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Pyrochlore magnets can be an unique platform to demonstrate many important concepts and applications of frustrated
magnetic physics in modern condensed matter physics. Most works on pyrochlore magnets deal with the interacting
spin-1/2 local moments, and much less works have studied the spin-1 systems. We here review the physics with
interacting spin-1 local moments on the pyrochlore lattice to illustrate the potentially interesting physics associated
with spin-1 magnets. The generic pyrochlore spin-1 model includes the antiferromagnetic Heisenberg interaction, the
Dzyaloshinskii-Moriya interaction and the single-ion spin anisotropy. The global phase diagram of this generic spin
model is reviewed, and the relation between different quantum phases in the phase diagram is clarified. The critical
properties of the transition from the parent quantum paramagnet to the proximate orders are discussed. The presence
of quantum order by disorder in the parts of the ordered phases is analyzed. The elementary excitations with respect
to the ground states are further reviewed, and the topological natures of these excitations are carefully addressed. The
materials’ relevance of the spin-1 pyrochlore magnets are finally reviewed. This review may provide insights about the
interesting spin-1 local moments on frustrated systems.

I. INTRODUCTION

Interacting spin-1 magnetic systems are believed to be fundamentally different from their spin-1/2 counterparts in many
ways1–9. In the field of frustrated magnetism, there has been a growing interest and effort in the systems with interacting spin-1
local moments where interesting quantum phases and unconventional excitations have been predicted for frustrated spin-1 Mott
insulators1–9. In particular, a chiral liquid phase with a finite vector chirality order has been obtained for the spin-1 triangular lat-
tice magnet8, Haldane phase like symmetry-protected topological phases have been suggested for three-dimensional spin-1 sys-
tems5,10, spin liquid related physics and phenomenology has been explored for the layered triangular material Ba3NiSb2O9

11–17,
and exotic excitations with degenerate band minima were established for the spin-1 diamond lattice antiferromagnet6,9.

The pyrochlore antiferromagnet18 is a stereotype of spin systems with geometrical frustration and numerous quantum phases,
and many interesting ideas and applications of quantum frustrated magnetism can be directly applied. In last decade or so, most
efforts in the field were devoted to the rare-earth pyrochlore magnets where the relevant degrees of freedom are certain spin-
orbital-entangled effective spin-1/2 local moments18–63. Due to the geometrical frustration and the bond-dependent anisotropic
spin interaction19,20,25,64,65, interesting magnetic phases and phenomena, quantum spin ice and U(1) quantum spin liquid for
example, have been proposed and explored22,25–27. This field is fertilized by the existence of the abundant rare-earth pyrochlore
magnets with different magnetic ions. There are emerging efforts on interacting local moments with 3d transition metal ions
on the pyrochlore lattice, and a new family of fluoride pyrochlore systems with the transition metal ions Fe2+, Co2+, Ni2+

and Mn2+ has been synthesized66–69. Unlike the rare-earth 4 f electrons whose interactions are usually quite small, these new
systems, consisting of transition metal ions, have much stronger spin interactions. Moreover, spin-orbit coupling is less important
in these systems, although spin-orbit coupling sometimes becomes active and modifies the local moment structure if there exists
a partially filled t2g shell for the magnetic ions70, and these systems sometimes support interacting spin-1 local moments instead
of effective spin-1/2 moments. Given the limited works on spin-1 pyrochlore magnets, this short review is not supposed to be
quite comprehensive, but instead is hoped to provide more on physical insights and motivation.

Just like the fundamental distinction between the half-integer and the integer spin moments for one dimensional spin chains
that was pointed out by F.D.M. Haldane1,2, the physical properties of the half-integer spin and the integer spin moments on the
pyrochlore lattice are expected to be quite different. In fact, for the rare-earth pyrochlore magnets, such a distinction has already
been manifested in the Kramers doublet system and the non-Kramers doublet system where the non-Kramers doublet originates
from integer spin and supports magnetic quadrupolar order25,27,33. Since most works in this field are dealing with effective spin-
1/2 pyrochlores, it is valuable to analyze the generic physics of the spin-1 pyrochlores. Among the existing fluoride pyrochlores,
Co2+ and Mn2+ have half-integer spin moments while the Ni2+ and Fe2+ ions have integer spin moments66–69. From the
conventional wisdom, when the spin moment is large, the system tends to behave more classically. For geometrically frustrated

a)These authors contributed equally.
b)gangchen@hku.hk, on leave from Fudan University.



2

All-in all-out Splayed FM

Coplanar XY
AFM1

Coplanar XY
AFM2

Quant.
Para.

-2 0 2
-6

0

8

D/J

D
z/

J
All-in all-out Splayed FM

Coplanar XY
AFM1

Coplanar XY
AFM2

Quant.
Para.

-2 0 2
-6

0

8

D/J

D
z/

J
All-in all-out Splayed FM

Coplanar XY
AFM1

Coplanar XY
AFM2

Quant.
Para.

-2 0 2
-6

0

8

D/J

D
z/

J
All-in all-out Splayed FM

Coplanar XY
AFM1

Coplanar XY
AFM2

Quant.
Para.

-2 0 2
-6

0

8

D/J

D
z/

J N
on

-c
op

.
X

Y
A

F
M

FIG. 1. The phase diagram of our generic spin model for the spin-1 pyrochlore system. Here, the Heisenberg exchange J is set to be
antiferromagnetic with J > 0. “Quant Para” refers to the quantum paramagnetic phase. The details of the ordered phases are explained in the
main text. The (red) dot is the Heisenberg point of the model.

systems, however, the spin-1 local moments could occasionally give rise to quantum phenomena. Indeed, in the Ni-based
fluoride pyrochlore NaCaNi2F7, spin-ordering-related features were not found in the thermodynamic measurements down to
the spin glassy transition at 3.6K that is attributed to the possible bond randomness, although the system has the Curie-Weiss
temperature −129K66. Apart from this new material, the spin-1 pyrochlore magnets have already been suggested for the Ru-
based pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7, despite the fact that the stronger spin-orbit coupling of the
4d electrons can be more important in these two systems. Partly motivated by these experiments and more broadly about the
physics of the spin-1 moments, we review the generic spin model and the magnetic properties of the spin-1 local moments on
the pyrochlore lattice.

