10P Publishing

® CrossMark

OPENACCESS

RECEIVED
19 December 2019

REVISED
24 February 2020

ACCEPTED FOR PUBLICATION
26 February 2020

PUBLISHED
21 April 2020

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 4.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

New J. Phys. 22 (2020) 043015 https://doi.org/10.1088/1367-2630/ab7a34

New jou rnal of Ph sics Deutsche Physikalische Gesellschaft @ DPG Published in partnership
y with: Deutsche Physikalische
The open access journal at the forefront of physics I0P Institute of Physics Gf:s”S.Chaﬂ and the Institute
of Physics

PAPER
Quantum compression of tensor network states

Ge Bai"*®, Yuxiang Yang*® and Giulio Chiribella"***

1

Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
> Institute for Theoretical Physics, ETH Ziirich, 8093 Ziirich, Switzerland

Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, United Kingdom

HKU Shenzhen Institute of Research and Innovation, Kejizhong 2nd Road, Shenzhen, People’s Republic of China

> Perimeter Institute For Theoretical Physics, 31 Caroline Street North, Waterloo N2L 2Y5, Ontario, Canada

¢ Author to whom any correspondence should be addressed.

4

E-mail: baige@connect.hku.hk, yangyu@phys.ethz.ch and giulio@cs.hku.hk

Keywords: quantum data compression, tensor networks, matrix product states, quantum machine learning, quantum many-body systems

Abstract

We design quantum compression algorithms for parametric families of tensor network states. We first
establish an upper bound on the amount of memory needed to store an arbitrary state from a given
state family. The bound is determined by the minimum cut of a suitable flow network, and is related to
the flow of information from the manifold of parameters that specify the states to the physical systems
in which the states are embodied. For given network topology and given edge dimensions, our upper
bound is tight when all edge dimensions are powers of the same integer. When this condition is not
met, the bound is optimal up to a multiplicative factor smaller than 1.585. We then provide a
compression algorithm for general state families, and show that the algorithm runs in polynomial
time for matrix product states.

1. Introduction

Quantum data compression [1, 2] is one of the pillars of quantum information theory. At the foundational level,
it establishes the qubit as the basic unit of quantum information. At the more practical level, it provides a
blueprint for the efficient transmission of quantum data in future quantum communication networks, with
applications to distributed quantum computing [3] and quantum cloud computing [4].

The ultimate limit for compressing sequences of independently prepared quantum states was initially
established in the pure state case [ 1] and later extended to mixed states [5—7]. Universal compression protocols
for the scenario where the average state of each system is unknown, except for an upper bound on its von
Neumann entropy, were provided in [8]. In recent years, there has been an interest in developing compression
protocols for identically prepared systems [9—13]. Such systems occur in a wide range of tasks, including
quantum tomography[14, 15], quantum cloning [16, 17], estimation [18, 19], and quantum machine learning
[20]. Compression protocols for identically prepared systems have found applications in quantum metrology
[21] and inspired new results in quantum state estimation [22]. An instance of compression for identically
prepared systems was experimentally demonstrated in [23].

Most of the existing compression protocols assume that the input systems are in a product state. However,
many relevant scenarios involve correlated systems, whose state cannot be expressed as a tensor product of
single-system states. The ability to store correlated states into a smaller amount of quantum bits is important for
the simulation of many-body quantum systems on small and medium-size quantum computers. For example,
Kraus et al showed that log n qubits are enough to simulate several families of #n-qubit many-body states [24-26].
In particular, the result of [24] led to an experimental simulation of a 32-spin Ising chain using only 5 qubits [27].
In addition to quantum simulations, many-body states are relevant to quantum metrology, where they can serve
as probes for unknown quantum processes [28, 29]. In this context, compression protocols for many-body states
could be useful to transmit such probes from one location to another, or to store them in a quantum memory
until further processing is required.
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In this paper we address the compression of tensor network states, a broad class that includes cluster states
[30, 31], matrix product states (MPSs) [32—34], projected entangled pair states (PEPS) [35, 36], tree tensor
networks [37], and multi-scale entanglement renormalization ansatz (MERA) states [38].

First, we provide an efficiently computable upper bound of the number of qubits required to compress
unknown states from a given parametric family of tensor network states. The upper bound can be interpreted as
abottleneck for the information flow from the parameters specifying the states to the physical systems in which
the states are embodied. For the family of all tensor network states with given network topology and given edge
dimensions, this upper bound is tight whenever all the edge dimensions are powers of the same integer. In
general, the upper bound is tight up to a multiplicative factor of at most log 3 ~ 1.585.

Second, we design a quantum algorithm that implements the compression protocol, and we show that the
algorithm runs in polynomial time for families of MPSs. For more general state families, we provide sufficient
conditions for the algorithm to run in polynomial time. Informally, the conditions express the fact that the linear
span of the state family contains a ‘sufficiently dense’, yet polynomial-size set of states that can be efficiently
prepared on a quantum computer.

One of the state families considered in our paper involves translationally invariant MPSs [33], hereafter
abbreviated as TIMPS. We show that a completely unknown TIMPS of n identical systems with given bond
dimension can be compressed without errors into a number of logical qubits growing at most as O (log ). Our
result enables a compressed simulation of various models of many-body quantum states, such as the one-
dimensional Ising model [39] and the AKLT model [40]. The logarithmic scaling of the total memory is optimal,
as the set of TIMPSs includes the set of all identically prepared states, for which the optimal compression
protocol is known to require €2(log ) memory qubits, both for exact [11] and approximate compression
protocols [12, 13]. The same result holds for higher dimensional lattices, and for a broader class of tensor
network states for which the correlation tensors are site-independent: a generic site-independent n-particle state
with a given bond dimension can be perfectly stored into O (log ) logical qubits. We also consider tensor
network states with the property that all tensors except those on the boundary are constant. For every subset of
systems in the bulk, we show that the exact compression protocol satisfies an area law: the number of logical
qubits used to compress the systems in the chosen subset is proportional to the size of its boundary.

This article is structured as follows. In section 2 we introduce the graphical notations for tensor networks. In
section 3 we state our first result on the memory usage of exact compression of tensor network states and apply it
to a case-wise study of tensor network state families in section 4. We extend our results from pure states to
marginal and mixed states in section 5. Section 6 provides a compression protocol for MPSs with variable
boundary conditions, which can be realized by logarithmic-depth circuits explicitly constructed from the
description of the MPS. In section 7 we construct a quantum algorithm realizing compression protocols for
general efficiently preparable states, and discuss its applicability to tensor network states. Finally, we conclude
with discussions on how our results can provide bounds for coding theory in section 8.

2. Preliminaries

2.1. Compression of parametric state families

Consider a quantum system P with Hilbert space Hp, and denote by S (Hp) the set of density operators on Hp.
Let {p }xex € S(Hp) be a parametric family of quantum states, labeled by a parameter x in a given manifold X.
For example, x could be a parameter that determines the Hamiltonian of the system, and p, could be the ground
state of the Hamiltonian parametrized by x.

Given a parametric family { p, }ccx, the goal of compression is to store the states of the family into a quantum
memory M, whose dimension is smaller than the dimension of the initial system P. A compression protocol for
the states { p, }xex is specified by an encoding channel £: S(Hp) — S(Hwm), and by a decoding channel
D: S(Hy) — S(Hp), where Hy denotes the Hilbert space of the quantum memory. Mathematically, the
channels are described by completely positive trace-preserving linear maps. Both channels £ and D are required
to be independent of the parameter x, meaning that the compression operations must work ‘blindly’, without
any knowledge of which state is being compressed.

In the following we will consider exact compression protocols, that is, protocols satisfying the condition

(DoE)p)=p,  VxeX 1

For pure state families, with p, = [¥) (¥| forall x € X, the simplest compression protocols are defined by
isometries V: H;, — Hy from the input subspace H;, = Span{|¥,) lex € Hp to the memory space Hy. An
optimal compression protocol is a protocol that uses a memory system whose dimension is exactly
dy = dim(Hy,). In this case, the isometry V: H;, — Hy isactually a unitary.

In theory, constructing compression protocols for families of pure states is straightforward: one only needs
to determine the input subspace Hj,, and to define an isometry V from H;, to a memory space Hy =~ H;,. In
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practice, the efficiency of this construction is an issue. When the input system consists of many particles,
constructing the isometry V may be computationally unfeasible, because it requires manipulations of
exponentially long vectors. The situation is different when the subspace H, exhibits some specific structure that
can be used to efficiently identify it and to construct the encoding operations. An example of this situation is the
totally symmetric subspace Hyym = Span{|¢)®"||¢) € Hp}, for which an efficient compression exists [9] and is
based on the Schur transform [41, 42]. In this paper we will identify other scenarios in which the compression
operations can be constructed efficiently, taking advantage of the tensor network structure.

2.2. Graphical notation for tensors
Here we introduce the graphical notation used in the rest of the paper. Our notation coincides, up to minor
changes, with other notations used in the literature on tensor networks [43—45].

Vectors and matrices. A vector is represented as abox connected to an open edge. A column vector has an
outgoing edge, while a row vector has an ingoing edge. A matrix is represented as a box with both an ingoing edge
and an outgoing one. In the following examples, |v) is a d-dimensional column vector, (v|is the adjoint of |v), (7|
is the transpose of |v),and Aisa d x d matrix

v =], w= [l a= @)

For a matrix, the place where an arrow is attached to the box matters. Here we assume that the left side of A
corresponds to its row index, and the right side its column index. For a vector, the attachment position is
unimportant, because the vector has only one index.

Multiplication. An edge connecting two tensors represents a summation over the corresponding index. With
this notation, one can conveniently represent multiplications between matrices and vectors

ABlv) =Y AyBpwdi) = 3)

ik
The outgoing open edge indicates that the result of the multiplication is a column vector.
Tensor product. A tensor network with several disconnected components is a tensor product of the
components (or an outer product of vectors)

Alv) ® BlY) = L AW IA = -

Trace. The trace of a matrix is represented by connecting its two indices:

Tr[A]= ®)

In general, a network with no open edges evaluates to a scalar.

Higher-order tensors. Higher order tensors can describe states and linear operations involving multiple
systems. To represent them, one uses boxes with more than two edges. For example, the following
graph represents an order-3 tensor T, where {|i)}, {|j)}, {|k)} are orthonormal bases in their corresponding
spaces

-]

)

.|
Tk =3 T ) K ©
i,j,k

Welabel the edges by 7, j and k to indicate their correspondence to the first, second and third index of T,
respectively. In the following, the indices will be sometimes omitted in the graphical notation.

