
Annotating Protein Functional Residues by Coupling High-
Throughput Fitness Profile and Homologous-Structure Analysis

Yushen Du,a,b Nicholas C. Wu,a,c* Lin Jiang,d Tianhao Zhang,a,c Danyang Gong,a Sara Shu,a Ting-Ting Wu,a Ren Suna,b,c

Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, California, USAa; Cancer Institute, Collaborative Innovation Center
for Diagnosis and Treatment of Infectious Diseases, ZJU-UCLA Joint Center for Medical Education and Research, Zhejiang University School of Medicine, Zhejiang
University, Hangzhou, Zhejiang, Chinab; Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, USAc; Department of Neurology,
University of California Los Angeles, Los Angeles, California, USAd

* Present address: Nicholas C. Wu, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.

ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Se-
quence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incom-
plete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping se-
quences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based
methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate
functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of
single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified func-
tional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical
or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis
with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional resi-
dues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 �-ribbon. We
further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-
binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues
that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which
homologous-structure information is available.

IMPORTANCE To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual
residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling
size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins.
Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-
throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we
were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and
identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to
virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-
structure information is available.
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Amino acid residues in a protein have two roles: providing a
structural framework (structural residues) and mediating in-

teractions with other biomolecules (functional residues). Identi-
fication and annotation of functional residues are fundamental
goals in protein characterization (1–5). A number of methods
have been developed to achieve these goals. Most methods use
sequence conservation information, with the assumption that
functional residues are often conserved in homologous proteins
(6–8). The residues identified are then expected to perform func-
tions similar to those of other homologs. Other methods predict
functional residues on the basis of the shapes and properties of

three-dimensional protein structures (9–15). Starting from well-
known functional domains (ligand binding, catalytic, etc.), these
analyses determine similar local structures and key residues that
may be related to the function. Conservation-based methods pro-
vide valuable information on protein functional residues but are
limited by the insufficient sampling of protein sequence space in
natural evolution. It is also challenging for conservation-based
methods to assess structural and functional constraints and to
assign functionality at the single-residue level (Fig. 1) (16). There-
fore, a more direct and systematic method needs to be used for the
accurate identification and annotation of functional residues.
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Because of their compact genome, viruses usually encode mul-
tifunctional proteins, including viral polymerase proteins. Viral
RNA-dependent RNA polymerase (vRdRp) is used by many RNA
viruses for transcription and replication. Functions of vRdRp can
be grouped into two classes: canonical and noncanonical. The
canonical vRdRp functions include template and nucleotide bind-
ing, initiation, and elongation (17–19). Among different classes of
RNA viruses, these canonical functions and corresponding pro-
tein structural features are conserved (17–22). The noncanonical
functions of vRdRp, however, are specific to each virus. For exam-
ple, multimerization of hepatitis C virus (HCV) vRdRp is essential
for viral replication. Thus, the interacting residues in HCV vRdRp
are noncanonical functional residues specific to HCV (23, 24).
Moreover, vRdRp often recruits cellular machinery for replication
and plays a role in inhibition of the cellular immune response
(25–31). Noncanonical functional residues are usually involved in
the performance of those functions and thus are essential for viral
replication. Noncanonical functional residues in vRdRp are diffi-
cult to determine by commonly used methods and are not as well
studied as the key residues for polymerase catalytic functions.
However, the noncanonical functional residues are indispensable
for thorough protein characterization and may act as drug targets.
As a result, it is essential to develop methods that enable the iden-
tification of noncanonical functional residues.

We previously developed a method to systematically identify
functional residues by coupling experimental fitness measure-
ment with protein stability prediction (16). Here, we extended this
method to annotate functional residues in combination with
structural comparison of homologous proteins. The method con-
sists of three steps. First, the effect of PB1 mutations on viral rep-
lication at single-nucleotide resolution is examined by saturation
mutagenesis and high-throughput sequencing. Second, func-
tional PB1 residues that are essential for viral growth but do not
affect protein stability are identified by protein stability predic-
tion. Third, homologous structural alignment is used to further

annotate specific biological functions (canonical versus nonca-
nonical functions) for each functional residue (Fig. 1). We
achieved high sensitivity in identifying and annotating the canon-
ical polymerase functional residues. Moreover, we also identified
noncanonical functional residues, which are exemplified by a
cluster of residues located in the loop region of the PB1 �-ribbon.
These previously uncharacterized residues were shown to be im-
portant for PB1 protein nuclear import by interacting with Ran-
binding protein 5 (RanBP5) (32).

