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INTRODUCTION

Diffusion-weighted imaging (DWI) and apparent 
diffusion coefficient (ADC) are useful for evaluating 
and characterizing the primary tumor in cervical cancer 
(1), assessing metastatic lymph node involvement (2), 
and monitoring treatment response (3-5). However, the 
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diffusional signal in cervical cancer is thought to be better 
ascribed to the intravoxel incoherent motion (IVIM) model 
(6-9). Previous studies have demonstrated that IVIM could 
be used to monitor treatment response (10), evaluate 
hemotoxicity in the bone marrow (11), and predict survival 
after chemoradiotherapy (10, 12).

It was found that the choice of b-values is the most 
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Materials and Methods 

Simulations 

Simulations were used to evaluate idealized signals for cervical cancer patients and were generated 

using the IVIM bi-exponential equation (equation 1a). 

Sb
S0

= fe−b(D + D∗) + (1 − f)e−bD [1a] 

Where b is the b-value, S0 represents the signal obtained at b = 0 s/mm2, and Sb represents the 

signal at a given b-value. IVIM parameters of cervical cancer in the literature (7, 10, 32-34) were 

used to calculate the pooled parameter means to approach the real case (Table 1).  

Two components of Gaussian noise with the same standard deviation were then added to the signal 

to simulate a Rician distribution (equation 2). 

𝑟𝑟b = √(sb + n1b)2 + (n2b)2 [2] 

Where rb is the total signal value, sb is the simulated signal, b is the b-value, and n1 and n2 are the 

two noise components. Two noise levels, SD = 0.1 and 0.01—estimated signal-to-noise ratios 

(SNR) of 150 and 15 respectively (25)—were analyzed, and 100 signals were generated per noise 

level (25). The b-values from 0–1000 s/mm2 with 25 s/mm2 intervals were used. These signals 

were analyzed with the same pipeline as in vivo data. 

In vivo 

This retrospective study was approved and performed per the regulations set by the local 

Institutional Review Board. This study involved anonymized patient data without identifying 

information that had already been collected, and thus, the need for informed consent was waived.  
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(7, 10, 32-34) were used to calculate the pooled parameter 
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simulate a Rician distribution (equation 2).
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Where rb is the total signal value, sb is the simulated 
signal, b is the b-value, and n1 and n2 are the two noise 
components. Two noise levels, SD = 0.1 and 0.01—estimated 
signal-to-noise ratios (SNR) of 150 and 15 respectively 
(25)—were analyzed, and 100 signals were generated per 
noise level (25). The b-values from 0–1000 s/mm2 with 25 
s/mm2 intervals were used. These signals were analyzed with 
the same pipeline as in vivo data.

In Vivo
This retrospective study was approved and performed 

per the regulations set by the local Institutional Review 
Board. This study involved anonymized patient data without 
identifying information that had already been collected, 
and thus, the need for informed consent was waived. 

Data from patients with newly diagnosed cervical cancer 
(International Federation of Gynecology and Obstetrics 
[FIGO] stages IB–IVB) with squamous cell carcinoma (SCC) 
and adenocarcinoma from March 2012 to January 2018 were 
collected for this study. Exclusion criteria were small tumor 
size (short axis < 10 mm) and substantial image artifacts 
shown in the primary tumor. One hundred consecutive 
patients were included in this study. Portions of the cohort 

crucial parameter affecting ADC calculation (6, 13-16). 
Furthermore, finding the b-value at which the contribution 
of perfusion-effects to the diffusional signal is negligible 
(the so-called fractional b-value) is critical in obtaining 
a perfusion-insensitive ADC (17, 18). Due to the multi-
step estimation process of estimating IVIM parameters, 
the choice of b-value threshold in the initial estimation of 
the pure diffusion coefficient (D) and perfusion fraction (f) 
affects the final fitting (19, 20). Furthermore, the optimal 
b-value distribution (BVD) and choice of the b-value 
threshold are organ-specific (19-23). 

