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Locking of symmetry breaking and topological phase in an interacting fermionic wire
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We construct and study an intriguing model of one-dimensional interacting fermion wire, which is enforced
to be in a topological phase by the spin-orbit locking structure in the interactions, regardless of the dimerization
direction of the Peierls distortion, in sharp contrast to a conventional wisdom. Thorough analyses based upon the
bosonization, the renormalization group technique, and the mean-field theory have been made. The novelty of
being a pair-hopping fermionic wire lies in that symmetry breaking and the formation of (symmetry-protected)
topological configurations are not independent, enriching our understanding of the interplay between topological
phase and symmetry breaking. An experimentally feasible scheme is proposed for realizing the model with cold
atoms and available techniques.
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I. INTRODUCTION

During the past decade, profound understanding of
symmetry-protected topological (SPT) phases have been one
of main achievements in condensed matter physics [1–10].
For instance, for topological insulators and superconduc-
tors [1,2,11,12], a complete classification with respect to
time-reversal and charge-conjugate symmetry was established
[13,14]. The new SPT paradigm has been enriching our under-
standing of many-body phases, which once was at large based
on Landau’s paradigm of symmetry breaking [15]. As the two
paradigms follow essentially different ideologies developed
naturally in physics, according to a conventional wisdom,
they work in parallel for capturing features of many-body
phases, that is symmetry-breaking processes determine the
remaining symmetries of a system, and in turn SPT phases
under the remaining symmetries enrich the phase diagram.
In this paper, we present a 1D interacting fermion model,
for which the translational symmetry breaking is locked with
SPT phases protected by particle-hole symmetry, essentially
due to the spin-orbit couplings in the interacting terms. The
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phenomenon indicates an insight that the relation between
the two paradigms would be intricate, and more attention is
needed to clarify their correlation.

It is a one-dimensional lattice model, which has the transla-
tional symmetry Z with the lattice constant a, the particle-hole
symmetry C, and along with some other symmetries, such as
the U (1) symmetry and the global spin flipping symmetry.
The interactions lead to the Peierls instability [16], and the
lattice is distorted and dimerized, namely, the translational
symmetry is reduced to be 2Z with the lattice constant 2a,
leading to two degenerate ground states labeled by Z2

∼=
Z/2Z, both having the particle-hole symmetry C. Intriguingly,
the particular spin-orbit locking of the interactions enforces
both directions of the dimerization to result in a C-symmetry-
protected topological phase. Recall that for a conventional Su-
Schrieffer-Heeger (SSH) model [17,18], only one direction of
the dimerization leads to a topological phase while the other
is trivial. The model is first solved by bosonization, where a
more rigorous renomarlization group analysis is conducted.
Guided by the identified order parameter, the solution is fur-
ther examined by the mean-field method, and then confirmed
by the DMRG analysis (not shown here). All the theoretical
analyses suggest a simple explanation for why the system is
always in the topological phase regardless of the dimerization
direction. The present spinful model essentially consists of
two SSH models, with each corresponding to a spin direction,
and the particular spin-orbit interactions lock them to be out
of phase, i.e., when one is in the topological phase the other is
in the trivial phase. Then the change of the sign of the order
parameter M just switches the two models, and the overall
system is always in the topological phase and has charge 1/2s
at the ends of the chain.
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II. SSH MODEL REVISIT

To prepare for addressing our more complicated model,
we first introduce the well-understood SSH model briefly in
accordance with our framework, which contains several major
ingredients of our model as its prototype. After the dimeriza-
tion of the SSH model, the two phases labeled by Z2 have the
same reduced translational symmetry and C symmetry but are
topologically distinguishable, since only one of them has half
charges located at two ends with natural open boundary con-
ditions [19,20]. The corresponding topological invariant γ ∈
Z2 is the C-symmetry quantized Berry phase of the valence
bands, where in particular γ ≡ 1 mod 2 for the topological
phase while γ ≡ 0 mod 2 for the trivial phase. Close to the
free fermion critical point, the SSH model can be described
by the boson theory, whose Lagrangian density reads

LSSH = 1

2π
(∂μϕ)2 + iηg cos 2ϕ, (1)

where η = ηLηR is the product of the Klein factors ηL/R, and
g is a coupling constant from the microscopic theory. Since
the operator cos 2ϕ has dimension 1, it is highly relevant
at long distances pinning ϕ = 0 if iηg < 0 or ϕ = ±π/2 if
iηg > 0. We identify iηg > 0 for the topological phase and
iηg < 0 for the trivial one, since half charges are concentrated
at two ends when ϕ = ±π/2 in the bulk, recalling that the
ferminoic charge operator is ρ = − 1

π
∂xϕ. It should not be

surprising that η = i or −i may be related to the topology
of the system, since the sign of η is determined by the
regularization scheme, while the topological invariant γ also
depends on the regularization in the continuous relativistic
theory (detailed derivations can be found in Appendix A).

Model and symmetries

The proposed model Hamiltonian is given by

H =
∑

jσ

−t (c†
jσ c j+1σ + H.c.)

+ W1

∑
j

(c†
j↑c†

j↓c j+1↓c j+1↑ + H.c.)

+ W2

∑
j

(c†
j↑c†

j+1↑c j+1↓c j↓ + H.c.). (2)

Here, in addition to a usual nearest-neighboring hopping term
t , two other types of pair-hopping processes, W1 term [21]
and W2 term [22], are considered. Before diving into the
analysis of the model by bosonization, we address its several
symmetries, which guide us in the thorough study of the
model.