In addition to the Heisenberg model that is usually assumed for the 3d transition metal ions and sometimes for the 4d transition
metal ions, there exist the on-site single-ion spin anisotropy and the antisymmetric Dyzaloshinskii-Moriya interaction. The phase
diagram for interacting spin-1 pyrochlore magnets is summarized in Fig. 1. To illustrate the thought, one starts from the quantum
paramagnetic ground state in the strong single-ion spin anisotropic limit and explore the instability of this quantum state as the
Heisenberg exchange and the Dyzaloshinskii-Moriya interaction are switched on. Mostly relying on a flavor wave theory, one
can access the phase transitions out of this quantum paramagnetic state and explore the properties of criticalities. Inside the
ordered phases, we implement the usual mean-field theory and establish the phase diagram on the ordered side. One can further
identify the region on the ordered side where there exist continuous degeneracies of the ground state manifold at the mean-field
level. The quantum fluctuation is studied and lifts the continuous degeneracies. The magnetic excitations in different phases are
also discussed.

The following parts of this review are organized as follows. In Sec. II, we explain the generic spin-1 model Hamiltonian. In
Sec. III, we explain the flavor wave theory, and explore the magnetic excitation and the instability of the quantum paramagnetic
phase. In Sec. IV, we focus on the ordered side and explain the magnetic properties of the magnetic orders. Finally in Sec. V,
we summarize the theoretical side and the physical properties of the phase diagram, and review the materials’ relevance of the
spin-1 pyrochlore magnets.

II. MODEL HAMILTONIAN

We start the review from explaining the local moment physics of the Ni2+ ion in NaCaNi2F7. Although the starting point here
is specific to NaCaNi2F7, the physical model itself applies broadly to other spin-one pyrochlore systems, and we merely present
the model through the specific case of NaCaNi2F7. The Ni2+ ion has a 3d8 electron configuration. In the octahedral crystal field
environment of NaCaNi2F7, the six electrons occupy the lower t2g orbitals, and the remaining two electrons occupy the upper eg
orbitals and form a spin S = 1 local moment. There is no orbital degeneracy here. The following spin model was proposed for
the interaction between the local moments71. The minimal spin Hamiltonian is given as65,

H = ∑
〈i j〉

[
JSi ·S j +Di j · (Si×S j)

]
+∑

i
Dz(Si · ẑi)

2, (1)
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FIG. 2. (a) The four sublattices and the unit cell of the pyrochlore lattice. (b) The (blue) arrows define the local z or 〈111〉 axis. (c) The electron
configuration of the Ni2+ ion in NaCaNi2F7. While the eg orbitals remain degenerate under the D3d point group, the t2g orbitals would be
broken into a1g and two-fold degenerate e′g orbitals. The relative energies of a1g and e′g orbitals are unknown, and a1g is placed at a higher
energy in the figure. The S = 1 nature of the Ni2+ local moment holds for either distribution of the a1g and e′g orbitals.

where Di j is the bond-dependent vector that defines the antisymmetric Dzyaloshinskii-Moriya interaction72. For the 01 bond in
Fig. 2a, one has D01 = (0,D/

√
2,−D/

√
2), and Di j’s on other bonds are readily obtained from the lattice symmmetry. The Dz

term is the single-ion spin anisotropy allowed by the D3d point group symmetry of the pyrochlore lattice, and ẑi is the local 〈111〉
axis that is defined locally for each pyrochlore sublattice. Even though the Dzyaloshinskii-Moriya interaction arises from the
first order effect of the spin-orbit coupling and the single-ion spin anisotropy arises from the second order effect of the spin-orbit
coupling, it does not necessarily indicate the single-ion anisotropy is weaker than the Dzyaloshinskii-Moriya interaction. In fact,
ignoring the effect from Hund’s coupling, one has the following results73

|Di j|/J ∼ O(λ/∆), (2)

|Dz|/∆∼ O(λ 2/∆
2), (3)

where λ is the spin-orbit coupling and ∆ is the crystal electric field splitting between the t2g and the eg manifolds and can be
much larger than the superexchange interaction J. As a result, whether λ appears as the linear order or as the second order
cannot be used to argue for the relative magnitudes of |Di j| and Dz. Both couplings are included in the model Hamiltonian. The
pseudo-dipolar interactions were neglected, as they are subleading compared to the Dzyaloshinskii-Moriya interaction for the
3d transition metal ions without any orbital degeneracy. The pseudo-dipolar interactions, however, may become important for
the 4d transition metal ions.

III. FLAVOR WAVE THEORY FOR QUANTUM PARAMAGNET

The generic spin model contains three different interactions. The quantum ground state of the Heisenberg model is one of
the hardest problems in quantum magnetism, so it is not so profitable to start from there. Instead, one starts from the strong
single-ion spin anisotropy limit with Dz > 0 where the ground state is a simple product state of the quantum paramagnet with

|quantum paramagnet〉= ∏
i
|Sz

i ≡ Si · ẑi = 0〉. (4)

This state is impossible for the half-integer spin local moments as there is always Kramers’ degeneracy. From this well-
understood limit, one turns on the exchange interaction and study the evolution of the magnetic excitation and the instability.

A. Flavor wave representation

This quantum paramagnet has no long-range magnetic order, and the conventional Holstein-Primarkoff spin-wave theory
cannot be directly applied at all. For the purpose, one invokes so-called flavor wave theory, that was first developed in Ref. 74
for the SU(4) spin-orbital model75, and properly adjust the formulation to our case. One defines the states in the spin-1 local
moment Hilbert space as

|m〉i ≡ |Sz
i = m〉, (5)
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FIG. 3. (a), (b): The (gapped) magnetic excitations in the quantum paramagnetic phase. (c), (d): The magnetic excitations on the phase
boundary of the quantum paramagnet with the excitation gap closed. The parameters are (a) D =−0.14J,Dz = 5J; (b) D = 0.14J,Dz = 5J; (c)
D =−0.17J, Dz = 5J; (d) D = 0.17J, Dz = 5J. The high symmetry momenta are Γ = (0,0,0), X = (0,2π,0), W = (π,2π,0), L = (π,π,π).
It is ready to observe the existence of the triply degenerate nodes (red circle) in the spectrum71. In the insets of (a), (b), the two-fold degenerate
bands are split artificially for demonstration.

with m = 0,±1, and introduce three flavors of the boson operators a†
m(i) to represent the spin operators Sα

i as a†
m(i)〈m|Sα |n〉an(i),

with α = x,y,z. For the quantum paramagnet, one condenses a†
0(i) and a0(i) to āi, with

āi =
[
1−a†

1(i)a1(i)−a†
1̄(i)a1̄(i)

]1/2
. (6)

Thus one has two flavors of the boson operators remained and a†
1(i),a

†
1̄(i) create magnetic excitation from |0〉i to |1〉i, |−1〉i,

respectively. This is very different from the usual Holstein-Primakoff transformation where only one boson is introduced to
describe the quantum fluctuation of the magnetic order. The underlying reason is due to the particular form of the Hamiltonian
and the quantum paramagnetic ground state that allow the excitations of the |1〉i, |−1〉i states to be equally important. As a
consequence, the excitation spectra for this quantum paramagnet should have eight bands, rather than the four bands in the usual
Holstein-Primakoff spin wave theory. Moreover, since the model has no continuous symmetry, the magnetic excitation should
be fully gapped.