IVIM protocols typically require more than eight b-values 
(24, 25). However, these require long acquisition times and 
are not clinically practical. Hence, for clinical integration, 
there is a need to reduce the number of b-values acquired. 
Two strategies have been explored: optimized subsampling 
and a simplified model. Optimized subsampling takes a 
subsample of b-values and attempts a biexponential curve 
fitting; this method has shown good concordance with 
reference IVIM parameters (26). However, there have been 
no reports regarding an optimal number of b-values in IVIM 
in cervical cancer. The simplified model uses a linear fitting, 
which reduces the number of b-values needed and has 
demonstrated good concordance with biexponential IVIM. 
However, the simplified model cannot estimate the pseudo-
diffusion coefficient (D*) (27-31). 

The purpose of this study was to determine the fractional 
b-value and explore methods to reduce the number of 
b-values without sacrificing IVIM estimation accuracy and 
discriminative ability in cervical cancer.

MATERIALS AND METHODS

Simulations
Simulations were used to evaluate idealized signals for 

cervical cancer patients and were generated using the IVIM 
biexponential equation (equation 1a).

Table 1. Pooled Analysis of Five Previous Studies for Pooled Means of IVIM Parameters
Studies n ADC D f D*

Lee et al., 2014 (7) 16 0.99 ± 0.18 0.86 ± 0.16 0.15 ± 0.03 71.30 ± 10.19
Zhou et al., 2016 (33) 24 0.94 ± 0.06 0.72 ± 0.05 0.20 ± 0.02 23.20 ± 60.00
Zhu et al., 2016 (10) 21 1.00 ± 0.11 0.85 ± 0.12 0.12 ± 0.52 29.23 ± 26.50
Lin et al., 2017 (32) 71 0.87 ± 0.15 0.67 ± 0.11 0.25 ± 0.06 11.51 ± 5.22
Wu et al., 2017 (34) 120 1.10 ± 0.81 0.84 ± 0.27 0.15 ± 0.06 31.50 ± 44.40
Pooled Means 252 0.96 ± 0.03 0.78 ± 0.04 0.19 ± 0.02 33.58 ± 15.38

Values are given as mean ± standard deviation. ADC = apparent diffusion coefficient, D = pure diffusion coefficient, D* = pseudo-diffusion 
coefficient, f = perfusion fraction, IVIM = intravoxel incoherent motion
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have been reported in previous studies (7, 9, 11, 20, 35, 
36). Detailed patient demographics can be found in Table 
2. In vivo, data were analyzed separately according to the 
histologic subtypes.

Patients selected for the study were those that had 
fasted at least six hours before the examination, and 20 mg 
hyoscine butyl bromide (Buscopan, Boehringer Ingelheim, 
Ingelheim am Rhein, Germany) had been given intravenously 
to reduce bowel peristalsis. Images were acquired with a 3T 
MRI system (Achieva 3T TX, Philips Healthcare, Best, the 
Netherlands) using a dedicated 16-channel phased-array 
torso coil. DWI utilizing single-shot spin-echo echo-planar 
imaging was acquired in free-breathing with background 
body signal suppression. Thirteen b-values (0, 10, 20, 30, 

40, 50, 75, 100, 150, 300, 500, 800, and 1000 s/mm2) were 
acquired, and the total scan time for DWI was 436 seconds. 
Detailed acquisition parameters can be found in Table 3. 

Volumetric regions of interest (VOI) were manually 
drawn by a board-certified radiologist with 13 years of 
experience in female pelvic cross-sectional imaging. 
Areas of hyperintensity on the b1000 maps were taken 
as the primary tumor, and the radiologist segmented the 
tumor by referring to a co-registered T2-weighted image 
and ADC map. These were then copied to a co-registered 
parametric map. The same task was repeated after a three-
month interval for all patients by the same radiologist to 
test intraobserver reproducibility. The patient order was 
randomized to reduce recall bias. Another radiologist with 
two years of experience in pelvic cross-sectional imaging 
was similarly asked to draw VOIs for all patients to test 
interobserver reproducibility.

