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ABSTRACT

Light field (LF) cameras often have significant limitations in
spatial and angular resolutions due to their design. Many
techniques that attempt to reconstruct LF images at a higher
resolution only consider either spatial or angular resolution,
but not both. We propose a generative network using high-
dimensional convolution to improve both aspects. Our exper-
imental results on both synthetic and real-world data demon-
strate that the proposed model outperforms existing state-of-
the-art methods in terms of both peak signal-to-noise ratio
(PSNR) and visual quality. The proposed method can also
generate more realistic spatial details with better fidelity.

Index Terms— Light field reconstruction, generative ad-
versarial networks, computational imaging, high-dimensional
convolution, deep learning

1. INTRODUCTION

Light field (LF) imaging typically makes use of a compact
camera array to capture multiple images of the scene from
slightly different viewpoints [1]. Compared with traditional
2D images, a light field also records the angular direction in-
formation of the light rays, which enables additional applica-
tions, such as depth estimation [2], 3D modeling [3], digital
refocusing [4], and virtual reality. However, the benefits from
such additional angular information are usually obtained at
the expense of the spatial resolution, which should therefore
be augmented by computational methods [5, 6]. A common
approach for light field super-resolution (LFSR) is to consider
it as two parts, namely spatial super-resolution (SR) and view
synthesis, and solve them separately [7, 8]. However, the LF
data have a particular structure that should be preserved when
enhancing the resolution, leading to the need for better algo-
rithmic approaches that also model the light distribution.

Many existing algorithms are based on disparity infor-
mation for LFSR, but they usually exhibit noticeable draw-
backs. For example, Wanner and Goldluecke [9] first ex-
ploited the slopes in epipolar plane images (EPIs) to calculate
the disparity map for every individual low-resolution (LR)
view. The obtained depth is then used to super-resolve the
LFs in a variational optimization framework. Since the dis-
parity calculation remains challenging at low spatial resolu-

tion, such method easily results in significant artifacts in the
textured and occlusion regions. Mitra and Veeraraghavan [7]
proposed a patch-based model based on Gaussian mixture
model and reconstructed the patches according to the dispar-
ity value. However, assigning a constant disparity to each
sampled LF patch results in severe artifacts at depth discon-
tinuities in the reconstructed views. Apart from improving
spatial resolution, some have studied approaches to synthe-
size novel views. Pearson et al. [10] introduced an automatic
depth layer-based method for synthesizing an arbitrary view
from a set of existing views. They rendered the view using
a probabilistic interpolation based on depth information on a
small set of sub-aperture images. However, these methods
rely heavily on the estimated depth, which is sensitive to oc-
cluded regions and reflective surfaces.

Recently, a few methods based on convolutional neural
network (CNN) were proposed [11, 12]. Yoon et al. [13] con-
sidered the cascade of two CNNs to super-resolve the given
views. However, the design of their model underusee the po-
tential of the entire angular information, seriously limiting the
performance. Meanwhile, Kalantari et al. [8] used two se-
quential CNNs to model disparity and estimate color simulta-
neously. However, since the framework was depth-dependent
and training process required fixed sampling patterns, the ap-
proach resulted in artifacts in occluded and reflective regions.
Wu et al. [14] exploited the texture structure of the EPI and
modeled the view synthesis as the angular restoration of the
EPI. Their EPI-based method got rid of depth estimation, but
severely limited the accessible information of the model, re-
sulting the artifacts in the generated novel views.

Given the inherent geometry of LF data, reconstruc-
tion algorithms should involve information from both spatial
and angular dimensions [15]. We therefore apply the high-
dimensional convolution (HDC) to process LF data and wrap
the operation into a layer to construct the deep network.
Inspired by [16, 17], the generative adversarial networks
(GANs) are powerful in generating plausible natural images
with high perceptual quality. Therefore, we propose a gen-
erative model named LFGAN, which incorporates the HDC
layers into a GAN framework to learn the high correlations
among neighboring LF views. We also define a novel loss
function to encourage LFGAN in recovering more realistic
spatial details. Experimental results demonstrate that our LF-



GAN can enhance realistic spatial details and generate novel
view with good fidelity.