B. Ideas of linear flavor wave theory

To carry out the actual calculation of the excitation spectra, one replaces the physical spin operators using the flavor wave
transformation and keep the Hamiltonian to the quadratic orders in the boson operators to obtain a linear flavor wave theory
Hamiltonian71

In Fig. 3(a), (b), we plot the linear flavor wave dispersion for the specific choices of the couplings within the quantum
paramagnetic phase. As we expect, there are eight bands of the magnetic excitations that are fully gapped. Besides the doubled
number of the bands, we notice other unusual properties of the excitations. One found that, in the D < 0 region of the quantum
paramagnetic phase, the minima of the magnetic excitations develop a line of degeneracies from Γ to L in the momentum
space and a threefold degeneracy in the spin space at the Γ point. In the D > 0 region of the quantum paramagnetic phase, the
band minima of the two lowest bands touch at the Γ point with an accidental two-fold degeneracy in the spin space. Both the
momentum space degeneracy and the spin space degeneracy are not protected by any symmetry of the spin Hamiltonian. We
expect the emergent degeneracy to be lifted when we go beyond the linear flavor wave theory and include the interaction between
the flavor bosons.
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C. Critical properties from flavor wave theory

As one further increases the exchange interaction from the quantum paramagnet, the gap of the magnetic excitations gradually
diminishes. Eventually, as the gap is closed, phase transition happens and the system develops magnetic orders. To explain the
critical properties, one can examine the transition from the flavor wave theory. In the D < 0 region, the degenerate modes
along the momentum line from Γ to L become critical at the same time as the gap is closed, see Fig. 3(c). Because of the
line degeneracy, there is an enhanced density of states at low energies at the criticality, and one would expect the specific heat
Cv ∼ T 2 behavior at low temperatures from the mean-field theory. The zero-temperature limit of the specific heat should be
modified because the fluctuations break the momentum space degeneracy and lead to a discrete degeneracy. In the D > 0 region,
as the system approaches the criticality, only the Γ point becomes critical, see Fig. 3(d), and one expects a simple Cv ∼ T 3 at the
mean-field level and a logarithmic correction when the fluctuations beyond the mean-field are included.

The critical modes also contain information on the proximate magnetic orders out of the quantum paramagnetic phase, which
is discussed and compared with the mean-field theory from the ordered phase side71.

IV. MEAN-FIELD THEORY

To study the proximate magnetic orders out of the quantum paramagnetic phase, one natural approach would simply follow
the flavor wave theory that was introduced in the previous section and study the condensation of the critical flavor wave modes.
This is certainly feasible and requires including the interactions between the flavor wave modes that lift the degeneracy of the
low-energy modes. One, however, can implement a mean-field theory to understand the physics here. This is justified since the
system develops magnetic orders in the interesting parameter regimes. This mean-field approach works best deep on the ordered
side. In the mean-field theory, one simply replaces the spin operator with the mean-field spin order parameter and optimize the
mean-field Hamiltonian,

〈H〉= ∑
〈i j〉

Jmi ·m j +Di j · (mi×m j)+∑
i

Dz(mi · ẑi)
2, (7)

under the local constraint |mi|2 = S2. The mean-field ground state can then be found using the simple Luttinger-Tisza method.
Our results are summarized and displayed in Fig. 1 and Fig. 4. All of these orders support an ordering wavevector Q= 0 where
the magnetic unit cell coincides with the crystal unit cell. In the following, we describe the magnetic orders in details. Since the
magnetic orders are focused here, the results will be presented from bottom to top and from left to right in the phase diagram of
Fig. 1.
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FIG. 4. Representative configurations of the magnetic ordered phases in the phase diagram of Fig. 1. (a) All-in-all-out. (b) Splayed FM. The
splay angle is labeled by α . For this configuration, α = 74.2◦. (c) Coplanar XY AFM1. (d) Coplanar XY AFM2. (e) Non-coplanar XY AFM.

A. All-in all-out AFM

In the lower left region of the phase diagram, the “all-in all-out” magnetic order is stabilized. This is understood as follows.
The easy-axis anisotropy favors the spins to be aligned with the local ẑ direction, and the Heisenberg interaction requires the
vector addition of the spins from the four sublattices to be zero. The Dzyaloshinskii-Moriya interaction is less obvious, but
naturally favors non-collinear spin configurations. Simple diagonalization of the Dzyaloshinskii-Moriya interaction term directly
gives the “all-in all-out” spin configuration. Therefore, all three interactions in the Hamiltonian are optimized by the “all-in all-
out” spin configuration. This “all-in all-out” state extends further into the easy-plane anisotropic regime with Dz > 0. As the
local ẑ direction is a three-fold rotational axis, this symmetry operation does not generate new ground states, and the ground
state spin configuration merely has a Z2 degeneracy from the time-reversal transformation.
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B. Splayed FM

In the lower right region of the phase diagram, the “splayed ferromagnet” (“splayed FM”) is stabilized. One such spin
configuration is given in Fig. 4(b) and parameterized as

m0 = ( sinα√
2
, sinα√

2
,cosα),

m1 = (− sinα√
2
, sinα√

2
,cosα),

m2 = ( sinα√
2
,− sinα√

2
,cosα),

m3 = (− sinα√
2
,− sinα√

2
,cosα),

(8)

where mµ refers to the magnetic order on the µ-th sublattice, and the “splay angle” α is found to be α = arctan D′z−[8D2
z+D′z

2]
1
2

2
√

2Dz
,

with D′z ≡ Dz−12J−3
√

2D. There is a ferromagnetic component cosα along the global ẑ direction.
Other equivalent ground state spin configurations can be obtained by lattice symmetry operations. Together with the time

reversal symmetry, there exist a Z3×Z2 degeneracy. This state supports a weak ferromagnetism along one cubic axis and
antiferromagnetism in the remaining two directions. Clearly, when |Dz| is dominant, the spins should be aligned with the local
ẑ direction, and the Dzyaloshinskii-Moriya interaction then favors “two-in two-out” spin configurations in this case. In contrast,
in the weak Dz limit, one has α = 90◦ and the ground state becomes coplanar. This means the “two-in two-out” spin ice
configurations are smoothly connected to coplanar states in this “splayed FM” regime.

C. Coplanar XY AFM1

In the upper left region of the phase diagram, one obtains a coplanar antiferromagnetic spin ground state and dub it “coplanar
XY AFM1”. Here ‘XY’ refers to the xy plane of the local coordinate system. One such spin state is depicted in Fig. 4(c) and is
given as 

m0 =
1√
2
(1, 1̄,0),

m1 =
1√
2
(1̄, 1̄,0),

m2 =
1√
2
(1,1,0),

m3 =
1√
2
(1̄,1,0).

