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Abstract. We concern the modal choice of commuters in a transport system comprising a 

highway, which is only used by autos, in parallel to a transit line, which is only used by buses. 

In the transport system, the in-vehicle congestion of passengers in bus carriages is treated as a 

negative externality cost of affecting the modal choice of commuters and commuters choose 

their travel modes according to the perceived travel costs of transport modes. We propose two 

trial-and-error operation schemes for the transport system without resorting to both the 

function of in-vehicle congestion costs and the distribution of perceived travel cost errors. In 

the first operation scheme, the manager (or the government) determines the transit fare 

charged from (or financial subsidy to) bus users from period to period so as to minimize the 

system time cost of the transport system. The second operation scheme is established from 

the viewpoint of a private firm that operates the public transit line. The operator determines 

the transit fare and bus run frequency from period to period in order to maximize its operating 

profit. Moreover, we demonstrate the effectiveness of the two operation schemes for 

optimizing the system time cost and the operating profit by both theoretical analyses and 

numerical examples.  

 

Keywords: Bimodal transport; trial-and-error operation scheme; system time optimization; 

operating profit optimization 

 

1. Introduction 
In most cities around the world, multiple transport modes exist to provide substitutable 
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transportation services for people, e.g., people can choose either private cars or public transit 

to travel from their origins to their destinations. Some of these cities, such as London, 

Singapore, Milan, and Stockholm, further implement toll charging to manage travel demand.  

So far, a number of studies have concerned travelers’ modal choices and toll charge 

regimes in multi-modal transport systems, which comprise highways (used by private cars) 

and transit lines (operated by public transit companies). These existing studies mainly focus 

on the planning and operation of multi-modal transport systems and address two problems. 

The first problem is how the manager of a multi-modal transport system sets the decision 

variables in the system (e.g., transit fares, transit capacities, auto toll charges, and bus run 

frequencies) so as to cut down or minimize the total social cost of the system (e.g., Huang, 

2000, 2002; Kraus, 2003; Gonzales and Daganzo, 2012; Li et al., 2012; David and Foucart, 

2014; Wu and Huang, 2014; Gonzales, 2015; Liu et al., 2016) or maximize consumer surplus 

or government surplus (e.g., Arnott and Yan, 2000; Pels and Verhoef, 2007; Ahn, 2009; van 

den Berg and Verhoef, 2014). The second problem is, when the public transit lines in a 

multi-modal transport system are operated by one or more private firms, how the private 

firms determine bus fares or bus run frequencies in order to improve or maximize their 

operating profits (e.g., Pels and Verhoef, 2007; Li et al., 2012; van der Weijde et al., 2013; 

Wu and Huang, 2014; Zhang et al., 2014; Li and Yang, 2016). Some of the existing studies 

also examine the responses of commuters or service operators to various policies 

implemented in multi-modal transport systems, e.g., the first-best pricing for system optimum 

(Huang, 2002), the second-best pricing (Arnott and Yan, 2000), auto mode underpricing 

(Kraus, 2003; Ahn, 2009), the location-based or distance-based pricing (Li et al., 2012), the 

flat toll charge (Wu and Huang, 2014), parking reservation (Liu et al., 2016), and the 

provision of traffic forecasts by smart transport information providers/agencies (Liu et al., 

2017). For a comprehensive review of transport pricing in multi-modal transport systems, the 

readers may refer to the study of Tirachini and Hensher (2012). 

When public transit modes are involved in a transport system, the in-vehicle congestion in 

transit carriages should be considered (de Palma et al., 2017). On one hand, mass transit may 

bring passengers discomfort generated by the in-vehicle congestion in transit carriages if 

passengers are crowded in carriages. On the other hand, the in-vehicle congestion also leads 

to the loss of independence and privacy of passengers (Huang, 2000, 2002). Therefore, the 

in-vehicle congestion in carriages can be treated as a class of negative externality costs that 

significantly affect the modal choices of travelers between transit services and other transport 

modes.  
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The public transport crowding was modeled in some theoretical and case studies. In the 

studies of Huang (2000) and van den Berg and Verhoef (2014), the in-vehicle congestion cost 

of passengers is assumed to be a linear function of the number of travelers, who use the bus 

mode, to generate some analytical results. In the studies of Huang (2002), Huang et al. (2007), 

Parry and Small (2009), Li et al. (2012), and Wu and Huang (2014), the in-vehicle congestion 

cost of passengers in transit carriages is assumed to be an increasing function of the number 

of travelers selecting the public transit mode. Parry and Small (2009) considered in-vehicle 

crowding costs as a dimension of a bi-modal problem in their theoretical framework 

analyzing the optimal level of public transport subsidies. Pel et al. (2014) introduced the 

effect of in-vehicle crowding into the train passenger assignment model of the Dutch 

National Model System and captured travelers’ behavioral response to in-vehicle crowding. 