IVIM Analysis Pipeline

Fractional b-Value
An adaptive b-value biexponential fitting algorithm 

was used to compute the fractional b-value and has been 
described in detail (19). Briefly, the first step is to calculate 
D from the highest b-values using a first-order polynomial 
fit (equation 1b), then calculate f (equation 1c), and finally 
calculate D*, fixing the computed values of D and f, for 
all b-values by using a non-linear least squares (NNLS) 
algorithm and measuring the sum of squared residuals (RSS). 
These three steps are repeated with the next lower b-value 
eliminated until only the two highest b-values remain. The 
b-value threshold with the lowest RSS was considered the 
fractional b-value.
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combination with the lowest total parameter error (TPE) was then fixed for subsequent iterations. 
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TPE =
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N ∑ (fs − fp)21s
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+
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N ∑ (Ds∗ − Dp∗ )21s
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Where N represents the number of signals, Ds, fs, and Ds* represent the subsampled IVIM estimates 

                                                        [1b]

                                                      [1c]

Optimal Subsampling
Biexponential IVIM analysis (equation 1a) was performed 

with the segmented fitting using NNLS. The fractional 
b-value calculated in the previous section was used as the 
optimal b-value threshold. The first three b-values were 
determined by testing all combinations of three b-values, 
and the combination with the lowest total parameter error 
(TPE) was then fixed for subsequent iterations. TPE is 

Table 2. Patients’ Demographics
Clinical Features Values

Age (years) 54.61 (21–89)
Tumor size (mm) 48.85 (10.97–101.43)
FIGO staging

IB 30
IIA 12
IIB 26
IIIA 5
IIIB 25
IVB 2

Histological subtype
SCC 81
Adenocarcinoma 19

Histological grading
Well or moderately differentiated 41
Poorly differentiated 59

Values are given as median (range) and counts. FIGO = 
International Federation of Gynecology and Obstetrics, SCC = 
squamous cell carcinoma

Table 3. Summary of MRI Scan Parameters 
Sequences T2W TSE T2W TSE DWI

Plane Sagittal Axial Axial
TR/TE (ms) 4000/80 2800/100 2000/54
Turbo factor 30 12 NA
SENSE factor 2 2 2
Field of view (mm) 240 x 240 402 x 300 406 x 300
Matrix size 480 x 298 787 x 600 168 x 124
Slice thickness (mm) 4 4 4
Intersection gap (mm) 0 0 0
Bandwidth (Hz/pixel) 230 169 15.3
Number of excitations 2 1 2

DWI = diffusion-weighted imaging, NA = not applicable, SENSE = 
sensitivity encoding, TR/TE = repetition time/echo time,  
TSE = turbo spin echo, T2W = T2-weighted
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estimated biexponential and simplified parameters were 
compared with the reference IVIM parameters calculated by 
the full 13 BVD (denoted as Dreference, freference, D*reference) using 
the two-sample Mann-Whitney U test at all subsample sizes.

Intraclass correlation coefficient (ICC) was used to 
assess interobserver and intraobserver reproducibility of 
parameters derived from the reference, subsampled, and 
simplified models. Values of 0.50–0.75, 0.76–0.90, and 
> 0.90 are considered to indicate moderate, good, and 
excellent consistency, respectively. 

RESULTS

Optimal b-Value Threshold
For simulated data, the optimal b-value threshold was 25 

s/mm2. For SCC, the median threshold was 40 s/mm2, and it 
was 100 s/mm2 for adenocarcinoma (Fig. 1). Thus, 100 s/mm2 
was taken as the optimal in vivo threshold. 