(9)

The spins are perpendicular to the local ẑ direction of the relevant sublattice and orient antiferromagnetically within the same
plane globally. This explains the use of the “coplanar XY AFM1”. This “coplanar XY AFM1” ground state occurs when
Dz >

√
2|D| as one further increases the easy-plane anisotropy from the “all-in all-out” phase. This “coplanar XY AFM1” phase

is in the easy-plane anisotropic limit, and the spins prefer to orient in the local xy plane. The in-plane spin configuration is
able to content both the easy-plane spin anisotropy and the Heisenberg exchange but not the Dzyaloshinskii-Moriya interaction.
This particular spin configuration of the “coplanar XY AFM1” state is obtained because the easy-plane anisotropy wins over the
Dzyaloshinskii-Moriya interaction, such that the Dzyaloshinskii-Moriya interaction is optimized within the manifold of coplanar
spin configurations only.

Again we have a Z3×Z2 degeneracy for the ground state from the lattice symmetry and the time reversal symmetry operations.
In the literature on quantum spin ice, the same classical state is referred to as “Palmer-Chalker” state or “Ψ4” state76,77.

D. Coplanar XY AFM2

In the upper right region (both the “coplanar XY AFM2” and “non-coplanar XY AFM”) of the phase diagram, one found
an extensively degenerate mean-field ground state, and all the three interactions are optimized at the same time. The extensive
degeneracy is parametrized by a U(1) angular variable θ , and the ground state spin configuration is given as

mµ = x̂µ cosθ + ŷµ sinθ , (10)

with θ ∈ [0,2π). The generic spin Hamiltonian does not have any continuous symmetry, thus the continuous degeneracy is not
the symmetry property of the Hamiltonian but is accidental, and can be lifted by the quantum fluctuation. This quantum order
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FIG. 5. Spin wave excitations of the ordered phases. The parameters are chosen as (a) D =−J,Dz = 0 (all-in all-out); (b) D = J,Dz =−0.3J
(splayed FM, the ferromagnetic component is set along the global ẑ direction); (c) D =−0.3J,Dz = 0.6J (coplanar XY AFM1, the config-
uration is set on the global xy plane); (d) D = 0.1J,Dz = J,θ = π/3 (non-coplanar XY AFM); (e) D = 0.5J,Dz = 0.1J,θ = 5π/6 (coplanar
XY AFM2). We plot the Brillouin zone of the pyrochlore lattice and indicate the high symmetry lines in (f). Green circles in (b), (d) and (e)
indicate band touchings belong to certain nodal lines, shown in Fig. 6.

by disorder effect has been previously explored in the effective spin-1/2 pyrochlore material Er2Ti2O7
78–80. Here, quantum

fluctuation picks θ = nπ/3+ π/6 for n ∈ Z, in the phase dubbed as “coplanar XY AFM2”. One such spin configuration is
displayed in Fig. 4(d), and all the spins orient antiferromagnetically within the same plane. The same classical state is referred
to as “Ψ3” state in the literature on quantum spin ice77.

E. Non-coplanar XY AFM

In the remaining part of the upper right region in the phase diagram, quantum fluctuation leads to different ground state spin
configurations, i.e., the quantum fluctuation selects θ = nπ/3 for n ∈ Z. One such spin configuration is displayed in Fig. 4(e),
and all the spins orient antiferromagnetically but are not in the same plane. This phase is dubbed “non-coplanar XY AFM”. The
same classical state is referred to as “Ψ2” state in the literature on quantum spin ice77. The detailed calculation of the order by
quantum disorder effect can be found in Ref. 71.

F. Topological magnons and spin wave excitations of the ordered phases

In Fig. 5, the spin wave excitation of each ordered phase is plotted along high symmetry lines in Brillouin zone. As expected,
the spectra in Fig. 5(a)(b)(c) are fully gapped while in Fig. 5(d)(e), there are gapless pseudo-Goldstone modes at the Γ point,
reflecting the continuous U(1) degeneracy in the mean-field ground state manifold. Since the degeneracy is accidental, a small
gap is expected when we go beyond the linear spin wave approximation.

We further explain the topological spin wave modes in the spectrum. Besides the Weyl nodes (see Fig. 6), we find extra doubly
degenerate band touchings, labeled by green circles in Fig. 5. These touchings belong to certain nodal lines (see Fig. 6). Since
these magnon excitations are bosonic, they occur at the finite energies. These topological magnons81–87 are magnetic analogues
of the electronic topological semimetals88,89.

V. SUMMARY WITH A MATERIALS’ SURVEY

In this short review, we have proposed a generic spin model to describe the interacting spin-1 moments on the pyrochlore
lattice. We have explained the global phase diagram with very rich phases for this generic spin model with several different and
complementary approaches. The magnetic ordered states are understood from both the mean-field theory and the instability of
the quantum paramagnetic phase. The relations between different phases are further clarified. Both the magnetic structures of the
ordered phases and the corresponding elementary excitations are carefully studied. The existence of degenerate and topological
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FIG. 6. The nodal lines and Weyl nodes of the spin wave excitation. (a) For the same parameters as in Fig. 5(b), there is a nodal contour on
the (001) plane (gray) of the reciprocal space. The band touching shown in Fig. 5(b) is indicated by a green dot here. Moreover, there exists a
pair of Weyl nodes along z axis, indicated by red dots. (b) For the same parameters as in Fig. 5(d), there is a nodal contour on the (001) plane
(gray) of the reciprocal space too. Again the band touching shown in Fig. 5(d) is indicated by a green dot. (c) For the same parameters as in
Fig. 5(e), the nodal lines form a cage-like structure. One nodal contour is located on the (001) plane (gray) and intersects with the other four
nodal lines, of which two are located on the (110) plane and the other two are located on the (11̄0) plane. The two band touchings shown in
Fig. 5(e) are indicated by green dots.

