressmixed
tensor network states. Any such state r Î Sx P( ) can be regarded as themarginal of a pure tensor network state
involving an environment, namely rY ñáY =Tr x x xE[∣ ∣] for some pure state Y ñ Î Ä x P E∣ . Clearly, a local

Figure 6.Example of cut between the physical systems and the parameter space/environment. The capacity of the cut limits the
information flow fromboth the parameter space and the environment to the physical systems.
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compression protocol for the purifications Y ñx{∣ } is also a compression protocol for themixed states rx{ }, as one
can see by taking the partial trace over the environment on both sides of the local compression condition (35).

6. Compression protocol forMPSswith variable boundary conditions

Herewe construct an explicit compression protocol for the family of allMPSswith variable boundary
conditions. The idea is to perform a local compression on each pair of adjacent physical systems locally, and to
iterate the protocol until we cannot reach a smallermemory size. For simplicity of presentation, we assume the
number of physical systems n is a power of 2.We consider two adjacent physical systems, the ith and the
+i 1( )th, and regard the others as the environment, as shown infigure 8.
By proposition 4, there exists a partial isometry +Vi i, 1 that faithfully encodes the ith and the +i 1( )th

physical systems into a single systemof dimension dc
2. Note that, per se, +Vi i, 1maynot be a useful compression

operation, because the dimension dc
2 may be larger than the dimension dp

2 of the two input systems.
Nevertheless, we now show that a concatenation of partial isometries like +Vi i, 1 can squeeze the initial state into
theminimumnumber of qubits, equal to d2 log c⌈ ⌉.

Explicitly, the partial isometry +Vi i, 1 satisfies the local compression condition (36), which reads

Ä Y = Y+ + ¼ - + ¼V V I 39i i i i i i n L R L R, 1 , 1 1, , 1, 2, , , ,( )∣ ⟩ ∣ ⟩ ( )†

where Ä¼ - + ¼ =
-

= +I I Ii i n k
i

k k i
n

k1, , 1, 2, , 1
1

2≔ ⨂ ⨂ is the identity operator on all systems except the ith and the
+i 1( )th. Applying the partial isometriesV1,2,V3,4, ..., -Vn n1, in parallel, we obtain the relation

Ä Ä Ä Y = Y " "- -V V V V V V L R... , 40n n n n L R L R1,2 1,2 3,4 3,4 1, 1, , ,( )∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )† † †

This conditionmeans that the product isometry Ä Ä Ä -V V V V... n n
1

1,2 3,4 1,≔( ) defines an exact compression
protocol that stores n systems (each of dimension dp) into n 2 systems (each of dimension dc

2).
The construction can be iterated, because the output of the isometryV 1( ) is itself anMPS. This can be verified

by defining the tensors

ð41Þ

so that the output state Y ñ Y ñVL R L R,
2 1

,∣ ≔ ∣( ) ( ) can be expressed in theMPS form

ð42Þ

Crucially, the bond dimension is still dc.
Now,we can again apply proposition 4 to each adjacent pair of dc

2-dimensional systems, and compress them
into a single dc

2-dimensional system, using partial isometries ¼ -V V V, , , n n1,4 5,8 3, . Also in this case, proposition 4

Figure 7. Flow network for the compression of Y ñL R,∣ . Except the edges connected to s or t, all edges aremade bidirectional. The dashed
line indicates the cut.

Figure 8.We regard the ith and the (i+1)th systems as the physical systems towhich the compression protocol will be applied. The
other systems are regarded as the environment.
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guarantees that the n 2( )-particle Y ñL R,
2∣ ( ) is encoded faithfully into the n 4( )-particle state Y ñL R,

4∣ ( ) ≔ Y ñV L R
2

,
2∣( ) ( ) ,

Ä Ä Ä -V V V Vn n
2

1,4 5,8 3,≔( )  .
Iterating this pairwise encoding for a total of nlog times, we can faithfully compress the input state into

d2 log c⌈ ⌉qubits. An illustration of the compression protocol for =n 8 is provided infigure 9.
The encoding can be realized by a quantum circuit of depth O nlog( ), implementing partial isometriesVi j,

shown above. Since each partial isometry has size no larger than ´d d dmax ,c
2

c
4

p
2{ }and the circuit uses -n 1

such partial isometries in total, the overall complexity of the encoding operations is O n( ( ))poly (assuming dc is
polynomial in n), meaning that this construction is efficient in the number of physical systems. The same
argument applies to the decoding circuit, which can be obtained from the encoding circuit by reversing
each gate.

Note that the above technique also applies to the local compression ofMPSs, corresponding to the scenario
where only a subset of the physical system is accessible.

7. Compression algorithm for pure states in low-dimensional subspaces

7.1. The algorithm
Herewe outline a general quantum algorithm for compressing families of pure states lying in a low-dimensional
subspace of a high-dimensional quantum system. The idea of the algorithm is to train a quantummachine to
perform the desired compression operations, by showing to themachine how such operations should act on a
fiducial set of input states.

The algorithm is based on the universal quantum emulator ofMarvian and Lloyd [53], a quantum circuit that
‘learns’how to implement a completely unknownunitary gateU from a set of examples, as illustrated in
figure 10. To implement the gateU on a state yñ∣ , the emulator consumesQ pairs of input–output states, of the
form y yñ ñU,j jk k

(∣ ∣ )with Î ¼k Q1, ,{ }. Each input state y ñjk
∣ is taken froma set ofm possible inputs y ñ =j j

m
1{∣ } ,

with m Q.
For largeQ, the output of the emulator converges to the desired output state yñU∣ provided that:

1. The input state yñ∣ belongs to the subspace y ñ = j j
m

1≔ {∣ }Span .

2. The quantum channel   S S: ( ) ( ) defined by

år y y r y y r- ñá - ñá " Î
=

  
m

I I S
1

2 2 , 43
j

m

j j j j
1

( ) ≔ ( ∣ ∣) ( ∣ ∣) ( ) ( )

Figure 9.Tensor network for Y ñL R,
8∣ ( ) , which is also the circuit structure to perform the encoding operation. Each partial isometryVi, j

acts on a spacewith dimension nomore than d dmax ,c
4

p
2{ } and outputs a systemwith dimension dc

2.

Figure 10.Universal quantum emulator. Themachine learns how to approximately perform an unknownunitary gateU on a generic
input state yñ∣ by consumingQ pairs of input–output states.
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where I is the identity on, ismixing [54], meaning that every input state ρ converges to afixed state r0 (in
this particular case r = I d0 ) under a large number of repeated applications of the channel; in
formula, r r=¥limk

k
0( ) .

The second condition is equivalent to the statement that the channel has one and only one eigenvalue on the
unit circle [55]. Since all the eigenvalues of a quantum channel are inside the unit circle, this implies that the
eigenvalueλwith the second largestmodulus satisfies the condition l < 1∣ ∣ . Equivalently, thismeans that the
spectral gap g l- 1≔ ∣ ∣ is non-zero.