Reversal of edges. Multiplication by the unnormalised maximally entangled state |I)) := > |i) |i) or its adjoint
{I|:=2,(i| (i| does not alter the elements of a tensor, but it converts a column index to a row index and vice versa.
We represent a multiplication with | I)) by a reversal of the direction of the arrow involved in the multiplication

_ I K Y 7
T|I) = ﬁ 7 - )k f§z,],k|l>|f>|k> Q)

We always assume that the Hilbert space of each edge comes with a default basis, so that for each edge, the
maximally entangled state is uniquely defined.

Vectorization. If we reverse all ingoing edges of a tensor, we obtain a tensor with only outgoing edges, which is
a column vector on the tensor product of the Hilbert spaces corresponding to all the edges. For example

3
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Figure 1. On the left: a tensor network template Temp. The number on each edge ¢ € Eindicates the dimension d(e) of that edge.
Boxes represent vertices in Vgjeq = {1,2, 3} and circles represents vertices in Veppt,- On the right: a tensor network N = (Temp, T).
Each vertex in Vijq is assigned a tensor by the mapping T. Vertices in Vemp, are omitted, resulting into open edges.

_ =B ® DII) = 3 Bjli)lj) ®)
L]

In a tensor network, reversing non-open edges does not affect the values assigned to the whole network. For
example,

Ly 7 Ry S 1 = ®

forevery A, Band |v).

2.3. Tensor networks
Informally, a tensor network is a set of tensors connected with each others. In the following we introduce a few
formal definitions that will become useful later in the paper.

Definition 1. A tensor network template [46] is a triple Temp = (G, d, Vjjeq), where

« G = (V, E)isan oriented’ graph, with set of vertices Vand setofedges E C V x V
+ d: E — N, isafunction that associates each edge e with an integer d (e), called the dimension of the edge e

Vilea C V isa subset of vertices, called the filled vertices, such that each vertex in V'\ Vjjieq is adjacent to one
and only one vertex, and that vertex is in Vjjeq-

A tensor network is obtained from a tensor network template by filling all vertices in Vg with tensors:

Definition 2. A tensor network is apair N = (Temp, T), where Temp is a tensor network template, and T'is a
function mapping filled vertices v € Vjjeq into tensors T (v), with the order of the tensor T (v) equal to the
number of edges incident on v. Each edge eincident on a filled vertex represents an index of the corresponding
tensor, and the values of the index range from 1 to d (e).

Graphically, we will represent a tensor network as a diagram where the filled vertices are represented by
boxes, and the empty vertices Vempty = V'\ Viilieq are omitted. An illustration is shown in figure 1.

In the following, we will associate each edge e € E with a Hilbert space H, of dimension d (e). With this
notation, the tensor network defines an operator from the total Hilbert space associated to the ingoing edges to
the total Hilbert space associated to the outgoing ones:

Definition 3. Let Ej, := {(u, v) € E: 4 € Vemprys V € Viilled} (Eout := {1, v) € E: t € Vjlieds V € Vempry}) be
the set of ingoing (outgoing) edges of a tensor network N, and let Hy, = @), H, and Hou == Qeck,, Hebe
the corresponding Hilbert spaces. The tensor network operator of a tensor network Nis a linear operator

Ny Hin — Hou obtained from contracting the tensors { T (v) } ye v,,, according to the connections specified by

the network template.

For example, the tensor network operator associated to the tensor network in figure 1 is

4 2 7 2 2 3
N, = ZZZ[ZZ ST Wit T Q)jin T(3)mnk]|k><i| @ (i (10)

i=lj=1lk=1LI=1m=1n=1

When a given operator A arises from the contraction of tensors in a tensor network with template Temp, we
say that the operator A is compatible with that template:

7 We recall that an oriented graph is a directed graph in which no edge is bidirected, namely, for every two vertices u and v, at most one of the
ordered pairs (4, v) and (v, u) is an edge in the graph.
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Definition 4. An operator A: Q.cr, He — Qeck,,, He is compatible with the template Temp if there exists a
tensor network N = (Temp, T) such that A is the tensor network operator associated to N, namely A = Nj.

2.4. Pure tensor network states

Ifa tensor network N has only outgoing edges but no ingoing ones, its operator N is a vector on the tensor
product Hilbert space H - A pure quantum state [U) € H,, is a tensor network state if its amplitudes are
represented by a tensor network, namely, |¥) = N for some tensor network N with no ingoing edges.

An example of tensor network states is provided by the MPSs [32—34]. MPSs can be used to represent the
ground states of one-dimensional chains of particles with local interactions, including the one-dimensional
Ising model [39] and the AKLT model [40]. In addition, many MPSs, including the AKLT state, are a resource for
measurement-based quantum computation (MBQC) [47].

As an example, consider the class of MPSs with open boundary conditions [33] and assume for simplicity
that every physical system in the MPS has the same dimension. Any such MPS is specified by

1. n physical systems, each of dimension d,,
2. acorrelation space H, of dimension d_, called the bond dimension

3.asetof d. X d.matrices {Ai[k'},labeledbyanindexk € {1,...,n}and anotherindexi € {1,...,dp}

4.two vectors |L) and |R) in H,, called the boundary conditions.
Explicitly, the MPS is the d;—dimensional vector

dp
Wy pavam) = > (DIAMMAPLAIRY | i, by,.. i) 11
iyeensin=1
We assume that the norms of the vectors |L) and |R) are chosen in such a way that the overall vector
|Wr r 4 . am)is normalized. The MPS (11) is described by a tensor network of the following form:

Tiv Tio - Tin iv Tia in (12)
| Yeraw,..am | T |L]

where for each k, we regard the set {A i[k]} ?il as an order-3 tensor of dimension d, X d. X d., denoted as Akl The
vertical arrows correspond to the physical systems, while horizontal ones correspond to the correlation spaces.

MPSs with periodic boundary conditions [33] are defined by replacing the boundary conditions with the
maximally entangled state, as the following:

(13)

dP
am) o< > Tr[AMAR A iy, b, )=

Tyeens i,=1

.....

where |I) := ch: i) |i) represents the unnormalised maximally entangled state.
We will sometimes restrict our attention to SIMPSs [33], that is, MPSs where the matrices Ai”‘ lare independent
of k. Hence, the set of matrices will be simply denoted as { A; }?i |- In the site-independent case, equation (11) becomes

dP
Wrra) = Y. (LIAjA;AiIR) | i1, faye.orin) (14)

Uyeens =1

SIMPSs with periodic boundary conditions (13) are called translationally invariant MPSs [33], and have the
following form.

(15)

3. Memory bound for the storage of tensor network states

In this section we apply the framework of flow networks to bound the amount of memory qubits needed to
compress a given family of tensor network states. We illustrate this approach for various families of tensor
network states, including MPSs and PEPSs.
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3.1. Parametric families of tensor network states
A parametric family of tensor network states is specified by a tensor network where some of the tensors depend
on the values of the parameters. For example, consider the following family of MPSs with variable boundary

conditions
e o d m 1o
| v, | = B AR

for some parameter x € X and some mappings L: x — |L,)and R: x — |R,). Here, the vectors |L,) and |R,)
are variable, while the tensor A is fixed.

Using vectorization, the tensor network can be rearranged in such a way that all the variable tensors are
column vectors. The tensor product Hilbert space associated to the edges of the variable tensors will be called the
parameter Hilbert space and will be denoted by Hx. The tensor product Hilbert space associated to all the
physical systems in the network will be called the physical Hilbert space and will be denoted by Hp.

With the above notation, every parametric family of tensor network states can be represented as

[¥) = Nilva), (17)

where |v,.) is a vector in Hy, N is the tensor network consisting of the fixed tensors, and Ny: Hx — Hp is the
tensor network operator associated to N. An example of this parametrisation is provided in the following,

(18)

where the operator N arises from the tensor network N inside the dashed frame.

It is clear from equation (17) that the dimension of the input subspace H;, = Span{|¥,)} is upper bounded
by the rank of Ni. Hence, the (logarithm of the) rank of Ny provides an upper bound on the number of qubits
needed for the optimal compression. However, the matrix Ny may generally have an exponentially large number
of columns and rows, and its rank may not be efficiently computable. One way to address this problem is to
search for efficiently computable upper bounds on the rank of N, by inspecting the internal structure of the
tensor network N. In the following subsection we will exploit a connection between tensor networks and flow
networks to construct useful bounds on the rank of N, and therefore, on the number of qubits needed for
compression.

3.2. Flow networks and memory bounds
We now provide a construction that associates tensor network templates with flow networks, and provide a
memory bound valid for all families of tensor network states with a given template.

A flow network [48] N = (G, ¢, s, t) consists of a directed graph G = (V, E), with set of vertices Vand set
ofedges E,afunction ¢: E — Ry = {x € R|x > 0}, associating each edge e € E with a non-negative number
c(e), called its capacity, and two distinguished vertices, sand ¢, called the source and the sink, respectively.

A flow network can be intuitively understood as a pipe system with edges being pipes and vertices being
junctions. Fluid enters in the pipe system from the source s and exits at the sink £. At any time, the flux in each
pipe is no more than the capacity of the pipe, while at each junction, the total amount of fluid is conserved,
meaning that the total flux going into the junction equals to the total flux going out. This idea is captured by the
mathematical notion of flow. A flow f: E — R, ina flow network is an assignment of non-negative numbers
to the edges of the network, subject to the following conditions.

1. For every edge e, the flow is upper bounded by the capacity, namely f (e) < c(e).
2. For every vertex v other than the source and the sink, the total flow entering in the vertex v is equal to the

total flow exiting from it, namely 3~ v, yepf (4 V) = 2 ey iyesf (V> 1.

In the pipe system analogy, f (e) represents the amount of fluid that is flowing through the pipeee.
The value of the flow f, denoted by f,, is the total flow exiting from the source, namely

fi= Z fis,v) (19)

veV,(s,v)eE
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Figure 2. A flow network. The numbers on each edge indicate the flow f(e) and the capacity c(e) of the edge, in the form f(e)/c(e). The
dashed line indicates a cut (C;, C,), with vertices to its left belonging to C,, vertices to its right belonging to C,.

The maximum of f; over all possible flows is called the max-flow of the network, and is denoted as

max - flow(N): :m?x f. (20)

Intuitively, f; represents the maximum amount of fluid that can enter into a pipe system. This amount can be
upper bound by considering that all the fluid entering from the source has to exit from the sink, and, in order to
do 5o, it has to pass through the pipes between the source and the sink. A cut of the flow network is a cross-
section of the pipe system that separates the source and the sink. Formally, a cut is a partition of the vertices into
two disjoint subsets C; C Vand C; C V,withs € C;and t € C,. We write the cutas C = (C,, C;). Anedge
(u, v)is called a cut edge if u belongs to C; and v belongs to C.,.