Optimal Subsampling
The optimal three BVD was (0, 200, 1000) s/mm2 for 

simulated data and (0, 300, 1000) s/mm2 for in vivo data, 
regardless of the histological subtype (Supplementary Fig. 1).

In both simulated and in vivo data, the TPE of bi-
exponential IVIM (TPEbIVIM) decreased as more b-values 
were added (Fig. 2). Perfusion-related parameter errors 

defined by equation 3a.
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Where N represents the number of signals, Ds, fs, and Ds* 
represent the subsampled IVIM estimates and Dp, fp, and 
Dp* represent the pooled parameter means. Then, for each 
incremental distribution size, the optimal b-values were 
determined by feed forward selection. Unfixed b-values 
were sampled, and the b-value whose inclusion led to the 
lowest TPE was fixed for subsequent iterations; this was 
repeated until all b-values were added. TPE for in vivo data 
is defined by equation 3b.
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The optimal simplified IVIM BVD was also determined in a 
feed forward fashion. 

Statistical Analysis
All simulations, IVIM, and statistical analysis were 

done using MATLAB (The Mathworks Inc., Natick, MA, 
USA). The two-sample Mann-Whitney U test was used to 
compare the optimal b-value thresholds between the SCC 
and adenocarcinoma and to compare the IVIM parameters 
between histological grading and FIGO staging. FIGO stages 
were dichotomized into low (IB–IIA) and high (IIA–IVB) 
stages.

For simulated data, the estimated biexponential 
parameters (denoted as Dsubsampled, fsubsampled, and D*subsampled) 
and simplified parameters (denoted as Dlinear and flinear) were 
compared with the pooled means IVIM parameters (denoted 
as Dreference, freference, D*reference) using the one-sample Mann-
Whitney U test at all subsample sizes. For in vivo data, the 

Fig. 1. Distribution of optimal b-value thresholds for in vivo 
data. ACA = adenocarcinoma, SCC = squamous cell carcinoma
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were acceptable in low-noise simulated and in vivo data 
but were high in high-noise simulated data, with errors 
over 500%. Hence, high-noise simulations were deemed 
not representative of the clinical routine and excluded from 
further analysis. 

In low-noise simulations, subsampled parameters were 
not significantly different from the respective pooled 
means parameters at all distribution sizes greater than four 
(Supplementary Table 1). The optimal protocol included six 
b-values, (0, 25, 100, 175, 200, 1000) s/mm2, which had D, 
f, and D* errors of 3.63%, 0.36%, and 0.09%, respectively 
and were not significantly different from the reference 
parameters (p = 0.141, p = 0.907, p = 0.474). 

In vivo, subsampled parameters in SCC were not 
significantly different from reference parameters from a 
distribution size of six. FQPUT also plateaued at six b-values 
(Supplementary Fig. 2). The optimal subsampled protocol 

included six b-values, (0, 10, 30, 75, 300, 1000) s/mm2 
and had D, f, and D* errors of 0.33%, 4.11%, and 3.49%, 
respectively, that were not significantly different from the 
reference parameters (p = 1.000, p = 0.378, p = 0.981). This 
scan time decreased to 198 seconds, representing a 55% 
scan time reduction. For adenocarcinoma, Dsubsampled was not 
significantly different from Dreference at all distribution sizes 
greater than 4 (Supplementary Table 1), but the trends 
for fsubsampled and D*subsampled were not consistent, leaving no 
optimal subsampled BVD.

Simplified IVIM
For low noise simulations, the optimal three BVD was 

(0, 200, 1000) s/mm2, which achieved D and f errors of 
167.25% and 546.61%, respectively (Supplementary Fig. 
3). However, the TPE of the simplified IVIM model (TPEsIVIM) 
was high, and consequently, the simplified parameters were 

Fig. 2. Evolution of total IVIM parameter error as more b-values were added in (A) low noise simulated signals (truncated to 20 
b-values) as well as in vivo data for patients with (B) SCC and (C) ACA. Annotated numbers on total error curves represent which 
b-value was added at that iteration of feed forward selection loop. D = pure diffusion coefficient, D* = pseudo-diffusion coefficient, f = 
perfusion fraction, IVIM = intravoxel incoherent motion
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simplified IVIM parameters were significantly different from 
the reference parameters regardless of histological and 
staging groups (Table 6).

