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ABSTRACT
In digital holographic microscopy, phase aberrations, which are usually caused by the imperfections of components and nontelecentric con-
figuration of the optical system, severely affect the visualization and quantitative measurement for phase-contrast imaging. Here, we propose
a purely numerical and automatic method to compensate for phase aberrations. Without any manual involvement of selecting a sample-free
background, the compensation is cast as a surface fitting problem, in which the aberration surface is approximated by formulating an inverse
problem. By adopting the ℓ1-norm as the loss function and by minimizing an objective function, aberrations can be accurately fitted and
thus removed numerically. Synthetic and experimental results are demonstrated to verify the efficacy of this method over the least squares
method.
© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5115079., s

I. INTRODUCTION

Digital holographic microscopy (DHM) is a powerful tech-
nique that can measure tiny structures such as MEMS circuits and
biological specimens in real time due to its capability of recording
the whole wavefront of a three-dimensional (3D) scene in a non-
invasive and label-free way. By using a detector such as a CCD or
a CMOS, the interference pattern between the object wave and the
reference wave is recorded and stored in a digital manner. With the
two-dimensional (2D) hologram, one can then numerically recon-
struct the object’s amplitude and quantitative phase distribution1,2

using appropriate algorithms. By doing so, applications in tomog-
raphy,3 3D imaging,4 and extended focused imaging5 have been
demonstrated in recent years.

Unfortunately, a serious distortion in the quantitative phase-
contrast imaging of DHM is the undesired phase aberrations. On the
one hand, in the off-axis configuration, the incidence between the

object beam and the reference beam illuminating onto the detector
produces a constant tilt aberration, which introduces a slant to the
retrieved phase. On the other hand, the microscope objective (MO),
if no additional component is added to form a telecentric configura-
tion, inevitably causes a quadratic phase aberration to the extracted
phase. Besides, due to the imperfect construction of the system and
alignment of components, high-order aberrations, such as astigma-
tism and coma, may also exist in the final image. These aberrations
appearing in the phase image not only distort the visualization of the
object but also severely hinder the quantitative measurement of the
object’s true thickness/height.6

In recent years, to eliminate the aberrations in the retrieved
phase map, various methods have been proposed. By and large, they
can be categorized into two groups: physical compensation in the
optical recording stage and numerical compensation in the recon-
struction stage. The former either requires additional/special opti-
cal components/configurations or demands multiple recordings. To
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name a few, by adding a tube lens, a telecentric configuration is
formed, and therefore, the parabolic phase is physically compen-
sated.7–9 The tilt phase is further removed from the phase map
by a spatial filtering.9 Similarly, by inserting an electrically tun-
able/adjustable lens in the illumination path or in the reference arm,
the parabolic phase factor or total phase distortions can be canceled
out.10–12 Besides, a common-path interferometer with one single-
cube beam splitter is also demonstrated to physically compensate
phase aberrations.13 As for the latter scheme of multiple recordings,
although the double exposure method is capable of eliminating all
of the aberrations, a second object-free reference hologram has to be
captured.14,15 Under some situations, even two more laterally shifted
holograms have to be collected.16 As such, these methods are only
appropriate for static scenarios. All in all, the physical compensation
strategy complicates the holographic recording and makes it more
bulky.

Another group of compensation methods, as mentioned above,
is based on numerical postprocessing. Roughly speaking, fitting-
based numerical methods involve in the use of different polynomi-
als such as standard polynomials,17,18 digital phase mask,19,20 and
Zernike polynomials.17,21 By solving a least-squares problem19,21 or
a phase variation minimization problem,20 the aberration surface
is thus fitted and then subtracted from the phase map, resulting
in a pure object phase finally. Comparatively, nonfitting methods
employ various mathematical models and special operations on the
hologram. For example, Zuo et al. used principal component anal-
ysis (PCA) to decompose the phase map into a set of values of
uncorrelated variables, thus extracting aberration terms from the
first principal component obtained.22 A method that analyzes the
frequency spectrum of a hologram for aberration removal is also
demonstrated.23,24 Besides, a hologram rotation-based method is
proposed, in particular, for getting rid of the off-axis tilt as well as
the parabolic phase aberration.25,26