(1) First, the model has the lattice translational symmetry.
(2) As advertised in the introduction, it has the particle-hole
symmetry C, which is essential for the topological phase and
acts as

CcjC
−1 = (−1) jc†

j , Cc†
jC

−1 = (−1) jc j . (3)

The C symmetry requires that W1 and W2 are real coupling
constants. As highlighted in the Introduction, a novel phe-
nomenon of the model is induced by the particular spin-orbit
locking structure. Then we look into symmetries about the

spin degree. (3) Although the full spin rotation symmetry
is broken by the interaction terms, the model is invariant
under spin-flipping σx, which flips two spin components,
c jσ → c jσ̄ , c†

jσ → c†
jσ̄ . (4) Of course, this microscopic model

satisfies the particle-number conservation, which is the con-
sequence of U (1) symmetry, cσ → e−iαcσ , c†

σ → c†
σ eiα. (5)

The two spin components in the free Hamiltonian and the
W1 interaction term may follow independent global U (1)
transformation, namely, they are also invariant under the spin
polarized U S (1) transformation c↑ → e−iβc↑, c↓ → eiβc↓ and
H.c. However, the U S (1) symmetry is violated by the W2 inter-
action, except for the special transformation, c↑ → ic↑, c↓ →
−ic↓ and H.c.. Combining the above special transformation
with the spin flipping σx, the model has also the spin flipping
symmetry σy acting as c↑ → ic↓, c↓ → −ic↑ and H.c., which
is just the spin flipping by σy. (6) As we shall see, the positivity
of W1 is essential in forming the topological phases after
dimerization, but W2 and −W2 are related by the global spin
rotation Rz( π

2 ), c j → ei σz
2

π
2 c j , c†

j → c†
j e

−i σz
2

π
2 , while the W1

term is preserved by Rz( π
2 ). Thus, the model is symmetric

under the combined transformation, Rz( π
2 ) and W2 → −W2.

Therefore, W2 = 0 is a high symmetry point satisfying both
U S (1) and Rz( π

2 ) symmetry.
It may be illuminating to rewrite the interaction terms as

Hint = −gx

∑
j

O+
x ( j)O−

x ( j) − gy

∑
j

O+
y ( j)O−

y ( j), (4)

where O+
x ( j) = c†

j↑c j+1↓ + H.c., O−
x ( j) = c†

j↓c j+1↑ + H.c.

and O+
y ( j) = ic†

j↑c j+1↓ + H.c., O−
y ( j) = −ic†

j↓c j+1↑ + H.c.,

with gx = 1
2 (W1 + W2), gy = 1

2 (W1 − W2). We further
define Ox( j) = O+

x ( j) + O−
x ( j) = c†

jσxc j+1 + H.c., and

Oy( j) = O+
y ( j) + O−

y ( j) = c†
jσyc j+1 + H.c., which are

related to one another by the spin rotation Rz( π
2 ). Thus, if Ox

(Oy) is the order parameter of the system for W2, then Oy (Ox)
is that for −W2.

III. THE BOSON THEORY AND SYMMETRIES

Let us assume that the system is close to the free fermion
critical point, and thus we are able to make the continuum
approximation as

c†
jσ√
a

→ ψ†
σ (x) ≈ ψ

†
Lσ (x)e−ikF x + ψ

†
Rσ (x)eikF x. (5)

The resulting continuous fermion theory is presented in
Appendix C along with the derivation details.

Then, we use the bosonization to identify the relevant
interactions in the model. We adopt the following dictionary
of bosonization [23]:

ψ
†
L/R,σ (x) = ηL/R,σ√

2πα
ei(ϑσ ±ϕσ ), (6)

where α is the short-distance cutoff and ηr,σ are the Klein
factors satisfying the Clifford algebra, {ηrσ , ηr′σ ′ } = 2δrr′δσσ ′ .

It is usually more convenient to work with the charge-spin
separated basis, ϕc = 1√

2
(ϕ↑ + ϕ↓), ϑc = 1√

2
(ϑ↑ + ϑ↓), ϕs =

1√
2
(ϕ↑ − ϕ↓), ϑs = 1√

2
(ϑ↑ − ϑ↓).
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It is useful to elaborate the manifestation of symme-
tries in the boson theory. (1) The particle-hole symmetry,
Cψ†( j)C−1 = (−1) jψ ( j), leads to Cψ

†
L/R( j)C−1 = ψL/R( j),

CψL/R( j)C−1 = ψ
†
L/R( j), and accordingly inverses all boson

fields, ϕc/s → −ϕc/s, ϑc/s → −ϑc/s. (2) A unit lattice transla-
tion acts as ψ

†
L/R(x) → ∓iψ†′

L/R(x) with ψ†′
(x) = ψ†(x + a),

which in boson version implies ϕσ → ϕσ − π/2, or equiva-
lently ϕc → ϕ′

c − π√
2
, while the other fields are only translated

in coordinates. (3) The spin flipping σx acts only on spin
fields, ϕs → −ϕs, ϑs → −ϑs, and the Klein factors, ηrσ →
ηrσ̄ . (4) For the U (1) symmetry, ϑc → ϑc + √

2α, and (5)
for the U S (1) symmetry, ϑs → ϑs + √

2αS , in particular, for
the special spinful transformation, ϑs → ϑs + π/

√
2. (6) The

spin rotation Rz( π
2 ) corresponds to the transformation, ϑs →

ϑs + π/
√

8.
The equivalent boson theory under the continuum approx-

imation up to marginal terms has the nice feature of spin-
charge separation, namely, H = Hc + Hs, where

Hc = H0,c + 2gc

(2πα)2

∫
dx cos

√
8ϕc, (7)

Hs = H0,s + 2gs

(2πα)2

∫
dx cos

√
8ϕs (8)

+ 2hs

(2πα)2

∫
dx cos

√
8ϑs, (9)

with H0,ν = vν

2π

∫
dx [Kν (∂xϑν )2 + K−1

ν (∂xϕν )2], where the
coupling constants are vc = vKc with v = 2ta, Kc =
(1 − W1/πt )1/2, vs = vKs, Ks = (1 + W1/πt )1/2, and gc =
gs = η(2aW1), hs = η(4aW2), with η = ηL↑ηL↓ηR↑ηR↓.