RESULTS
Fitness profile of influenza A/WSN/33 virus segment 2 at single-
nucleotide resolution. High-throughput genetics have been ap-
plied to a number of viral, bacterial, and cellular proteins (16,
33–38, 111, 112). Here, point mutations were randomly intro-
duced into segment 2 of influenza A/WSN/33 virus through error-
prone PCR. To provide a more accurate quantification of the fit-
ness effect of single mutations, we employed the “small-library”
method that we recently developed (16). Nine small libraries were
generated to cover all of segment 2 (see Fig. S1A in the supplemen-
tal material). Each small library was transfected into 293T cells
together with seven plasmids that encoded the other wild-type
viral segments (39). Reconstituted mutant virus libraries were
used to infect A549 cells at a multiplicity of infection (MOI) of
0.05, and supernatants were collected 24 h postinfection. The in-
put DNA libraries, posttransfection libraries, and postinfection
libraries were subjected to Illumina sequencing. To control for
technical error and assess library quality, biological duplicates
were included in both transfection and subsequent infection steps
(Fig. 2A).

The distribution of the number of mutations in the input DNA
library was examined. Thirty to 35% of the input DNA library
plasmids contained the desired single nucleotide mutations (see
Fig. S1B in the supplemental material). We achieved at least
20,000� sequencing coverage for each nucleotide position (see

FIG 1 Comparison of the conservation-based method and our method. The conservation-based method is commonly used to identify and annotate functional
protein residues, but it has three major limitations. First, it is limited by the insufficient sampling of protein functional space in natural evolution. Second, it is
challenging for this method to dissect residues with structural or functional constraints. Lastly, it is limited to distinguishing the diverse functions within the same
protein. The method we present here may overcome these limitations and provide a systematic way to annotate functional residues. Using high-throughput
fitness profiling, we can identify essential residues for viral replication. Through mutant protein stability prediction, we are able to dissect the structural and
functional constraints. Homologous structural analysis is used to further annotate canonical and noncanonical functional residues.
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Fig. S1C). The library covered 94.9% of the nucleotides in segment
2 and included 98.2% of the single nucleotide mutations of ob-
served positions (see Fig. S2A and C). To further improve the
accuracy of fitness quantification, we focused on the mutations
that make up �0.1% of the plasmid mutant library. After this
quality control, we were still able to observe 94.2% of the nucleo-
tide positions with 63.9% of the single nucleotide mutations.
More than 82% of the nucleotide positions were covered with two
or three nucleotide mutations (see Fig. S2B and D in the supple-
mental material). To assess the quality and reproducibility of our
mutant library, we compared the relative frequencies of single
mutations between biological replicates. We obtained a strong
Spearman correlation coefficient of 0.93 for two independent
transfections and 0.75 for infections (Fig. 2B). A relative fitness
(RF) index was calculated for individual mutations as the ratio of
relative frequency in the infection library to that in the input
DNA library. The profiling data of all of segment 2 are shown in
Fig. 2C, where most of the mutations had a fitness cost (log10

RF index of �0).
Systematic identification of deleterious mutations of the PB1

protein. Segment 2 of influenza A virus encoded three proteins:
PB1, PB1-F2, and N40. N40 was a truncated form of the PB1
protein that lacked the first 39 amino acids. PB1-F2 is not essential

for viral replication in vitro, as completely abolishing PB1-F2 ex-
pression had no effect on viral growth (40, 41) (see Fig. S3 in the
supplemental material). So we focused on the PB1 protein for
downstream analysis. The RF indexes of silent mutations were
considered an internal quality control since most, if not all, of
them were expected to have a growth capacity comparable to that
of the wild type. In the fitness profile of the PB1 protein, the RF
indexes of silent mutations followed a normal distribution with a
mean of 0.9 and were significantly higher than those of nonsense
mutations (two-tailed t test, P � 4.6E-21) (see Fig. S4 in the sup-
plemental material). This result confirms the presence of fitness
selection and validates the data quality.

To systematically identify deleterious mutations, we chose a
stringent RF index cutoff of �0.1. A total of 2.4 percentage points
of silent mutations fell below the cutoff, which represented type I
error. A total of 43.1 percentage points of missense mutations that
satisfied this cutoff were identified as deleterious mutations
(Fig. 3A). We randomly selected 14 deleterious mutations and
reconstructed them individually. Rescue experiments were per-
formed, and the resultant viral titers were quantified by 50% tissue
culture infective dose (TCID50) assay. Thirteen of 14 mutant vi-
ruses had at least a 10-fold drop in the viral titer compared to that
of the wild type. The other mutant also showed a more-than-6-

FIG 2 Fitness profile of influenza A virus segment 2 at single-nucleotide resolution. (A) Schematic representation of the experimental flow of high-throughput
fitness profiling. Random single nucleotide mutations were introduced into influenza A/WSN/33 virus segment 2. Mutant viral libraries were generated by
cotransfecting a mutant DNA library with seven plasmids encoding the other wild-type viral fragments. Viral libraries were then passaged in A549 cells.
High-throughput sequencing of the plasmid mutant libraries and posttransfection and postinfection viral libraries was performed. (B) Correlation of the relative
frequency of each single-nucleotide mutation between biological duplicates. (C) RF scores of individual mutations of influenza A/WSN/33 virus segment 2 in
log10. Two representative regions are zoomed in on to show the single nucleotide change.
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fold titer decrease (Fig. 3B). These results validated the approach
we used to systematically quantify the RF and identify deleterious
mutations of the PB1 protein.