Despite the success and flexibility of current numerical
approaches, manual operations of selecting a flat region as reference
surfaces17,19 are required, an assumption is made that the object is
so thin that it is just a small perturbation in the aberration contri-
bution to the overall reconstructed phase distribution,18,21 or only
low-order aberrations such as the phase curvature introduced by the
MO can be removed.18 It is worth noting that the polynomial-based
method is a semiautomatic method since it requires background
information to find the phase residual, which is detected by man-
ually cropping a flat background area as Refs. 17 and 19. Besides,
although PCA can automatically predict the phase residual by cre-
ating a self-conjugated phase to compensate aberrations and can be
extended to deal with high-order aberrations, it assumes that only
noncross terms exist, limiting the scope of this method.22,27 Fur-
thermore, manual filtering and centering23 or hypothesis of a thin
phase object24 is inevitable in the spectrum-based analysis, and the
self-hologram rotation is solely suitable for tilt aberration compen-
sation.25 Recently, a learning-based method is proposed to auto-
matically detect the specimen-free background for the subsequent
fitting using Zernike polynomials.28 Aberration removal is further
encapsulated in holographic reconstruction and thus can be auto-
matically compensated during the feed-forward propagation along
the network.29 Despite its success and applicability to high-order
aberrations, the learning-based method requires a lot of data and
extensive computation for network training.

In this paper, we propose a purely numerical method that can
remove phase aberrations of any orders in a totally automatic man-
ner for DHM. By formulating the surface fitting as an inverse prob-
lem and by solving an ℓ1-norm-based optimization, the aberration
surface can be accurately estimated and a high-quality aberration-
free quantitative phase-contrast image is then recovered. Synthetic
and experimental results of multiple samples are demonstrated to
verify the efficacy of the proposed method.

II. METHOD
On the reconstruction plane (x, y), based on the recovered com-

plex wavefront Γ(x, y), the unwrapped and phase map is extracted
by

ϕ(x, y) = UNWRAP[arctan(
Im[Γ(x, y)]
Re[Γ(x, y)]

)], (1)

where UNWRAP[⋅] indicates the phase unwrapping operation and
Re and Im denote the real and imaginary parts, respectively. Under
situations that no physical compensation is implemented, taking
aberrations into account, the recovered phase is the summation of
the object phase and the aberration, which reads

ϕ(x, y) = ϕobj(x, y) + ϕabe(x, y), (2)

where ϕobj(x, y) is the object phase distribution and ϕabe(x, y) is
the total aberration term overlapping with ϕobj(x, y). The purpose
of numerical aberration compensation is to find an approximation,
ϕ̂abe(x, y), of the real aberration ϕabe(x, y) as accurately as possible.
As such, the aberration-free object phase can be then fully recovered
by

ϕ̂obj(x, y) = ϕ(x, y) − ϕ̂abe(x, y)
≈ ϕobj(x, y). (3)

In order to approximate the aberration, a theoretical fitting
model is necessary. According to the principle of homogeneous
polynomial fitting, the surface model we are using here is in second-
order and can be written as

ϕ̂abe(x, y) = β1x2 + β2y2 + β3xy + β4x + β5y + β6, (4)

where βi, i = 1, . . ., 6, denote the fitting coefficients to be estimated.
Note that for mathematical simplification, the model we show here
is second-order. This illustrates that the commonly occurred aber-
rations in DHM, such as tilt, astigmatism, and parabolic surface,
can be successfully compensated using this fitting model. However,
the extension of the fitting model to higher order is straightfor-
ward without any further efforts if high-order aberrations have to
be removed.

With the help of the fitting model, we can then proceed to esti-
mate its coefficients, which determines the aberration surface. To
do so, by assuming that the object phase is a small perturbation
compared to the aberration (this is a reasonable hypothesis for the
situations in DHM18,21), we can rewrite ϕ(x, y) = ϕ̂abe(x, y) in the
matrix notion as
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, (5)

where β⃗ = (β1,β2, . . . ,β6)
T denotes the coefficients, b⃗ =

(b1, b2, . . . , bn)
T denotes the phase ϕ(x, y), and n is the number of

pixels of the phase image. Suppose that A denotes the matrix of the
polynomials, Eq. (5) is written as

Aβ⃗ = b⃗. (6)

This is a typical inverse problem, which is usually ill-posed.
Conventionally, this problem is solved by the least squares method,
in which the residual between the actual value and the value pre-
dicted by the model is minimized with the ℓ2-norm loss function.18