It is observed that all aforementioned symmetries are
preserved by the boson theory, and on the other hand, the
form of the theory is strongly constrained by the symmetries
as well. (1) All terms are even functions of boson fields,
which conserves the particle-hole symmetry. (2) The lattice
translational symmetry is preserved, since in the potential
term,

√
8ϕc → √

8ϕc + 2π . (3) The spin flipping symmetry
σx is preserved, since all terms involving spin boson fields
are even and η is invariant under spin flipping. (4) The U (1)
symmetry is preserved since there is no potential terms of
ϑc. (5) If W2 = 0, then the model has the spinful U S (1)
symmetry, consistent with the fact that hs, hm, and gm vanish
when W2 = 0. If W2 �= 0, then only the special symmetry
ϑs → ϑs + π/

√
2 is preserved. (6) Under the spin rotation

Rz(π/2), ϑs is converted to ϑs + π/
√

8, which inverts the
signs of all coupling constants proportional to W2, hs, hm and
gm, consistent with the fact that the model is symmetric under
W2 → −W2.

Order parameters and the renormalization group

We now turn to investigate possible order parameters of
the model. An order parameter for the bond spin density wave
[24–26] (bSDW): Mx/y = (−1) j (c†

jσx/yc j+1 + H.c.). Under
the continuum approximation, the corresponding boson oper-
ators are summarized in Table I. The pattern of sine and cosine
functions in Mx and My in Table I reflects a fact that the spin
rotation Rz(π/2) sending σx to σy leads to ϑs → ϑs + π

2
√

2
,

which exchanges Mx and My. Recalling that Rz(π/2) also

TABLE I. Boson version of order parameters.

Mx My

η = +1 sin
√

2ϕc sin
√

2ϑs sin
√

2ϕc cos
√

2ϑs

η = −1 cos
√

2ϕc cos
√

2ϑs cos
√

2ϕc sin
√

2ϑs

sends W2 to −W2, we find if Mx condensates for W2 > 0, then
My condensates for W2 < 0, and vise versa. Similar results
can be obtained for the order parameter of the site-local
spin density wave, mx/y = (−1) jc†

jσx/yc j (see Appendix E
for details). These are the most possible order parameters,
since density orders involving products of oscillations from
conjugate fields, and pairing orders breaking the continuous
U (1) symmetry are impossible in (1 + 1) dimensions.

At this stage, we proceed to identify the order parameters
of the model by the renormalization group (RG) method. We
here present the RG equations to the second order of cou-
pling constants directly, while detailed derivations by operator
product expansions can be found in Appendix D. Defining
dimensionless coupling parameters as ygc = gc

πvc
, ygs = gs

πvs

and yhs = hs
πvs

, the RG flow equations for charge fields are
given as

dygc

d�
= (2 − 2Kc)ygc,

dKc

d�
= −1

2
K2

c y2
gc, (10)

and those for spin fields are

dygs

d�
= (2 − 2Ks)ygs,

dyhs

d�
= (

2 − 2K−1
s

)
yhs, (11)

dKs

d�
= 1

2

(
y2

hs − K2
s y2

gs

)
,

where the cutoff � = �0e−� flows toward long distances by
increasing �.

Solving the above flow equations numerically, we find that:
(i) If W1 < 0, |W2| ∼ |W1|, then all potential energy terms are
irrelevant, no matter η = ±1. (ii) If W1 > 0 and |W1| ∼ |W2|,
then potential energy terms proportional to gc and hs are rel-
evant, while the others are irrelevant, and Kc → 0, Ks → ∞,
which means ϕc and ϑs vary slowly at long distances, and are
pinned at the minima of potential energies. There are totally
four cases, for which W2 > 0 and W2 < 0 are related by the
spin rotation from σx to σy. (a) W2 > 0, η = 1, and the corre-
sponding RG flows are illustrated in Fig. 1. gc > 0, gs > 0,
leading to ϕc ∼ ± π

2
√

2
and ϑs ∼ ± π

2
√

2
. The nonvanishing

order parameter is Mx. (b) W2 > 0, η = −1. gc < 0, gs < 0,
leading to ϕc ∼ 0, π√

2
and ϑs ∼ 0, π√

2
. The nonvanishing

order parameter is Mx. (c) W2 < 0, η = 1. gc > 0, gs < 0,
leading to ϕc ∼ ± π

2
√

2
, ϑs ∼ 0, π√

2
. The nonvanishing order

parameter is My. (d) W2 < 0, η = −1. gc < 0, gs > 0, lead-
ing to ϕc ∼ 0, π√

2
and ϑs ∼ ± π

2
√

2
. The nonvanishing order

parameter is My.
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FIG. 1. RG flow of the coupling and Luttinger parameters. The
bare parameters are chosen as W1

πt = 0.2 and W2
πt = 0.9 with η =

1, which corresponds to the initial values, Kc = 0.87, Ks = 1.12,
ygc = 0.29, ygs = 0.22 and yhs = 0.22.

We are mainly interested in the case (ii), which is summa-
rized in Table II. In this case of W1 > 0 and |W2| ∼ |W1|, the
original lattice translational symmetry Z of the lattice constant
a is always reduced to 2Z with the lattice constant 2a, and the
two degenerate ground states correspond to Mx,y = ±|Mx,y|,
respectively, for the two directions of dimerization.

IV. MEAN-FIELD THEORY AND
TOPOLOGICAL INVARIANT

Since the order parameters have been identified by the
RG analysis, let us make a mean-field analysis, which will
fix η in the above bosonization, analogous to the case of
the SSH model that has been studied previously. We here
present only details for W2 > 0 with Mx �= 0, since that of
W2 < 0 can be obtained by a global spin rotation Rz(π/2).
We introduce M±

x ( j) = (−1) j〈O±
x ( j)〉, and Mx = M+

x + M−
x .