The number of input–output pairs needed to approximate the gateU depends on the error tolerance ε, on
the dimension of the subspace spanned by the input states y ñj{∣ }, denoted by r, and on the spectral gap g.
Specifically,Marvian and Lloyd [53] show thatQ grows as

e g e= - - -Q O r rlog 44R
2 1 2 2 1( ( )) ( )

To emulate the encoding, which is an isometry instead of a unitary, we choose a unitaryU acting on the
composite system ÄP M, and satisfying the condition

Y ñ Ä ñ = Y ñ Ä Y ñU W V 45x x0 0(∣ ∣ ) ∣ ∣ ( )

where Y ñ0∣ ( ñW0∣ ) is afixed state of the physical (memory) system, and  V : P M is an isometry that encodes
the input states into thememory system. To train the emulator, we use input (output) states of the form

y yñ = F ñ Ä ñ ñ = Y ñ Ä F ñW U V, 46j j j j0 0∣ ∣ ∣ ( ∣ ∣ ∣ ) ( )

where the states Fñ =j j
m

1{∣ } , hereafter called the fiducial states, span the input subspace Y ñ Î x xin ≔ {∣ }Span X. In
general, the states Fñ =j j

m
1{∣ } may ormay not be a subset of the state familywe are trying to compress.

The isometryV is constructed from theGrammatrix = áF F ñGjk j k∣ via the following procedure:

1. Compute the rank of G, denoted by r, and set = r
M . The calculation of the rank can be done, e.g. by

diagonalisingG and counting the non-zero eigenvalues. Note that r is equal to the dimension of
Fñ =j j

m
1{∣ }Span , which, by construction, is equal to the dimension of the input subspacein.

2. Construct an ´r m matrixW such that =W W G† . This can be done by diagonalising G as = LG X X†,
setting = LW X†, and removing the zero rows fromW.

3. For Îj m1 ,...,{ }, define Fñ ñV W jj∣ ≔ ∣ .

The abovedefinition iswell-posed anduniquely determines the linear operatorVwithin the subspace spannedby
thefiducial states Fñ =j j

m
1{∣ } . Note thatV is an isometry: indeed, for every vector Yñ = å Fñ Î cj j j in∣ ∣ , one has

å å å åY = F F = = = F F = Y

47

V c c V V c c j W W k c c j G k c c
j k

j k j k
j k

j k
j k

j k
j k

j k j k
2

, , , ,

2

( )

∣ ⟩ ¯ ⟨ ∣ ∣ ⟩ ¯ ⟨ ∣ ∣ ⟩ ¯ ⟨ ∣ ∣ ⟩ ¯ ⟨ ∣ ⟩ ∣ ⟩† †   

To train the emulator, wewill use input–output pairs of the form Fñ Ä ñ Y ñ Ä ñW W,j j0 0(∣ ∣ ∣ ∣ ), with
ñ ñW W jj∣ ≔ ∣ . Now, recall that the number of input–output pairs needed by the emulator depends on the

spectral gap of the channel in equation (43), with states y ñ = Yñ Ä ñWj j 0∣ ∣ ∣ . Since the states Yñ Ä ñWj 0∣ ∣ are
unitarily equivalent to the states Y ñ Ä ñWj0∣ ∣ , the spectral gap of the channel   S S: P P( ) ( ) is equal to the
spectral gap of the channel ¢   S S: M M( ) ( ) defined by

år r r= - - " Î¢

=

R
m

I W W I W W S:
1

2 2 , 48
j

m

r j j r j j
r

1

( ) ( ∣ ⟩⟨ ∣) ( ∣ ⟩⟨ ∣) ( ) ( )

where Ir is the identity operator on r . This observation is important because channel ¢ acts only on the
memory space, and therefore its spectral gap involves the diagonalisation of a low-dimensionalmatrix.With the
knowledge of the spectral gap, we can keep under control the error in the emulator protocol, and determine how
many input–output pairs are needed to attain the desired level of accuracy in the implementation of the gateU.

All together, the algorithm can be summarized as follows:

Algorithm1.Encoding operation for state family Y ñx{∣ }.

Input:Quantum state to be compressed Yñ Î P∣ and classical description offiducial set F ñ =j j
m

1{∣ }
Output:Approximation of the compressed state Yñ Î V M∣
Preprocessing:
1Compute theGrammatrix = áF F ñGjk j k∣ ;

2Compute the rank =r G( )rank and set = r
M ;
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(Continued.)
3Find an ´r m matrixW satisfying =W W G† ;

4Compute the spectral gap of the channel  in equation (43).
Emulation:

5Run the universal quantum emulator with input state Yñ Ä ñW0∣ ∣ ;

6foreachemulator’srequest for the j-th input-output pairdo
7Prepare F ñj∣ ;

8Prepare ñ ñW W jj∣ ≔ ∣ ;

9Prepare Y ñ0∣ and ñW0∣ ;

10Input the pair F ñ Ä ñ Y ñ Ä ñW W,j j0 0(∣ ∣ ∣ ∣ ) into the emulator;

11end
12Discard thefirst systemof the emulator’s output.

The above algorithm implements an approximation of the encoding channel r( )=
r Ä ñáU W W UTrP 0 0[ ( ∣ ∣) ]† to any desired accuracy. The same construction applies to the decoding channel

r r= Y ñáY Ä U UTrM 0 0( ) [ (∣ ∣ ) ]† , by simply exchanging the role of the input and output of the quantum
emulator. The algorithm reaches the optimalmemory size for exact compression, because thememory space has
dimension r, which is exactly equal to the dimension of the input subspacein.

7.2. Running time
Herewe analyze the running time of the general quantum compression algorithm, providing sufficient
conditions for its efficient implementation.Wewillmeasure the size of the input physical system P in terms of
the number of logical qubits needed to represented it, namely n log dim P≔ ⌈ ⌉.

The running time of Step 1 (calculation of theGrammatrix) depends of the structure of the fiducial states.
The calculation of thematrix element = áF F ñGjk j k∣ can be implemented efficiently for various families of
tensor network states, such asMPSs [43, 56–58] andMERAs [38]. The number ofmatrix elements is O m2( ),
wherem is the size of the fiducial set. Hence, the efficient implementation of Step 1 requiresm to be atmost
polynomial in n. In the following, wewill always assume =m O n( ( ))poly . Of course, this implies that the
subspace containing the input states has polynomial dimension =d O nin ( ( ))poly , namely it is exponentially
smaller than the totalHilbert spaceP.

Under the assumption =m O n( ( ))poly , Steps 2 and 3 (calculation of the rank and construction of the
matrixW) can be implemented in polynomial time by diagonalising theGrammatrixG, e.g. with theQR
algorithm [59]. Note that one has = =r d O nin ( ( ))poly , meaning that thememory systemhas polynomial
dimension.