materials magnetic ions ΘCW magnetic transitions magnetic structure refs
NaCaNi2F7 Ni2+(3d8) −129K glassy transition at 3.6K spin glass 66
Y2Ru2O7 Ru4+(4d4) −1250K AFM transition at 76K noncollinear AFM Q= 0 92
Tl2Ru2O7 Ru4+(4d4) −956K structure transition at 120K gapped paramagnet 93
Eu2Ru2O7 Ru4+(4d4) - Ru order at 118K Ru order 94
Pr2Ru2O7 Ru4+(4d4), Pr3+(4 f 2) −224K Ru AFM order at 162K Ru AFM order 95 and 96
Nd2Ru2O7 Ru4+(4d4), Nd3+(4 f 3) −168K Ru AFM order at 143K Ru AFM order 97
Gd2Ru2O7 Ru4+(4d4), Gd3+(4 f 7) −10K Ru AFM order at 114K Ru AFM order Q= 0 98
Tb2Ru2O7 Ru4+(4d4), Tb3+(4 f 8) −16K Ru AFM order at 110K Ru AFM order Q= 0 99
Dy2Ru2O7 Ru4+(4d4), Dy3+(4 f 9) −10K Ru AFM order at 100K Ru AFM order 100
Ho2Ru2O7 Ru4+(4d4), Ho3+(4 f 10) −4K Ru AFM order at 95K Ru FM order Q= 0 101 and 102
Er2Ru2O7 Ru4+(4d4), Er3+(4 f 11) −16K Ru AFM order at 92K Ru AFM order Q= 0 103 and 104
Yb2Ru2O7 Ru4+(4d4), Yb3+(4 f 13) - Ru AFM order at 83K Ru AFM order 102
Y2Mo2O7 Mo4+(4d2) −200K Mo spin glass at 22K Mo spin glass 105–108
Lu2Mo2O7 Mo4+(4d2) −160K Mo spin glass at 16K Mo spin glass 109
Tb2Mo2O7 Mo4+(4d2), Tb3+(4 f 8) 20K spin glass at 25K spin glass 110–112

TABLE I. A list of candidate spin-one pyrochlore materials. The null entry means that the data is not available. A detailed discussion can be
found in Ref. 71.

excitations are also discussed. While these results are valid within the approximation, one expects that the results break down
when the system approaches the Heisenberg limit of the spin-1 model. Thus, the phases in the vicinity of the Heisenberg model of
Fig. 1 are expected to be altered, and more quantum treatment is needed. The ground state for the pyrochlore lattice Heisenberg
model is one of the hardest problems in quantum magnetism. The early theoretical attempts provide insights for the classical
limit90,91. Due to the extensive classical ground state degeneracy there, the quantum fluctuation is deemed to be very strong
when the quantum nature of the spins is considered. Moreover, there should be fundamental distinctions between the spin-1/2
and the spin-1 Heisenberg models.

Finally, we give a list of candidate spin-one pyrochlore materials in Table. I and explain their physical properties to end
this review. There have already been several spin-one pyrochlore materials in the literature. We start with from the Ni-based
pyrochlore material NaCaNi2F7

66. This material has a −129K Curie-Weiss temperature, and no features of spin orderings are
observed in the thermodynamic measurement until a spin glassy transition at 3.6K. The spin glassy transition is evidenced by the
bifurcation in the magnetic susceptibility between the zero-field-cooled and field-cooled results. The magnetic entropy saturates
to Rln2 when the temperature is increased to 70K66. The highest temperature 70K in the entropy measurement is probably
not too large to exhaust the actual magnetic entropy as the Curie-Weiss temperature is −129K. If one takes this entropy result,
this magnetic entropy differs from the simple expectation for the spin-1 local moment and indicates a significant easy-axis
spin anisotropy that reduces the total magnetic entropy. In this case, based on the phase diagram in Fig. 1, there would be
magnetic orders. It is possible that the exchange randomness becomes important at low temperatures and drives the system into
a spin glassy state instead. Since the glassy transition occurs at very low temperatures, the spin physics and dynamics at higher
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temperatures and energy scales are probably less influenced by the exchange randomness. If the current entropy result is not
reliable due to the small upper temperature limit, one could extend the entropy measurement further in the temperature to see
if one can exhaust the spin-1 magnetic entropy. In any case, to test the relevance of the model Hamiltonian, it can be helpful
to measure the spin correlation in the momentum space with neutron scattering and compare with the theoretical results. Since
the generic spin model contains the spin space anisotropy in addition to the momentum space due to the single-ion anisotropy
and Dzyaloshinskii-Moriya interaction, it is also quite useful to carry out the polarized neutron scattering measurement on the
single-crystalline sample to detect the spin correlation function in the spin space. A very recent neutron scattering experiment
was actually implemented on a single crystal sample. The general features of the spin correlation seem to be well captured by
the first neighbor Heisenberg model with much weaker further neighbor interactions113.

In fact, there exists a simple and useful recipe to estimate the Dzyaloshinskii-Moriya interaction but not the single-ion spin
anisotropy. The effective magnetic moment of the Ni ion in NaCaNi2F7 is found to be 3.7µB from the susceptibility data from
5K to 300K66. This deviates from 2.82µB for the pure S = 1 moment in the atomic limit, and this deviation is due to the spin-
orbit coupling. It is known that the deviation ∆g of the Landé g factor is related to the Dzyaloshinskii-Moriya interaction114 with
∆g/g∼ |Di j|/J. This suggests that the Dzyaloshinskii-Moriya interaction may be up to 20-30% of the Heisenberg exchange
in NaCaNi2F7. This suggestion seems to be inconsistent with the conclusion that the system is described by the Heisenberg
model in Ref. 113. If the latter is true, there should be an unknown cancellation mechanism in the exchange paths that suppress
the Dzyaloshinskii-Moriya interaction. If the Dzyaloshinskii-Moriya interaction is sizable, its effect would appear in the low-
temperature magnetic properties.

Other existing spin-1 pyrochlore materials are the Ru-based pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7.
Both of them are discussed and summarized in a very nice review paper18 by Gardner, Gingras and Greedan. In both systems,
the A site can be a rare-earth ion or a non-magnetic ion with no moments. In the former case, the coupling between the rare-earth
moments and the Ru/Mo moments may be important, and the rare-earth magnetism also contributes to the magnetic properties of
the system. If the Ru-Ru interaction is the dominant one, one may first consider the magnetic physics of the Ru subsystem. In the
latter case and also for A = Eu, one only needs to consider the Ru/Mo magnetism. The Ru4+ ion has a 4d4 electron configuration,
and the electrons occupy the lower t2g orbitals. Although the atomic spin-orbit coupling is still active due to the partially filled
t2g manifold, the Hund’s coupling could suppress the effect from the spin-orbit coupling for the 4d4 electron configuration. If
the spin-orbit coupling is truly dominant over the Hund’s coupling, a quenched local moment would be obtained. Since these are
4d electrons, we expect the spin-orbit coupling could just be moderate compared to the Hund’s coupling. From the experimental
result of a spin-1 moment for the Ru4+ ion, it is reasonable to take the view of a moderate spin-orbit coupling. Moreover, as it
is show in Fig. 7, there can be two different occupation configurations after one includes the trigonal distortion. Fig. 7(a) has
an orbital degeneracy, while Fig. 7(b) has no orbital degeneracy. The prevailing view of spin-only moment18 for the Ru4+ ion
supports the choice of Fig. 7(b). Moreover, due to different orbital occupation configurations and the realization of the spin-orbit
coupling for the Ru4+ ion, although the model stays the same as Eq. (1), the single-ion anisotropy and the Dzyaloshinskii-Moriya
interaction would have different relations from the ones in Eq. (2) and Eq. (3).