Noting that the condensation of Mx preserves the spin flipping
symmetry σx, but breaks σy, we have M+

x = M−
x , since M±

x are
related by the spin flipping σx. Introducing M( j) = −gxM+

x =
−gx(−1) j〈O+

x ( j)〉, the mean-field Hamiltonian is written as

HMF =
∑

j

c†
j [−tσ0 + (−1) jMσx]c j+1 + H.c., (12)

where we have ignored the second term in Eq. (4) which
is irrelevant. The self-consistence of the mean-field theory
is checked in Appendix F. The second term from bSDW
indicates the breaking of translational symmetry from Z to
2Z, and it is the spin-dependency herein that ensures the
topological invariant always nontrivial regardless of the sign
of the bSDW order parameter M (see Appendix F for detailed

TABLE II. Pinned bosonic fields and order parameters.

η = 1 η = −1 Order PHS

W2 > 0
ϕc ∼ ± π

2
√

2

ϑs ∼ ± π

2
√

2

ϕc ∼ 0, π√
2

ϑs ∼ 0, π√
2

Mx Ĉ = τ3K̂Î

W2 < 0
ϕc ∼ ± π

2
√

2

ϑs ∼ 0, π√
2

ϕc ∼ 0, π√
2

ϑs ∼ ± π

2
√

2

My Ĉ = σ3τ3K̂Î

FIG. 2. The cold-atom lattice consisting of two sublattices.
Atoms in |g1〉 and |e1〉 (|g2〉 and |e2〉) reside in the red (blue) sites.

derivations). In addition, due to the symmetry structure, our
analysis for topological invariant is complete in the whole
parameter space, which can be seen from Appendix B.

V. COLD-ATOM REALIZATION

We now turn to realizing the model of Eq. (2) by ultracold
fermionic atoms trapped in a 1D optical lattice, where notably
the hopping and interaction strengths are all independently
tunable. Since every interaction term is composed of four
operators distinguishable by lattice sites and spins, we shall
accordingly choose four atomic states |λs〉, where λ = e, g
labeling two atoms, 1S0 and 3P1, and s = 1, 2 labeling the
spin states |5/2,−5/2 or − 3/2〉 of the two atoms. Then it is
desirable to construct a spin-dependent optical lattice consist-
ing of two sublattices as illustrated in Fig. 2, where atoms of
|λ1〉 (|λ2〉) are trapped in a sublattice by the potential V1(x) =
VL sin2(kLx) [V2(x) = VL cos2(kLx)] with kL = π/2a. The
spin dependence is obtained by adding an electro-optical mon-
itor to the counter-propagating lasers that generates the lattice
potential [27]. With cold atoms trapped in the optical lattice
of Fig. 2, we now assign the correspondences: g1 → c j↓,

e1 → c j↑, g2 → c j+1↑, e2 → c j+1↓, and proceed to realize
the Hamiltonian of Eq. (2). First, the free part of Eq. (2), which
corresponds to the tunnelings between adjacent optical lattice
sites, can be easily realized via the laser-assisted tunneling
technique [28,29]. For the two interaction terms, the W2 term
can be conventionally generated via the magnetic Feshbach
resonance in alkaline-earth(-like) atoms [30,31]. And to indi-
vidually tune the two interacting strengths, we engineer the
W1 term by the optical Feshbach resonance [32]. Particularly,
we assign |e, g〉 and |e1, e2〉 as the open and closed channels,
respectively, and then two adjacent open channels in the
optical lattice sites can be coupled by two circularly polarized
Raman lasers with |e1, e2〉 as the intermediate states. Note
that the transition between the two open channels |g1, e2〉
and |g2, e1〉 is prohibited because of the selection rule in the
presence of circularly polarized lasers. The technical details
are included in Appendix G.

VI. BRIEF SUMMARY

We have constructed an intriguing one-dimensional inter-
acting fermionic model that exhibits an unconventional class
of topological phenomena, namely, the system is enforced
into an SPT phase under symmetry breaking, suggesting that
the relationship between symmetry breaking and the SPT-
phase theory be intricate. In-depth analyses based upon the
bosonization, the RG technique, and the mean-field theory
have been conducted thoroughly, elucidating the exotic in-
terplay between topological characters and symmetries un-
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ambiguously. Finally, it is remarkable that we have worked
out how to emulate the model by fermionic cold-atoms with
available experimental techniques.
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APPENDIX A: BOSONIZATION OF THE SSH MODEL

The topological feature of SSH model is captured by the
one-dimensional massive Dirac model,

LD = �̄iγ μ∂μ� + m�̄�, (A1)

where

γ 0 =
(

0 −i
i 0

)
, γ 1 =

(
0 i
i 0

)
. (A2)

The model has the particle-hole symmetry

ψ → ψ†, ψ† → ψ. (A3)

This can be explicitly seen from the Hamiltonian in momen-
tum space,

h(k) = γ 0γ 1k − (m − εk2)γ 0, (A4)

for which the particle-hole symmetry is represented by Ĉ =
K̂Î with Î being the inversion of momentum and K̂ the
complex conjugate. Here, an infinitesimal term εk2γ 0 has
been introduced as the regularization for large momenta. It
is clear that the massive Dirac model is in the class D with
Z2 classification, and the corresponding topological number
is given by

N ≡ 1
2 [sgn(m) + sgn(ε)] mod 2. (A5)

For N ≡ 1 mod 2, there are half charges at two ends for an
open system. If the Dirac model is the low-energy effective
theory of a lattice model, then the complete lattice model
provides the effective theory a natural lattice regularization
corresponding to a specific ε.