Instead, to seek the estimation of β⃗, by incorporating regularization
technique, which is a process of introducing additional information
in order to prevent overfitting, the objective function we propose to
minimize is

f (β⃗) = ∥Aβ⃗ − b⃗∥1 + λ∥β⃗∥1, (7)

where ∥⋅∥1 denotes the ℓ1-norm and λ is a regularization parameter
determined by trial and error. Then, by solving Eq. (7), the fitting
coefficients can be acquired by

ˆ⃗β = arg min
β⃗

f (β⃗). (8)

Therefore, after having a proper approximation of β⃗, according
to Eq. (4), an estimated phase aberration ϕ̂abe(x, y) can be obtained.
By using Eq. (3), an aberration-free object phase distribution can
then be recovered for visualization and quantitative measurement.
The process is totally automatic since no flat region has to be
selected as the reference in our method. The only necessary infor-
mation is the recovered phase image with aberration, which is always
available.

To explain why changing from the ℓ2-norm to ℓ1-norm can
improve the fitting accuracy, we turn to the well-known com-
pressed sensing theory. As is well known, the least squares method
for regression analysis is to minimize an ℓ2-norm loss function.
As such, this optimization problem is equal to minimizing the
amount of energy in the system and is mathematically simple to
solve. However, such a formulation leads to poor fitting results
for many practical applications for which the unknown coeffi-
cients have nonzero energy. Instead, to enforce the sparsity con-
straint when solving linear equations, one can minimize the num-
ber of nonzero components of the solution, which is the so-called
ℓ0-norm in a broad sense.30 This means that finding the spars-
est solution x, which is feasible to sensing constraints given by
the encoding matrix A and the observation vector b, can be sum-
marized as an ℓ0 minimization problem. Furthermore, in math-
ematics, it has been proved that for many problems such as
the compressive imaging problem here, the ℓ1-norm can be used
in lieu of the ℓ0-norm. Consequently, one can solve the ℓ1 prob-
lem instead of the ℓ0 problem since the former is less difficult and
easy to solve mathematically.31,32 Therefore, formulating an ℓ1-norm
loss function has a better performance than the ℓ2-norm for our
case.

FIG. 1. Simulated object phase in (a) 2D and (b) 3D. (c) Sim-
ulated phase aberration with the first 6 terms of the Zernike
polynomials. (d) Object phase overlapped with aberration.
The unit of the color bar is radian.
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III. SYNTHESIZED AND EXPERIMENTAL RESULTS
A. Simulation

We first test the proposed method on synthesized data, which
is implemented on a PC with Intel Xeon W-2145 at 3.70 GHz and
64 GB RAM. Figures 1(a) and 1(b) present a computer-generated
phase map with a size of 256 × 256 on a flat background in 2D
and 3D visualizations, respectively. In Fig. 1(c), a synthetic phase
aberration is generated using the first 6 terms of the Zernike polyno-
mials,21 leading to tilt aberration in the x and y axes, astigmatism at
0○ and 45○, and defocus. The coefficients used in the simulation are
given in Table I. By adding up the object phase and aberration, an
aberration-distorted phase is then created and shown in Fig. 1(d).

To remove the phase aberration, the proposed ℓ1-norm
method and conventional least squares method are employed sep-
arately and solved using the SDPT3 4.0 algorithm,33 and the
compensated results are shown in Fig. 2. As can be seen, with the

TABLE I. Simulated aberrations using Zernike polynomials.

Order Form Description Coefficients

0 1 Piston 0.0
1 y Tilt at x 0.0
2 x Tilt at y 0.5
3 −1 + 2x2 + 2y2 Defocus 0.5
4 2xy Astigmatism at y 0.5
5 x2 − y2 Astigmatism at x 0.0

ℓ1-norm-based optimization, the aberration is totally removed and
the recovered object phase has exactly the same phase range to
the original one, while the conventional method gives an inaccu-
rate compensated background. This can be further observed by the
quantitative comparison of phase profiles across the individual

FIG. 2. Compensated phase using (a) ℓ1 optimization and
(b) conventional least squares method. Error maps of (c) ℓ1
optimization and (d) conventional least squares method. (e)
Comparison of phase profiles along the central line in (a)
and (b).