Identifying functional residues by dissecting structural and
functional constraints. A mutation might be deleterious because
of structural or functional constraints (16, 42). We have recently
demonstrated that coupling high-throughput genetics with mu-
tant stability predictions can identify residues that are dominated
by functional constraints (16). Briefly, deleterious mutations that
do not destabilize the protein are identified as functional residues.
Here, we modeled protein stability by using two computational
tools: I-Mutant and Rosetta ddg monomer (see Data Set S1 in the
supplemental material).

I-Mutant is a supporter vector machine-based software used to
predict the effect of single-site mutations on protein stability
(��G) (43–45). On the basis of the predicted ��G, mutations can
be classified as destabilizing (��G, ��0.5), neutral (�0.5 �
��G � 0.5), or stabilizing (��G, �0.5). We applied I-Mutant
predictions for all missense mutations in PB1 with the structure
resolved from the bat influenza A virus polymerase complex (Pro-
tein Data Bank [PDB] code 4WSB) (46, 47). Of the mutations for
which structure information is available, 64.5% were shown to be
destabilizing, 33.5% were neutral, and 2% were stabilizing (see
Fig. S5A in the supplemental material). As expected, destabilizing
mutations had a significantly small solvent-accessible surface area
(SASA) (48–50) (see Fig. S5B). To further reduce the rate of false-
negative functional residue identification, we performed protein
stability prediction with Rosetta for all deleterious mutations (16,
42, 44). Unlike the machine learning algorithm used by I-mutant,
Rosetta generated structural models for single amino acid muta-
tions based on a preoptimized wild-type structure. With a high-
resolution protocol, 50 models of wild-type and mutant protein
structures were generated and the three lowest ��G values were
averaged on the basis of optimized rotamers. The absolute corre-
lation coefficient of the predictions that resulted from these two
methods was 0.3 (see Fig. S5C). Aiming at getting a conserved
classification of functional residues, we classified a residue as func-

tional if it had one or more missense mutations satisfying both the
deleterious RF index cutoff and nondestabilizing criteria of ��G
predictions from either software. We identified 297 residues as
functional.

To examine the sensitivity of our method of identifying func-
tional residues in PB1, we performed a thorough literature search,
compiled 31 residues that were reported to be functional in PB1
(32, 51–54), and compared the performance of our method with
that of four other methods: FireStar, Frpreq, Consurf, and Con-
cavity (6, 10, 55–58) (Table 1). Our method was able to identify 21
of the 31 residues and thus had a sensitivity of ~68%. FireStar
failed to identify any of them. Frprep, Concavity, and Consurf
identified 4 (Frprep score, �8), 7 (Concavity score, �0.1), and 17
(Consurf score, 9) residues, respectively. Notably, our method was
the only one that identified functional residues related to nonca-
nonical polymerase functions (four of the eight residues) that
were not conserved in sequence or structure. Overall, these results
validated our method of combining high-throughput genetics
with mutant stability prediction to identify functional residues in
PB1 in a sensitive and unbiased manner (16, 42, 44).

Annotating functional residues by homologous structural
alignment. The vRdRp family has a conserved “right-handed”
structure. It consists of three major conserved domains (finger,
palm, and thumb) and six motifs (pre-A/F and A to E) (20). Since
canonical vRdRp functional residues of the PB1 protein are ex-
pected to be structurally conserved, they aligned well with other
protein structures from the vRdRp family. Therefore, homolo-
gous structural alignment might enable us to further annotate PB1
residues by distinguishing canonical and noncanonical vRdRp
functional residues. The recent improvement of algorithms pro-
vides opportunities for more accurate structure comparison. Here
we used TM-align and 3DCOMB for pairwise and multiple struc-
ture alignments (MSAs) (59–61). Both softwares use TM-score to
quantify protein structural similarity, which is robust to local
structural variation and is protein length independent (59, 60).
Moreover, 3DCOMB takes into account both local and global

FIG 3 Systematic identification of deleterious mutations of the PB1 protein. (A) Histogram illustrations of the RF distribution (RF index in log10) of silent and
missense mutations. Mutations with an RF index of �0.1 were identified as deleterious mutations. The percentages of silent and missense mutations that fall
below this cutoff are boxed in blue. (B) Fourteen deleterious mutations were selected and reconstructed in the viral genome. The TCID50s of selected single
nucleotide mutations are shown. The dashed line represents the detection limit of the TCID50 assay. Data are presented as mean values � standard deviations of
biological duplicates. WT, wild type.
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features, which is suitable for alignment of distantly related pro-
tein structures (61).