The bosonic version of the kinetic term is just the free
boson, and the mass term is

V = −m�̄� = im(ψ†ψ̄ − ψ̄†ψ )

= iηLηR

πα
m cos 2ϕ. (A6)

ηLηR is antihermitian and setting its value to ±i is just a
convention. Without loss of generality we adopt ηLηR = −i,
which gives the bosonization of the Dirac model,

L = 1

2πK
∂μϕ∂μϕ − gcos(2ϕ), (A7)

with K = 1 and g = m
πα

. As being derived by operator product
expansion in Sec. D, the renormalization group equations are

dK

d�
= −cg2K2,

dg

d�
= (2 − K )g, (A8)

FIG. 3. half charges at the ends of a gapped fermion wire with
ϕ = π

2 .

which means the term Hm = gcos(2ϕ) dominates toward
infrared. If the bare parameter m < 0, then the ϕ is pinned
to ϕ = 0 close to the ground state, while starting with m > 0,
ϕ is pinned to ϕ = −π

2 or π
2 . When considering a closed wire,

we cannot physically distinguish ϕ = −π
2 from ϕ = π

2 . But
for an open wire if we connect its ends to wires with m < 0
and ϕ = 0, there are net half charges concentrated at the ends.
When ϕ = π

2 , as shown in Fig. 3, the net fermionic number at
the two ends can be computed by as

�NL/R = − 1

π

∫
L/R

∂xϕ = ∓1

2
. (A9)

When ϕ = −π
2 , the net fermionic numbers are inversed.

Thus, we conclude that m > 0 and m < 0 correspond to
different phases, where one is topological and the other is triv-
ial. The topological feature is the existence of half fermionic
numbers at the ends. Deciding which one is topological de-
pends on the ultraviolet regularization in the fermionic theory.
Here in the bosonization procedure, this depends on our
convention for Klein factors, which is completely determined
if we have a microscopic lattice model. Particularly, ηLηR = i
or −i corresponds to ε > 0 or ε < 0 in Eq. (A4).

APPENDIX B: SYMMETRY TRANSFORMATIONS

Symmetry transformations of fields discussed in the main
text are tabulated in Table III.

APPENDIX C: CONTINUOUS APPROXIMATION

Noting that ∑
j

a (· · · ) →
∫

dx (· · · ), (C1)

the free part can be approximated continuously as

H0 =
∑

jσ

−t (c†
jσ c j+1σ + H.c.)

→ −iv
∑

σ

∫
dx (ψ†

Lσ ∂xψLσ − ψ
†
Rσ ∂xψRσ ), (C2)

with v = 2ta.
The first interacting term is approximated continuously as

HW1 → aW1

∫
dx (ψ†

↑ψ
†
↓ψ ′

↓ψ ′
↑ + H.c.), (C3)
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TABLE III. Table of symmetry transformations. Each empty entry indicates the field is invariant under the corresponding symmetry
transformation except for translational symmetry. For translational symmetry, the spatial coordinates of every field are translated for a lattice
spacing, and only additional operations are displayed.

T PHS σx U (1) U S (1) Rz( π

2 )

c†
jσ c†

j+1 (−1) jc†
j c†

jσ̄ c†
j e

iα c†
j e

iασz c†
j e

−i σz
2

π
2

ψ†
L/R,σ ∓iψ†

L/R ψ ψ†
σ̄ ψ†eiα ψ†eiασz ψ†e−i σz

2
π
2

ϕc/s ϕc − π√
2

−ϕ −ϕs

ϑc/s −ϑ −ϑs ϑc + √
2α ϑs + √

2α ϑs + π/
√

8

with ψ ′(x) = ψ (x + a). Noting that ψ has dimension 1/2, we
expand the Hamiltonian to dimension 4, namely,

HW1 = aW1

∫
dx O2

W1
+ O4

W1
+ O(�6). (C4)

Since

ψ
†
↑ψ ′

↑ = i(ρL↑ − ρR↑)

+ i
(
ψ

†
R↑ψ ′

L↑e2ikF x − ψ
†
L↑ψ ′

R↑e−2ikF x
) + O(a), (C5)

we proceed

O2
W1

= ψ
†
↑ψ

†
↓ψ↓ψ↑ + H.c.

= −(ρL↑ − ρR↑)(ρL↓ − ρR↓)

+ ψ
†
R↑ψL↑ψ

†
L↓ψR↓ + ψ

†
L↑ψR↑ψ

†
R↓ψL↓

− ψ
†
R↑ψL↑ψ

†
R↓ψL↓ − ψ

†
L↑ψR↑ψ

†
L↓ψR↓ + H.c.

= −2(ρL↑ − ρR↑)(ρL↓ − ρR↓)

+ 2(ψ†
R↑ψL↑ψ

†
L↓ψR↓ + H.c.)

− 2(ψ†
R↑ψL↑ψ

†
R↓ψL↓ + H.c.). (C6)

The second interaction term HW2 corresponds to

HW2 → aW2

∫
dx (ψ†

↑ψ
′†
↑ ψ ′

↓ψ↓ + H.c.)