APL Photon. 4, 110808 (2019); doi: 10.1063/1.5115079 4, 110808-4

© Author(s) 2019

https://scitation.org/journal/app


APL Photonics ARTICLE scitation.org/journal/app

FIG. 3. (a) Generated high-order aberration. (b) Compen-
sated result using ℓ1-norm-based method. (c) Compen-
sated result using the least-squares method.

central lines in Fig. 2(e). As such, the superior performance of the
proposed method can be verified.

To illustrate the capability of the proposed method in high-
order aberration removal, we use the same phase object in Fig. 1(b)

and generate a high-order aberration with the first 16 Zernike
terms and the aberration is shown in Fig. 3(a). Suppose that
a fourth-order fitting model is adopted, then Eq. (4) is written
as

FIG. 4. (a) DHM setup operating in reflection mode. HWP1
and HWP2 are the half-waveplates. PBS and BS are the
polarization and nonpolarization beam splitters, respec-
tively. M1 and M2 are the mirrors. MO is the microscope
objective lens. OBJ is the object. D is the detector. (b)
Groove, as indicated by the red arrows. Only one groove
is imaged in the following experiment. (c) Microcircuit.
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ϕ̂abe(x, y) = β1x4 + β2y4 + β3x3y + β4xy3 + β5x2y2 + β6x3

+β7y3 + β8x2y + β9xy2 + β10x2 + β11y2 + β12xy
+β13x + β14y + β15. (9)

Based on this model, we use the ℓ1-norm-based method
and the least squares method for compensation. The results are
given in Figs. 3(b) and 3(c), respectively. As can be clearly
seen, the conventional method can basically work in this case.
However, the bottom plane is not flat and contains fluctuation,
which would introduce errors in the calculation of the object
phase. While the proposed method can give a pretty flat bot-
tom plane as well as a precise compensated result. The synthe-
sized result here demonstrates an intuition of the convenience
of extending the proposed method to higher-order aberration
compensation.

B. Experiment
We further demonstrate the performance of this method using

experimental data. The DHM system, as shown in Fig. 4(b), used to
acquire data is an off-axis Mach-Zehnder interferometer with a 4X
MO (GCO-2101, L = 45 mm, Daheng Optics) working in the reflec-
tion mode. The wavelength of the He–Ne laser source is 632.8 nm,
and the pixel pitch of the detector (MER-130-30UM-L, 1280 × 1024
pixels, Daheng Imaging) is 5.2 μm. Two samples, a groove etched
on an optical wafer shown in Fig. 4(c) and a microcircuit on a sap-
phire wafer shown in Fig. 4(d), are used as objects.34 The collimated
laser beam is split by the PBS and enters the interferometer along
two paths. The reference beam, which is reflected by M1, directly
goes into the detector, while another beam, which is reflected by M2,
focuses onto the OBJ through the MO and illuminates the sample.
Then, the object beam, which is the beam reflected by the sam-
ple, goes back to the detector. Two beams interfere and lead to an

FIG. 5. (a) Hologram of the groove. (b) True groove phase
acquired with a different DHM setup. (c) Recovered object
phase with tilt aberration. (d) Compensated object phase.
(e) Line profile comparison along diagonals in (c) (red
dashed line) and (d) (blue solid line).
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interference pattern, which is the hologram and is collected by using
the detector. The PBS and two HWPs are designed to collabora-
tively change the polarization state, leading to the interference of
two beams as well as the adjustment of the contrast of the interfer-
ence pattern. Since it is challenging to intentionally create specific
aberrations in the experiment, in this section, removal of two com-
monly occurred aberrations in DHM, tilt aberration and quadratic
aberration, is demonstrated.