Recently, public transport crowding was also studied from an empirical viewpoint. For 

instance, Li and Hensher (2011) identified three measures used to value crowding and 

associated ways of representing crowding in stated preference experiments, by using a 

number of primary studies conducted in the UK, the USA, Australia, and Israel. Wardman 

and Whelan (2011) reviewed evidence from the British experience of the valuation of rail 

crowding obtained over 20 years from 17 studies. Using the original survey data from Paris, 

Haywood and Koning (2015) assessed the distribution of comfort costs of congestion in 

public transport and applied their results to the cost-benefit analysis of a Parisian public 

transport project.  

To more realistically formulate the modal choice of commuters in a multi-modal transport 

system, the stochastic user equilibrium (SUE) model is generally adopted to prescribe that 

commuters choose their travel modes according to the perceived travel costs of all travel 

modes rather than the actual travel costs. The perceived errors of commuters for the travel 

cost of a mode are explained as the differences among travel costs perceived by different 

commuters and result from the coincidence of plenty of factors that affect commuters’ modal 

choice, e.g., commuters’ values of time (VOT), commuters’ tolerance degrees for in-vehicle 

congestion in carriages, commuters’ inertia for choosing a travel mode, the amount of travel 

cost information known by commuters, the possession of private cars, and so on. A commuter 

with a smaller VOT may think that the perceived travel cost of one mode with a higher travel 

time and a lower toll charge is less than the perceived travel cost of another mode with a 

lower travel time and a higher toll charge, and hence he/she may choose to use the former 

travel mode. A commuter, who has no information regarding the travel costs of all modes, 

may choose his/her travel mode randomly. A commuter, who has no private car, has to 
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choose to travel by public transit. A commuter, who has a private car, may always choose to 

travel by the private car mode due to inertia or aversion to in-vehicle congestion in bus 

carriages.  

The perceived travel cost errors can be modeled by different distributions. By assuming 

that the perceived travel cost errors follow independently and identically distributed (i.i.d.) 

Gumbel distributions, the modal choice of commuters at a stationary state can be formulated 

as a logit-based discrete choice model (Huang, 2002; Huang et al., 2007). Under the 

assumption that the perceived travel cost errors follow normal distributions, the modal choice 

of commuters at a stationary state can be formulated as a probit-based discrete choice model 

(Sheffi, 1985). The logit model has been commonly adopted due to its ease of use. Through a 

binary logit model, Cantarella et al. (2015) formulated the joint adjustment of modal choice 

and transit operation from day to day in a bi-modal transport system, in which the frequency 

of bus runs is prefixed to meet the demand with all the buses available or is daily updated to 

meet the demand with the minimum number of buses needed to avoid oversaturation. By 

assuming that commuters choose their travel modes according to the perceived travel costs of 

travel modes and that the perceived travel cost errors follow i.i.d. Gumbel distributions, Liu 

and Geroliminis (2017) modeled and controlled a multi-region and multi-modal 

transportation system, in which both the day-to-day and within-day traffic dynamics are 

involved, and developed an adaptive mechanism to update parking pricing from period to 

period so as to improve the system’s efficiency. 

Some studies of multi-modal transport systems adopted a general distribution of the 

perceived travel cost errors to account for various realistic situations where the logit and 

probit assumptions are not satisfied. For instance, David and Foucart (2014) studied the 

choice of transportation modes within a city, where commuters have heterogeneous 

preferences for the car mode, and examined two policy tools, i.e., taxation and traffic 

separation. Li and Yang (2016) investigated travelers’ day-to-day modal choice in a bi-modal 

transportation system with responsive transit services under various economic objectives. 

Guo and Szeto (2018) designed a control strategy to control the day-to-day modal choice of 

commuters in a bi-modal transportation system so as to simultaneously reduce the daily total 

travel cost of the transportation system and achieve a Pareto improvement or zero-sum 

revenue target.  