= aW2

∫
dx O2

W2
+ O4

W2
+ O(�6). (C7)

With

ψ
†
↑ψ↓ = ψ

†
L↑ψL↓ + ψ

†
R↑ψR↓

+ ψ
†
R↑ψL↓e2ikF x + ψ

†
L↑ψR↓e−2ikF x (C8)

and

ψ
′†
↑ ψ ′

↓ = ψ
′†
L↑ψ ′

L↓ + ψ
′†
R↑ψ ′

R↓

− ψ
′†
R↑ψ ′

L↓e2ikF x − ψ
′†
L↑ψ ′

R↓e−2ikF x, (C9)

we have

O2
W2

= 4ψ
†
L↑ψL↓ψ

†
R↑ψR↓ + H.c. (C10)

APPENDIX D: RENORMALIZATION BY OPERATOR
PRODUCT EXPANSION

We assume that S0[φ] describes a critical point and shall
discuss perturbations that may drive the system away from
the critical point. At the critical point, it is natural to assume

that each perturbation term has a definite scaling dimension,
namely,

S[φ] = S0[φ] +
∑

j

g j

∫
dd x Oj (x), (D1)

where each Oj (x) is a local operator with scaling dimension
� j . Without loss of generality, we assume that the set of Oj (x)
is closed under operator product expansion, which is given by

Oj (x
′)Ok (x) =

∑
l

1

|x′ − x|� j+�k−�l
C l

jk Ol (x). (D2)

Then,

g′
l = glL

2−�l − 1

2
�d

∑
jk

C l
jkg jgk

{
L2−� j −�k +�l

d−� j−�k+�l

ln L

}
L2−�l ,

(D3)

with L = e�, which gives the renormalization of the theory to
the second order of coupling constants.

For the bosonization theories, we may need to following
OPEs.

eiaφ(w)e−ibφ(z) ∼ 1

(w − z)ab
ei(a−b)φ(z)

+ ia

(w − z)ab−1
∂φ(z)ei(a−b)φ(z), (D4)

∂φ(w)eiaφ(z) ∼ − ia

w − z
eiaφ(z) + ∂φ(z)eiaφ(z). (D5)

1. Massive free Dirac fermion

The boson version of the massive free Dirac fermion is

L = 1

2π
∂μϕ∂μϕ + g0∂μϕ∂μϕ + g1 cos(2ϕ). (D6)

Define

O0(x) = ∂μϕ∂μϕ(x) = ∂φ(z)∂̄ φ̄(z̄), (D7)

O1(x) = cos(2ϕ(x)) = 1
2 {ei[φ(z)+φ̄(z̄)] + H.c.}, (D8)

for which �0 = 2 and �1 = 1. Then the relevant OPEs are

O1(w)O1(z) ∼ 1

2

1

|w − z|2 − 1

2
O0(z), (D9)

O0(w)O1(z) ∼ −1

|w − z|2 O1(z). (D10)
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Thus, the RG equations are

dg0

d�
= π

2
g2

1,
dg1

d�
= g1 + 2πg0g1. (D11)

We introduce

1

2πK
= 1

2π
+ g0, (D12)

then the RG equations are rewritten as

dK

d�
= −π2K2g2

1,
dg1

d�
= (2 − K )g1. (D13)

2. Spinful field

Consider the Lagrangian,

L = 1

2π
∂μϕ∂μϕ + g0∂μϕ∂μϕ

+ g1 cos(2
√

2ϕ) + g2 cos(2
√

2ϑ ), (D14)

for which all perturbation terms are marginal with �i = 2,
i = 0, 1, 2. Introducing

O0(x) = ∂μϕ∂μϕ(x) = ∂φ(z)∂̄ φ̄(z̄), (D15)

O1(x) = cos(2
√

2ϕ) = 1
2 (ei(

√
2φ(z)+√

2φ̄(z̄)) + H.c.), (D16)

O2(x) = cos(2
√

2ϑ ) = 1
2 (ei(

√
2φ(z)−√

2φ̄(z̄)) + H.c.), (D17)

we can derive the following relevant OPEs,

O0(w)O1(z) ∼ − 2

|w − z|2 O1(z), (D18)

O0(w)O2(z) ∼ 2

|w − z|2 O2(z), (D19)

O1(w)O1(z) ∼ 1

2

1

|w − z|4 − 1

|w − z|2 O0(z), (D20)

O2(w)O2(z) ∼ 1

2

1

|w − z|4 + 1

|w − z|2 O0(z), (D21)

where terms with scaling dimension bigger than 2 have been
ignored. Thus, we have the RG equations,

dg0

d�
= π

(
g2

1 − g2
2

)
, (D22)

dg1

d�
= 4πg0g1, (D23)

dg2

d�
= −4πg0g2. (D24)

Introducing

1

2πK
= 1

2π
+ g0, (D25)

we rewrite the RG equations as

dK

d�
= −2π2

(
K2g2

1 − g2
2

)
, (D26)

dg1

d�
= (2 − 2K )g1, (D27)

dg2

d�
= (2 − 2K−1)g2. (D28)

These RG equations are invariant under (K, g1, g2) →
( 1

K , g2, g1), and therefore is in accord with the duality trans-
formation of the theory (K, ϕ, ϑ ) → ( 1

K , ϑ, ϕ).

APPENDIX E: ORDER PARAMETERS

In this subsection we investigate possible order param-
eters of the model. Nonvanishing order parameters detect
symmetry-breaking patterns in the model.

(1) The order parameter for the bond spin density wave
(bSDW):

Mx = (−1) j (c†
jσxc j+1 + H.c.)

∼ i(−1) j (ψ†
Le−ikF x + ψ

†
ReikF x )σx

× (ψLeikF x − ψRe−ikF x ) + H.c.

∼ −2iψ†
LσxψR + H.c.

= −2iηL↓ηR↑
2πα

(eiφ↓eiφ̄↑ − ηeiφ↑eiφ̄↓ ) + H.c.

= −2iηL↓ηR↑
2πα

[ei
√

2(ϕc−ϑs ) − ηei
√

2(ϕc+ϑs )] + H.c.

= −2iηL↓ηR↑
πα

[cos
√

2(ϕc − ϑs) − η cos
√

2(ϕc + ϑs)]

= −4iηL↓ηR↑
πα

{
sin

√
2ϕc sin

√
2ϑs η = 1

cos
√

2ϕc cos
√

2ϑs η = −1.
(E1)

Similarly,

My ∼ −2iψ†
LσyψR + H.c.

= −2(ψ†
L↑ψR↓ − ψ

†
L↓ψR↑) + H.c.

