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In this contribution, recent advances in new classes of efficient metal-TADF complexes,

especially those of Au(I), Au(III), and W(VI), and their application in OLEDs are reviewed.

The high performance (EQE= 25%) and long device operational lifetime (LT95 = 5,280 h)

achieved in an OLED with tetradentate Au(III) TADF emitter reflect the competitiveness

of this class of emitters for use in OLEDs with practical interest. The high EQE of

15.6% achieved in solution-processed OLED with W(VI) TADF emitter represents an

alternative direction toward low-cost light-emitting materials. Finally, the design strategy

of metal-TADF emitters and their next-stage development are discussed.
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INTRODUCTION

Thermally activated delayed fluorescence (TADF) materials have become a promising class of
photo-functional materials with potential practical applications most exemplified in the field of
organic light-emitting diodes (OLEDs). The majority of TADF materials reported to date are
organic compounds having donor and acceptor moieties that give rise to emissive charge transfer
(CT) excited states upon light excitation. By carefully positioning the donor(s) and acceptor(s),
a small singlet-triplet energy gap (1E(S1-T1)) can be achieved, thereby allowing efficient reverse
intersystem crossing (RISC) to singlet excited state and TADF to occur at room temperature. While
numerous classes of molecular organic TADF materials have been reported, the diversity of metal
complexes exhibiting TADF property is very limited. In this article, we discuss the recent advances
on metal complexes which display TADF and their application in OLEDs.

RECENT ADVANCES IN METAL-TADF COMPLEXES AND THEIR
APPLICATION IN OLEDs

Metal-TADF Light-Emitting Complexes
The burgeoning development of emitters for OLEDs started from the fluorescent metal complex
8-hydroxyquinoline aluminum (Alq3) (Tang and VanSlyke, 1987). Despite its high luminance,
high electron mobility and stability, the efficiency of Alq3-based OLED is limited by its
fluorescence nature. Theoretically, the upper limit of internal quantum efficiency (IQE) of
a fluorescent OLED is about 25% as only singlet spin states can emit light in fluorescent
emitters. In this regard, phosphorescent metal complexes have been attracting much attention
considering the 100% potential IQE in electro-phosphorescence (Baldo et al., 1998; Ma et al.,
1998). Typical phosphorescent emitters are heavy metal complexes such as those of Ru(II),
Ir(III), Os(II), and Pt(II) with emission lifetimes (τ ) ranging 1–100 µs due to significant mixing
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between the metal and ligand frontier molecular orbitals and
the efficient spin-orbit coupling induced by the heavy metal
atom. Because of their high luminescence efficiency and high
stability, phosphorescent Ir(III) complexes have been widely
used as emitting dopants in OLED industry (Baldo et al.,
1999). Nonetheless, the earth abundance of iridium is the lowest
among the metal elements, leading to sustainability concern.
An alternative approach to harvest triplet excitons at room
temperature is via TADF (Yersin et al., 2011; Uoyama et al., 2012).
The key process in TADF is up-conversion from the lowest triplet
excited state (T1) to the lowest singlet excited state (S1), which
is then followed by fluorescence from S1 to the singlet ground
state (S0). Therefore, a delicate trade-off between 1E(S1-T1) and
oscillator strength of S0-S1 transition is crucial to achieve TADF.
Since the reports by Endo et al. (2009), Deaton et al. (2010),
and also by Uoyama et al. (2012), a plethora of organic TADF
molecules have been reported (Wong and Zysman-Colman,
2017; Yang et al., 2017) but examples of metal-TADF emitters
are mostly limited to copper complexes (Czerwieniec et al.,
2016; Leitl et al., 2016). Since Cu(I) complexes generally lack
thermal and electrochemical stability, efforts have been directed
to develop 2nd and 3rd row transition-metal-TADF emitters such
as those of Pd(II), Ag(I), Au(I), and Au(III) to meet the stringent
requirements of emitters for practical OLEDs (Li G. et al., 2019).
Gratifyingly, high external quantum efficiencies (EQEs) of up to
27.5 and 25.0% have been achieved in OLEDs with Au(I) and
Au(III) TADF emitters, respectively (Di et al., 2017; Zhou et al.,
2020), reflecting Au-TADF emitters as an emerging new class of
competitive, emissive dopant in OLED industry.