Step 4, the calculation of the spectral gap, can be implemented in polynomial time by diagonalising the
´r r2 2 matrix describing the channel ¢ .
The emulation part has running time = +T Q T Ttot prep emulator, whereQ is the number of input–output

pairs used by the emulator,Tprep is the time complexity of preparing each input–output pair, andTemulator is the
running time of the emulator.

The running time of the emulator can be bounded as =T O n Q Qlogemulator ( ) [53]. The complexity of
preparing the input–output pair Fñ Ä ñ Y ñ Ä ñW W,j j0 0(∣ ∣ ∣ ∣ ) is essentially the complexity of preparing the
fiducial state Fñj∣ . Indeed, Y ñ0∣ can be chosen to be any efficiently preparable state, i.e. any state preparable in
O n( ( ))poly time. The states ñWj∣ and ñW0∣ are efficiently preparable by construction, because they are vectors
with a polynomial number of efficiently computable entries. Hence, the preparation time Tprep is polynomial if
and only if eachfiducial state Fñj∣ can be prepared in polynomial time. This condition is satisfiedwhenever the
fiducial states Fñ =j j

m
1{∣ } areMPSs [43, 58] orMERAs [38].

By equation (44), under the assumption =m O n( ( ))poly , the number of input–output examples required
by the emulator is polynomial in n and e-1 if the inverse spectral gap g-


1 is atmost polynomial in n.

In summary, the compression operations can be implemented in polynomial time if:

1. The number offiducial states is atmost polynomial, =m O n( ( )))poly .

2. The overlap of any twofiducial states can be computed in polynomial time.

3. Each fiducial state can be prepared in polynomial time.

4. The inverse spectral gap is atmost polynomial, g =-
 O n1 ( ( ))poly .

Conditions 1 and 2 are relatively straightforward for tensor network states. Aswe have seen in section 4,
many families of tensor network states are contained in subspaces of dimension O n( ( ))poly , making it easy to
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satisfy Condition 1. In addition, the overlap between two tensor network states can be efficiently computed in
many physically relevant cases (e.g.MPSs andMERAs). In those cases, if the input subspacein has polynomial
dimension (as itmust be in order to satisfy Condition 1), then every state inin is a linear combination of
polynomial number of tensor network states, and the overlap between any two states inin can be computed in
polynomial time.

Condition 3 is satisfiedwhen thefiducial states are efficiently preparable tensor network states, such asMPSs
orMERAs, which can be prepared through sequences of isometries [38, 43, 58]. However, it is not automatically
satisfiedwhen thefiducial states are generic vectors inin. The problem is that, in general, a linear combination
of efficiently preparable statesmay not be an efficiently preparable state. ForMPSs, however, this condition is
satisfied:

Lemma1. Let S ñ =k k
t

1{∣ } be a polynomial-size set ofMPSs that span the input spacein, and let =ck k
t

1{ } be a set of
coefficients such that the linear combination Yñ = å S ñck k k∣ ∣ is a unit vector. If the initial states have bond
dimension dc, then the state Yñ∣ is anMPSwith bond dimension t dc and can be prepared in polynomial time.

The proof is provided in appendixD. Formore general families of tensor network states, other thanMPSs, a
sufficient condition for the efficient preparability of thefiducial states will be given in the next section.

Finally, Condition 4 can be satisfied by a suitable choice offiducial states, as we show in the following.
In general, Condition 4 is satisfied by choosing thefiducial set to be ‘sufficiently dense’ in the input subspace.

An example of such choice is provided in the following. Let ñ ¼ ñr1 , ,{∣ ∣ }be afixed basis for the input subspace
in. For every Î ¼l r1, ,{ }, we define

Y =
 Å

Y =
 Å

Y = Y = Å  + -
l l l i l

l l:
1

2
, :

1

2
, : , : 1 49l x l y l z l z, , , , , , , ,∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

whereÅ denotes additionmodulo r, andwe adopt the convention ñ ñr0∣ ≔ ∣ .

Lemma2.The spectral gap of the channel in equation (43) associated to the states Y ña aÎ ¼ Î Î + -l s l r x y z s, , 1, , , , , , ,{∣ } { } { } { }
in equation (49) is g p= r r8 sin 32[ ( )] ( ).

Theproof is provided in appendixE. Lemma2 guarantees that thefiducial set Y ña aÎ ¼ Î Î + -l s l r x y z s, , 1, , , , , , ,{∣ } { } { } { }

gives rise to a channelwith inverse spectral gap growing atmost as O r3( ), where r is the dimensionof the input
subspace. Since the input subspace is assumed tobe of polynomial dimension (Condition 1), this result guarantees
that the inverse spectral gap is atmost polynomial.

Lemmas 1 and 2 imply that every family ofMPSs that can be compressed into a logarithmic number of qubits
can be compressed in polynomial time on a quantum computer.

Theorem2. Let Y ñ Îx x{∣ } X be a parametric family of n-particleMPSswith fixed bond dimension dc. If the input
subspace = Y ñ Î x xin {∣ }Span X has polynomial dimension =r n( )poly , then the states Y ñ Îx x{∣ } X can be
compressed into rlog⌈ ⌉qubits with error ε in polynomial time e-n, 1( )poly .

Proof. Let S ñ =k k
t

1{∣ } be a subset of the states Y ñ Îx x{∣ } X, with the properties that (i) S ñ =k k
t

1{∣ } spans the input
subspace, and (ii) thenumber of states t is polynomial inn. Such a set exists because, by hypothesis,in has
polynomial dimension. Then, let ñ =l l

r
1{∣ } be theorthonormal basis ofin obtainedby applying theGram–Schmidt

procedure to the set S ñ =k k
t

1{∣ } . Explicitly, ñ S ñ1 1∣ ≔ ∣ , ñ S ñ2 2∣ ≔ (∣ −áS S ñ S ñ - áS S ñ1 ,...,1 2 1 1 2
2∣ ∣ ) ∣ ∣ ∣

ñ S ñ - å á S ñ ñ - å á S ñ< <t k k k1t k t t k t t
2∣ ≔ (∣ ∣ ∣ ) ∣ ∣ ∣ . By construction, each vector ñl∣ is a linear combinationof

MPSs, and the expansion coefficients canbe computed from the scalar products áS S ñk l∣ . Since the states S ñ =k k
t

1{∣ }
areMPSs, the scalar products canbe computed efficiently, and lemma1 implies that the linear combinations
ñ =l l

r
1{∣ } canbe prepared in polynomial time. From thebasis ñ =l l

r
1{∣ } , one can then construct thefiducial states

defined in equation (49). Since thefiducial states are linear combinations of atmost 2 basis vectors, they can all be
prepared in polynomial time (again, due to lemma1).Moreover, lemma2 guarantees that the channel associated
to the states (49)has inverse spectral gapof polynomial size.Hence, all Conditions 1, 2, 3, and 4 are satisfied,
implying that the compression algorithm1 runs inpolynomial timeon the states S ñ =k k

t
1{∣ } . ,

Theorem 2 guarantees thatmost relevant families ofMPSs can be compressed efficiently on a quantum
computer. For other state families, a sufficient condition for compressibility in polynomial time is given by the
following proposition:
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Proposition 5. Let Y ñ Îx x{∣ } X be a parametric family of n-particle tensor network states with a given network
template. If the input subspace = Y ñ Î x xin {∣ }Span X contains a spanning set S ñ =k k

t
1{∣ } with the following

properties

(i) the number of states is atmost polynomial inn,

(ii) each state S ñk∣ is efficiently preparable by a coherent process ñ ñ Ä S ñk k k∣ ∣ ∣ ,