1. Removal of linear aberration
To ensure only tilt aberration is remained, the quadratic aberra-

tion introduced by the MO is optically corrected with the telecentric
configuration.8,35 In Fig. 5(a), the hologram of the groove is pre-
sented, and for a clear comparison, a true groove phase shown in
Fig. 5(b) is acquired with a totally new DHM setup. All hardwares
and configurations are different from our system used here. For a
better visualization, the acquired phase map is cropped and mag-
nified properly. Figure 5(c) shows the recovered phase image with
aberration. As can be clearly seen, the groove is located on a tilt

plane, even with some astigmatism at corners, while in Fig. 5(d), the
tilt surface is successfully removed using the proposed method, and
the absolute height of the groove can be thus easily measured accord-
ing to the difference of the groove and the flat surface. Profiles of the
individual diagonals in the aberrated and corrected phase images are
also demonstrated in Fig. 5(e) for comparison. The true phase of the
groove can therefore be measured as around 4 rad. Another exam-
ple, as shown in Fig. 6, presents the tilt aberration removal for the
sample circuit. Figure 6(a) shows the hologram of the circuit, and
the true circuit phase is given in Fig. 6(b). Similarly, the recovered
phase in Fig. 6(c) has a tilt distortion, while in Fig. 6(d), the slope
is removed such that the true phase of the circuit can be measured.
Figure 6(e) compares the phase profiles along central lines in the two
phase images.

2. Removal of quadratic aberration
As for the compensation of quadratic aberration, we first cap-

ture a hologram of the groove without telecentric configuration,
leading to the introduction of quadratic curvature. Figure 7(a)

FIG. 6. (a) Hologram of the circuit. (b) True circuit phase
acquired with a different DHM setup. (c) Recovered object
phase with tilt aberration. (d) Compensated object phase.
(e) Line profile comparison along central lines in (c) (red
dashed line) and (d) (blue solid line).
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FIG. 7. (a) Recovered object phase with quadratic aberra-
tion. (b) Compensated object phase. (c) Normalized phase
profiles [red dashed line in (a) and blue solid line in (b)] for
comparison.

shows the recovered phase-contrast image in which the object
phase is overlapped with a quadratic surface. The curvature, as
can be seen clearly, introduced by the MO significantly hinders
the measurement of the true thickness of the object. By using the
proposed method, in Fig. 7(b), however, the quadratic surface is
eliminated and the groove is thus located on a flat plane. From

Fig. 7(c), we can see that removal of the notorious quadratic sur-
face in phase imaging benefits the quantitative measurement of
the object. Then, with the telecentric configuration, holograms of
the groove and the circuit are collected. Note that although in
theory, parabolic aberration should be removed in such config-
urations. However, due to the misalignment of components, the

FIG. 8. (a) Amplitude reconstruction of the groove. (b)
Recovered object phase with quadratic aberration. (c) Com-
pensated object phase. (d) Line profile comparison along
central lines in (b) (red dashed line) and (c) (blue solid line).
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FIG. 9. (a) Amplitude reconstruction of the circuit. (b)
Recovered object phase with quadratic aberration. (c) Com-
pensated object phase. (d) Line profile comparison along
central lines in (b) (red dashed line) and (c) (blue solid line).

quadratic aberration is not totally removed. As such, the pro-
posed method is utilized to compensate the second-order aberration.
Figure 8 shows the amplitude reconstruction of the same groove.
Figures 8(b) and 8(c) show the aberrated and aberration-free object
phase maps, respectively. The existence and removal of quadratic
surface are clearly demonstrated in Fig. 8(d). A similar example
of imaging the microcircuit, as shown in Fig. 9, also supports our
method.

IV. SUMMARY
To conclude, a numerical method is proposed in this paper

for automatically compensating aberrations in phase-contrast imag-
ing using DHM. By formulating the aberration fitting as an inverse
problem and by adopting the ℓ1-norm as the objective function and
regularization, an accurate aberration surface can be approximated.
As such, by subtracting the estimated aberration surface from the
original phase image, the true object phase image can then be recov-
ered for visualization and quantitative measurement. Simulated and
experimental results of multiple samples are demonstrated to verify
the efficacy of the proposed method in quantitative phase-contrast
imaging.

Despite the outperformance and automation of the proposed
method here, it has a limitation that more efforts should be engaged
in the future. Since solving an ℓ1-norm-based optimization prob-
lem (∼10 s) requires more time than that of the ℓ2-norm (∼1 s),
this method has a lower computational efficiency (ten times slower)
than the least-squares method. As such, for real-time applications
such as particle tracking or live cell imaging, this method can only
be employed in an offline fashion. Future directions of the reported
approach include studies of the cause that makes the optimiza-
tion slow. We will try faster optimization algorithms or software

packages like the homotopy method or the MOSEK optimization
suite to accelerate the computation of the proposed method.
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