Since all the fluid entering from the source has to pass through the cut C, the total capacity of the pipes
associated to cut edges poses an upper bound to the flux. Explicitly, the capacity of the cut (C;, C,), denoted as
c(C,, C;)is the sum of the capacities of the cut edges, namely

c(Cs, C): = > c(u, v) (1)

ueC,ve Cy,(u,v)EE

and one has the upper bound
max -flow(N) < ¢(C,, C,) (22)

for every possible cut (C,, C,). The best bound is obtained by choosing the cut with minimum capacity. The
minimum of the capacity ¢ (C,, C;) over all possible cuts (C;, C;) is called the min-cut, and is denoted by
min -cut(N): =min ¢(C,, C;) (23)

The max-flow min-cut theorem states that max -row(rI\\f ) = min -Cut(N’J ) [48]. Intuitively, this shows that
the maximum flux a pipe system can carry from s to ¢ is exactly equal to the capacity of the minimal cross-section
of the pipes.

An example of a flow network is shown in figure 2.

The analogy of the pipe system will be useful to understand the intuitive content of our results, where we use
flow networks to model the ‘flow of information’, rather than the flow of a material fluid. We imagine
information flowing into the ingoing edges and out of the outgoing edges of the tensor network, and each edge
has a capacity equal to the maximum amount of information it can carry, which is log d (e) qubits for an edge e
with dimension d (e). Given a tensor network template, we relate it to a flow network that can be constructed in
the following way.

Construction 1. Let Temp = (G, d, Vjjieq) be a tensor network template, and let Vopy = V'\ Viiieq the set of
empty vertices. The flow network associated to the template Temp, denoted by Temp = (G, ¢, s, t),is

constructed through the following prescriptions.
1. Add the vertices sand rto V.

2. Replace each ingoing edge (1, v) (With u € Vimpy and v € Vieq) with an edge (s, v). Define the capacity of
the edge (s, v)as c(s, v) := logd(u, v).

3. Replace each outgoing edge (v, u) (with v € Vjjieq and u € Vimpyy) with an edge (v, t). Define the capacity
oftheedge (v, t)as c(v, t) := logd(v, u).

4. Remove all the vertices in Vempy -
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Figure 3. Conversion of a tensor network template into a flow network. On the left: the tensor network template Temp. The number

on each edge indicates d(e), the dimension of the Hilbert space assigned to each edge. On the right: the flow network Temp. The
number on each edge indicates its capacity c(e).

| i
Vo) = Nloa) = || 1 N === N Nem—
1
— : T 2
II
He

Figure 4. The cut C divides the network N into two subnetworks N; and N,. The combined Hilbert space of all cut edges is H.

5. For every internal edge (v, w) (with both vand w in Vgj¢q) include also (w, v) in the set of edges. Define the
capacities c(v, w) = c(w, v) = logd (v, w).

An illustration of the above procedure is provided in figure 3.

Consider the tensor network N = (Temp, T') associated to the fixed tensors in the given state family {|U,)},
and let Temp be the flow associated to the template Temp via construction 1. Every cut in the flow network
m defines a factorization of the operator Ny as Ny = N, 4[N} &, where Nj 4 and N, are the operators of the
two subnetworks N and N, on the two sides of the cut, as illustrated in figure 4. Then, one has the bound

rank(N,) < min{rank(N;,), rank(N,,)} < dc (24)

where dcis the dimension of the Hilbert space H ¢ associated to the edges in the cut. Hence, [ log(d¢) | qubits are
sufficient to compress the state family. Recalling that the logarithm of dis the capacity of the cut, we obtain the
following:

Theorem 1. For every cut C = (C,, C,) of m, the state family {|Uy) } vex can be compressed without errors into
[c(C) | memory qubits. In particular, the state family can be compressed into

Qe = | min-cut(Temp) | (25)

memory qubits, where min ~cut(Temp) = min log dc is the minimum cut of the flow network Temp.

Intuitively, theorem 1 tells us that, since the maximum amount of information that can flow in the network
is upper bounded by the capacity of the min-cut, the amount of memory needed to store this information is also
upper bounded by the capacity of the min-cut. The point of theorem 1 is that, while the calculation of rank(Ny)
may not be computationally feasible, the minimum cut can be found efficiently using known algorithms such as
the relabel-to-front algorithm [48], which runs in O(]V’) time.

In section 4, we will provide explicit examples of minimum cuts for some relevant families of tensor network
states. Before that, we will discuss the optimality of Q_ as an upper bound on the number of memory qubits
needed for compression.

3.3. Optimality for fixed tensor network templates

The amount of memory used by the best compression protocol is intuitively related to the flow of quantum
information from the parameters specifying the quantum state to the physical systems in which the states are
embodied. To make this intuition precise, suppose that we want to compress a known, but otherwise generic
family of tensor network states with network template Temp, that is, a family of the form { Ny|v,) }xex, where N
is a tensor network operator compatible with the template Temp, and {|v;) } is a generic set of (suitably
normalized) vectors in the parameter space Hy. In the worst case over {|v,) } and N, itis easy to see that the
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minimum number of memory qubits necessary for compression is [ log rank(N) |. Indeed, the vectors {|v;) }
could form a spanning set for the parameter space Hy, so that the dimension of the input space

Hin = Span{Ny|v) }xex is exactly equal to the rank of Ni. It is then immediate to conclude that every exact
compression protocol will require at least [ log rank(Ny) | memory qubits. Taking the worst case over N, we
obtain the following

Proposition 1. The minimum number of memory qubits required for the exact compression of a generic state family
of tensor network states with template Temp is

Qumin = [quantum - max -flow(Temp)] (26)

where quantum- max -flow(Temp) is the quantum max-flow /46, defined as

quantum - max -flow(Temp): =max logrank(N,) (27)
N,
the maximum being over all tensor network operators Ny compatible with the template Temp®.

Now, an important question is whether the compression protocols of theorem 1 can reach the minimum
number of qubits (26), in the worst case over all state families compatible with a given network template. In other
words, the question is whether the equality [quantum- max -row(m)] = [ min-cut(fe\m;;)—l holds. Such
equality would follow from a quantum version of the max-flow min-cut theorem [49], which would state the
equality quantum- max -row("I'RE) = min-cut('T'—(e?an). Remarkably, [46] shows that such quantum version
does not always hold, and in general the quantum max-flow is only alower bound on the min-cut

quantum - max -row(%) < min—cut(m) (28)
Nevertheless, the equality holds in the case where all dimensions are powers of the same integer [46]. In this case,

the validity of the quantum max-flow-min-max theorem implies the following optimality property:

Proposition 2. Let Temp be a network template with d(e) = b"® for some fixed integer b and for some integer-
valued function n: E — N. Then, Qqyt = Quin» meaning that the number of qubits used in theorem 1 is minimum
in the worst case over all state families with the given network template.

Proposition 2 guarantees that, under the assumption that each dimension d (e) is an integer power of b, the
amount of qubits used in theorem 1 is optimal for the least compressible family of tensor network states
compatible with the given template. In the general case, we show that the amount of qubit used by the
compression protocol of theorem 1 is at most log 3 times the minimum number needed for compression. This
result, provided in the following proposition, is based on a general relation between the min-cut and the
quantum-max-flow of a generic tensor network:

Proposition 3. For every network template Temp = (G, d, Vged), one has the bound
min -cut('?e\m;/)) < (log3) quantum - max -row("I'_eFf)) (29)
As a consequence, one has the bound
Qeut < (10g3) Qmin + 1 (30)

which implies that, asymptotically, the number of qubits used in the compression protocol of theorem 1 is at most log 3
times the minimum number Q.

The proofis provided in appendix A. In conclusion, the number of qubits used in theorem 1 is either
minimum (if all dimensions are power of the same integer), or within a factor log(3) ~ 1.585 of the minimum
(if some dimensions are not power of the same integer). Equipped with this result, in the next section we will
analyze the number of qubits needed to compress various families of tensor network states.

4. Exponentially compressible families of tensor network states
In this section we apply the memory bound of theorem 1 to various families of tensor network states. In all these
examples, the amount of memory qubits required to store the states is exponentially smaller than the original

number of physical particles in which the states are embodied.

8 Note that the quantum max-flow adopted here is the logarithm of the quantum max-flow defined in [46].
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i) Capacity = 2logd. ii) Capacity = nlogd,

Figure 5. Flow network associated to the states (31), and the two candidate minimum cuts. Except the edges connected to the source s
or the sink t, all edges are made bidirectional. The dashed lines indicate the minimum cuts. When # is sufficiently large, as d. is
assumed to grow polynomially with n, 2logd. < nlogd,, and theleft-hand one is the minimum cut.

4.1. MPSs with variable boundary conditions
Consider the following family of MPSs with variable boundary conditions:

d,
|‘PL,R> == Z <L |Ai[ll]A1-[22] Az[:] |R> |i1, iz,...,in>:

iy ..ip=1

Here, the tensors Alll, A1 A" are fixed and known, and the free parameters are the components of the
vectors |L) and |R). We consider the case where d. = O(poly(n)), namely the the bond dimension d. grows at
most polynomially with n, which is true for MPS approximations of ground states one-dimensional gapped
Hamiltonians [50-52]. In cases of the one-dimensional Ising model [39] and the AKLT model [40], d. is even
constant. In equation (31), we regard the tensors surrounded by the dashed line as the tensor network N, and we
write [¥r g) = Ny(|L) ® |R)).

In order to apply theorem 1, the first step is to convert N to a flow network, as illustrated in figure 5. Then,
theorem 1 guarantees that the states {|¥ ) } can be compressed into a number of qubits equal to the capacity of
the minimum cut. For the flow network in figure 5, there are two candidates for the minimum cut (C;, C,).

(i) C,contains only s, while C, contains all the other vertices. This cut has capacity 2log d..

(ii) C,containsonly ¢, while C, contains all other vertices. This cut has capacity # log d,,.

For all other cuts, the cut edges necessarily contain at least two edges of capacity log d. and one edge of capacity
log d,,, leading to a capacity larger than that of (i). For sufficiently large n, as we have assumed d_ is no larger than
apolynomial of n, we have 2logd. < nlogd,,and (i) is the minimum cut. Therefore the states {|¥; ) } can be
compressed into a number of [2 log d.. | qubits, which is O (log 1) assuming d. = O(poly(n)).

Note that although we considered MPSs with open boundary conditions, our memory bound applies also to
other cases. For example, it applies to MPS with periodic conditions (13). More generally, the bound holds for
any set of states {|Uz) } of the form |Up) = Ny|B), where |B) € H, ® H, isa generic vector on the joint Hilbert
space of the boundary conditions.

In section 6 we will provide an explicit compression protocol that achieves the memory bound [2log d. ] and
can be implemented efficiently on a quantum computer.