= −4iηL↑ηR↓
πα

{
sin

√
2ϕc cos

√
2ϑs η = 1

cos
√

2ϕc sin
√

2ϑs η = −1.
(E2)

The two expressions are consistent with the fact that the
rotation sending σx to σy leads to ϑs → ϑs + π

2
√

2
.

(2) The order parameter for the site-local spin density
wave (SDW):

mx = (−1) jc†
jσxc j

∼ ψ
†
LσxψR + H.c. = ψ

†
L↑ψR↓ + ψ

†
L↓ψR↑ + H.c.

= ηL↑ηR↓
2πα

[ei
√

2(ϕc+ϑs ) − ηei
√

2(ϕc−ϑs )] + H.c.

= 2iηL↑ηR↓
πα

{
cos

√
2ϕc sin

√
2ϑs η = 1

sin
√

2ϕc cos
√

2ϑs η = −1,
(E3)

my = (−1) jc†
jσyc j

∼ ψ
†
LσyψR + H.c.

= iηL↓ηR↑
πα

[cos
√

2(ϕc − ϑs) + η cos
√

2(ϕc + ϑs)]

= 2iηL↓ηR↑
πα

{
cos

√
2ϕc cos

√
2ϑs η = 1

sin
√

2ϕc sin
√

2ϑs η = −1.
(E4)

The global rotation Rz( π
2 ) from σx to σy exchanges W2 and

−W2, and also sends Mx(mx) to My(my), which means if Mx

(mx) condensates for W2 > 0 then My (my) condensate for
W2 < 0, and vise versa.
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These are the most possible order parameters, since den-
sity orders involving products of oscillations from conjugate
fields, and pairing orders breaking the continuous U (1) sym-
metry are impossible in (1 + 1) dimensions.

APPENDIX F: MEAN-FIELD THEORY

1. Self-consistence of the mean-field theory

For completeness, we give a self-consistence checking of
the mean-field solutions. The self-consistent equation is

1

gx
= 2

L

∑
k>0

sin2 k

Ek
tanh

Ek

2T
, (F1)

where Ek =
√

2(t2 + M2) + 2(t2 − M2) cos k, and we have
rescaled 2k to k. At zero temperature T = 0, the equation can
be expressed as

√
2

gx
= f (λ)√

t2 + M2
, (F2)

where

f (λ) =
∫ π

−π

dk
sin2 k√

1 + λ cos k
, λ = t2 − M2

t2 + M2
. (F3)

It is observed that |λ| � 1, and f (λ) slowly depends on
λ ∈ [−1, 1], roughly π � f (λ) � 3.77. Then we have

1

gx
� 2√

t2 + M2
, (F4)

which has nonvanishing real solution

M � 2gx

√
1 − t

2gx
, if

t

2gx
� 1. (F5)

2. The topological invariant

Since the original lattice has been reduced to be with
the lattice constant 2a, we need to choose a unit cell
consisting of an odd site and its nearest-neighbor even
site to diagonalize the Hamiltonian in the real space,
which is given by H = ∫

dkψ†(k)H(k)ψ (k), where ψ†(k) =
[c†

A↑(k), c†
A↓(k), c†

B↑(k), c†
B↓(k)], with A and B labeling odd

and even sublattice, respectively, and

H(k) =
(

0 �(k)
�†(k) 0

)
, (F6)

with �(k) = −t + Mσx − (t + Mσx )ei2ak .
The order parameter Mx preserves the particle-hole sym-

metry, which for Eq. (F6) is represented by Ĉ = τ3K̂Î, where
Î denotes the inversion of momenta and τ3 encodes the sign
difference for odd and even sublattice under the particle-hole
symmetry. The system belongs to the topological class D,
and corresponds to the Z2 topological classification. The Z2

topological number is just the Berry phase of the valence
states accumulated from encircling the momentum space,
N ≡ 1

4π i

∮
dktr[σ3H−1(k)∂kH(k)] mod 2. For Eq. (F6),

N ≡ 1

2π i

∮
C1

dz
1

z − r(M )
+ 1

z − 1/r(M )
mod 2, (F7)

where the loop integration is over the unit circle C1, and
r(M ) = (t − M )/(t + M ). Since r(M ) is not on C1 if M �= 0,
either r(M ) or 1/r(M ) is inside C1, but not both, which
implies that N is nontrivial for both sides of the dimerization
M > 0 and M < 0. Thus, the two ends have the half fractional
charges, which means that only η = 1 is in accordance with
the topological feature of the phase, since

ρL/R = −
∫

L/R
dx

√
2

π
∂xϕc = ∓1

2
, (F8)

only for η = 1 referring to Table I in the main text. Compared
with the SSH model, the novelty lies in that the system is in
the same Z2 topological phase on both sides of the symmetry
breaking Z2.

Since the system is symmetric under Rz( π
2 ) and

W2 → −W2, to work out the case for W2 < 0 we merely
need to make a global rotation Rz( π

2 ), which leads to Ĉ →
e−i σ3

2
π
2 Ĉei σ3

2
π
2 ∼ σ3τ3K̂Î , �(k) → e−i σ3

2
π
2 �(k)ei σ3

2
π
2 = −t +

Mσy − (t + Mσy)ei2ak , M( j) → Rz(π/2)M( j)R−1
z (π/2) =

−gy(−1) j〈O+
y ( j)〉, while all topological features are

preserved.

APPENDIX G: COLD-ATOM REALIZATION

In this section, we present technical details for the cold-
atom realization of the model.