2. METHOD

2.1. Problem Formulation

The LF reconstruction deals with the recovery of the high-
resolution (HR) data IH(x, y, u, v) ∈ RγsH×γsW×γaS×γaT

from the corresponding LR data IL(x, y, u, v) ∈ RH×W×S×T ,
with the spatial and angular super-resolution factors γs and
γa ∈ Z+. We cast the reconstruction task into the tensor
restoration problem which can be described as

IS(x, y, u, v) = g(IL(x, y, u, v),Θ), (1)

where Θ =
{
θ(0), · · · , θ(K−1)

}
represents the parameters of

the networks and IS stands for the super-resolved LF. The
function g(·) describes the learned mapping from LR to HR
light field images, where in this paper it is formulated as an
adversarial generative network. All model parameters are op-
timized to reduce the loss `(·), which measures the difference
between IS and IH . Therefore, the restoration task is

Θ∗ = arg min
Θ

`
(
IH , g(IL; Θ)

)
. (2)

However, different from single-image super-resolution but in
a way more similar to holographic reconstruction [18, 19],
LFSR requires the algorithm g(·) to possess the ability to re-
cover high-frequency spatial details while preserving angular
correlations. Given the complex structural relations among
different LF coordinates, we use the HDC operation instead
of traditional 2D convolution in our network. Furthermore,
we also carefully design the loss function to encourage the
network to reconstruct realistic spatial details.

2.2. High-dimensional Convolution

The HDC operation is used to enable our network to enforce
the LF coordinates relations. Each input LF captures the
geometry information of the scene, which is wrapped and
stored in its structural high-dimensional data. The intrinsic
limitation of 2D (or 3D) convolution makes it hard to han-
dle LF problem, and hence existing learning-based methods
simplify the reconstruction to only model the spatial-angular
relation (EPI images) [14] or the angular correlations (sub-
aperture image sequence) [8, 13, 20]. On the contrary, in our
proposed network, each convolutional layer fully exploits the
information of all coordinates by applying HDC. Stacking
many such layers leads to filters that become increasingly
global and therefore the network can use more context to
predict the spatial details. Meanwhile, the convolution along
angular coordinates preserves geometry information. As the
GAN-based model maintains the ability to drive the recon-
struction towards HR image manifold, we incorporate the
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Fig. 1. The proposed LFGAN model by incorporating the
HDC layer into the GANs framework.

HDC with GANs framework and construct both generator G
and discriminator D using HDC layer.

Fig. 1 presents the entire framework of our proposed LF-
GAN. Different types of layers are denoted by different col-
ors. The training process can be considered as solving the
min-max problem [17]

min
θG

max
θD

EIH∼π(IH) logD
(
IH
)
+

EIL∼π(IL) log
[
1−D

(
G(IL)

)]
,

(3)

where θG and θD stand for the parameters of generator and
discriminator, respectively.

2.3. Loss Function

To efficiently drive our proposed generator learning the light
distribution, we define a novel spatial-angular loss function.
Such loss is formulated as the weighted sum of a spatial con-
tent loss `S , an angular loss `A based on mean square error
(MSE), and an adversarial loss component `G, such that

` = α · `S + β · `A + γ · `G. (4)

The scalars α, β and γ denote the weights of each loss. The
spatial loss `S is calculated based on the features of ReLU
activation layers of a pre-trained 19 layer VGG network. We
compute such spatial loss on each sub-aperture image of LF,
and therefore

`S =
1

ST

S∑
s=1

T∑
t=1

[
f(IH)s,t − f

(
G(IL)

)
s,t

]2
, (5)

where f(·) indicates the feature map described in [20].
The angular loss `A is defined based on EPIs which con-

tain the angular information. We use the MSE between the
original and super-resolved EPI features to encourage our
generator to maintain the angular correlations while enhanc-
ing the spatial resolution, i.e.,

`A =

Y∑
y=1

T∑
t=1

(
EI

H

y,t (x, s)− EI
S

y,t(x, s)
)
. (6)
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Fig. 2. Visual and quantitative (PSNR, SSIM) comparison of
the proposed LFGAN against other SR methods on the center
view of a real-world scene: EPFL–Billboards (for 4× SR).

The third component is the adversarial generative loss, i.e.,

`G =

N∑
n=1

log
[
1−D

(
G
(
IL(x, y, s, t)

))]
. (7)

3. EXPERIMENTS AND RESULTS

We compare the proposed framework with some state-of-the-
art methods on several aspects. For spatial SR, they include
some recent LF reconstruction, such as Yoon et al. [13],
BM PCA+RR [20], LFNet [11], and single image super-
resolution (SISR) methods, including MSLapSRN [21],
RDN [22], and VDSR [23]. These are applied on every
sub-aperture image of a LF. For angular SR, we compare the
approaches proposed by Wu et al. [14] and Kalantari et al [8].