DISCUSSION

In the current study, we examined whether the number of 
b-values can be reduced without sacrificing the precision 
of the IVIM parameter estimates in DWI of cervical cancer. 
We found that a subsampled distribution of six b-values 
yielded IVIM parameters with an error of around 4% while 
preserving the discriminative ability between histological 
grades and FIGO groups in patients with SCC. Even though 
three b-values were enough for a simplified model and Dlinear 
and flinear had an error rate of 1% and 8%, respectively, in 
our study, this model could not retain its discriminative 
property. 

In the estimation of IVIM parameters, segmented fitting 
is used to reduce error (38). This multi-step process requires 
a b-value threshold to be selected, and several studies have 
demonstrated the importance of choosing an appropriate 
threshold (22, 39). However, it was also found that the 
threshold is dependent on the organs, with values ranging 
from 20 s/mm2 in the healthy liver (19) to 300 s/mm2 in 
breast cancer (23). In the present study, we found that the 
optimal threshold for SCC was 40 s/mm2 and 100 s/mm2 for 
adenocarcinoma, which was similar to a previous report (20). 

For the determination of an optimal BVD for cervical 
cancer using simulations, acceptable TPEbIVIM was achieved 
after 4 b-values were sampled and reached a minimum with 
18 b-values. Two other optimization simulation studies 
suggested a distribution size of 8 to 16 b-values (24, 
25). In high noise simulated signals, SNR of 15, perfusion 
parameters could not be accurately estimated, in contrast 
with a study that suggested a minimum SNR of 8 (24). 
The feed forward algorithm used in this study determined 
a clustered distribution to produce the lowest errors in 
concordance with a study in which clustered distributions 
had better measurement consistency compared with equally-
spaced distributions (25).

Considering that one limiting factor for the clinical 
translation of IVIM is the long scan time, reducing the 
number of b-values needed could promote the clinical 
integration of IVIM. It was found that the TPEbIVIM steadily 
decreased in SCC, and parameter errors were below 5% 
using six b-values. Furthermore, both freference and fsubsampled 
were significantly different between histological grading 

significantly different from the pooled mean parameters (p 
< 0.001) at all distribution sizes (Supplementary Table 2). 

For in vivo data, the TPEsIVIM was low when only high 
b-values, i.e., b-values greater than the fractional b-value, 
were sampled (Fig. 3). In SCC, the optimal choice for a 
three BVD was (0, 300, 1000) s/mm2, which achieved D 
and f errors of 1.10% and 6.30%, respectively, and was 
not significantly different from the reference parameters 
(p = 0.229, p = 0.089). Adenocarcinoma also had the same 
optimal choice of BVD and had D and f errors of 1.18% 
and 10.59%, respectively, and was also not significantly 
different from the reference parameters (p = 0.623, p = 
0.212). The scan time decreased to 99 seconds, representing 
a 77% scan time reduction. 

Interobserver and Intraobserver Reproducibility
Interobserver reproducibility of IVIM parameters was 

good, while intraobserver reproducibility was excellent 
(Table 4). Values of f were slightly less reproducible 
compared to values of D while D* had the highest 
reproducibility. 