(iii) the Grammatrix áS S ñSkl k l≔ ∣ is efficiently computable,

(iv) theminimumnon-zero eigenvalue of theGrammatrix S is at least inverse-polynomial inn,

then the states Y ñ Îx x{∣ } X can be compressed into rlog⌈ ⌉qubits with error ε, using a quantum algorithm that
runs in polynomial time e-O n, 1( ( ))poly .

The proof is provided in appendix F.Note that proposition 5 is not specific to tensor network states, and
applies broadly to every parametric family of states confined in a low-dimensional subspace of the totalHilbert
space.

8. Conclusions

Wedesigned compression protocols for parametric families of tensor network states, inwhich some of the
tensors depend on the parameters, while some others are constant. Physically, the variable tensors can be
associated to systems that carry unknownparameters, or to inaccessible degrees of freedomof the environment.
Given a tensor networkwith constant and variable tensors, one can construct aflownetwork, where the variable
tensors are connected to the source, and the physical systems are connected to the sink. In such a network, every
cut identifies an exact deterministic compression protocol that compresses every state in the parametric family
into a quantummemory of dimension equal to the size of the cut. In addition to quantifying the amount of
memory needed to store tensor network states, we provided a general quantum compression algorithm, andwe
identified sufficient conditions for the algorithm to run in polynomial time, showing that they are satisfied by all
families ofMPSs.

Our results can be applied to site-independent tensor network states of n quantum systems, showing that
every such state can be compressedwithout error into amemory of O nlog( ) qubits. This scaling is optimal,
because the set of SIMPSs contains as a subset the set of all identically-prepared states, which is known to require
O nlog( ) qubits, both for exact [11] and approximate compression protocols [12, 13]. The optimal prefactor in
the logaritmic scaling of thememory for general site-independent tensor network states remains to be
determined.

Our results can also be used to provide upper bounds on the amount of information one can encode into
multipartite systemusing tensor network codes, such as the toric code [60–62] and holographic codes [63, 64].
For example, ourmethod shows that a toric codewith circumference L andwith variable boundary conditions
can be faithfully compressed into L qubits (a toric code is a PEPSwith =d 2c [36]). As a consequence, we can
deduce that the number of qubits one can encodewith the toric code is atmost L. This result is consistent with
the construction by Bravyi andKitaev [62], which shows that one can encode up to -L 2 1qubits. The
discrepancy between this value and our bound ismostly due to that in [62], the boundary condition of a toric
code is not arbitrary, while we consider arbitrary boundary conditions.More generally, we showed that tensor
network states with variable boundary and constant interior satisfy an area law, according towhich the number
of qubits needed to compress these states is proportional to the size of the boundary.

In this workwemainly focused on exact compression. Since noise and imperfections are unavoidable in
every realistic implementation, an important avenue of future research is to extend our results to approximate
compression protocols. Tolerating a small compression error could offer great savings in terms of the amount of
memory needed to store families of tensor network states. In the case of uncorrelated systems, it was observed
that tolerating any non-zero error decreases thememory size discontinuously [11, 12]. Extending the study of
this phenomenon to correlated systems is an interesting open question for future research.

Acknowledgments

Thiswork is supported by theNationalNatural Science Foundation of China through grant 11675136, theHong
KongResearchGrant Council throughGrantNo. 17300317 and 17300918, theHKUSeed Funding for Basic
Research, the FoundationalQuestions Institute through grant FQXi-RFP3-1325, QuantumCausal Structures,

19

New J. Phys. 22 (2020) 043015 GBai et al



the Croucher Foundation, the SwissNational Science Foundation via theNational Center for Competence in
Research ‘QSIT’ aswell as projectNo. 200020_165843, and the ETHPauli Center for Theoretical Studies. This
publicationwasmade possible through the support of the ID# 61466 grant from the JohnTempleton
Foundation, as part of the “TheQuantum Information Structure of Spacetime (QISS)”Project (qiss.fr). The
opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the
JohnTempleton Foundation.

AppendixA. Proof of proposition 3

For a generic tensor network template = G d V, , filled( )Temp , define the new template = G d V, ,2 2 filled( )Temp

by setting d e 2 d e
2

log( ) ≔ ⌊ ( )⌋, and let =C C C,s t* * *( ) be aminimumcut of theflownetwork
~

2Temp .
Then, we have the following chain of inequalities:
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min cut Temp

min cut Temp

quantum max flow Temp quantum max flow Temp

the last inequality following from the fact that the set of tensor network operators with template
~

2Temp is
included in the set of tensor network operators with template

~
Temp. This proves the upper bound

~ ~ log 3‐ ( ) · ‐ ‐ ( )min cut Temp quantum max flow Temp . ,

Appendix B.Memory bounds for various tensor network families

B.1. PEPSwith variable boundary conditions
PEPSs are a higher dimensional analog ofMPSs [35, 36]. A PEPS is defined by a lattice of tensors, where each
tensor has edges connected to its neighbors. Consider a set of 2-d PEPSs inwhich all the tensors are fixed except
those on the boundary, as infigure B1.

Here, each tensor A i j,[ ] in the figure is afixed order-5 tensor, and the shaded loop is a tensorB describing a
variable boundary condition.

As in theMPS case, we regard the tensors A i j,[ ]on the lattice as the tensor networkN, and by properly
choosing the edge directions,N defines a linear operator from the systems on the boundary to the physical
systems.We call this linear operator N*, andwrite the PEPS as Y ñ = ñN BB

PEPS
*∣ ∣( ) , where ñB∣ is a vectorised

version of the tensorB describing the boundary condition. Then, we convertN to aflownetwork and look for its
minimumcut. Assuming that the bond dimension dc is a constant, while the lattice has size ´n m for large n
andm, the optimal cut consists of the source (which replaces the tensorB) on one side, and of the sink and the
tensors A i j,[ ]on the other side, as shown infigure B1. The cut edges contain +n m2 2 number of dc-dimensional
systems, with combined dimension +d n m

c
2 2 . Using theorem1,we conclude that the states Y ñB

PEPS{∣ }( ) can be
compressed into +n m d2 2 log c⌈( ) ⌉qubits.