The first report on electroluminescence (EL) of Cu(I) complex
appeared soon after the reports on OLEDs based on Pt(II)
and Os(II) emitters (Ma et al., 1999a,b). A Cu(I) complex
could exhibit phosphorescence or TADF depending on its
1E(S1-T1) (Leitl et al., 2014). TADF could take place when
the 1E(S1-T1) is comparable to the thermal energy kBT that
enables a dynamic equilibrium between S1 and T1. Several
high-performance OLEDs based on Cu(I) complexes have been
reported (Zhang et al., 2012, 2016; Cheng et al., 2015; Osawa et al.,
2015; Volz et al., 2015; So et al., 2017; Hamze et al., 2019; Shi
et al., 2019). For instance, Bräse, So, Baumann and co-workers
reported EQEs of up to 23% for yellow-emitting OLEDs with an
NHetPHOS-Cu(I) complex (NHetPHOS refers to a ligand having
N-heterocycle and phosphine) as the emitter (Volz et al., 2015).
Thompson reported a class of two-coordinate Cu(I) carbene
amide complexes exhibiting photoluminescent quantum yields
(PLQYs) up to 1.0 with τ of 1–2 µs. EQEs of OLEDs fabricated
with these emitters reached 19.4% (Shi et al., 2019). Since the
development of TADF Cu(I) complexes has been well-reviewed
(Czerwieniec et al., 2016; Yersin et al., 2017; Liu et al., 2018; Li G.
et al., 2019), we will focus in this contribution on recent advances
of efficient TADF metal complexes other than Cu(I) complexes
that have been applied as emitting dopants in OLEDs.

Silver TADF Complexes and Their
Application in OLEDs
Several examples of Ag(I) TADF emitters have been reported
recently. Lu discovered bis-bidentate tetraphosphine bridged
binuclear Ag(I) halide complexes exhibiting TADF with PLQYs

up to 0.98 and lifetime of 2.5–3.0 µs (Chen et al., 2016).
Yersin reported a series of Ag(I) complexes supported by 1,10-
phenanthroline and bis(diphenylphosphine)-nido-carborane
(e.g.,Ag-1, Figure 1) with PLQYs up to 1.0 and τ ranging 1.4–2.8
µs (Shafikov et al., 2017a,b). Replacing 1,10-phenanthroline
with a bridging tetraphosphine ligand afforded a binuclear Ag(I)
TADF complexAg-2with PLQY of 0.70 and τ of 1.9µs (Shafikov
et al., 2018). A Ag(I) carbene amide complex also exhibits TADF
with PLQY of 0.74 and τ of 460 ns in degassed toluene. OLEDs
fabricated with this emitter showed EQEs up to 13.7% (Romanov
et al., 2018).

Gold TADF Complexes and Their
Application in OLEDs
Gold is an attractive candidate for developing OLED emitters
attributable to the high thermal stability endowed by strong
gold-ligand bonds and its relatively high abundance among other
noble metals in Earth’s crust. Due to the electrophilicity/relatively
high reduction potential of Au(III), Au(III) complexes
often display ligand-centered emission having minute metal
contribution. This results in small radiative decay rate constants
(kr) of 10

2-103 s−1 and hence long τ (usually >10 µs), longer
than those of typical Ir(III) and Pt(II) complexes by one or
two orders of magnitude (Zhou et al., 2019). As long emission
lifetimes would cause severe efficiency roll-off in OLEDs (Cheng
et al., 2014), only a few of them could achieve decent EQE and
low efficiency roll-off at the same time. Notably, the study on
Au(I)-OLEDs was even rarer than those of Au(III)-OLEDs
(Ma et al., 1999b,c). In this regard, the recent development
of TADF gold complexes has made a remarkable turnaround.
Linnolahti, Bochmann, Credgington and co-workers reported
a series of 2-coordinate carbene–Au(I)–amides (CMAs) that
consist of a cyclic (alkyl)(amino)carbene (CAAC) connected
via Au(I) to a carbazolate or diphenylamide (Di et al., 2017).
Computations revealed that 1E(S1-T1) of CMA-1 remains
small (<800 cm−1) along the torsional coordinate, even at
the coplanar conformation which has fluorescence rate of the
order 107 s−1, thus leading to a fast equilibration of the S1
and T1 excited states and a large kr of 2.4 × 106 s−1, PLQY
of 0.83 and short τ of ∼350 ns in neat film at 300K (Föller
and Marian, 2017; Conaghan et al., 2018). A maximum EQE
of 26.3% was achieved in solution-processed OLEDs with
CMA1 as the emitter and high EQE of 24.5% was maintained
at a luminance of 1,000 cd m−2. Nonetheless, there has been
no report on the operational lifetimes of the aforementioned
Au(I)/Cu(I)/Ag(I)-TADF OLEDs. In 2017, Che and co-workers
identified TADF as the emission origin in several pincer Au(III)
aryl emitters (To et al., 2017). The presence of diarylamino group
on the monodentate aryl ligand, and its twisted geometry with
respect to the cyclometalating ligand, results in TADF in Au-1
(Figure 1). Based on variable temperature–emission lifetime
measurements and DFT calculations, a 1E(S1-T1) of 318 cm−1