4.2. Site-independent MPS

Another important family of MPSs is the family of SIMPSs [33]. Suppose that we know nothing about an MPS
except that it is site-independent (14), has a constant bond dimension d., and has a constant physical dimension
d,,. A constant bond dimension can be observed in some systems where the interactions are local, such as the
one-dimensional Ising model [39] and the AKLT model [40]. A generic state of this form can be expressed as

d, _
Wirr) = > (LIAjA; o ApR) ity iaye.sin)= 2

ihyeyipg=1

Note that the entries of the tensor A are free parameters, like the entries of the vectors |L) and |R). We now
provide an alternative tensor network representation of the state [y ; r). To this purpose, we can convert the

tensor A into a vector of dimension d2d,, denoted by |A) € H,;2 4,- The vectorization is implemented by

inserting copies of the unnormalised maximally entangled state |I)) = Zfe 1) |7), as in the following picture:
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=((II***D(IL) ® |A)*" @ |R)) (33)

Now, note that the vector |A)*" belongs to the symmetric subspace of /", , which has dimension
7P
n+did, — 1 n+did, — 1
did, — 1 did, — 1
such that, for any |A), there exists a vector [S4) € S satisfying |A)®" = V4|S,). Using this fact, we can replace
|A)®" by Vs|S,), thus obtaining a new tensor network representation with smaller minimum cut:

]. Let S be a Hilbert space of dimension . Then, there exists an isometry Vg

=(I[F"D(|L) ® ViISy) @ |RY) (39

For sufficiently large n, the minimum cut is illustrated by the dashed line in equation (34). The cut edges are
n+did, — 1
did, — 1
theorem 1 implies that the total number of qubits to encode the states { ¥y 1 ¢) } is [ log dim H¢] < [(d2d, — 1)

log(n + d2d, — 1) + 2logd.].

the outgoing edges of L, Rand S, and their combined dimension is dim H¢ = d? [ ) Hence,

4.3. Memory bounds for other families of tensor network states

In appendix B we derive memory bounds for several families of tensor network states, including PEPS (either
with variable boundary conditions or site-independent) and MPS/PEPS generated by an unknown unitary gate
acting identically on the physical particles, a scenario that is relevant to the use of MPS/PEPS in quantum
metrology. The results of appendix B are summarized in table 1.

Cases 1 and 3 deal with the compression of multipartite states where the tensors responsible for the
correlations between particles are known, while the boundary condition is unknown. The scaling of the memory
size manifests an area law: the number of qubits needed to encode the state is proportional to the size of the
boundary. The area law can be immediately read out from the graphical representation of the states, as theorem 1
states that the memory size equals to the minimum cut between the system and the variable terms, and in this
case the variable terms are only on the boundary.

Cases 2 and 4 consider a site-independent multipartite system with fixed bond dimension. A logarithmic
scaling can be observed: the memory size is O (log 1) for a system of n particles. The same scaling is also observed in
the compression of identical uncorrelated systems [13]. Cases 5, 6, 7 and 8 exemplify a tensor network state under

. a2+d,—2
an unknown global transformation. The total memory usage equals to a fixed term % log(n + d, — 1) plus
the memory for the tensor network state. The fixed term can be interpreted as the amount of information contained
in the unknown transformation U,”".

5. Local compression of bipartite states

In this section we extend theorem 1 to the scenario where some of the physical systems are inaccessible, and the
task is to compress the accessible part, while maintaining the correlations in the overall system.

Consider a family of pure states {|I,)} C Hp ® Hg, of the composite system P ® E, consisting of a physical
system P (with Hilbert space Hp) and of its environment E (with Hilbert space Hg). Here we are interested in
compression protocols where the encoding and decoding operations act only on system P, but still allow one to
recover the joint state | ¥,). Our goal is to find channels & S(Hp) — S(Hm) and D: S(Hum) — S(Hp) that satisfy

(Do E® Ip) (W) (W) = [T (W], Vx € X (35)

where 7 is the identity map on system E. An optimal pair of channels (£, D) is a pair that minimizes the
memory size, namely the dimension of Hy;.

We call the above task local compression of the states {|¥)} C Hp ® Hg. Operationally, local compression is
important in the situation where Alice and Bob share a state of the composite system P ® E, of which Alice
holds part P, while Bob holds part E. In this scenario, it is interesting to ask how Alice can store her part of her
system in a quantum memory, while ensuring that the correlations with Bob’s system are preserved.

11
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Table 1. Memory bounds for tensor network state families.
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Case State Expression Parameters Memory (qubits, rounding up)
1 MPSs with variable boundary conditions [T r) (31) LR 2logd.
2 Site-independent MPSs [Wy, 1, R) (32) A, LR (d? d, — Dlog(n + dczdp — 1) + 2logd.
3 n x mPEPSs with variable boundary condition |\II(§EP S)) (figure B1) B (2n + 2m)logd.
4 Site-independent n x m PEPSs |\I/(/£%PS)) (figure B2) A,B (cgfdp — Dlog(nm + dfdp — 1) +(2n + 2m)logd.
. 2+ dy—2
5 Fixed n-system state under U, Ug W) g ﬁfp log(n + d, — 1)
2 — ——— P g
6 Tensor network state under Uy Ug" Nilw) &Xx Mlog(n + dy — 1) 4+ min-cut(Temp) where Temp is the flow network associated with N
7 MPSs with variable boundary conditions under U™ Ug "W k) LRg ‘152& log(n + d, — 1) + 2logd,
2
8 n x m PEPSs with unknown boundary condition under Ugg”m Uég""’hllngs)) B, g dtdp=2 log(nm + d, — 1) + (2n + 2m)logd,
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Figure 6. Example of cut between the physical systems and the parameter space/environment. The capacity of the cut limits the
information flow from both the parameter space and the environment to the physical systems.

Alocal compression protocol can be constructed from a partial isometry V: Hp — H)y that satisfies the
following:

(VTV® IE)lqjx) = |\Ijx>) VxeX (36)

where Iy is the identity operator on system E.

In order to generalize theorem 1 to the scenario of local compression, we need to cope with the presence of
the inaccessible environment E. The key idea is to regard the environment not as an output of the tensor
network, but as another source of information, in addition to the parameter Hilbert space in which the
parameter x is encoded. Mathematically, this change of perspective corresponds to a reversal of the edges
associated to the environment, which become inputs, instead of outputs. After the edges have been reversed, we
apply theorem 1, and search for the minimum cut that separates physical systems from the parameter space and
from the environment, as shown in figure 6.

This approach leads to an upper bound on the number of memory qubits needed for local compression,
provided in the following proposition:

Proposition 4. Let {|\I,) } be a parametric family of pure states of the form |U,) = Nylw,), where Ny: Hyx —

Hp ® Hp is a fixed tensor network operator and |v.) € Hy is some (not necessarily normalized) vector,
parameterized by parameter x. Let N = (Temp, T) be the tensor network associated to the operator Ny, each of
whose outgoing edges corresponds to either a physical system (i.e. a subsystem of P) or a part of the environment (i.e. a
subsystem of E). Let Temp’ be the tensor network template obtained from reversing all open edges of Temp that are
associated to the environment. Let 'fe\rnp7 be the flow network corresponding to the template Temp' via construction

1. Forevery cut C = (C,, C;) of'?eri the marginal state on system P of the state family {|Uy) } xex can be
compressed without errors into [ ¢ (C) | qubits.

The proofis provided in appendix C.

As an example, consider the scenario where Alice holds the leftmost 1 systems of an MPS and Bob holds the
rest n’ systems, and Alice’s task is to store her systems in a quantum memory, while preserving the correlations
with Bob’s systems.

Alice Bob
— 37
WL,r)= ]
n n’
We assume Alice does not know the boundary conditions |L) and |R), and therefore her goal is to find
channels & S(Hp) — S(Hm) and D: S(Hy) — S(Hp) that satisty
(Do & ® Zp)(IWr,r) (YRl = [Yr) (Yrrl, VIL), IR) (38)

for some Hilbert space H)y; whose dimension should be minimized.

Using proposition 4, we convert the tensor network in equation (37) to into the flow network in figure 7,
with the cut indicated by the dashed line. There are two cut edges, each has dimension d., and therefore Alice can
still compress her state into [logdimHc] = [2logd, | qubits, as in the case of compression of an MPS with
variable boundary conditions (section 4.1). The compression protocol will be presented explicitly in section 6.

Proposition 4 automatically provide upper bounds on the amount of memory needed to compress mixed
tensor network states. Any such state p, € S(Hp) can be regarded as the marginal of a pure tensor network state
involving an environment, namely Tr[|¥) (¥|] = p, for some pure state [¥,) € Hp ® Hg. Clearly, alocal
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Figure 7. Flow network for the compression of [y r). Except the edges connected to s or , all edges are made bidirectional. The dashed
line indicates the cut.

Figure 8. We regard the ith and the (i + 1)th systems as the physical systems to which the compression protocol will be applied. The
other systems are regarded as the environment.

compression protocol for the purifications {|¥,) } is also a compression protocol for the mixed states { g, }, as one
can see by taking the partial trace over the environment on both sides of the local compression condition (35).

6. Compression protocol for MPSs with variable boundary conditions

Here we construct an explicit compression protocol for the family of all MPSs with variable boundary
conditions. The idea is to perform a local compression on each pair of adjacent physical systems locally, and to
iterate the protocol until we cannot reach a smaller memory size. For simplicity of presentation, we assume the
number of physical systems 7 is a power of 2. We consider two adjacent physical systems, the ith and the

(i + 1)th, and regard the others as the environment, as shown in figure 8.

By proposition 4, there exists a partial isometry V; ;. ; that faithfully encodes the ith and the ( + 1)th
physical systems into a single system of dimension d?. Note that, per se, V;;,  may not be a useful compression
operation, because the dimension d? may be larger than the dimension dp2 of the two input systems.
Nevertheless, we now show that a concatenation of partial isometries like V; ; ; ; can squeeze the initial state into
the minimum number of qubits, equal to [2 log d. .

Explicitly, the partial isometry V; ; , ; satisfies the local compression condition (36), which reads

(Vi Vi1 @ L icvisa ) [WLR) = [Lg) (39)

where I i 1i10,...n = @iz} Ik ® @}_;., Ik is the identity operator on all systems except the ith and the
(i + Dth. Applying the partial isometries V] 5, V5 4, -+, V,,_1 ,, in parallel, we obtain the relation

(ViVip @ VigVay @ @ Vi Ve i) W) = [Wrg)  VIL), VIR) (40)

This condition means that the productisometry V) := Vi, ® V34 ®...® V;_ , defines an exact compression
protocol that stores 7 systems (each of dimension d,,) into /2 systems (each of dimension d?).