1. Model Hamiltonian

For the lattice system, we consider the following Hamilto-
nian composed of three terms,

H = H0 + Hi1 + Hi2. (G1)

The first term describes the coupling between the states |g〉
and |e〉

H0 = �

∫
dx [e†

1(x)g2(x) + e†
2(x)g1(x)] + H.c., (G2)

where � is the coupling strength, and λν with ν = 1, 2 are
the annihilation operator of the corresponding |λν〉 state. The
second and third terms describes two types of interactions
given by

Hi1 = U1

∫
dx e†

1(x)g†
1(x)e2(x)g2(x) + H.c.,

Hi2 = U2

∫
dx g†

2(x)e†
1(x)g1(x)e2(x) + H.c., (G3)

where U1/2 denote the interaction strength.
To investigate the physics of the lattice system, we use the

tight-binding approximation by expanding λν by the Wannier
wave functions W (x):

λ1(x) =
∑

j

W (x − x j )λ1, j,

λ2(x) =
∑

j′
W (x − x j′ )λ2, j′ , (G4)

where x j′ = x j + a/2 due to the spin-dependent lattice config-
uration. We rearrange the site index j and j′ by representing
j as the odd site index while j′ as the even site one. Then the
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three terms in Hamiltonian Eq. (G1) are rewritten as

H0 = −t
∑

j

[e†
1, j (g2, j + g2, j−1) + e†

2, j (g1, j + g1, j+1)] + H.c.,

Hi1 = W1

∑
j

e†
1, jg

†
1, j (e2, jg2, j + e2, j−1g2, j−1) + H.c.,

Hi2 = W2

∑
j

(g†
2, je

†
1, jg1, je2, j + g†

2, je
†
1, j+1g1, j+1e2, j ) + H.c.,

with

t = −�

∫
dx W ∗(x)W (x + a/2),

W1,2 = U1,2

∫
dx |W (x)W (x + a/2)|2. (G5)

We assign the following operator correspondences:

g1 → c j↓, g2 → c j+1↑, e1 → c j↑, e2 → c j+1↓, (G6)

from which one can check that the Hamiltonian of Eq. (2) in
the main text is exactly simulated.

2. The optical Feshbach resonance

As introduced in the main text, we use the optical Fesh-
bach resonance to realize the W1 interaction term. The opti-
cal Feshbach resonance can be described by a two-channel
model. We denote the two open channels |op1〉 = |g1, e1〉 and
|op2〉 = |g2, e2〉, and the the closed channel |cl〉 = |e1, e2〉.
As illustrated in Fig. 4(a), the Hamiltonian in the base of
� = (|cl〉, |op1〉, |op2〉)T is expressed as⎛

⎜⎝
Hcl �1 �2

�∗
1 Hop1 0

�∗
2 0 Hop2

⎞
⎟⎠� = E�, (G7)

where the Hamiltonians for each channel are given by

Hcl = k2

m
, Hopi=1,2

= k2

m
− δi. (G8)

Here, m is the atomic mass, k is the momentum, and δi is
the detuning of each open channel compared with the closed
channel. For the closed channel, we have

(E − Hcl )|cl〉 =
∑

i

�∗
i |opi〉. (G9)

For the bound state of the closed channel, it gives

Hcl|cl〉 = EB|B〉 ⇒ |B〉 =
∑

j

�∗
j

E − EB
|op j〉. (G10)

For the open channels, we have

(E − Hopi
)|opi〉 = �i|B〉. (G11)

Inserting Eq. (G10) into Eq. (G11), we obtain

|op1〉 = �1�
∗
2

(E − EB)(E − Hop1
) − |�1|2 |op2〉,

|op2〉 = �2�
∗
1

(E − EB)(E − Hop2
) − |�2|2 |op1〉. (G12)

FIG. 4. (a) Illustration of the optical Feshbach resonance. The
two open channels |gi, ei〉 (i = 1, 2) are coupled to the closed
channel |e1, e2〉 via circularly polarized lasers. (b) The interaction
strength W1 as a function of the detuning δ. The black dashed line
marks the resonant point δres = EB − W 2/EB. We set W = 0.5ER and
EB = 0.1ER.

The Lippmann-Schwinger equation for each open channel
reads

|opi〉 = |k〉 + GiV
(i)

eff |opi〉, (G13)

where |k〉 is the wave function of free atoms in the scattering
process, G−1

i = E − Hopi
+ i0+ is the Green’s function for

each open channel, and

V (1)
eff = �1�

∗
2

(E − EB) − |�1|2
E−EB+δ1

, V (2)
eff = �2�

∗
1

(E − EB) − |�2|2
E−EB+δ2

.

(G14)

For simplicity, if the Raman transition is resonant, i.e., δ1 =
δ2 = δ, and we tune the laser field strength |�1| ≈ |�2| ≈ W ,
then the interacting Hamiltonian is written as

Hi1 = W1|op1〉〈op2| + H.c., (G15)

with the controllable strength

W1 = W 2

(E − EB) − W 2

E−EB+δ

. (G16)

It is noted that: (i) We can tune the Raman detuning δ

and Raman laser field strength W (rather than the bound
state energy EB that is usually used in magnetic Feshbach
resonance), to change the strength W1 of the Hi1 term. (ii)
In contrast, the strength W2 of the Hi2 term can be still
tuned by the magnetic shift to its bound state energy. Based
on these facts, the interaction strengths, W1 and W2, can be
independently tuned.

In real experiments, for Eq. (G16), E ∼ 0 and EB ∼ (B −
B0), where B is the magnetic field strength acting on the
closed channel bound state, and B0 is the strength at the
resonant point of the Feshbach resonance. For 173Yb, as an
example, the optical lattice laser wavelength is λ ≈ 759 nm
[33], thus the lattice recoil energy, ER = h2/(2mλ2

L ) ≈
2.043 kHz × 2π h̄, which can be chosen as unit. If we set
EB = 0.1ER and W = 0.5ER, then the interaction strength W1

as a function of δ is shown in Fig. 4(b). Usually, the tunneling
t ∼ 0.1ER for the 1D tight-binding model. From Fig. 4(b), we
can see that the parameter range t < |W1| < 10t is achievable.
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