3.1. Experimental Settings

We implement the HDC operation and subsequently the LF-
GAN using Tensorflow. Our training data are sampled from
Lytro Archive [24] (not including the scenes in reflective and
occlusion categories) and Fraunhofer densely-sampled high-
resolution dataset [25]. To obtain spatial LR data, the training
data are downsampled according to the imaging model

IL = δ(B ∗ IH) + η, (8)

where η represents the additive noise, δ(·) is the nearest
neighbor downsampling operator and B is the Gaussian ker-
nel. To get LR angular data, we sparsely sampled the views
of LF data by a factor γa. The learning rate is initialized to
10−5 and decreased by a factor of 0.1 for every 10 steps.

Buddha Mona Reflectives 20 Occlusions 20
Bicubic 28.58 29.44 31.19 28.52

Yoon et al. 29.84 31.40 31.42 28.86
BM PCA+RR 30.43 32.68 33.07 30.45

LFNet 30.93 32.47 33.85 30.37
VDSR 30.48 31.39 32.32 29.84

MSLapSRN 30.98 32.74 32.43 30.85
RDN 30.99 31.80 33.86 31.46

LFGAN 31.93 32.97 35.24 33.15

Table 1. Quantitative evaluation (PSNR) on synthetic LF and
real-world LF for γs = 4. All numbers are measured in dB.

3.2. Spatial Super-resolution

The spatial SR enhances the resolution of every sub-aperture
image of LF by a factor of γa. Our proposed model fully ex-
ploits the spatio-angular information by employing the HDC
layer. As a consequence, the LFGAN is able to provide supe-
rior visual results on the spatial details. Fig. 2 compares the
visual results of LFGAN against several advanced methods.
The average peak signal-to-noise ratio (PSNR) is reported un-
der every reconstructed close-up image.

Quantitative performances of our proposed model in HCI
synthetic scenes [26] and Lytro Archive [24] real-world
scenes for 4× spatial reconstruction are presented in Ta-
ble 1. We evaluate our methods against other state-of-the-art
methods as well as the standard interpolation method (Bicu-
bic) as the baseline. For real-world evaluation, we randomly
select 20 scenes from two challenging categories — reflective
and occlusion. As seen in the Table, LFGAN outperforms all
other reference methods on the mean PSNR measurement.

3.3. Angular Super-resolution

The angular SR, also named view synthesis, aims to re-
construct the novel views based on sparsely sampled input
views. We compare LFGAN with two current learning-based
approaches, namely Kalantari et al. [8] and Wu et al. [14].
Fig. 3 presents the visual results of LFGAN against these two
methods. The former is designed based on depth information.
Therefore, it tends to fail on the region with complex occlu-
sions (the “fence” region) and result in ghosting artifacts (the
“wire” region). The latter generates novel view by restor-
ing angular information on the EPI. Therefore, the structural
information of LF is not fully exploited during the reconstruc-
tion. In some regions with fine texture (e.g., the “feelers” of
papillon), such method easily results in artifacts. Compared
with these methods, the HDC layer enables LFGAN to use all
the information in every dimension of LF, leading to a more
robust performance even in challenging scenes.
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Fig. 3. Comparison of the proposed LFGAN against re-
cent state-of-the-art synthesis methods on the synthetic scene
(Top: HCI–Papillon) and the real-world scene (Bottom:
EPFL–Black Fence).

3.4. Spatial-angular Super-resolution

The spatial-angular SR both reconstructs the spatial resolu-
tion of each sub-aperture image and also generates a dense
LF based on the sparsely sampled LF. The ability to calcu-
late HD data directly allows our proposed LFGAN to recover
both spatial and angular information simultaneously. We test
the model performance for 2× spatial resolution enhancement
while at the same time generating 9 × 9 views from 5 × 5
views. The visual results are presented in Fig 4, in compar-
ison with Yoon et al. [13] and LFSR [27], which can also
restore both spatial and angular resolution. Compared with
the performance of our method, the results of Yoon et al. tend
to be blurred while LFSR leads to artifacts near the edges.

4. CONCLUSION

We have described a generative framework employing HDC
layer for LF spatial and angular information reconstruction.
The proposed LFGAN benefits from training on a novel loss,
which drives the generator to reconstruct high-quality LF with
realistic spatial details. We compared the performance of
our model against state-of-the-art methods for spatial, angu-
lar and spatio-angular SR tasks separately. The experimen-
tal results demonstrate that our LFGAN has the capacity to
reconstruct spatial details with good fidelity and with high
quantitative score on PSNR.

This work is supported in part by the Hong Kong Research
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Fig. 4. Visual comparison for spatial-angular reconstruction.
Both spatial and angular resolutions have been downsampled
with the spatial factor γs = 2 and the angular factor γa = 2
(generate 9× 9 views from 5× 5 views).
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