The construction can be iterated, because the output of the isometry V(1) is itselfan MPS. This can be verified
by defining the tensors

(41)

Alii+1]

so that the output state |‘1/(LZ,}Q> := VDI, 1) can be expressed in the MPS form

(42)

k=[]

Crucially, the bond dimension is still d..
Now, we can again apply proposition 4 to each adjacent pair of d2-dimensional systems, and compress them
into a single d2-dimensional system, using partial isometries Vi 4, Vs g,...,V,_3.,. Also in this case, proposition 4

14
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Figure 9. Tensor network for ['{*}), which is also the circuit structure to perform the encoding operation. Each partial isometry V; ;
acts on a space with dimension no more than max {d?, d PZ} and outputs a system with dimension d_.

Target input [¢)) —
[¥,) ® Ulthj,) — Universal
Learning quantum  [—— = Uly)
emulator
samples
[Vio) ® Ulthjo) —

Figure 10. Universal quantum emulator. The machine learns how to approximately perform an unknown unitary gate U on a generic
input state |1)) by consuming Q pairs of input—output states.

guarantees that the (n/2)-particle I\IJ(LZ}Q) is encoded faithfully into the (11/4)-particle state [U{*}) := V@ |\IJ(LZ’3R>,
VO i= Vi, @ Vag @@ V3,

Iterating this pairwise encoding for a total of log # times, we can faithfully compress the input state into
[2logd. ] qubits. An illustration of the compression protocol for n = 8 is provided in figure 9.

The encoding can be realized by a quantum circuit of depth O (log 1), implementing partial isometries V; ;
shown above. Since each partial isometry has size no larger than d? x max{dZ, dé} and the circuituses n — 1
such partial isometries in total, the overall complexity of the encoding operations is O (poly(n)) (assuming d_ is
polynomial in #), meaning that this construction is efficient in the number of physical systems. The same
argument applies to the decoding circuit, which can be obtained from the encoding circuit by reversing
each gate.

Note that the above technique also applies to the local compression of MPSs, corresponding to the scenario
where only a subset of the physical system is accessible.

7. Compression algorithm for pure states in low-dimensional subspaces

7.1. The algorithm
Here we outline a general quantum algorithm for compressing families of pure states lying in a low-dimensional
subspace of a high-dimensional quantum system. The idea of the algorithm is to train a quantum machine to
perform the desired compression operations, by showing to the machine how such operations should act on a
fiducial set of input states.

The algorithm is based on the universal quantum emulator of Marvian and Lloyd [53], a quantum circuit that
‘learns’ how to implement a completely unknown unitary gate U from a set of examples, as illustrated in
figure 10. To implement the gate U on a state |1)), the emulator consumes Q pairs of input—output states, of the
form (|9} ), Uly; ) with k € {1,...,Q}. Each inputstate [¢); ) is taken from a set of m possible inputs {|¢/;) 7.,
withm < Q.

For large Q, the output of the emulator converges to the desired output state U|t)) provided that:

1. The input state 1)) belongs to the subspace K := Span{[1;) fisi
2. The quantum channel R: S(K) — S(K) defined by

R(p) = — Y Uk — 25 (Wil) pUic — 2145) (D), Vp e SK) (43)
j=1

1
m =
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where I is the identity on /C, is mixing [54], meaning that every input state p converges to a fixed state p,, (in
this particular case p, = I/d) under alarge number of repeated applications of the channel; in
formula, limy_, o R¥(p) = p,.

The second condition is equivalent to the statement that the channel R has one and only one eigenvalue on the
unit circle [55]. Since all the eigenvalues of a quantum channel are inside the unit circle, this implies that the
eigenvalue A with the second largest modulus satisfies the condition | \| < 1. Equivalently, this means that the
spectral gap v :== 1 — |A|is non-zero.

The number of input—output pairs needed to approximate the gate U depends on the error tolerance €, on
the dimension of the subspace spanned by the input states {|1/;) }, denoted by r, and on the spectral gap ;.
Specifically, Marvian and Lloyd [53] show that Q grows as

Q = O(@r’ e g log(re™ 1)) (44)

To emulate the encoding, which is an isometry instead of a unitary, we choose a unitary U acting on the
composite system P ® M, and satisfying the condition

U (I\Ijx> ® |WO>) = I\I[0> ® VI\I’x> (45)

where |¥) (Wp)) is a fixed state of the physical (memory) system, and V: Hp — H) is an isometry that encodes
the input states into the memory system. To train the emulator, we use input (output) states of the form

1V;) = 19) ® W), (Uly) = |¥p) @ V|P;)) (46)

where the states {|®;) i_ 1> hereafter called the fiducial states, span the input subspace H;, := Span { [ W) hex- In
general, the states {|®;) }_; may or may not be a subset of the state family we are trying to compress.
The isometry Vis constructed from the Gram matrix Gy = (®;|®y) via the following procedure:

1. Compute the rank of G, denoted by r, and set Hy; = C". The calculation of the rank can be done, e.g. by
diagonalising G and counting the non-zero eigenvalues. Note that r is equal to the dimension of
Span{|®;) L, which, by construction, is equal to the dimension of the input subspace ;.

2. Construct an r X m matrix W such that W'W = G. This can be done by diagonalising G as G = XAX",
setting W = \/K X', and removing the zero rows from W.

3.For j € {1,..,m},define V|®;) := W][j).

The above definition is well-posed and uniquely determines the linear operator Vwithin the subspace spanned by
the fiducial states {|®;) }I_ ;. Note that Vis an isometry: indeed, for every vector [V) = 37, ¢j|®;) € Hin, one has
VI P = > ga (D VIVI @) = D gian Gl WIWI k) = > gie (G Gl k) = D e (@)1 @) = ||| 1)
ik ik ik ok
(47)
To train the emulator, we will use input—output pairs of the form (|®j) ® |Wp), [¥) ® |W;)), with
|Wj) = W|j). Now, recall that the number of input—output pairs needed by the emulator depends on the
spectral gap of the channel R in equation (43), with states [;) = |¥;) ® |W}). Since the states |¥;) ® | W) are
unitarily equivalent to the states [¥) © |Wj), the spectral gap of the channel R: S(Hp) — S(Hp)is equal to the
spectral gap of the channel R': S(Hy) — S(Hy) defined by

R (p): :i SO 2AWNWD o, — 2AWXWI), Y p € ST (48)
j=1

where I, is the identity operator on C’. This observation is important because channel R’ acts only on the

memory space, and therefore its spectral gap involves the diagonalisation of a low-dimensional matrix. With the

knowledge of the spectral gap, we can keep under control the error in the emulator protocol, and determine how

many input—output pairs are needed to attain the desired level of accuracy in the implementation of the gate U.
All together, the algorithm can be summarized as follows:

Algorithm 1. Encoding operation for state family {|¥,) }.

Input: Quantum state to be compressed [¥) € Hp and classical description of fiducial set {|®;) Ji_;
Output: Approximation of the compressed state V) € Hy
Preprocessing:

1 Compute the Gram matrix Gj = (®;|®y);

2 Compute the rank r = rank(G) and set Hy; = C';
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(Continued.)

3 Findan r X m matrix Wsatisfying WTW = G;

4 Compute the spectral gap of the channel R in equation (43).
Emulation:

5 Run the universal quantum emulator with input state |¥) @ |Wp);

6 foreach emulator’srequest for the j-th input-output pair do

7 Prepare |®;);

8 Prepare |Wj) == W|j);

9 Prepare [Up) and |W);

10 Inputthepair (|®) ® [Wp), [¥) ® |Wj))into the emulator;

11 end

12 Discard the first system of the emulator’s output.

The above algorithm implements an approximation of the encoding channel £(p) =
Trp[U (p @ |Wy) (Wp|) U] to any desired accuracy. The same construction applies to the decoding channel
D(p) = Teu[UT(|%) (Y| ® p) U], by simply exchanging the role of the input and output of the quantum
emulator. The algorithm reaches the optimal memory size for exact compression, because the memory space has
dimension r, which is exactly equal to the dimension of the input subspace H;,.

7.2. Running time

Here we analyze the running time of the general quantum compression algorithm, providing sufficient
conditions for its efficient implementation. We will measure the size of the input physical system P in terms of
the number of logical qubits needed to represented it, namely # := [ log dim Hp].

The running time of Step 1 (calculation of the Gram matrix) depends of the structure of the fiducial states.
The calculation of the matrix element Gj = (®;|®) can be implemented efficiently for various families of
tensor network states, such as MPSs [43, 56—58] and MERAs [38]. The number of matrix elements is O (112),
where m is the size of the fiducial set. Hence, the efficient implementation of Step 1 requires  to be at most
polynomial in 7. In the following, we will always assume m = O (poly(#)). Of course, this implies that the
subspace containing the input states has polynomial dimension d;, = O(poly(n)), namely it is exponentially
smaller than the total Hilbert space Hp.

Under the assumption m = O(poly(n)), Steps 2 and 3 (calculation of the rank and construction of the
matrix W) can be implemented in polynomial time by diagonalising the Gram matrix G, e.g. with the QR
algorithm [59]. Note that one has r = dj,, = O(poly(n)), meaning that the memory system has polynomial
dimension.

Step 4, the calculation of the spectral gap, can be implemented in polynomial time by diagonalising the
r? x r? matrix describing the channel R’.

The emulation part has running time Tiot = Q Tprep + Temulator» Where Qs the number of input—output
pairs used by the emulator, Tp is the time complexity of preparing each input—output pair, and Temylator is the
running time of the emulator.

The running time of the emulator can be bounded as Temylator = O (1 Q log Q) [53]. The complexity of
preparing the input-output pair (|®;) ® |[W), |¥y) ® |W)))is essentially the complexity of preparing the
fiducial state |®;). Indeed, |¥) can be chosen to be any efficiently preparable state, i.e. any state preparable in
O (poly(n)) time. The states | W) and | W) are efficiently preparable by construction, because they are vectors
with a polynomial number of efficiently computable entries. Hence, the preparation time Ty, is polynomial if
and only if each fiducial state |®;) can be prepared in polynomial time. This condition is satisfied whenever the
fiducial states {|®;) ;”:1 are MPSs [43, 58] or MERAs [38].

By equation (44), under the assumption m = O(poly(n)), the number of input—output examples required
by the emulator is polynomial in 7 and ¢! if the inverse spectral gap 77_31 is at most polynomial in #1.

In summary, the compression operations can be implemented in polynomial time if:

1. The number of fiducial states is at most polynomial, m = O(poly(n))).

2. The overlap of any two fiducial states can be computed in polynomial time.
3. Each fiducial state can be prepared in polynomial time.