was estimated for this complex. With short τ of 0.72 µs and high
PLQY of 0.84 in room temperature, solution-processed OLEDs
with Au-1 showed EQE and luminance of up to 23.8% and
57,340 cd m−2, respectively. It is noted that both devices based
on the Au(I) complex CMA1 and the Au(III) complex Au-1
were fabricated by solution-processed technique. In this regard,
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FIGURE 1 | Chemical structures of selected metal-TADF complexes.

studies on EL of these gold complexes in vacuum-deposited
devices were undertaken to determine if they have potential
application in practical OLEDs. High maximum EQEs of 26.9
and 23.4% were achieved in vacuum-deposited OLEDs with
Au(I) complex CMA1 (Conaghan et al., 2018) and pincer Au(III)
alkynyl complex Au-2 (Figure 1; Zhou et al., 2019), respectively.
Despite the slightly lower efficiency, the device lifetime (LT95) of
the latter has been measured to be∼500 h at an initial luminance
of 100 cd m−2, which is at least comparable to that of pincer
Au(III) complex bearing deprotonated carbazole as auxiliary
ligand reported by Li L.-K. et al. (2019). The improved thermal
stability of Au(III) alkynyl complexes compared to the aryl ones
is attributed to the stronger Au(III)-Csp bond in the alkynyl
counterparts. Au(I) complexes with diphosphine ligand(s) have
also been reported to display TADF (Osawa et al., 2018). The
crystalline solid of Au(I) diphosphine iodide (Au-3) displayed

yellow photoluminescence with PLQY of 0.92 and lifetime of 9.0
µs. Its emission shows a red-shift of 20 nm, a decrease in PLQY
to 0.74 and an increase of lifetime to 77 µs, corresponding to a
reduction in kr from 1.0× 105 s−1 to 9.6× 103 s−1 upon cooling
from 293 to 77K. Au(I) bis-diphosphine complex Au-4 exhibits
a high PLQY of 0.95 but with much shorter lifetime of 3.8 µs.
The 1E(S1-T1) of Au-3 and Au-4 were estimated to be 870 and
620 cm−1, respectively.

Tetradentate Metal-TADF Emitters and
Their Application in OLEDs
The aforementioned TADF Au(I) and Au(III) complexes were
prepared by using two ligands. Since the stability of metal
complexes could be increased by employing chelating ligands
of higher denticity, the employment of tetradentate ligand
with C-donor atom(s) is envisaged to improve the thermal
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TABLE 1 | Key performances of selected metal-TADF complexes.

Complex Fabrication method EQE (%) Ld (cd m−2) CIEe (x, y) Lifetimef (h)

Max. At 1,000cd m−2

CMA1 SPa 26.3 25.2 44,700 0.26, 0.49 n. a.

VDb 26.9 24.9 35,400 0.24, 0.42 n. a.

Au-1 SPa 23.8 16.5 33,740 0.27, 0.51 n. a.

Au-2 VDb 23.4 22.1 70,300 0.40, 0.55 500

Au-5 VDb 25.0 22.0 22,700 0.43, 0.54 5,280

PdN3N VDb 20.9 7.0c n. a. 0.30, 0.61 6,000c

Zn-1 VDb 19.6 n. a. n. a. n. a. n. a.