Twenty representative vRdRp structures were selected from
positive single-stranded RNA (ssRNA) viruses, negative ssRNA
viruses, and double-stranded RNA (dsRNA) virus families on the
basis of previously stated criteria (20). Briefly, representative
structures were selected from each of the Baltimore classes that
encoded vRdRp, including positive ssRNA viruses (Caliciviridae,
Flaviviridae, Picornaviridae, Cystoviridae), dsRNA viruses (Birna-
viridae, Cystoviridae, and Reoviridae), and negative ssRNA viruses
(Bunyaviridae) (62–81). Structures with no mutations and with a
bound substrate were preferred. PDB files with the highest reso-
lution were picked for each protein (see Table S1 in the supple-
mental material).

To ensure sufficient structural similarity, a pairwise structural
comparison was performed with the selected protein and PB1 by
using TM-align. The structures with TM scores of �0.5 were kept
for multiple structural alignment, which generally indicated sim-
ilar protein folding (43). Figure S6A in the supplemental material
provides an example superimposition of the PB1 protein with
HCV NS5B (PDB code 2XI3) with decent alignment in major
protein domains (67). A total of 16 proteins were included for
MSA with PB1 by using 3DCOMB (see Table S1 in the supple-
mental material).

The root mean square deviation (RMSD), the measurement of
the average distance between the atoms and superimposed pro-
teins, was reported by 3DCOMB for each residue as the represen-
tative of structure conservation. As the reported aligned residues
had RMSD scores ceiled at 9, we assigned the residues that did not

align among structures with an RMSD value of 10 (Fig. 4A). Low
RMSDs meant that the residues were conserved in the vRdRp
family and thus more likely to have canonical vRdRp functions. As
expected, the structurally conserved residues were less tolerant of
mutations. The average RF index of structurally conserved resi-
dues was significantly lower than that of nonconserved residues
(two-tailed t test, P � 0.0006, Fig. 4B). The RMSDs of all of the
identified functional residues of the PB1 protein were plotted. A
smooth curve of RMSDs was fitted by local polynomial (loess)
regression. We could clearly identify the six conserved domains
(pre-A/F and A to E) of vRdRp as valleys on the smooth curve
(Fig. 4C). These results demonstrated the feasibility of using ho-
mologous structural alignment to identify canonical vRdRp resi-
dues.

Identification of noncanonical functional residues, ones in-
volved in nuclear import of the PB1 protein. Forty-three percent
of the functional residues identified could not be aligned with
other protein structures from the vRdRp family. Although this
could be due to poor alignment quality, it is also possible that these
residues have noncanonical functions that are essential for viral
growth. Interestingly, 62% of these residues belong to the protein
interface between PB1 and PB2 or PA, as identified by the change
in SASA upon complex formation by using Sppider (residues with
at least a 4% decrease in SASA and �5 Å2 of exposed surface area
upon complex formation) (82) (see Fig. S6B in the supplemental
material). These interface residues also accounted for some of the
peaks (residue 50 to 80, residues 350 to 400, and residues at the C
terminus of PB1) in the smooth RMSD curve of functional resi-
dues in Fig. 3C.