Associations with Clinicopathologic Factors
In SCC, freference and fsubsampled were found to be significantly 

different between histological grades, and D*reference and 
D*subsampled were found to be significantly different between 
FIGO groups (Table 5). In adenocarcinoma, flinear was 
significantly different between histological grades. In 
both SCC and adenocarcinoma, neither the subsampled nor 

Table 4. Interobserver and Intraobserver Variability
Parameters Interobserver ICC Intraobserver ICC

Reference
D 0.79 0.89
f 0.78 0.81
D* 0.95 0.94

Subsampled
D 0.77 0.91
f 0.70 0.86
D* 0.95 0.95

Simplified
D 0.79 0.89
f 0.74 0.80

Interobserver and intraobserver variability was measured with 
ICC of IVIM parameters derived from biexponential model using 
all 13 b-values (reference), biexponential model using optimized 
subsample of 6 b-values (subsampled), and monoexponential 
model using optimized distribution of 3 b-values (simplified).  
ICC = intraclass correlation coefficient
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and that both D*reference and D*subsampled were significantly 
different between FIGO stages in SCC, implying that the 
subsampled parameters had similar discriminative abilities 
as the reference parameters. While it was observed that the 
TPEbIVIM decreased in adenocarcinomas, the trends for the 
perfusion parameters were erratic, and errors remained high 
up to 10 b-values, suggesting that IVIM imaging may not 
be a proper modality to assess cervical adenocarcinoma.

In selecting the minimum number of b-values, FQPUT 
balances accuracy with acquisition time (24, 40). In 
SCC, FQPUT plateaued at six b-values, which potentially 
represents a minimum acquisition for biexponential analysis, 
reducing the scan time by as much as 55%. In comparison, 
liver studies have found that the FQPUT plateaus at around 
eight b-values (24, 26). However, it has been suggested 
that the liver was better described by a multiexponential 

Table 5. IVIM Parameters

Parameters All Patients
Histological Grading FIGO Staging

WD/MD PD P Low (IB–IIA) High (IIA–IVB) P
SCC

Dreference
† 0.845 ± 0.178 0.842 ± 0.165 0.847 ± 0.118 0.621 0.836 ± 0.167 0.850 ± 0.116 0.329

freference 0.142 ± 0.027 0.133 ± 0.017 0.147 ± 0.031 0.023* 0.145 ± 0.035 0.139 ± 0.021 0.714
D*reference

† 53.74 ± 5.652 55.01 ± 4.562 52.91 ± 6.165 0.185 51.97 ± 6.081 54.90 ± 5.089 0.026*
Dsubsampled

† 0.845 ± 0.138 0.843 ± 0.166 0.847 ± 0.118 0.676 0.836 ± 0.168 0.851 ± 0.116 0.301
fsubsampled 0.139 ± 0.030 0.130 ± 0.018 0.145 ± 0.035 0.042* 0.143 ± 0.039 0.137 ± 0.022 0.770
D*subsampled

† 53.74 ± 6.004 55.14 ± 4.818 52.83 ± 6.553 0.195 51.71 ± 6.777 55.07 ± 5.083 0.017*
Dlinear

† 0.845 ± 0.138 0.843 ± 0.166 0.847 ± 0.118 0.676 0.836 ± 0.168 0.851 ± 0.116 0.301
flinear 0.140 ± 0.032 0.132 ± 0.020 0.145 ± 0.038 0.112 0.143 ± 0.042 0.138 ± 0.024 0.920

Adenocarcinoma
Dreference

† 0.893 ± 0.140 0.944 ± 0.124 0.848 ± 0.144 0.156 0.859 ± 0.119 0.931 ± 0.159 0.211
freference 0.145 ± 0.028 0.156 ± 0.022 0.135 ± 0.031 0.113 0.143 ± 0.037 0.147 ± 0.016 0.905
D*reference

† 49.46 ± 6.075 50.66 ± 7.331 48.39 ± 4.831 0.211 51.77 ± 6.150 46.90 ± 5.140 0.133
Dlinear

† 0.892 ± 0.140 0.944 ± 0.126 0.847 ± 0.142 0.133 0.859 ± 0.119 0.931 ± 0.158 0.182
flinear 0.140 ± 0.034 0.157 ± 0.033 0.125 ± 0.029 0.043* 0.146 ± 0.044 0.134 ± 0.019 0.720