This result is consistent with the area law for PEPSs, which indicates that the amount of information
contained in a two-dimensional region is upper bounded by a termproportional to its perimeter, in this case

+n m2 2 .More generally, this result is an instance of the bulk-boundary correspondence in [65], which shows
that the bulk (namely physical systems) and boundary of a PEPS are related by an isometry. Our result can be
seen as a special case of the ‘holographic compression’ of [66], which states that a state with area law can be
approximately compressed into amemory proportional to the boundary size. In the special case of PEPSs, our
construction shows that the compression is exact.

B.2. Site-independent PEPSs
Themethod in section 4.2 forMPSs can be generalized to arbitrary systems that are ‘finitely correlated’, in the
sense that they have afinite bond dimension. For example, figure B2 shows a site-independent PEPS defined on a
square lattice. EachA in the figure is an order-5 tensor, and the loop is a tensorB describing the boundary
condition.

Now, suppose that the state Y ñA B,
PEPS∣ ( ) is a generic site-independent PEPS, defined on a ´n m square lattice,

withfixed bond dimension dc and physical dimension dp. By vectorization, the tensorA is transformed into a

vector ñA∣ in a vector space of dimension d dc
4

p. The dimension of the symmetric subspace of nm copies of

20

New J. Phys. 22 (2020) 043015 GBai et al



d dc
4

p-dimensional vectors is
+ -

-

nm d d

d d

1

1
c
4

p

c
4

p

⎛
⎝⎜

⎞
⎠⎟.With the same argument as in the SIMPS case,

ñ = ñÄA V Snm
AS∣ ∣ , whereVS is an isometry, and ñSA∣ is a vector in space  with dimension

+ -

-

nm d d

d d

1

1
c
4

p

c
4

p

⎛
⎝⎜

⎞
⎠⎟.

We obtain the following tensor network representation for Y ñA B,
PEPS∣ ( ) :

ðB1Þ

Figure B1. PEPS on a square lattice. The basicmoduleA[ i, j] is an order-5 tensor, while the tensorB is a variable describing the
boundary condition. The directions of non-open edges are omitted. The dashed line indicates the cut, and the edges crossing it are the
cut edges.

Figure B2. Site-independent PEPS on a square lattice. The basicmoduleA is an order-5 tensor, while the tensorB is describes the
boundary condition. The directions of non-open edges are omitted.
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wherewe have rearranged the outgoing edges ofVS such that the tensor labeled Ä +I n m2 2( ) denotes the
connections betweenVS and the boundary conditionB, and

Ä - -I nm n m2( ) corresponds to the connections
between neighboring copies ofA. The open edges corresponds to the nmnumber of physical systems.

ñSA∣ has dimension
+ -

-
+ - -nm d d

d d
nm d d

1

1
1 d dc

4
p

c
4

p
c
4

p
1c

4
p( )

⎛
⎝⎜

⎞
⎠⎟ , and ñB∣ has dimension +d n m

c
2 2 .

Applying theorem1 to the cut illustratedwith the dashed line in equation (B1), we obtain that the states Y ñA B,
PEPS∣ ( )

can be compressed into into - + - + +d d nm d d n m d1 log 1 2 2 logc
4

p c
4

p c⌈( ) ( ) ( ) ⌉qubits.
The same argument can be applied to a lattice of n site-independent correlated systems, each of which has

physical dimension dp and interacts with kneighbors. In this case, a generic state on the lattice can be

compressed into + - +d d n d d b dlog 1 logk k
c p c p c⌈ ( ) ⌉qubits, where b is the boundary size, namely the

number of correlation systems across the boundary (b=0 for closed lattices, like e.g. the torus).

B.3.Multipartite states generated fromafixed statewith the action of identical local unitary
transformations
In this section and the next, we study the compression of state families generated from the action of identical
local unitary transformations, namely a state in the form Y ñÄUg

n
x∣ .We first consider the case where the initial

state isfixed and known, and generalize it in the next section to the case where the initial state is a tensor network
state family. Consider a parametric family of states of the form

Y = YÄU B2g g
n

0∣ ⟩ ∣ ⟩ ( )

where Y ñ Î Ä n
0∣ is afixed pure state on n identical systems, g is an element of a groupG, andUg is a unitary

operator belonging to a unitary representation of the groupG. For example, the above states could describe the
ground states of a systemof n spins immersed in a uniformmagnetic field of known intensity and unknown
direction. All these states can be obtained from afixed state (say, corresponding to amagnetic field oriented in
the zdirection) by rotating the direction of each spin by the same amount. A compression protocol would give a
way to store the state of the spins in a quantummemorywithout knowing the direction.

To better characterize the structure of the transform ÄUg
n, we use the Schur–Weyl duality [67]. The Schur-

Weyl duality decomposes theHilbert space Ä n into the following form:

Ä
l

l l
Ä

Î
H R M B3n

Yn d,

⨁ ( ) ( )

where n d, is the set of Young diagramswith n boxes and atmost d rows, and l and l are certain subspaces
indexed byλ.We denote the unitary transformation from the original n-tensor space to the decomposition as

 Äl l l
Ä

Î  U : n
sch n d,

⨁ ( ), which is known as the Schur transform.One property of the decomposition
(B3) is that, ÄUg

n acts trivially on each subspace l . Therefore we can decompose ÄUg
n with respect to this

decomposition as

å l l= Ä Ä
l

l
Ä

Î
lU U U U I B4g

n

Y
g Msch sch ,

n d,

∣ ⟩⟨ ∣ ( )†

where lñ lÎn d,
{∣ } is an orthonormal basis that indexes the direct sum, lUg , is a unitary on l , and lI is the

identity on l . Tomatch the decomposition of ÄUg
n, we also decompose Y ñ0∣ as

å x l mY = Ä Ä
l

l l l
Î

U r B5
Y

sch 0

n d,

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

where ñlr∣ and m ñl∣ are states in l and l , respectively, and xå =l l 12∣ ∣ .Multiplying equation (B4)with
equation (B5), we have

å x l mY = Ä Ä
l

l l l l
Ä

Î

U U U r B6g
n

Y
gsch 0 ,

n d,

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

Note that Y ñ0∣ is a knownfixed state, and therefore m ñl∣ is known andfixed.We can then construct an isometry
lñ m l lV : {∣ } ⨁Span that encodes the states m ñl lÎn d,

{∣ } as

l l m l= Ä " Îm lV Y, B7n d,∣ ⟩ ∣ ⟩ ∣ ⟩ ( )

Defining y x lñ = å ñ Ä ñ Îl l l l l lÎ  U rg g ,n d,
∣ ∣ ∣ ⨁ , we have y ñ = Y ñm

ÄU V Ug g
n

sch 0∣ ∣† .We draw the tensor

network generating the states Y ñÄUg
n

0{ ∣ } infigure B3.
Infigure B3, l l= å ñá Äl lU Ug g ,˜ ∣ ∣ is a compressed version of ÄUg

n. TheT-shape intersection is a copying

operation on the index system lñ∣ , defined as
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ðB8Þ

The region to the left of the dashed line reads l l lå ñ ñá Y ñl mU V Ug sch 0˜ ( ∣ ∣ ∣) ∣† , which equals to y ñg∣ . The partial

isometry mV † serves as a ‘coherent erasure’ of the system l .Wefirst perform a coherent erasure on the

multiplicity system l using mV † and reprepare the system later usingVμ. This effectively reduces theminimum
cut (dashed line) of the tensor network. The cut edges constitutes theHilbert space l lÎ n d,

⨁ .
Note that we are slightly abusing the notations for tensor network, as the two cut edges constitute a space that

is not the tensor product space of each edge. The dimension of the edge labeled by l depends onλ. To avoid
ambiguity, we have to restrict the upper edge to take values only in the basis lñ{∣ }.