TABLE 1 Comparison of methods of identification of known functional PB1 residues

Mutation Functional annotation Our method FireStar Frpred Consurf ConCavity

L8 Interact with PA 0 0 1 3 0
F9 Interact with PA 0 0 1 3 1.40E-6
L10 Interact with PA 0 0 1 6 0
K11 Interact with PA 1 0 1 5 0
M179 Polymerase activity 0 0 2 4 4.40E-8
K188 Nuclear localization 1 0 2 6 0
R189 Nuclear localization 1 0 1 3 0
R208 Nuclear localization 1 0 1 1 0
K209 Nuclear localization 0 0 2 3 0
K229 Polymerase activity 1 0 7 9 0.288
R233 Polymerase activity 0 0 7 9 0.044
K235 Polymerase activity 1 0 7 9 0.682
R238 Polymerase activity 1 0 7 9 0.201
R239 Polymerase activity 0 0 7 9 0.187
K278 Polymerase activity 1 0 6 9 0.022
K279 Polymerase activity 1 0 6 9 1.08E-5
N306 Polymerase activity 1 0 6 8 0.437
K308 Polymerase activity 1 0 6 9 0.027
M409 Polymerase activity 1 0 9 9 0.829
Q442 Polymerase activity 1 0 4 9 0.653
S444 Polymerase activity 1 0 7 9 0.009
D445 Polymerase activity 1 0 6 9 0.001
D446 Polymerase activity 1 0 8 9 5.25E-6
N476 Polymerase activity 1 0 7 9 0.008
S478 Polymerase activity 0 0 7 9 0.011
K481 Polymerase activity 1 0 8 9 0
Y483 Polymerase activity 1 0 4 8 0
E491 Polymerase activity 1 0 8 9 0.028
F492 Polymerase activity 1 0 6 8 0.001
F496 Polymerase activity 0 0 5 8 0.001
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We then performed a detailed analysis of the noncanonical
functional residues that were not located in the heterotrimer-
forming interface. When mapped onto the protein structure,
some of them (residues 180 to 220) formed a noticeable cluster
(Fig. 5A and B). This clustered region is unique to the PB1 protein,
which consists of a long twisted �-ribbon connected by a non-
structured loop (47). It protrudes from the polymerase complex
structure and is fully solvent exposed. Two nuclear localization
signals (NLSs) were reported in the �-ribbon region (amino acids
187 to 190 and 207 to 210) to mediate PB1 nuclear import through
interaction with RanBP5 (32, 83). Nonetheless, the function of
this loop region is not completely clear. It is suspected to interact
with the viral genome in the resolved influenza B and C virus
structures (46, 47, 84), and K198 of influenza A virus was sug-
gested to be related to host adaptation (85). As the density of the
loop region (residues 195 to 198) is missing from the influenza A
virus polymerase crystal structure, we used kinematic loop mod-
eling in the Rosetta software to computationally reconstruct the
loop region (86). From the above-described analysis, D193 in the
loop region was identified as a noncanonical functional residue.
Interestingly, it was the only negatively charged residue located
within a highly positively charged environment. It was 100% con-
served among all of the human influenza A virus PB1 sequences
from the Influenza Research Database under purifying selection
(ratio of nonsynonymous to synonymous evolutionary changes
[dN/dS ratio] of 0.015) (87–89, 113) (see Table S2 in the supple-
mental material). Two positively charged residues (K197, K198)

located on the side opposite D193 in the loop region were also
highly conserved in human influenza A viruses (�99%) and pos-
sibly interact with D193. Although they were not classified as es-
sential residues according to our high-throughput fitness profile,
their mutations in charges (K197E, K198E) resulted in a �6-fold
drop in the RF index. To examine if the loop region has possible
noncanonical functions, we introduced single substitutions
(D193G, K197E, K198E) and double substitutions (D193G-
K197E, G193G-K198E, K197E-K198E) into the PB1 protein. We
also constructed mutant versions with substitutions in the NLS
region (K188A-R189A, R208A-K209A) and mutant versions that
decreased the polymerase activity (W55R, H184R, H47L, Q268L)
as controls. Of note, all of the controls were identified as deleteri-
ous in our high-throughput fitness profile. Viral production of all
of the mutant versions was measured by TCID50 assay with viral
rescue experiments. D193G, D193G-K197E, G193G-K198E,
K197E-K198E, and the reported substitutions in the NLS region
(K188A-R189A) had severe impacts on viral production, with no
detectable viral titer posttransfection (Fig. 5C) (32). Consistently,
these mutations also resulted in a significantly lower viral growth
rate in A549 cells (Fig. 5D). To examine the vRdRp function of
these mutations, we used a minigenome replicon assay by cotrans-
fecting a virus-inducible luciferase reporter and polymerase seg-
ments (PB2, PB1, PA, NP) in 293T cells. The reported mutant NLS
(K188A-R189A), which was highly deleterious for viral replica-
tion, still had ~50% polymerase activity in the minigenome repli-
con assay. Similarly, D193G and all of the double substitutions

FIG 4 Annotation of PB1 functional residues with homologous structural alignment. (A) An MSA was performed with PB1 and 16 other homologous structures
in the vRdRp family. The PB1 structure is rainbow colored according to the RMSD of each residue. (B) Histograms of the RF indexes are shown for residues that
cannot be aligned (red) and residues that can be aligned with other structures in the vRdRp family. The RF indexes of residues that cannot be aligned were
significantly higher (two-tailed t test, P � 0.0006). (C) RMSDs of functional residues. A smooth curve was fitted by loess regression. Conserved vRdRp domains
(pre-A/F and A to E) are labeled and shown as valleys on the smooth RMSD curve.
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(D193G-K197E, D193G-K198E, K197E-K198E) showed discor-
dance between vRdRp function and viral growth capacity. Com-
pared with W55R, H184R, H47L, and Q268L, which remained at
~0.1 to 65% polymerase activity, the fitness drop caused by these
newly identified loop mutations was much more severe, indicat-
ing that they might have a noncanonical polymerase function of
PB1 (Fig. 5C).