W-1 SPa 15.6 9.7 16,890 0.49, 0.49 n. a.

aSolution process; bVacuum deposition; cEstimated from the original reference; dMaximum luminance; eCIE coordinates; fLT95 at L0 = 100 cd m−2.

stability and to restrict excited-state structural distortion of
the resultant complex as exemplified in tetradentate Pt(II) and
Pd(II) complexes (Vezzu et al., 2010; Cheng et al., 2013; Chow
et al., 2016). Furthermore, it was suggested that an increase
in the structural rigidity of emitters could suppress structural
deformation upon S1-T1 transformation, which reduces 1E(S1-
T1) and leads to efficient TADF (Saigo et al., 2019). Therefore,
the development of TADF Au(III) complexes supported by
trianionic tetradentate ligands would be an appealing direction
toward practical Au-OLEDs. A class of Au(III) complexes
supported by N-bridged tetradentate ligand prepared by post-
modification was reported by Wong et al. (2017). These
complexes exhibit photoluminescence from triplet intraligand
charge-transfer (ILCT) excited states with PLQY of up to 0.78
in thin films. Solution-processed OLEDs fabricated with these
emitters showed EQE of up to 11.1%. Che and co-workers
developed new strategies for synthesizing tetradentate Au(III)
complexes with O-bridged/spiro-arranged C∧C∧N∧C ligand by
microwave induced C-H activation (Zhou et al., 2020). By
rationally varying the substituent(s) on the ligand, the emissive
excited states of the Au(III) emitters are changed from triplet
intraligand (3IL) excited states with kr of ∼103 s−1, to TADF
from ILCT excited states. These Au(III) TADF emitters show
high thermal stability and PLQYs of up to 0.94 and τ down to 0.62
µs in degassed toluene. A vacuum-deposited OLED with Au-5
as the emissive dopant showed maximum EQE of 25% and the
EQE value maintained at 22% at a luminance of 1,000 cd m−2.
Significantly, as listed in Table 1, at an initial luminance of 100 cd
m−2, this device showed a much longer lifetime LT95 of 5,280 h.
This value is at least 10-fold longer than those recorded with
pincer Au(III) emitters (Li L.-K. et al., 2019; Zhou et al., 2019).
This result highlights the advantage of using tetradentate ligand
in the preparation of robust Au(III) TADF emitters for practical
use. It also showcases tetradentate Au(III) TADF complexes as
competitive candidate in OLED industry.

Tetradentate ligand has also been used in preparing stable,
luminescent Pd(II) complexes. Li and co-workers reported
a tetradentate Pd(II) complex, PdN3N, which contains a
C∧N cyclometalating moiety composed of 2-pyridyl-carbazole,
where the T1 is localized, and also a donor-acceptor moiety
of carbazole-carbazoyl-pyridine (Figure 1, Zhu et al., 2015).

PdN3N exhibited both phosphorescence and TADF at room
temperature with PLQY of 0.72. A maximum EQE of 20.9%
and operational lifetime LT90 of 170 h at an initial luminance
of 1,697 cd m−2 were achieved in the OLED with PdN3N.
Nonetheless, the EQE of this device dropped to ∼7.0% at a
luminance of 1,000 cd m−2. Such severe efficiency roll-off is a
result of the long τ of >100 µs for PdN3N, which limits the
application of this kind of Pd(II) complexes in practical OLEDs.
In addition, the color purity of the Pd-OLED is not good enough
because of the wide EL spectrum resulting from dual emission
from both phosphorescence and TADF.

Inexpensive Metal-TADF Complexes and
Their Application in OLEDs
The low earth abundance of noble metals (e.g., iridium,
platinum) has stimulated a great interest to invent new classes
of luminescent materials based on inexpensive, earth-abundant
metals (Bizzarri et al., 2018; Wenger, 2018). Besides Cu(I)
complexes, more examples of inexpensive metal-TADF emitters
have been reported. Adachi and co-workers synthesized TADF
materials based on zinc, magnesium and lithium having ILCT
transition (Sakai et al., 2015). Zn-1 (Figure 1) was the most
efficient emitter among these complexes. The EQE of vacuum-
deposited OLEDs based on Zn-1 was up to nearly 20%.
By employing terphenyl having carboxyl and diphenylamine
groups as linkers, Adachi, Kabe and co-workers constructed
a zirconium-based metal-organic framework exhibiting green
TADF with PLQY of 0.30 under vacuum (Mieno et al., 2018).