We vectorise the variable tensorUg̃ as ñUg∣ ˜ , and regard all other tensors as the tensor networkN. Thenwe

have Y ñ = ñN Ug g*∣ ∣ ˜ . Choosing the cut as the dashed line infigure B3, according to theorem1, the states

Y ñÄUg
n

0{ ∣ }can be compressed into amemory of dimension equal to the dimension of l lÎ n d,
⨁ , which is

å= + -
l

l
l

l
Î Î

+ - 
 

 n ddim dim 1 B9d d 2 2

n d n d, ,

2⨁ ( ) ( )( )

namely amemory of nomore than + -+ - n dlog 1d d 2

2

2

( )⎡⎢ ⎤⎥ qubits. The last inequality comes from lemma 3

in [11] shownbelow, with =r d .

Lemma3.The total dimension of all the representation spaces corresponding to Young diagramswith nomore than r
rows is upper bounded as

å + -
l

l
Î

- + -R n ddim 1 B10
Y

dr r r2 2 2

n r,

2( ) ( )( )/

B.4. Parametric tensor network state family under identical local unitary transformations
In the previous section, we have discussed about the compression of states obtained froma fixedmultipartite
state under unknown local unitary transformations. Herewe consider the generalization inwhich the unknown
transformations are applied to a parametric family of tensor network states. This generalization could be used to
treat the case of n of interacting spinswith unknown couplings immersed in a uniformmagnetic field of
unknowndirection.

Explicitly, we consider tensor network states of the form

Y = Ä
*U N v B11x g g

n
x,∣ ⟩ ∣ ⟩ ( )

where ñ Î vx∣ X is a vector in a suitable parameter spaceX, andUg is an unknownunitary transformation,
representing the action of a group element Îg G on each physical system.

To use theorem 1, our goal is to construct a tensor network that generates the family ñÄ
Î ÎU N vg

n
x g G x,*{ ∣ } X,

with the property that the corresponding flownetwork has smallminimumcut.We do the construction in two
steps: we first consider a smaller state family and construct its corresponding tensor network, and then extend
the network so that it generates our target state family ñÄ

Î ÎU N vg
n

x g G x,*{ ∣ } X.

Let = m dim X. Choosem values of the parameters ¼x x, , m1 such that ñ ¼ ñv v, ,x xm1
{∣ ∣ } is a basis ofX. The

smaller family we consider is Y ñÄ
Î = ¼Ug

n
x g G i m, 1, ,i

{ ∣ } , with Y ñ ñN vx xi i*∣ ≔ ∣ . This family is an extension of the
family in the previous section, where instead offixing the initial state, the initial state is chosen fromm
alternatives.

For any xi, using the Schur transform,we can decompose Y ñxi
∣ as

å x l mY = Ä Ä
l

l l l
Î

U r B12x
Y

x x x
sch i

n d

i i i

, p

∣ ⟩ ∣ ⟩ ∣ ⟩ ∣ ⟩ ( )( ) ( ) ( )

If m ñl
xi∣ ( ) is known, as in the previous section, we can construct an isometryVμ (B7). However, in this case

m ñl
xi∣ ( ) is unknown and depends on the value of i. Thanks to the fact that i takes afinite number of values (1 tom),

we can construct one isometry for every value of i, in otherwords, an isometry controlled by i. As a result, we

Figure B3.Tensor network for Y ñÄUg
n

0{ ∣ }. The dash line indicates theminimumcut.
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redefineVμ as

å å l l m= Äm
l

l
= Î

V i B13
i

m

Y

x

1 n d

i

, p

∣ ⟩⟨ ∣ ∣ ⟩ ⟨ ∣ ( )( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ñi{∣ } is a basis of anm-dimensional control system. And mV † is defined as

å å l l m= Äm
l

l
= Î

V i B14
i

m

Y

x

1 n d

i

, p

∣ ⟩⟨ ∣ ⟨ ∣ ⟨ ∣ ( )† ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where the control system is not transposed.
We then draw the tensor network that generates Y ñÄ

Î = ¼Ug
n

x g G i m, 1, ,i
{ ∣ } , as shown infigure B4, which is

similar tofigure B3with additional control systems forVμ and mV †.

For anyfixed i, this network reduces tofigure B3, and generates the state Y ñÄUg
n

xi
∣ . Therefore any state in the

family Y ñÄ
Î = ¼Ug

n
x g G i m, 1, ,i

{ ∣ } can be generated by this network.We regard Y ñxi
∣ , two copies of ñi∣ andUg̃ as the

parameters, andwrite Y ñ = Y ñ ñ ñ ñÄU M i i Ug
n

x x gi i*∣ ∣ ∣ ∣ ∣ ˜ , where M* is the linear operator represented by the

constant tensors in network, and ñUg∣ ˜ is the vectorised version ofUg̃ .

Nowwe consider the original state family Y ñÄ
Î ÎUg

n
x g G x,{ ∣ } X. Take any state Y ñ = ñÄ ÄU U N vg

n
x g

n
x*∣ ∣ from the

family, we can decompose ñvx∣ in the basis ñvxi
{∣ }as añ = å ñv vx i i xi

∣ ∣ . Then the state Y ñÄUg
n

x∣ can bewritten as a
superposition of states in the smaller family:

å aY = YÄ ÄU U B15g
n

x
i

i g
n

xi∣ ⟩ ∣ ⟩ ( )

This indicates that we can generate Y ñÄUg
n

x∣ via the linear operator M*with a superposition of the parameters.
Defining

å aF ñ Y ñ ñ ñi i B16x
i

i xi∣ ≔ ∣ ∣ ∣ ( )

wehave

Y ñ = F ñ Ä ñÄU M U B17g
n

x x g*∣ (∣ ∣ ˜ ) ( )

which shows that the family Y ñÄ
Î ÎUg

n
x g G x,{ ∣ } X can be generated by the following tensor network infigure B5.

The lower twocut edges constitutes the space l lÎ n d,
⨁ , which has dimensionnomore than

+ - + -n d 1 d d 2 22( )( ) (lemma3). Theuppermost cut edge corresponds to the control system ñ =i i
m

1{∣ }Span with
dimension equal to dim X, and the combineddimension of all cut edges is + - + - n d 1 dimd d 2 22( )( )

X. Using
theorem1,we thenobtain thememory size for compression the states Y ñÄ

Î ÎUg
n

x g G x,{ ∣ } X, as stated in the following
proposition.