As we show in Table I, almost all materials in the A2Ru2O7 family develop magnetic orders except Tl2Ru2O7. We start
from the materials with pure Ru moments. The non-collinear AFM state, that was found for Y2Ru2O7 in Ref. 92, is simply
the coplanar XY AFM1 state in Fig. 4. It is thus of interest to search for topological magnons in this material. Tl2Ru2O7
experiences a structural transition at 120K that breaks the cubic symmetry, so our model does not really apply here. Eu2Ru2O7
was suggested to develop Ru sublattice orders at 118K and experience a glassy-like transtion at 23K94. The precise nature of
the Ru order is not known. The Ru materials with the unquenched rare-earth moments contain richer physics than the ones
with non-magnetic rare-earth moments. There are three energy scales to consider. From high to low in the energy scales,
one would list them as Ru-Ru exchange interaction, f -d exchange between the Ru moments and rare-earth moments, and the

(a) (c) (d)(b)

FIG. 7. Left: The orbital occupations for 4d4 electron configuration. Under the trigonal distortion, the threefold degenerate t2g orbitals
are splitted into a1g and twofold degenerate e2g states. There are two possible electron occupation configurations: (a) has an unquenched
orbital degree of freedom and (b) does not have. Right: The orbital occupations for 3d2/4d2 electron configuration. Again under the trigonal
distortion, the threefold degenerate t2g orbitals are splitted into a1g and twofold degenerate e2g states. In the two possible electron occupation
configurations, (d) has an unquenched orbital degree of freedom and (c) doesn’t have.
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exchange and dipolar interactions between the rare-earth moments. This hierarchical energy structure arises from the different
spatial extension of the 4d electrons and the 4 f electrons. Since the Ru-Ru exchange interaction would be the dominant one,
we would expect the Ru moments to develop structures at higher temperatures and influence the rare-earth moments via the
f -d exchange. The existing experiments support this view18. The experimental study on these rare-earth based Ru pyrochlores
has not been quite systematic yet. Only limited experimental information is available. We here restrict the discussion to the
systems with more known results. Ho2Ru2O7 was studied using neutron scattering measurements in a nice paper101 by C.R.
Wiebe, et al. The authors revealed the Ru moment order at ∼ 95K and the Ho moment order at ∼ 1.4K. The high temperature
Ru magnetic order is consistent with the splayed FM with a splayed angle α ≈ 41◦. Under the internal exchange field from
the Ru order, the Ho moment further develops a magnetic order at a lower temperature. Despite the agreement between the
experimental order and theoretical result, further measurement of the magnetic excitation within the splayed FM can be useful
to identify nontrival magnon modes. Ref. 104 carried out a powder neutron scattering measurement on Er2Ru2O7 and proposed
a Q= 0 ordered state with a collinear antiferromagnetic magnetic order along the 〈001〉 lattice direction for the Ru moments.
Like Ho2Ru2O7, the Er moments develop a magnetic order at a much lower temperature while the Ru moment ordering occurs
at a higher temperature and should be understood first. To stabilize the collinear order for the Ru moments, one may need a
biquadratic spin interaction115,116. This collinear state is actually not among the ordered states that we find. We suspect that
one ordered state in Fig. 4, especially the coplanar XY AFM2 state or the non-coplanar XY AFM state, may also explain the
existing data, e.g., observed magnetic reflection intensities, for Er2Ru2O7. More experiments are needed to sort out the actual
magnetic order in this material. Because the Ru spin-1 moments in these materials often order at a higher temperature, it would
be interesting to examine the precise magnetic structure and the magnetic excitations in the future experiments and compare
with the theoretical prediction. Future directions in these materials should at least include the understanding of the f -d exchange
between the rare-earth moments and the Ru moments and the magnetic properties of the rare-earth subsystem. The f -d exchange
significantly depends on the nature of the rare-earth moment, i.e. whether it is Kramers doublet, non-Kramers doublet or dipole-
octupole doublet. As a result, the Ru molecular or internal exchange field on the rare-earth subsystem not only depends on the
magnetic structure of the Ru subsystem, but also depends on the form of the f -d exchange. This may give rise to rich magnetic
structures and properties on the rare-earth subsystems in the ordered phase of the Ru subsystems.

It is interesting to compare the spin-1 Ru pyrochlores with the rare-earth osmates (A2Os2O7) and molybedates (A2Mo2O7).
The Os4+ ion has a 5d4 electron configuration, and spin-orbit coupling is stronger than Ru4+. As a result, rather than forming
a S = 1 local moment, the magnetic moment of the Os4+ ion is strongly suppressed by the spin-orbit coupling that would favor
a spin-orbital singlet in the strong spin-orbit coupling limit117–119. Unlike the insulating Ru-based pyrochlores, most Mo-based
pyrochlore materials are metallic18. The Mo4+ has a 4d2 electron configuration. The metallic behavior is probably because
the Hund’s coupling suppresses the correlation effect and induces Hund’s metals120. Instead of developing magnetic orders, the
insulating ones (Y2Mo2O7, Lu2Mo2O7 and Tb2Mo2O7) all show spin glassy behaviors. The origin of the spin glass in these
geometrically frustrated pyrochlore molybedates remains to be a puzzle in the field18. It is possible that, the orbital occupation
of the Mo4+ ion is not given by Fig. 7(c) and is instead given by Fig. 7(d). In that case, the Mo local moment contains a
unquenched orbital degree of freedom, and the orbital and spin interact in a Kugel-Khomskii fashion121 and are affected by
the lattice phonons. This spin-orbital physics has been suggested for the spinel vanadate AV2O4 (A = Ca, Mg, Cd, Zn), where
V 3+ : 3d2 was expected to take the electron configuration in Fig. 7(d)122–127 and forms a spin-1 pyrochlore system with additional
orbital degree of freedom.
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98J. Gurgul, M. Rams, i. d. Z. Świątkowska, R. Kmieć, and K. Tomala, “Bulk magnetic measurements and 99Ru and 155Gd Mössbauer spectroscopies of

Gd2Ru2O7,” Phys. Rev. B 75, 064426 (2007).