Unlike other RNA viruses, the genome replication and tran-
scription of influenza virus are performed inside the nucleus. Nu-
clear localization function is thus specific to influenza virus and
belongs to noncanonical functions of the PB1 protein. We tested if
the mutations identified in the loop region (D193G, D193G-
K197E, K197E-K198E) had effects on protein nuclear import.
A549 cells were infected with wild-type and mutant viruses at an
MOI of 0.1. Cells were fixed and subjected to immunofluores-
cence analysis (IFA) at 18 h postinfection. As expected, the PB1
proteins of the wild-type virus were localized mostly in the nu-
cleus. However, the PB1 proteins of mutant viruses were signifi-
cantly enriched in the cytoplasm, suggesting that these mutations
were defective in PB1 protein nuclear import (Fig. 6A and B).
More severe defects were observed for double mutations (D193G-
K197E, K197E-K198E). Similar results were observed at earlier
time points (8 h postinfection) at an MOI of 0.5 (see Fig. S7 in the
supplemental material). Interestingly, for those PB1 mutant ver-
sions, the nuclear import of PA protein was also delayed, which is
consistent with the notion that PA and PB1 are imported into the
nucleus as a complex (32, 83, 90, 91) (see Fig. S7).

RanBP5 belongs to the importin-� family, which has a non-
classical nuclear import function (92, 93). RanBP5 has been
shown to be important for influenza A virus PB1 nuclear import.
The NLS mutations affected protein nuclear import by decreasing
binding to RanBP5 (32, 83, 92). Thus, we further tested if muta-
tions in the loop region (D193G, D193G-K197E, and K197E-
K198E) would also affect the interaction between PB1 and
RanBP5. Immunoprecipitation (IP) was performed by cotrans-
fecting the FLAG-tagged PB1 protein and the hemagglutinin
(HA)-tagged RanBP5 protein into 293T cells. Two days later, the
total cell lysate was collected and subjected to IP with anti-HA
antibody-conjugated beads or IgG-conjugated beads. As shown in
Fig. 6B, all three mutant proteins showed decreased binding with
RanBP5. Consistent with our IFA results, double mutations
(D193G-K197E, K197E-K198E) produced a greater reduction in
protein binding. The above-described results indicate that the res-
idues in the loop region are important for nuclear import of the
influenza A virus PB1 protein through interaction with RanBP5,
which is a noncanonical function in the vRdRp family.

DISCUSSION

For a comprehensive characterization of protein function, identi-
fication and annotation of functional residues are the fundamen-
tal tasks. Here we present a systematic approach to these tasks by
using influenza A virus PB1 as the target protein. Our approach
combines high-throughput fitness profiling with mutant stability
prediction and homologous structural alignment to identify and

FIG 5 Identification of noncanonical functional residues of the PB1 protein. (A and B) Noncanonical noninterface functional residues of the PB1 protein are
red. A cluster of residues is located in the long twisted �-ribbon region. The nonstructured loop region (amino acids 195 to 198) was reconstructed with Rosetta.
(C) TCID50s (top) and relative polymerase activities (bottom) of the mutations indicated. The data are presented as mean values � standard deviations of four
independent biological replicates. (D) Growth curves of the mutations indicated. A549 cells were infected with the mutant viruses indicated at an MOI of 0.1.
Viruses were collected at the time points indicated, and TCID50s were measured. WT, wild type.
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annotate canonical and noncanonical vRdRp functional residues
(Fig. 1). Interestingly, we identified a cluster of mutations that
were highly deleterious for viral replication but resulted in rela-
tively intact vRdRp function. These mutations were located in the
loop region of the PB1 �-ribbon and were shown to be important
for PB1 nuclear import. The combination of high-throughput fit-
ness profiling and structural analysis provided a general approach
to the identification and annotation of functional residues that
can be applied to a wide range of proteins about which homolo-
gous structural information is available.

In the context of evolutionary biology, proteins from the same
homolog family have an ancestor in common and possess signif-
icant sequence and structural similarities (94–97). Structural sim-
ilarities are postulated to be maintained by functional constraints
(98, 99). vRdRps probably evolved from a common ancestor
(100). Although their sequence identity is ~20%, they have ad-
opted similar structural domains and use similar catalytic mech-
anisms (20). Throughout evolution, different proteins also
evolved diverse functions to satisfy the needs of specific organ-
isms. Thus, the specific structural motifs that differentiate one
protein from homologous proteins may have organism-specific
functions. Here we used homologous protein structure informa-
tion to further annotate the diverse protein functions. Therefore, a
multifunctional protein might harbor both canonical (evolution-
arily conserved) and noncanonical (organism-specific) functions.
The combination of high-throughput genetic screening with
homologous-structure analysis enabled us to systematically un-
derstand functional residues and important single nucleotide
polymorphisms.