4. The inverse spectral gap is at most polynomial, 7;11 = O(poly(n)).

Conditions 1 and 2 are relatively straightforward for tensor network states. As we have seen in section 4,
many families of tensor network states are contained in subspaces of dimension O (poly(n)), making it easy to
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satisfy Condition 1. In addition, the overlap between two tensor network states can be efficiently computed in
many physically relevant cases (e.g. MPSs and MERAs). In those cases, if the input subspace Hj,, has polynomial
dimension (as it must be in order to satisfy Condition 1), then every state in Hj, is alinear combination of
polynomial number of tensor network states, and the overlap between any two states in H;, can be computed in
polynomial time.

Condition 3 is satisfied when the fiducial states are efficiently preparable tensor network states, such as MPSs
or MERAs, which can be prepared through sequences of isometries [38, 43, 58]. However, it is not automatically
satisfied when the fiducial states are generic vectors in Hj,. The problem is that, in general, a linear combination
of efficiently preparable states may not be an efficiently preparable state. For MPSs, however, this condition is
satisfied:

Lemma 1. Let {|3) Y., bea polynomial-size set of MPSs that span the input space H,, and let { ¢;};._ , be a set of
coefficients such that the linear combination V) = Y, ¢ |2x) is a unit vector. If the initial states have bond
dimension d., then the state | V) is an MPS with bond dimension t d. and can be prepared in polynomial time.

The proofis provided in appendix D. For more general families of tensor network states, other than MPSs, a
sufficient condition for the efficient preparability of the fiducial states will be given in the next section.

Finally, Condition 4 can be satisfied by a suitable choice of fiducial states, as we show in the following.

In general, Condition 4 is satisfied by choosing the fiducial set to be ‘sufficiently dense’ in the input subspace.
An example of such choice is provided in the following. Let {|1),...,|r) } be a fixed basis for the input subspace
Hin. Foreveryl € {1,...,r}, wedefine

DLl 141 DEilld1
235 =B gy LD e, e (49)

where @ denotes addition modulo r, and we adopt the convention |0) := |r).

Lemma 2. The spectral gap of the channel R in equation (43) associated to the states { |V} o, s) } 1c (1,..,r},0€ (x,7,2} .5 (4,
in equation (49) is 7y, = 8[sin(w/r)* /(3r).

The proofis provided in appendix E. Lemma 2 guarantees that the fiducial set { |V} o, 5) } 1c(1,..., 1}, ac (x,2) 5 (4,
gives rise to a channel with inverse spectral gap growing at most as O (r*), where r is the dimension of the input
subspace. Since the input subspace is assumed to be of polynomial dimension (Condition 1), this result guarantees
that the inverse spectral gap is at most polynomial.

Lemmas 1 and 2 imply that every family of MPSs that can be compressed into a logarithmic number of qubits
can be compressed in polynomial time on a quantum computer.

Theorem 2. Let {|¥,) },ex be a parametric family of n-particle MPSs with fixed bond dimension d.. If the input
subspace H;, = Span{|¥,) }.ex has polynomial dimension r = poly(n), then the states {|¥,) },cx can be
compressed into | log | qubits with error e in polynomial time poly(n, £ 1).

Proof. Let {|3;) J;_, be asubset of the states { | ¥, ) },cx, with the properties that (i) {|3}) };_, spans the input
subspace, and (ii) the number of states ¢ is polynomial in 7. Such a set exists because, by hypothesis, H;, has
polynomial dimension. Then, let {|I)} ;_, be the orthonormal basis of H;, obtained by applying the Gram-Schmidt

procedure to the set {| ) }._ - Explicitly, [1) = [33)),]2) = (|2,) — (31]%,) |Zl>)/1 1 — [(ZZ) P ey

[t) = (15;) — Yoy (KIX0) |k>)/\/1 — >k (kIZ;) |* . By construction, each vector |[) is alinear combination of
MPSs, and the expansion coefficients can be computed from the scalar products (3 |%;). Since the states {|3) };_;
are MPSs, the scalar products can be computed efficiently, and lemma 1 implies that the linear combinations

{|1) } |, can be prepared in polynomial time. From the basis {|) } |_,, one can then construct the fiducial states
defined in equation (49). Since the fiducial states are linear combinations of at most 2 basis vectors, they can all be
prepared in polynomial time (again, due to lemma 1). Moreover, lemma 2 guarantees that the channel R associated
to the states (49) has inverse spectral gap of polynomial size. Hence, all Conditions 1, 2, 3, and 4 are satisfied,
implying that the compression algorithm 1 runs in polynomial time on the states { |2 ) Ji_ - O

Theorem 2 guarantees that most relevant families of MPSs can be compressed efficiently on a quantum
computer. For other state families, a sufficient condition for compressibility in polynomial time is given by the
following proposition:

18



10P Publishing

New J. Phys. 22 (2020) 043015 G Baietal

Proposition 5. Let {|U,) },ex be a parametric family of n-particle tensor network states with a given network
template. If the input subspace H;, = Span{|W)} xex contains a spanning set {|3x) Y, with the following
properties

(i) the number of states is at most polynomial in n,
(ii) each state|%y) is efficiently preparable by a coherent process [k) — k) @ [Z),
(iii) the Gram matrix Sy == (3|X;) is efficiently computable,

(iv) the minimum non-zero eigenvalue of the Gram matrix S is at least inverse-polynomial in n,

then the states {| ¥} } ,cx can be compressed into [ log r | qubits with error ¢, using a quantum algorithm that
runs in polynomial time O (poly(n, ~1)).

The proofis provided in appendix F. Note that proposition 5 is not specific to tensor network states, and
applies broadly to every parametric family of states confined in alow-dimensional subspace of the total Hilbert
space.

8. Conclusions

We designed compression protocols for parametric families of tensor network states, in which some of the
tensors depend on the parameters, while some others are constant. Physically, the variable tensors can be
associated to systems that carry unknown parameters, or to inaccessible degrees of freedom of the environment.
Given a tensor network with constant and variable tensors, one can construct a flow network, where the variable
tensors are connected to the source, and the physical systems are connected to the sink. In such a network, every
cutidentifies an exact deterministic compression protocol that compresses every state in the parametric family
into a quantum memory of dimension equal to the size of the cut. In addition to quantifying the amount of
memory needed to store tensor network states, we provided a general quantum compression algorithm, and we
identified sufficient conditions for the algorithm to run in polynomial time, showing that they are satisfied by all
families of MPSs.

Our results can be applied to site-independent tensor network states of n quantum systems, showing that
every such state can be compressed without error into a memory of O (log ) qubits. This scaling is optimal,
because the set of SIMPSs contains as a subset the set of all identically-prepared states, which is known to require
O (log n) qubits, both for exact [11] and approximate compression protocols [12, 13]. The optimal prefactor in
the logaritmic scaling of the memory for general site-independent tensor network states remains to be
determined.

Our results can also be used to provide upper bounds on the amount of information one can encode into
multipartite system using tensor network codes, such as the toric code [60—-62] and holographic codes [63, 64].
For example, our method shows that a toric code with circumference L and with variable boundary conditions
can be faithfully compressed into L qubits (a toric code is a PEPS with d. = 2 [36]). As a consequence, we can
deduce that the number of qubits one can encode with the toric code is at most L. This result is consistent with
the construction by Bravyi and Kitaev [62], which shows that one can encode up to L/2 — 1 qubits. The
discrepancy between this value and our bound is mostly due to that in [62], the boundary condition of a toric
code is not arbitrary, while we consider arbitrary boundary conditions. More generally, we showed that tensor
network states with variable boundary and constant interior satisfy an area law, according to which the number
of qubits needed to compress these states is proportional to the size of the boundary.

In this work we mainly focused on exact compression. Since noise and imperfections are unavoidable in
every realistic implementation, an important avenue of future research is to extend our results to approximate
compression protocols. Tolerating a small compression error could offer great savings in terms of the amount of
memory needed to store families of tensor network states. In the case of uncorrelated systems, it was observed
that tolerating any non-zero error decreases the memory size discontinuously [1 1, 12]. Extending the study of
this phenomenon to correlated systems is an interesting open question for future research.
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Appendix A. Proof of proposition 3

For a generic tensor network template Temp = (G, d, Vjjeq), define the new template Temp, = (G, d;, Viiied)
by setting ds (e) := 210641 andlet C* = (C¥, C*) bea minimum cut of the flow network Temp,.
Then, we have the following chain of inequalities:

min-cut(Temp) < ¢(C*) = > logd(u, v)g(maxM) 3 {logd(u, v)}

ueClveCy e |logd(u, v)| ) secryecy

< (maxM) Z {logd(u, V)J =log3 - min-cut(%z)

neN UOg(”)J ueClveCy

= log3 - quantum-max-flow(fe\m_ﬁz) < log3 - quantum-max-flow('/l'e\mf)) (A1)

the last inequality following from the fact that the set of tensor network operators with template Temps is
included in the set of tensor network operators with template Temp. This proves the upper bound
min-cut(Temp) < log3 - quantum- max -flow(Temp). O

Appendix B. Memory bounds for various tensor network families

B.1. PEPS with variable boundary conditions

PEPSs are a higher dimensional analog of MPSs [35, 36]. A PEPS is defined by a lattice of tensors, where each
tensor has edges connected to its neighbors. Consider a set of 2-d PEPSs in which all the tensors are fixed except
those on the boundary, as in figure B1.

Here, each tensor Al"/lin the figure is a fixed order-5 tensor, and the shaded loop is a tensor B describing a
variable boundary condition.

Asin the MPS case, we regard the tensors A"/ on the lattice as the tensor network N, and by properly
choosing the edge directions, N defines a linear operator from the systems on the boundary to the physical
systems. We call this linear operator Ny, and write the PEPS as [UI¥P9) = N |B), where |B) is a vectorised
version of the tensor B describing the boundary condition. Then, we convert N to a flow network and look for its
minimum cut. Assuming that the bond dimension d. is a constant, while the lattice has size n x m for large n
and m, the optimal cut consists of the source (which replaces the tensor B) on one side, and of the sink and the
tensors A/l on the other side, as shown in figure B1. The cut edges contain 21 + 2m number of d.-dimensional
systems, with combined dimension d2" ™. Using theorem 1, we conclude that the states {[T'I**9)} can be
compressed into [(2n + 2m)logd. ] qubits.

This result is consistent with the area law for PEPSs, which indicates that the amount of information
contained in a two-dimensional region is upper bounded by a term proportional to its perimeter, in this case
2n + 2m. More generally, this result is an instance of the bulk-boundary correspondence in [65], which shows
that the bulk (namely physical systems) and boundary of a PEPS are related by an isometry. Our result can be
seen as a special case of the ‘holographic compression’ of [66], which states that a state with area law can be
approximately compressed into a memory proportional to the boundary size. In the special case of PEPSs, our
construction shows that the compression is exact.