http://dx.doi.org/10.1103/PhysRevB.86.075154
http://dx.doi.org/10.1103/PhysRevB.86.075154
http://dx.doi.org/ 10.1103/PhysRevLett.115.267208
http://dx.doi.org/10.1103/PhysRevLett.109.097205
http://dx.doi.org/ 10.1103/PhysRevLett.107.207207
http://dx.doi.org/ 10.1103/PhysRevLett.115.097202
http://dx.doi.org/10.1103/PhysRevX.7.041057
http://dx.doi.org/ 10.1103/PhysRevB.96.085136
http://dx.doi.org/10.1103/PhysRevLett.118.087203
http://dx.doi.org/10.1103/PhysRevB.96.195127
http://dx.doi.org/ 10.1103/PhysRevB.78.094418
http://dx.doi.org/ 10.1103/PhysRevB.92.014406
http://dx.doi.org/ 10.1103/PhysRevB.89.214401
http://dx.doi.org/10.1103/PhysRevB.95.144414
http://dx.doi.org/10.1103/PhysRevB.98.045109
http://dx.doi.org/ 10.1103/PhysRevB.71.094420
http://dx.doi.org/ 10.1103/PhysRevB.71.094420
http://dx.doi.org/ 10.1007/978-3-662-09298-9
http://dx.doi.org/10.1103/PhysRevB.60.6584
http://dx.doi.org/10.1103/PhysRevB.60.6584
http://dx.doi.org/10.1103/PhysRevLett.81.3527
http://dx.doi.org/10.1103/PhysRevB.62.488
http://stacks.iop.org/0953-8984/19/i=45/a=452201
http://dx.doi.org/ 10.1103/PhysRevLett.109.167201
http://dx.doi.org/ 10.1103/PhysRevLett.109.077204
http://dx.doi.org/ 10.1103/PhysRevLett.109.077204
http://dx.doi.org/ 10.1103/PhysRevB.89.140403
http://dx.doi.org/ 10.1103/PhysRevB.89.140403
http://dx.doi.org/ 10.1038/ncomms12691
http://dx.doi.org/ 10.1038/ncomms12691
http://dx.doi.org/ 10.1103/PhysRevLett.117.157204
http://dx.doi.org/10.1103/PhysRevB.95.085132
http://stacks.iop.org/2399-6528/1/i=2/a=025007
http://stacks.iop.org/0295-5075/117/i=3/a=37006
http://stacks.iop.org/0295-5075/117/i=3/a=37006
http://dx.doi.org/10.1103/PhysRevB.94.075401
http://dx.doi.org/10.1103/PhysRevLett.119.247202
http://dx.doi.org/10.1103/PhysRevB.83.205101
http://dx.doi.org/10.1103/PhysRevB.84.235126
http://dx.doi.org/10.1103/PhysRevB.58.12049
http://dx.doi.org/10.1103/PhysRevLett.80.2929
http://dx.doi.org/10.1103/PhysRevB.74.104425
http://dx.doi.org/10.1038/nmat1605
http://dx.doi.org/ 10.1063/1.4793517
http://dx.doi.org/ 10.1063/1.2667992
http://dx.doi.org/https://doi.org/10.1016/j.jallcom.2008.09.106
http://dx.doi.org/ 10.1103/PhysRevB.75.064426


13

99L. J. Chang, M. Prager, J. Perbon, J. Walter, E. Jansen, Y. Y. Chen, and J. S. Gardner, “Magnetic order in the double pyrochlore Tb2Ru2O7,” Journal of
Physics: Condensed Matter 22, 076003 (2010).

100Z.-C. Xu, M.-F. Liu, L. Lin, H. Liu, Z.-B. Yan, and J.-M. Liu, “Experimental observations of ferroelectricity in double pyrochlore Dy2Ru2O7,” Front. Phys
9, 82 (2014).

101C. R. Wiebe, J. S. Gardner, S.-J. Kim, G. M. Luke, A. S. Wills, B. D. Gaulin, J. E. Greedan, I. Swainson, Y. Qiu, and C. Y. Jones, “Magnetic Ordering in the
Spin-Ice Candidate Ho2Ru2O7,” Phys. Rev. Lett. 93, 076403 (2004).

102N. Taira, M. Wakeshima, and Y. Hinatsu, “Magnetic susceptibility and specific heat studies on heavy rare earth ruthenate pyrochlores R2Ru2O7 (R = Gd-Yb),”
J. Mater. Chem. 12, 1475–1479 (2002).

103J. S. Gardner and G. Ehlers, “Magnetic order and crystal field excitations in Er2Ru2O7 : a neutron scattering study,” Journal of Physics: Condensed Matter
21, 436004 (2009).

104N. Taira, M. Wakeshima, Y. Hinatsu, A. Tobo, and K. Ohoyama, “Magnetic structure of pyrochlore-type Er2Ru2O7,” Journal of Solid State Chemistry 176,
165–169 (2003).

105A. Keren and J. S. Gardner, “Frustration Driven Lattice Distortion: An NMR Investigation of Y2Mo2O7,” Phys. Rev. Lett. 87, 177201 (2001).
106P. M. M. Thygesen, J. A. M. Paddison, R. Zhang, K. A. Beyer, K. W. Chapman, H. Y. Playford, M. G. Tucker, D. A. Keen, M. A. Hayward, and A. L.

Goodwin, “Orbital Dimer Model for the Spin-Glass State in Y2Mo2O7,” Phys. Rev. Lett. 118, 067201 (2017).
107H. J. Silverstein, K. Fritsch, F. Flicker, A. M. Hallas, J. S. Gardner, Y. Qiu, G. Ehlers, A. T. Savici, Z. Yamani, K. A. Ross, B. D. Gaulin, M. J. P. Gingras,

J. A. M. Paddison, K. Foyevtsova, R. Valenti, F. Hawthorne, C. R. Wiebe, and H. D. Zhou, “Liquidlike correlations in single-crystalline Y2Mo2O7: An
unconventional spin glass,” Phys. Rev. B 89, 054433 (2014).

108S. R. Dunsiger, R. F. Kiefl, K. H. Chow, B. D. Gaulin, M. J. P. Gingras, J. E. Greedan, A. Keren, K. Kojima, G. M. Luke, W. A. MacFarlane, N. P. Raju, J. E.
Sonier, Y. J. Uemura, and W. D. Wu, “Muon spin relaxation investigation of the spin dynamics of geometrically frustrated antiferromagnets Y2Mo2O7 and
Tb2Mo2O7,” Phys. Rev. B 54, 9019–9022 (1996).

109L. Clark, G. J. Nilsen, E. Kermarrec, G. Ehlers, K. S. Knight, A. Harrison, J. P. Attfield, and B. D. Gaulin, “From Spin Glass to Quantum Spin Liquid Ground
States in Molybdate Pyrochlores,” Phys. Rev. Lett. 113, 117201 (2014).

110Y. Jiang, A. Huq, C. H. Booth, G. Ehlers, J. E. Greedan, and J. S. Gardner, “Order and disorder in the local and long-range structure of the spin-glass
pyrochlore, Tb2Mo2O7,” Journal of Physics: Condensed Matter 23, 164214 (2011).