Here we show that the residues in the loop region of the PB1
�-ribbon are important for PB1 nuclear import. Unlike other
RNA viruses, influenza A virus performs its genome replication
inside the nucleus. Thus, the polymerase complex needs to be
translocated into the nucleus to perform its function. It is known
that PB1 and PA are translocated together as a complex, while PB2
can be translocated by itself (101). RanBP5 is important for the
nuclear import of PB1 and PA through direct interaction with
PB1. Besides the two reported NLSs, we show that the mutations
in the loop region also impact the interaction between PB1 and
RanBP5, thus causing the defect in PB1 nuclear import. We do not
have direct evidence that the loop region works as a direct NLS or
by affecting the nearby NLS regions, but on the basis of the se-
quence of the loop region, it did not fall into any of the six classes
of NLSs (32, 102). Thus, we suspected that this region affected PB1
nuclear import by affecting the nearby NLS regions. In agreement
with previous observations, there seems to be no clear consensus
sequence that is responsible or important for RanBP5 binding (32,
103). The detailed mechanism needs to be further defined.

Genetic studies are greatly facilitated by the improvement of
sequencing capacity and the growing number of protein struc-
tures being resolved. Large amounts of information generated
with current technologies demand more effective approaches to
determine structure-function relationships. Coupling mutagene-
sis with high-throughput sequencing, high-throughput fitness
profiling provides a sensitive and unbiased way to identify the
essential residues of targeted proteins (16, 33–37, 104–107). The
same principle applies to other proteins/organisms, as long as the
proper functional measurement can be made (37). For example,

FIG 6 The noncanonical functional residues identified may be involved in nuclear import of the PB1 protein by interaction with RanBP5. (A) Cellular
localizations of wild-type (WT) and mutant PB1 proteins determined by IFA. (B) Percentages of cells with different PB1 localizations. Data are presented as mean
values � standard deviations of three independent biological replicates. At least 50 cells of each replicate were analyzed with ImageJ. *, P � 0.05; **, P � 0.01; ***,
P � 0.001 (two-tailed t test). (C) Interactions between PB1 proteins and RanBP5 were examined by IP. The value below each band is the intensity quantification
measured by Image Lab.
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we can study the proteins related to cell proliferation by using the
cell growth rate as a readout. By using saturated mutagenesis, we
can learn which mutation is related to an abnormal cell growth
rate and can further use flow cytometry to differentiate cells in
different phases. We can also investigate the roles of mutant pro-
teins in cancer metastasis through transwell migration assays in
vitro or by using mouse xenograft models in vivo. The structures of
target or homologous proteins can be linked to a genetic profile
and further facilitate the understanding of biomolecular functions
related to each functional residue. We foresee that this approach
will become more powerful as more protein structures are deter-
mined at an accelerated rate by crystallography and cryoelectron
microscopy and the escalating sequencing technology.

In summary, we have developed a systematic and sensitive
method to identify and annotate functional residues. More im-
portantly, the method presented here is generally applicable to
other proteins with structural information of homologous pro-
teins.

MATERIALS AND METHODS
Construction of influenza A virus segment 2 mutant libraries. Influenza
A/WSN/33 virus segment 2 mutant libraries were generated with the
eight-plasmid transfection system (39). In brief, the entire influenza virus
gene was separated into nine small 240-bp segments. Random mutagen-
esis was performed with error-prone polymerase Mutazyme II (Strat-
agene). For each small library, mutagenesis was performed separately and
the amplified segment was gel purified, BsaI digested, ligated to the vector,
and transformed with MegaX DH10B T1R cells (Life Technologies). As
each small library was expected to have ~1,000 single mutations, ~50,000
bacterial colonies were collected to cover the entirety. Plasmids from col-
lected bacteria were midiprepped as the input DNA library.

Transfection, infection, and viral titer. To generate the mutant viral
library, ~30 million 293T cells were transfected with 32 �g of DNA. Trans-
fections were performed with Lipofectamine 2000 (Life Technologies).
Virus was collected at 72 h posttransfection. TCID50s were measured with
A549 cells. To passage viral libraries, ~10 million A549 cells were infected
at an MOI of 0.05. Cells were washed with phosphate-buffered saline
(PBS) three times at 2 h postinfection. Virus was collected 24 h postinfec-
tion from supernatant.

Individual mutant viral plasmids were generated with a quick-change
system. To generate mutant virus, ~2 million 293T cells were transfected
with 10 �g of DNA. To measure the growth curve, ~1 million A549 cells
were infected at an MOI of 0.1 and supernatants were collected at the
times indicated.

Sequencing library construction and data analysis. Viral RNA was
extracted with the QIAamp Viral RNA Minikit (Qiagen Sciences). DNase
I (Life Technologies) treatment was performed, followed by reverse tran-
scription with the SuperScript III system (Life Technologies). At least 106

viral copies were used to amplify the mutated segment. The amplified
segment was then digested with BpuEI and ligated with the sequencing
adaptor, which had three nucleotides multiplexing ID to distinguish be-
tween different samples.