B.2. Site-independent PEPSs
The method in section 4.2 for MPSs can be generalized to arbitrary systems that are ‘finitely correlated’, in the
sense that they have a finite bond dimension. For example, figure B2 shows a site-independent PEPS defined on a
square lattice. Each A in the figure is an order-5 tensor, and the loop is a tensor B describing the boundary
condition.

Now, suppose that the state ¥} ;") is a generic site-independent PEPS, defined ona n x m square lattice,
with fixed bond dimension d. and physical dimension d,,. By vectorization, the tensor A is transformed into a
vector |A) in a vector space of dimension d.!d,,. The dimension of the symmetric subspace of nm copies of
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cut edges.

e =

N S R o
IA[l,m} A[2,m] A[n,m] ;
|~ |~ |
A[l,Q} A[2,2] A[n,Q] :

Figure B1. PEPS on a square lattice. The basic module A'*/!is an order-5 tensor, while the tensor Bis a variable describing the
boundary condition. The directions of non-open edges are omitted. The dashed line indicates the cut, and the edges crossing it are the

PEPS
ey =

Figure B2. Site-independent PEPS on a square lattice. The basic module A is an order-5 tensor, while the tensor Bis describes the
boundary condition. The directions of non-open edges are omitted.

dld p-dimensional vectors is [

[A)®"m = Vg|S4), where Vs is an isometry, and |S,) is a vector in space S with dimension (

We obtain the following tensor network representation for [U'?5F9):

nm + dfdp -1
did, — 1

I®(2n+2m)

| |[®(2nm7n7m)|

) = [

Vs

]. With the same argument as in the SIMPS case,

nm + did, — 1
déd, -1 )

=((I[#emmm(B) @ Ve|Sy))

(B1)
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where we have rearranged the outgoing edges of V4 such that the tensor labeled I?"+2™ denotes the
connections between V5 and the boundary condition B, and I ®@nm—n=m) corresponds to the connections
between neighboring copies of A. The open edges corresponds to the nm number of physical systems.
nm + did, —
did, — 1
Applying theorem 1 to the cut illustrated with the dashed line in equation (B1), we obtain that the states | ¥
can be compressed into into [ (d. d, — Dlog(nm + al d, — 1) + (2n + 2m)logd.] qubits.
The same argument can be applied to a lattice of n site-independent correlated systems, each of which has
physical dimension d, and interacts with k neighbors. In this case, a generic state on the lattice can be

1 4 . .
1S4) has dimension ( ) < (nm + dld, — 1)% %=1, and |B) has dimension d 2" "

(PEPS)>

compressed into [d} d,log(n + dk d, — 1) + blogd.]qubits, where bis the boundary size, namely the
number of correlation systems across the boundary (b = 0 for closed lattices, like e.g. the torus).

B.3. Multipartite states generated from a fixed state with the action of identical local unitary
transformations

In this section and the next, we study the compression of state families generated from the action of identical
local unitary transformations, namely a state in the form U,”|¥,). We first consider the case where the initial
state is fixed and known, and generalize it in the next section to the case where the initial state is a tensor network
state family. Consider a parametric family of states of the form

Ty = Uy Wo) (B2)

where [¥) € H®"is afixed pure state on n identical systems, g is an element of a group G, and Uy is a unitary
operator belonging to a unitary representation of the group G. For example, the above states could describe the
ground states of a system of # spins immersed in a uniform magnetic field of known intensity and unknown
direction. All these states can be obtained from a fixed state (say, corresponding to a magnetic field oriented in
the zdirection) by rotating the direction of each spin by the same amount. A compression protocol would give a
way to store the state of the spins in a quantum memory without knowing the direction.

To better characterize the structure of the transform U;’ ", we use the Schur-Weyl duality [67]. The Schur-
Weyl duality decomposes the Hilbert space H®" into the following form:

Hé" ~ @ (Ry ® M) (B3)
AEYa

where }), ;is the set of Young diagrams with n boxes and at most d rows, and R and M, are certain subspaces
indexed by A. We denote the unitary transformation from the original n-tensor space to the decomposition as
Useh: H®" — e 3,..(Ry ® M,), which is known as the Schur transform. One property of the decomposition
(B3)is that, Uf” acts trivially on each subspace M). Therefore we can decompose Uf‘ " with respect to this
decomposition as

U Ug" ULy = S0 1A @ Ugy @ Iy, (B4)

AEYq

where {|\)} \cy, ,is an orthonormal basis that indexes the direct sum, U  is a unitary on R, and Iy, is the
identity on M,. To match the decomposition of Ug®”, we also decompose |¥) as

Ul To) = > &N @ In) @ |py) (B5)

AEY, 4

where |r)) and |, ) are states in R, and M, respectively,and Y, |€,|* = 1. Multiplying equation (B4) with
equation (B5), we have

Uan Ug"W0) = > 1A @ Ugalnn) @ isy) (B6)

A€V a

Note that | W) is a known fixed state, and therefore |, ) is known and fixed. We can then construct an isometry
V,: Span{|\)} — @\ M, that encodes the states {|1,)} rcy, , as

VA = 1A @ |py)s YA E Yo (B7)

Defining [¢),) = Yl A) @ Ugaln) € @y Ry, wehave U, Vi) = U®”|\I/0) We draw the tensor
network generating the states { U®”|\Ifo> }in figure B3.

Infigure B3, U, = >3\|A) (A ® U, isa compressed version of U®’1 The T-shape intersection is a copying
operation on the 1ndex system | \), defined as
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M
A Vi Vi
Usch g : " UsTch_)
= 1
1Ys
'R)\ :

Figure B3. Tensor network for { U§”|\IJO> }. The dash line indicates the minimum cut.

R SR PVIEVIOY (B)

Aeyn,d

The region to the left of the dashed line reads Uy (",| A) | A) (A]) V; Usch|Wo), which equals to |1)y,). The partial
isometry V; serves as a ‘coherent erasure’ of the system M),. We first perform a coherent erasure on the
multiplicity system M), using VZ and reprepare the system later using V,,. This effectively reduces the minimum
cut (dashed line) of the tensor network. The cut edges constitutes the Hilbert space D) c ), , R

Note that we are slightly abusing the notations for tensor network, as the two cut edges constitute a space that
is not the tensor product space of each edge. The dimension of the edge labeled by R, depends on A. To avoid
ambiguity, we have to restrict the upper edge to take values only in the basis {|A) }.

We vectorise the variable tensor Ug as| Ug>, and regard all other tensors as the tensor network N. Then we
have |¥,) = N|U,). Choosing the cut as the dashed line in figure B3, according to theorem 1, the states
{ Ug® "|Wy) } can be compressed into a memory of dimension equal to the dimension of )¢y, , Ry, which is

dim @ R\= > dimR, < (n+d — H@+d-2/2 (B9)
AEVnd AEVnd

d>+d—

namely a memory of no more than [ 5 2log(n + d — 1)] qubits. The last inequality comes from lemma 3

in [11] shown below, with r = d.

Lemma 3. The total dimension of all the representation spaces corresponding to Young diagrams with no more than r
rows is upper bounded as

S dimR, < (n 4 d — 1)/ (B10)
)‘GYn,r

B.4. Parametric tensor network state family under identical local unitary transformations
In the previous section, we have discussed about the compression of states obtained from a fixed multipartite
state under unknown local unitary transformations. Here we consider the generalization in which the unknown
transformations are applied to a parametric family of tensor network states. This generalization could be used to
treat the case of n of interacting spins with unknown couplings immersed in a uniform magnetic field of
unknown direction.

Explicitly, we consider tensor network states of the form

|\Dx,g> = Ug®nN*|Vx> (B11)

where |15) € Hyx is a vector in a suitable parameter space Hy, and Uy is an unknown unitary transformation,
representing the action of a group element g € G on each physical system.

To use theorem 1, our goal is to construct a tensor network that generates the family { Uf "Nilvi) } geG xexo
with the property that the corresponding flow network has small minimum cut. We do the construction in two
steps: we first consider a smaller state family and construct its corresponding tensor network, and then extend
the network so that it generates our target state family { Uf "Nilvi) } ge G xex-

Let m = dim Hy. Choose m values of the parameters x;,...,x,, such that {|v,),...,|v,) } is a basis of Hx. The
smaller family we consider is { U§”|\Ifxi> } geGii=1,...,m> With [Wy) := Ny|v,). This family is an extension of the
family in the previous section, where instead of fixing the initial state, the initial state is chosen from m

alternatives.
For any x;, using the Schur transform, we can decompose |U,.) as
Ual¥e) = > €210 @ 1r{?) @ [u§?) (B12)
A€ Yd,

If| uf\"‘)> is known, as in the previous section, we can construct an isometry V,, (B7). However, in this case

|u&"f)> is unknown and depends on the value of i. Thanks to the fact that i takes a finite number of values (1 to m),
we can construct one isometry for every value of 7, in other words, an isometry controlled by i. As a result, we
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i Usch

Figure B4. Tensor network for { Ug"|W,)} gc,i=1

redefine V), as

m

Vi=>3 3 IV @ 16§ [l (B13)

i=1 /\EY,MP

where {|i) } is a basis of an m-dimensional control system. And V; is defined as

m

Vi =201 20 IV @ ([l (B14)

i=1\\e Y,,,dp

where the control system is not transposed.
We then draw the tensor network that generates { Ug®”|\llxi> } gcGyi=1,...,m> as shown in figure B4, which is

similar to figure B3 with additional control systems for V,, and V;.

For any fixed 7, this network reduces to figure B3, and generates the state Uf"N’xi)- Therefore any state in the
family {U,”"|W,)} geG,i=1,...,m can be generated by this network. We regard |, ), two copies of |i) and U, as the
parameters, and write U, | W) = My W) i) [i)| U,), where My is the linear operator represented by the
constant tensors in network, and | G) is the vectorised version of U,.

Now we consider the original state family { Ug™[W) } ¢c 6 xex- Take any state U, "|%) = Ug" Nyl from the
family, we can decompose |v;) in the basis {|v,,) } as [v) = 3; ci|vy,). Then the state Ug®"|\I/x> can be writtenas a
superposition of states in the smaller family:

UMW) = o US| ) (B15)

This indicates that we can generate Ug® "|W,) via the linear operator M, with a superposition of the parameters.
Defining

[®y) = Z il W) i) |i) (B16)
we have
UMW) = Mu(|9x) ® |Ty)) (B17)

which shows that the family { Ug™|%) } ¢ 6,xex can be generated by the following tensor network in figure B5.
The lower two cut edges constitutes the space )¢ ), , Ry, which has dimension no more than

(n + d — 1)@+4-2/2 (lemma 3). The uppermost cut edge corresponds to the control system Span {|i)} 7., with

dimension equal to dim Hy, and the combined dimension of all cut edgesis (n + d — 1)@*+4-2/2 dim Hy. Using

theorem 1, we then obtain the memory size for compression the states { Uf ") } g xexo as stated in the following

proposition.