Proposition 6.Consider a family of tensor network states Y ñ ÌÎ
Äx x d

n{∣ } X with parameter spaceX (17). The
state family generated by applying an unknown unitary transformation on all physical systems simultaneously,
namely Y ñÄ

Î ÎUg
n

x g G x,{ ∣ } X, can be compressedwithout error into amemory of nomore than

+ - ++ - n dlog 1 log dimd d 2

2

2

( )⎡⎢ ⎤⎥X qubits.

Note that tominimize thememory usage in proposition 6, onemay choose an alternative parametrisation of
the original family: Y ñ = ¢ ¢ñN vx x*

∣ ∣ , where ¢ñvx∣ resides in a space ¢X that is smaller thanX. Specifically, the
minimumcutCdividesN into two subnetworksN1 andN2, so that N* is a concatenation of the corresponding

Figure B4.Tensor network for Y ñÄ
Î = ¼Ug

n
x g G i m, 1, ,i{ ∣ } . Yxi and copies of i are unknown aswell asUg˜ .
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linear operators, namely =N N N2 1* * *, as shown infigure 4. Then by defining
¢ñ = ñv N vx x1*∣ ∣ , we have

Y ñ = ¢ñN vx x2*∣ ∣ , and the new parameter space isC, the combinedHilbert space of all cut edges. The dimension
ofC can be smaller than the original parameter spaceX.With the newparametrisation, whenwe apply

proposition 6 for the states Y ñ Î Îx g G x,{∣ } X, we use amemory of + - ++ - n d c Clog 1d d 2

2

2

( ) ( )⎡⎢ ⎤⎥ qubits,
where = c C log dim C( ) is the capacity of theminimumcut.

We now considerMPSs and PEPSs. In section 4.1 and appendix B.1, we showed that anMPS or PEPSwith
unknownboundary condition can bewritten as Y ñ = ñN BB *∣ ∣ , where ñ Î B∣ X is a vector describing the
boundary condition, and N* is a linear operator.X has dimension dc

2 forMPSs and +d n m
c
2 2 for PEPSs.We can

then directly apply proposition 6 to the states Y ñÄUg
n

B{ ∣ }. AnMPSwith variable boundary conditions under

unknown transformation ÄUg
n can be compressed into amemory of + - +

+ -
n d dlog 1 2 log

d d 2

2 p c
p
2

p ( )⎡
⎢⎢

⎤
⎥⎥

qubits, while a PEPS on a square lattice with variable boundary condition under unknown transformation ÄUg
nm

can be compressed into amemory of + - + +
+ -

nm d n m dlog 1 2 2 log
d d 2

2 p c
p
2

p ( ) ( )⎡
⎢⎢

⎤
⎥⎥ qubits.

AppendixC. Proof of proposition 4

As illustrated infigure 6, letN1 andN2 be the subnetworks ofN induced by the cutC. ThenN1 defines a linear
operator  Ä  N : C1 EX ,N2 defines a linear operator  N : C2 P, andwe have = ÄN N I N2 E 1( ) ,
where IE is the identity operator onE.

Let = d dimE E, and take the computational basis ñ =ei i
d

1
E{∣ } ofE. Being the computational basismeans

ñ = ñe ei i∣ ∣ . Define f ñ Ä á Y ñ = Ä á ñ Î I e I e N vx i i x i x, P P P*∣ ≔ ( ∣)∣ ( ∣) ∣ , so that fY ñ = å ñ ñ= ex i
d

x i i1 ,
E∣ ∣ ∣ . Nowwe

consider the compression for the (unnormalised) states f ñ Î = ¼x i x i d, , 1, , E
{∣ } X . In fact, this set of states is generated

by the same networkN by reversing the edges for the environment. This results in a network ¢N , compatible
with the template ¢Temp . This is shown infigure C1.

We regard the cutC for networkN also as a cut for ¢N . Let y ñ = ¢ ñ ñN v ex i x i, 1*
∣ ∣ ∣ , and then f yñ = ñNx i x i, 2 ,*∣ ∣ .

Applying theorem1 for f ñx i,{∣ }, there exists a partial isometry  V : CP such that

f fñ = ñ " Î = ¼V V x X i d, , 1, , C1x i x i, , E∣ ∣ ( )†

ThisV is what wewant. For all Îx X,

å fÄ Y ñ = Ä ñ ñ
=

V V I V V I e C2x
i

d

x i iE E
1

,

E

( )∣ ( ) ∣ ∣ ( )† †

å f= ñ ñ
=

V V e C3
i

d

x i i
1

,

E

( ∣ )∣ ( )†

å f= ñ ñ
=

e C4
i

d

x i i
1

,

E

∣ ∣ ( )

= Y ñ C5x∣ ( )

,

Figure B5.Tensor network for Y ñÄ
Î ÎUg

n
x g G x,{ ∣ } X. Now the vector F ñx∣ serves as a parameter, and its three outgoing edges corresponds

to the three systems in equation (B16). The dashed line indicates theminimum cut.
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AppendixD. Proof of lemma1

Proof. For concreteness, wefirst prove the lemma forMPSswith open boundary conditions, and then showhow
to generalize the proof to arbitrary boundary conditions. For simplicity, we present the proof with SIMPs, while
the proof works for generalMPSs.

We encode the coefficients into a vector ñ å ñ=c c kk
t

k1∣ ≔ ∣ .We assume ñc∣ is normalized such that the linear
combination Yñ = å S ñck k k∣ ∣ has unit length. Since S ñk{∣ }areMPSs, they have the following form:

ðD1Þ

To represent their linear combination, we define tensorsΛ, ¼B B, , n1[ ] [ ], and P such that

ðD2Þ

for every Î ¼k t1, ,{ }and Î ¼i n1, ,{ }. Then Sñ∣ can be represented as:

ðD3Þ

where is the tensor defined by

ðD4Þ

Equation (D3) shows that Yñ∣ is anMPS: the left boundary condition is to the left of the first dotted line, the right
boundary condition is to the right of the second dotted line, and the tensor on each physical system is B i[ ]

connectedwith aT-intersection (D4). There are two edges connecting consecutive physical systems, one has
dimension dc, and the other one has dimension t. Therefore the bond dimension of Yñ∣ is tdc.

ForMPSswith general boundary conditions, one just needs to replace the boundary conditions by a suitable
tensor connecting Ak

1[ ] and Ak
n[ ] (B 1[ ] and B n[ ]), and the rest of the proof is identical.