111G. Ehlers, J. E. Greedan, J. R. Stewart, K. C. Rule, P. Fouquet, A. L. Cornelius, C. Adriano, P. G. Pagliuso, Y. Qiu, and J. S. Gardner, “High-resolution
neutron scattering study of Tb2Mo2O7: A geometrically frustrated spin glass,” Phys. Rev. B 81, 224405 (2010).

112D. K. Singh, J. S. Helton, S. Chu, T. H. Han, C. J. Bonnoit, S. Chang, H. J. Kang, J. W. Lynn, and Y. S. Lee, “Spin correlations in the geometrically frustrated
pyrochlore Tb2Mo2O7,” Phys. Rev. B 78, 220405 (2008).

113K. W. Plumb, H. J. Changlani, A. Scheie, S. Zhang, J. W. Krizan, J. A. Rodriguez-Rivera, Y. Qiu, B. Winn, R. J. Cava, and C. L. Broholm, “Continuum of
quantum fluctuations in a three-dimensional s = 1 heisenberg magnet,” arXiv:1711.07509 (2017).

114T. Moriya, “Anisotropic superexchange interaction and weak ferromagnetism,” Phys. Rev. 120, 91–98 (1960).
115D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, “Models of degeneracy breaking in pyrochlore antiferromagnets,” Phys. Rev. B 74, 134409 (2006).
116K. Penc, N. Shannon, and H. Shiba, “Half-Magnetization Plateau Stabilized by Structural Distortion in the Antiferromagnetic Heisenberg Model on a

Pyrochlore Lattice,” Phys. Rev. Lett. 93, 197203 (2004).
117G. Chen and L. Balents, “Spin-orbit coupling in d2 ordered double perovskites,” Phys. Rev. B 84, 094420 (2011).
118Z. Y. Zhao, S. Calder, A. A. Aczel, M. A. McGuire, B. C. Sales, D. G. Mandrus, G. Chen, N. Trivedi, H. D. Zhou, and J.-Q. Yan, “Fragile singlet ground-state

magnetism in the pyrochlore osmates R2Os2O7 (R = Y and Ho),” Phys. Rev. B 93, 134426 (2016).
119G. Khaliullin, “Excitonic Magnetism in Van Vleck–type d4 Mott Insulators,” Phys. Rev. Lett. 111, 197201 (2013).
120A. Georges, L. de’ Medici, and J. Mravlje, “Strong Correlations from Hund’s Coupling,” Annual Review of Condensed Matter Physics 4, 137–178 (2013).
121K. I. Kugel and D. I. Khomskii, “The jahn-teller effect and magnetism: transition metal compounds,” Sov. Phys. Usp. 25, 231 (1982).
122S.-H. Lee, D. Louca, H. Ueda, S. Park, T. J. Sato, M. Isobe, Y. Ueda, S. Rosenkranz, P. Zschack, J. Íñiguez, Y. Qiu, and R. Osborn, “Orbital and Spin Chains

in ZnV2O4,” Phys. Rev. Lett. 93, 156407 (2004).
123T. Maitra and R. Valentí, “Orbital Order in ZnV2O4,” Phys. Rev. Lett. 99, 126401 (2007).
124G. Giovannetti, A. Stroppa, S. Picozzi, D. Baldomir, V. Pardo, S. Blanco-Canosa, F. Rivadulla, S. Jodlauk, D. Niermann, J. Rohrkamp, T. Lorenz, S. Streltsov,

D. I. Khomskii, and J. Hemberger, “Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4,” Phys. Rev. B 83, 060402 (2011).
125D. I. Khomskii and T. Mizokawa, “Orbitally Induced Peierls State in Spinels,” Phys. Rev. Lett. 94, 156402 (2005).
126S. Niitaka, H. Ohsumi, K. Sugimoto, S. Lee, Y. Oshima, K. Kato, D. Hashizume, T. Arima, M. Takata, and H. Takagi, “A-Type Antiferro-Orbital Ordering

with I41/a Symmetry and Geometrical Frustration in the Spinel Vanadate MgV2O4,” Phys. Rev. Lett. 111, 267201 (2013).
127E. M. Wheeler, B. Lake, A. T. M. N. Islam, M. Reehuis, P. Steffens, T. Guidi, and A. H. Hill, “Spin and orbital order in the vanadium spinel MgV2O4,” Phys.

Rev. B 82, 140406 (2010).

http://dx.doi.org/10.1007/s11467-013-0395-8
http://dx.doi.org/10.1007/s11467-013-0395-8
http://dx.doi.org/10.1103/PhysRevLett.93.076403
http://dx.doi.org/10.1039/B110596P
http://dx.doi.org/10.1016/S0022-4596(03)00384-0
http://dx.doi.org/10.1016/S0022-4596(03)00384-0
http://dx.doi.org/ 10.1103/PhysRevLett.87.177201
http://dx.doi.org/ 10.1103/PhysRevLett.118.067201
http://dx.doi.org/ 10.1103/PhysRevB.89.054433
http://dx.doi.org/10.1103/PhysRevB.54.9019
http://dx.doi.org/ 10.1103/PhysRevLett.113.117201
http://dx.doi.org/10.1103/PhysRevB.81.224405
http://dx.doi.org/ 10.1103/PhysRevB.78.220405
http://dx.doi.org/ 10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevB.74.134409
http://dx.doi.org/10.1103/PhysRevLett.93.197203
http://dx.doi.org/ 10.1103/PhysRevB.84.094420
http://dx.doi.org/10.1103/PhysRevB.93.134426
http://dx.doi.org/10.1103/PhysRevLett.111.197201
http://dx.doi.org/ 10.1146/annurev-conmatphys-020911-125045
http://dx.doi.org/ 10.1103/PhysRevLett.93.156407
http://dx.doi.org/ 10.1103/PhysRevLett.99.126401
http://dx.doi.org/ 10.1103/PhysRevB.83.060402
http://dx.doi.org/ 10.1103/PhysRevLett.94.156402
http://dx.doi.org/ 10.1103/PhysRevLett.111.267201
http://dx.doi.org/ 10.1103/PhysRevB.82.140406
http://dx.doi.org/ 10.1103/PhysRevB.82.140406

	Spin-1 pyrochlore antiferromagnets: theory, model and materials' survey
	Abstract
	Introduction
	Model Hamiltonian
	Flavor wave theory for quantum paramagnet
	Flavor wave representation
	Ideas of linear flavor wave theory
	Critical properties from flavor wave theory

	Mean-field theory
	All-in all-out AFM
	Splayed FM
	Coplanar XY AFM1
	Coplanar XY AFM2
	Non-coplanar XY AFM
	Topological magnons and spin wave excitations of the ordered phases

	Summary with a materials' survey
	Acknowledgments