Proposition 6. Consider a family of tensor network states { |¥,) } xex C H3" with parameter space Hy (17). The
state family generated by applying an unknown unitary transformation on all physical systems simultaneously,
namely { Uf ") } geG,xex can be compressed without error into a memory of no more than

[M log(n + d — 1) + log dim HX-I qubits.

2

Note that to minimize the memory usage in proposition 6, one may choose an alternative parametrisation of
the original family: [¥) = Ny|v.), where |v,) resides in a space H) that is smaller than Hy. Specifically, the
minimum cut Cdivides N into two subnetworks N; and N>, so that Ny is a concatenation of the corresponding
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Usch _I
Ra

Figure B5. Tensor network for { Uf "I¥)} gcG,xex- Now the vector |®,) serves as a parameter, and its three outgoing edges corresponds
to the three systems in equation (B16). The dashed line indicates the minimum cut.

linear operators, namely Ny = N, 4N, as shown in figure 4. Then by defining |V)€> = Njyl), wehave
|T) = Np4|vl), and the new parameter space is H, the combined Hilbert space of all cut edges. The dimension
of H¢ can be smaller than the original parameter space Hy. With the new parametrisation, when we apply

d2+2d*2 log(n +d — 1) + C(C)—I qubits,

proposition 6 for the states {[¥) } ¢ ,xex, We use a memory of [
where ¢(C) = log dim H_ is the capacity of the minimum cut.
We now consider MPSs and PEPSs. In section 4.1 and appendix B.1, we showed that an MPS or PEPS with
unknown boundary condition can be written as | Ug) = Ny|B), where |B) € Hy is a vector describing the
boundary condition, and Ny is a linear operator. Hy has dimension dZ for MPSs and d2" " for PEPSs. We can
then directly apply proposition 6 to the states { Uf "|Ts) }. An MPS with variable boundary conditions under

. . . d}+dy—2
unknown transformation Ug®" can be compressed into a memory of [% log(n + d, — 1) + 2log dc—l
qubits, while a PEPS on a square lattice with variable boundary condition under unknown transformation Ug® i

can be compressed intoamemoryof[% log(nm + d, — 1) + (2n + 2m)log dc—| qubits.

Appendix C. Proof of proposition 4

Asillustrated in figure 6, let N} and N, be the subnetworks of N induced by the cut C. Then N, defines a linear
operator Ni: Hyx — Hg ® Hc, N, defines alinear operator N;: Hc — Hp,andwehave N = (N, ® )Ny,
where I is the identity operator on Hg.

Let dg = dim Hg, and take the computational basis {|e;) } fil of Hg. Being the computational basis means
le;) = le7). Define|¢, ;) := (b @ (ei)[%) = (b @ (ei) Nulw) € Hp, so that[) = T4k |6, ;) le;). Now we
consider the compression for the (unnormalised) states {|@, ;) } xex,i=1,....;- In fact, this set of states is generated
by the same network N by reversing the edges for the environment. This results in a network N’, compatible
with the template Temp’. This is shown in figure C1.

We regard the cut C for network Nalso asa cut for N”. Let [ty ;) = N/|w) |e;), and then [¢, ;) = Noslty,;).

Applying theorem 1 for {|¢, ;) }, there exists a partial isometry V: Hp — Hc such that

ViVIg ) = lée;), YxeX,i = 1,..dg (C1)

This Vis what we want. Forall x € X,

d
VIV %) = (VVE E)) |, le) (C2)
i=1
dy
= > (ViVIg )les) (C3)
i=1
dy
= lo ) lei) (C4)
i=1
= %) (C5)
O
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|62) = (Ip ® (€il) Nefva) = Nifvs)lei) = |va

Figure C1. The network generating |¢, ;) and the cut of N'. Both |v) and |e;) are regarded as parameters. Ny is obtained from N, by
reversing all edges corresponding to the environment.

Appendix D. Proof of lemma 1

Proof. For concreteness, we first prove the lemma for MPSs with open boundary conditions, and then show how
to generalize the proof to arbitrary boundary conditions. For simplicity, we present the proof with SIMPs, while
the proof works for general MPSs.

We encode the coefficients into a vector |c) := >} _, cr|k). We assume |c) is normalized such that the linear
combination [¥) = 3, ¢ |2) has unitlength. Since {|%) } are MPSs, they have the following form:

D1
- [ o

To represent their linear combination, we define tensors A, B!,...,BI"], and P such that
:, - , @= (D2)
k k k
forevery k € {1,...,t}and i € {1,...,n}. Then |X) can be represented as:

(D3)

where is the tensor defined by

L =ik (D4)
k=1

Equation (D3) shows that | ) is an MPS: the left boundary condition is to the left of the first dotted line, the right
boundary condition is to the right of the second dotted line, and the tensor on each physical system is B
connected with a T-intersection (D4). There are two edges connecting consecutive physical systems, one has
dimension d,, and the other one has dimension . Therefore the bond dimension of |¥) is #d...

For MPSs with general boundary conditions, one just needs to replace the boundary conditions by a suitable
tensor connecting Al''and A/ (B!!and B!"!), and the rest of the proof s identical.

To conclude the proof, we invoke the fact that all MPSs with polynomial-size bond dimension can be
prepared in polynomial time on a quantum computer [43, 58]. O

Appendix E. Proof of lemma 2

The channel R can be expressed as

13 1
R = _Z Rl, Rl(P) :g Z Z (]l,a,spU]Ta)s [Jl,a',:l:: :Iin - zlqll,a,i)(\ljl,oz,:tl (El)

Ly a€{x,pz)se{+,—}
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Let S; := Span{|l), |l © 1)} and Si" be its orthogonal complement. For each [, both S;and ;- are invariant
subspaces of channel R;. For p with support onlyin §;, one can explicitly determine R; as

4 P 1
Ri(p) = 57’Tr[p] = 5P ¥ Supp(p) € S (E2)

where P;is the projector on S;. For pwith support only in Sj-, the channel R, is just the identity. For a general p, one
can decomposeitas p = P;pP; + Pi* pPi* 4 p/,where P;- is the projectoron S, and p’ == P;pP; + Pi* pP,
contains the off-block-diagonal terms. We further observe that R;(p") = 0, because for any off-block-diagonal
element o = | ) (k| (or o = |k) (jwith j € {I, [ + 1}and k & {I, | + 1}, wehave Uy, oU/, , +

U, _onaﬁ =0, Va € {x, y, z},and thus R;(c) = 0. We conclude that R;(p) = Ri(P;pP)) + Rl(Pll pPll),
and therefore for general p € Hy,

4 P 1
Ri(p) = ngr[Pzp] - PP+ P ppt (E3)

To find the eigenvalues of the channel R, we use the double-ket notation |A)) := 35, , Aj | i) ® k),

representing linear operators on H;;, as vectors in the tensor product space Hy, ® H,. Using this notation, the
eigenvalue equation R(A) = A A becomes R|A)) = X |A)), with

r

1
R =1 R, Ry: _AIPOXCPI lPl ® P+ P ® P (E4)
r = 32 3
Averaging over [, we finally obtain
R=R +R + R (E5)
where
. 8 r—1 2 r—1
R: = > ST @ I + 3 Ui e @ (el + le 1] @ |le 1)) (E6)
1=0 1=0
. 2 r—1 2 r—1
Re==S INlleolle (el +—> [lelxlae 1l e 1)) (E7)
3r [ = 3r =
< 4
R3: = (1 - _)(Iin ® Iin) (ES)
r

Rs is proportional to the identity and does not contribute to the spectral gap. From R R, = R,R; = 0, the
supports of R, and R, are orthogonal subspaces, so we can consider the eigendecompositions of R; and R,
separately. The spectral gap would then equals to the difference between the largest and second largest among
the union of eigenvalues of R; and R,. Notice that the support of R; is in the subspace Span{|l) ® |I)} /..
Under the basis {|I) @ |I)} ], R, is a Toeplitz matrix whose eigendecomposition has a simple form [68]:

. 4 =12+ cosz—:rk
Ri=—=3 ——— PP (E9)
T =0 3

where each eigenvector |®;) is the Fourier vector defined as |®;) == 3=, e2™*/din |} © |I) /\/d;,. Among the

2k
+ cos =
r

eigenvalues in equation (E9), the largest eigenvalue is %, with eigenvector |®y). The second largest is %

with eigenvectors |®;) and |®,_,). Now we turn to R,, and observe that its only eigenvalue is %, which is smaller
than the second largest eigenvalue of R;. We therefore conclude that the spectral gap equals to the difference
between the two largest eigenvalues of R, which is

4 4[2-1—6052:]: 8(sin§)2

r 3r

r r

O

Appendix F. Proof of proposition 5

The key of the proofis to show that Conditions (i)—(iv) guarantee that every linear combination Y, cx|¥) with
efficiently computable coefficients { ¢} is efficiently preparable. Once this is done, we can simply construct an
orthonormal basis from the states {|>) }, and use the fiducial states in equation (49).

Anyvector [¥) € H;, canbe decomposedas |¥) = Y, ¢ |X), with ¢ = (Ei|F~|¥)and F = 37| %5) (3]
[69]. Now, let A be an auxiliary quantum system of dimension s, and consider the state
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_ chk | k>
Z}J Ckl2

For given coefficients { ¢}, the state |1)) is efficiently preparable, because it is a state in a Hilbert space of
polynomial dimension.

Now, consider a coherent control mechanism that prepares the state |Z; ) by a coherent process
[k) — |k) ® |%%), where {|k)}is a basis of an auxiliary system. Setting the auxiliary system to |1)), the resulting
state is

| ¥) (F1)

YT LYY
Y Zk|Ck|2

Finally, projecting the auxiliary system on the vector Y_;|k) //s, one obtains the state | ). The probability
that the projection takes place is py, = (3 lci)™ = (s (UIF|¥))™! > 1/(sAmin)> where Ay, is the minimum
non-zero eigenvalue of F. Note that the eigenvalues of F are the same as the eigenvalues of the Gram matrix
G = (Xk|%)). This is the case because because one has F = XX"and G = XX, with X = 37,|%%) (k|. Since Apin
is assumed to be at least inverse polynomial, the probability is guaranteed to be at least inverse polynomial. This
means that a polynomial number of repetitions of the above procedure are sufficient to generate the state |¥)
with probability close to 1. O

1) (F2)
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