Values are given as mean ± standard deviation. IVIM parameters were derived from biexponential fitting of all available 13 b-values 
(reference), biexponential fitting of optimal subsampled b-value distribution (subsampled), and monoexponential fitting of optimal 
sIVIM model (linear), separated by histological grading, and FIGO staging. *p < 0.05, †Values in units of x 10-3 mm2/s. MD = moderately 
differentiated, PD = poorly differentiated, sIVIM = simplified IVIM, WD = well differentiated

Table 6. Comparisons of IVIM Parameters 

Parameters
Histological Grading FIGO Staging

WD/MD P PD P Low (IB–IIA) P High (IIA–IVB) P
SCC

Dreference
† 0.842 ± 0.165 ref 0.847 ± 0.118 ref 0.836 ± 0.167 ref 0.850 ± 0.116 ref

Dsubsampled
† 0.843 ± 0.166 0.899 0.847 ± 0.118 0.983 0.836 ± 0.168 0.963 0.851 ± 0.116 0.949

Dlinear
† 0.843 ± 0.166 0.899 0.847 ± 0.118 0.983 0.836 ± 0.168 0.963 0.851 ± 0.116 0.949

freference 0.133 ± 0.017 ref 0.147 ± 0.031 ref 0.145 ± 0.035 ref 0.139 ± 0.021 ref
fsubsampled 0.130 ± 0.018 0.580 0.145 ± 0.035 0.502 0.143 ± 0.039 0.589 0.137 ± 0.022 0.471
flinear 0.132 ± 0.020 0.899 0.145 ± 0.038 0.552 0.143 ± 0.042 0.553 0.138 ± 0.024 0.778
D*reference

† 55.01 ± 4.562 ref 52.91 ± 6.165 ref 51.97 ± 6.081 ref 54.90 ± 5.089 ref
D*subsampled

† 55.14 ± 4.818 0.989 52.83 ± 6.553 0.989 51.71 ± 6.777 1.000 55.07 ± 5.083 0.966
Adenocarcinoma

Dreference
† 0.944 ± 0.124 ref 0.848 ± 0.144 ref 0.859 ± 0.119 ref 0.931 ± 0.159 ref

Dlinear
† 0.944 ± 0.126 0.899 0.847 ± 0.142 0.983 0.859 ± 0.119 0.963 0.931 ± 0.158 0.949

freference 0.156 ± 0.022 ref 0.135 ± 0.031 ref 0.143 ± 0.037 ref 0.147 ± 0.016 ref
flinear 0.157 ± 0.033 0.899 0.125 ± 0.029 0.552 0.146 ± 0.044 0.553 0.134 ± 0.019 0.788

Statistical comparisons were performed for IVIM parameters IVIM parameters were estimated from biexponential fitting of optimal 
subsampled b-value distribution (subsampled) and monoexponential fitting of optimal sIVIM model (linear) against biexponential fitting 
of all available 13 b-values (reference), separated by histological grading, and FIGO staging. †Values in units of x 10-3 mm2/s.
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a multi-center study may be necessary to generalize these 
results. Second, as this was a retrospective study, the 
choice of b-values for patients was not guided by simulation 
results. Lastly, the feed forward approach used in this 
study saves computation time by reducing the search space 
compared to an exhaustive grid search but may not find the 
true minimum at a given subsample size. 

In summary, by using the optimized BVD, the proposed 
method could reduce IVIM scan time by 55% with a low 
error rate, estimating parameters that were not significantly 
different from reference parameters. Furthermore, both 
freference and fsubsampled were significantly different between 
histological grades, while both D*reference and D*subsampled were 
significantly different between FIGO stages in patients with 
SCC. Therefore, optimized subsampling may potentially allow 
the integration of IVIM in a clinical setting for patients 
with cervical cancer.
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