To conclude the proof, we invoke the fact that allMPSswith polynomial-size bond dimension can be
prepared in polynomial time on a quantum computer [43, 58]. ,

Appendix E. Proof of lemma 2

The channel can be expressed as

å å år r= = = - Y Y
a

a a a a a
=

-

Î Î + -
  R

r
R R U U U I

1
, :

1

6
: 2 E1

l

r

l l
x y z s

l s l s l l l
0

1

, , ,
, , , , , , in , , , ,( ) ∣ ⟩⟨ ∣ ( )

{ } { }

†

FigureC1.The network generating f ñx i,∣ and the cut of ¢N . Both ñvx∣ and ñei∣ are regarded as parameters. ¢N1 is obtained fromN1 by
reversing all edges corresponding to the environment.
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Let ñ Å ñ l l, 1l ≔ {∣ ∣ }Span and ^l be its orthogonal complement. For each l, both l and
^l are invariant

subspaces of channell. For ρwith support only in l, one can explicitly determinel as

r r r r r= - " ÍR
P

S
4

3 2
Tr

1

3
, , E2l

l
l( ) [ ] ( ) ( )Supp

wherePl is the projector on l. Forρwith support only in
^l , the channell is just the identity. For a generalρ, one

candecompose it as r r r r= + + ¢^ ^P P P Pl l l l , where ^Pl is the projector on ^l , and r r r¢ +^ ^P P P Pl l l l≔
contains the off-block-diagonal terms.We further observe that r¢ = 0l( ) , because for anyoff-block-diagonal
element s = ñáj k∣ ∣ (or s = ñák j∣ ∣)with Î +j l l, 1{ }and Ï +k l l, 1{ }, wehave s +a a+ +U Ul l, , , ,

†

s a= " Îa a- -U U x y z0, , ,l l, , , , { }† , and thus s = 0l( ) .We conclude that r r r= + ^ ^  P P P Pl l l l l l l( ) ( ) ( ),
and therefore for general r Î in,

r r r r= - + ^ ^R
P

P P P P P
4

3 2
Tr

1

3
E3l

l
l l l l l( ) [ ] ( )

Tofind the eigenvalues of the channel, we use the double-ket notation å ñ Ä ñA A j kj k jk,∣ ⟫ ≔ ∣ ∣ ,
representing linear operators onin as vectors in the tensor product space Ä in in. Using this notation, the
eigenvalue equation l= A A( ) becomes l=R A A∣ ⟫ ∣ ⟫ , with

å= = - Ä + Ä
=

-
^ ^R

r
R R

P P
P P P P:

1
, :

4

3 2

1

3
E4

l

r

l l
l l

l l l l
0

1 ∣ ⟩⟩⟨⟨ ∣ ( )  

Averaging over l, wefinally obtain

= + +R R R R E51 2 3 ( )   

where

å å= Ä + Å Ä Å + Å Ä Å
=

-

=

-

R
r

l l l l
r

l l l l l l l l:
8

3

2

3
1 1 1 1 E6

l

r

l

r

1
0

1

0

1

∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ (∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣) ( )

å å= Ä Å Å + Å Å Ä
=

-

=

-

R
r

l l l l
r

l l l l:
2

3
1 1

2

3
1 1 E7

l

r

l

r

2
0

1

0

1

∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ∣ ⟩⟨ ∣ ( )

= - ÄR
r

I I: 1
4

E83 in in( ) ( )⎜ ⎟⎛
⎝

⎞
⎠

R3
 is proportional to the identity and does not contribute to the spectral gap. From = =R R R R 01 2 2 1

    , the
supports of R1

 and R2
 are orthogonal subspaces, sowe can consider the eigendecompositions of R1

 and R2


separately. The spectral gapwould then equals to the difference between the largest and second largest among
the union of eigenvalues of R1

 and R2
 . Notice that the support of R1

 is in the subspace ñ Ä ñ =
-l l l

r
0
1{∣ ∣ }Span .

Under the basis ñ Ä ñ =
-l l l

r
0
1{∣ ∣ } , R1
 is a Toeplitzmatrix whose eigendecomposition has a simple form [68]:

å=
+

F F
p

=

-

R
r

4 2 cos

3
E9

k

r k

r
k k1

0

1 2

∣ ⟩⟨ ∣ ( )

where each eigenvector F ñk∣ is the Fourier vector defined as F ñ å ñ Ä ñp l l dek l
kl d2 i

in
in∣ ≔ ∣ ∣ . Among the

eigenvalues in equation (E9), the largest eigenvalue is
r

4 , with eigenvector F ñ0∣ . The second largest is
+ p

r

4 2 cos

3

k

r

2

with eigenvectors F ñ1∣ and F ñ-r 1∣ . Nowwe turn to R2
 , and observe that its only eigenvalue is

r

2

3
, which is smaller

than the second largest eigenvalue of R1
 .We therefore conclude that the spectral gap equals to the difference

between the two largest eigenvalues of R1
 , which is

g = -
+

=
p p

r r r r

4 4 2 cos 8 sin

3
E10R

r
2

3

2( )
( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

,

Appendix F. Proof of proposition 5

The key of the proof is to show that Conditions (i)–(iv) guarantee that every linear combination å S ñck k k∣ with
efficiently computable coefficients ck{ } is efficiently preparable. Once this is done, we can simply construct an
orthonormal basis from the states S ñk{∣ }, and use thefiducial states in equation (49).

Any vector Yñ Î in∣ can be decomposed as Yñ = å S ñck k k∣ ∣ , with = áS Yñ-c Fk k
1∣ ∣ and = å S ñáSF k k k∣ ∣

[69]. Now, let A be an auxiliary quantum systemof dimension s, and consider the state
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y =
å

å

c k

c
F1k k

k k
2

∣ ⟩
∣ ⟩

∣ ∣
( )

For given coefficients ck{ }, the state yñ∣ is efficiently preparable, because it is a state in aHilbert space of
polynomial dimension.

Now, consider a coherent controlmechanism that prepares the state S ñk∣ by a coherent process
ñ ñ Ä S ñk k k∣ ∣ ∣ , where ñk{∣ } is a basis of an auxiliary system. Setting the auxiliary system to yñ∣ , the resulting

state is

G =
å Ä S

å

c k

c
F2k k k

k k
2

∣ ⟩
∣ ⟩ ∣ ⟩

∣ ∣
( )

Finally, projecting the auxiliary systemon the vectorå ñk sk∣ , one obtains the state Yñ∣ . The probability
that the projection takes place is l= å = áY YñY

- - - p s c s F s1k k
2 1 1 1

min( ∣ ∣ ) ( ∣ ∣ ) ( ), where lmin is theminimum
non-zero eigenvalue of F. Note that the eigenvalues of F are the same as the eigenvalues of theGrammatrix
= áS S ñG k l∣ . This is the case because because one has =F XX† and =G X X† , with = å S ñáX kk k∣ ∣. Since lmin

is assumed to be at least inverse polynomial, the probability is guaranteed to be at least inverse polynomial. This
means that a polynomial number of repetitions of the above procedure are sufficient to generate the state Yñ∣
with probability close to 1. ,
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