Deep sequencing was performed with Illumina sequencing MiSeq
PE250. Raw sequencing reads were demultiplexed by using the three-
nucleotide ID. Sequencing error was corrected by filtering unmatched
forward and reverse reads. Mutations were called by comparing sequenc-
ing reads with the wild-type sequence. Clones containing two or more
mutations were discarded. The RF index was calculated for individual
point mutations, and only mutations that had a frequency of �0.1% in
the DNA library were reported. The formula used was RF indexmutant i �
Relative Frequency of Mutant iinfection/Relative Frequency of Mutant iplasmid,
where Relative Frequency of Mutant i � Reads of Mutant i/Reads of wild
type.

All data processing and analysis was performed with customized py-
thon scripts, which are available upon request.

Protein structural analysis. Chain B (PB1 protein) of PDB code
4WSB was used for protein ��G prediction with single amino acid mu-
tations (46, 47). ��G predictions were performed with both the I-Mutant
2.0 package and ddg_monomer in the Rosetta software (43, 108). Default
parameters (temperature of 25°C, pH 7.0) were used in the I-Mutant
package. The parameters used for Rosetta were the same as those previous
described (16, 109). A ��G of �0 in I-Mutant and a ��G of �0 in
Rosetta mean destabilization.

The DSSP tool was used to calculated SASA, which was then normal-
ized to the empirical scale as previously described (48–50). Sppider was
used to identify the protein-protein interface. Residues with at least a 4%
reduction and a �5-Å2 reduction in SASA upon complex formation were
identified as protein-protein interface residues (82).

TM-align and 3DCOMB were used for pairwise structural alignment
and multiple structural alignment (59, 61). TM-score normalized to the
PB1 protein was used.

Protein loop modeling. In the loop region of the PB1 �-ribbon, elec-
tron density for residues 195 to 198 is missing from the X-ray crystal
structure (PDB code 4WSB). Rosetta software was used to computation-
ally reconstruct the loop region, which was based on Monte Carlo sam-
pling with exact kinematic loop closure (86). After energy optimization,
each model was ranked by Rosetta full atom energy function (80). The
lowest-energy model with a hairpin-like loop was selected.

Polymerase activity assay. One hundred nanograms each of PB2, PB1
(wild type and indicated mutations), PA, and NP; 50 ng of a virus-
inducible luciferase reporter; and 5 ng of PGK-Renilla luciferase were
transfected into 293T cells in 24-well plates (110). Cells were lysed at 24 h
posttransfection, and luciferase assay was measured with the Dual-
Luciferase Assay kit (Promega).

IFA. The localizations of wild-type PB1 and mutant PB1 proteins were
determined by Immunofluorescence analysis (IFA). Infected A549 cells
were fixed in 2% paraformaldehyde, permeabilized with 0.1% Triton
X-100, and then blocked with 3% bovine serum albumin and 10% fetal
bovine serum. Viral PB1 protein was detected with anti-PB1 antibody
(GeneTex GTX125923). Hoechst 33342 dye was used for nucleic acid
staining.

IP. Immunoprecipitation (IP) experiments were performed with HA-
and FLAG-tagged proteins expressed in 293T cells. Briefly, cells were
transfected with corresponding expression plasmids with Lipofectamine
2000 reagents (Invitrogen) and lysed at 2 days posttransfection with ra-
dioimmunoprecipitation assay (RIPA) buffer (50 mM Tris-HCl [pH 7.4],
0.5% NP-40, 150 mM KCl, 1 mM EDTA, protease inhibitor). Cell lysates
were incubated with 1 �g of anti-HA antibody for 4 h at 4°C with constant
agitation, washed with RIPA buffer five times, and eluted with 60 �l of
SDS-PAGE sample buffer. All samples were subjected to SDS-PAGE and
Western blotting.

Western blotting. Proteins in SDS-PAGE sample buffer were heated
at 95°C, resolved by SDS-PAGE, and then transferred onto polyvinylidene
difluoride membrane. Proteins were detected with antibodies against
FLAG-epitope, HA-epitope, or actin.

Phylogenetic analysis. PB1 coding sequences were downloaded from
the Influenza Research Database (87). Multiple sequence alignment was
performed with MUSCLE (88). We randomly sampled 3,000 sequences
for dN/dS calculation by Fubar with HyPhy (89).

Accession number(s). Raw sequencing data have been submitted to
the NIH Short Read Archive under accession number PRJNA318707.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at http://mbio.asm.org/
lookup/suppl/doi:10.1128/mBio.01801-16/-/DCSupplemental.

Figure S1, TIF file, 22.9 MB.
Figure S2, TIF file, 22.9 MB.
Figure S3, TIF file, 22.9 MB.
Figure S4, TIF file, 22.9 MB.
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Figure S5, TIF file, 23.7 MB.
Figure S6, TIF file, 23.7 MB.
Figure S7, TIF file, 23.6 MB.
Table S1, DOCX file, 0.03 MB.
Table S2, DOCX file, 0.01 MB.
Data Set S1, XLS file, 0.8 MB.
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