Tungsten is another appealing candidate for developing
luminescent metal-based materials because of its large spin-orbit
coupling constant (2,433 cm−1) which facilitates intersystem
crossing and significantly higher earth abundance than noble
metals. Nonetheless, examples of air-stable tungsten complexes
displaying strong photoluminescence are rare with the recent
report on W(VI) cis-dioxo Schiff base and quinolinolate
complexes by Yeung et al. (2017). One of these complexes exhibit
PLQYs of up to 0.22 in thin film and was used as emitter
to realize the first tungsten-OLED, though the maximum EQE
achieved was only 4.79%. While the proof of principle has been
demonstrated, the low PLQY and inferior performance data
suggested that significant improvement in the photo-luminescent
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properties of luminescentW(VI) complexes is needed if the latter
are to be used for practical applications. With a view to designing
W(VI) complexes with competitive luminescent properties for
OLED application, it is conceived that installation of diarylamino
group(s) on the Schiff base ligand may change the emission
origin to TADF (To et al., 2017; Zhou et al., 2019), thereby
boosting kr and improving PLQY. Che and co-workers described
the first example of tungsten TADF emitter in 2019 (Chan
et al., 2019). This study has demonstrated that the incorporation
of diarylamino donor groups into the ligand scaffold changes
the emissive excited state from long-lived 3IL ones to TADF
arising from ILCT excited state, which effectively boosts PLQY
of W(VI) Schiff base complex to 0.84 in thin film. The estimated
kr of W-1 (Figure 1) is 4.2 × 105 s−1, which is at least 100-
fold larger than that of analogous W(VI) complexes without
diarylamino group. DFT calculations revealed that the subtle
change on the twisted angle between the diarylamino substituent
and the phenolic moiety is the key that influences the excited state
dynamics and modulates the singlet–triplet energy separation,
leading to efficient TADF in complex W-1. Solution-processed
OLEDs fabricated withW-1 showed EQEs of up to 15.6%, which
is a significant improvement compared to the previous work
(EQEmax = 4.79%).

DISCUSSION

The variety and design strategy of metal-TADF emitters remain
considerably scarce despite the recent discoveries on Au(I),
Au(III), Ag(I), and Pd(II) TADF emitters. Summarizing from
the recent findings, metal-TADF emitters are generally realized
in complexes that are composed of electrophilic metal ion, such
as those of Au(III), W(VI), and Pd(II). In these complexes,
the emission origin is changed from phosphorescence (3LC) to
TADF by adding donor groups to generate LLCT/ILCT excited
states. The originally small kr of these complexes allows an
easy identification of whether TADF is operative because a 100-
fold (or even more) increase in kr would be observed when
TADF takes place, as exemplified in Au(III) and W(VI) TADF
emitters. This finding is similar to that of organic compounds
which are known to show long-lived phosphorescence (kr <

100 s−1). By incorporating donor-acceptor pair, TADF can be

observed and the kr of organic compounds can be increased
significantly. Accordingly, it may be a challenge to realize TADF
in Pt(II) and Ir(III) complexes due to their large phosphorescent
kr which facilitates efficient radiative decay via triplet excited
state. Another consideration is that as the kr of phosphorescent
Pt(II) and Ir(III) are already large (105-106 s−1), switching the
emission origin to TADF may not lead to a drastic increase in kr
and this renders the identification of whether TADF is occurring
in these complexes highly challenging.

Compared to pure organic TADF emitters, τ of triplet excited
states of metal-TADF complexes is much shorter, which could
be advantageous for the operational stability of OLEDs based
on metal-TADF emitters. Furthermore, with the use of rigid
tetradentate ligands, a drastic improvement in terms of efficiency
and device stability could be realized as that observed for
tetradentate Au(III) TADF emitters. This finding calls for a more
stringent ligand design for practical metal-TADF emitters in
addition to pursuing high PLQY and short τ .

Besides, the questionable practicability of Cu(I) complexes in
OLEDs triggers the investigation on TADF emitters based on
other inexpensive metals. Although TADF Zn(II) and W(VI)
complexes have shown high PLQY and EL efficiency, the
improvement of operational lifetime of devices based on these
complexes remains a formidable challenge. The deployment of
robust and rigid ligands that would induce the occurrence of
TADF could be the key to increase the practical potential of
emitters based on earth-abundant metals.
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