Some of the aforementioned studies of multi-modal transport systems involved the 

generalized travel cost functions of public transit passengers that commonly consist of travel 

time cost, waiting time cost, in-vehicle congestion cost, and so on. To obtain these 
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generalized travel cost functions, not only the in-vehicle congestion cost function but also the 

coefficient of the in-vehicle congestion cost need to be known first. However, it is generally 

difficult to obtain the in-vehicle congestion cost function and the coefficient. Moreover, it is 

also difficult to obtain the distribution function of perceived travel cost errors and the 

calibrated parameters in the distribution function. Thus, we bring up a question, i.e., whether 

an operating scheme for a multi-modal transport system without resorting to the function of 

in-vehicle congestion costs and the distribution of perceived travel cost errors can be 

developed to optimize the system time cost or operating profit of the transport system. To the 

best of our knowledge, the question has not been addressed in these existing studies with 

respect to travelers’ modal choice and toll charge regimes in multi-modal transport systems.  

The methodology for solving our investigated problem relates to the trial-and-error 

methods proposed by a series of papers for optimizing the system costs of transport networks 

or restricting the flows on links below desirable upper bounds with unknown demand 

functions or travel cost functions. For example, Li (2002) proposed a bisection iterative 

procedure in deriving the congestion toll for system optimum for a single road in the absence 

of the demand function. Wang and Yang (2012) demonstrated the non-convergence of the 

bisection iterative procedure by Li (2002) and modified the iterative procedure to guarantee 

its convergence. Yang et al. (2004) and Han and Yang (2009) developed a class of 

trial-and-error implementation schemes of marginal-cost pricing on a general road network 

when the demand functions are unknown. Yang et al. (2010) presented a convergent 

trial-and-error implementation method for finding a set of effective link toll patterns to reduce 

link flows to below a desirable target level when both the link travel time functions and 

demand functions are unknown. Zhou et al. (2015) proposed a trial-and-error congestion 

pricing scheme that not only considers the minimization of the total system cost but also 

addresses the capacity constraints. Wang et al. (2018) proposed a trial-and-error fare design 

scheme to alleviate the boarding/alighting congestion of commuters at train stations to a 

certain level. However, these trial-and-error methods, mentioned above, cannot be directly 

applied to solve the proposed operating problem in a multi-modal transport system with 

unknown in-vehicle congestion cost functions and perceived travel cost error distributions. It 

is thus essential to design and develop new trial-and-error procedures to solve the proposed 

operating problem. 

In this paper, we propose two trial-and-error operation schemes for a bimodal transport 

system, which comprises a highway, which is only used by autos, in parallel to a transit line, 

which is only used by buses. In the first operation scheme, the manager of the transport 
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system sets the transit fare charged from (or financial subsidy to) bus users during each 

period according to the reaction of commuters to the bus fare (or subsidy) in the previous 

period so as to minimize the system time cost of the transport system. In the second operation 

scheme, the operator of the public transit line sets the bus fare and bus run frequency from 

period to period in order to optimize its operating profit. In both the operation schemes, both 

the function of in-vehicle congestion costs and the distribution of perceived travel cost errors 

are not needed. Moreover, we theoretically demonstrate that the two operation schemes are 

effective for optimizing the system time cost and the operating profit. The contributions of 

this paper are as follows: (1) This paper introduces a new operating problem in a bimodal 

transport system with unknown in-vehicle congestion cost functions and perceived travel cost 

error distributions, and a variant with a different objective. (2) This paper proposes a novel 

convergent trial-and-error operation scheme for each of the two operating problems. 

The remainder of this paper is organized as follows. In the next section, the trial-and-error 

operation scheme for minimizing the system time cost and its several properties are presented. 

In Section 3, we propose the trial-and-error operation scheme for maximizing the profit of 

operating a public transit line. Several numerical examples are given to show the 

effectiveness of the two operation schemes in Section 4. Section 5 concludes this paper.  

 

2. Trial-and-error implementation for system time optimization 
2.1. System description 

We consider a bi-modal transport network, which comprises an origin-destination (OD) 

pair connected by a transit line in parallel to a highway. In every morning, a fixed number d  

( 0> ) of commuters travel from the origin to the destination. The two transport modes are 

separated. Commuters can choose to travel by bus running on the transit line or auto running 

on the highway, i.e., they have two discrete choices. The number of bus users on the transit 

line is denoted by bx  ( 0≥ ) and the number of auto users on the highway is then bd x−  

( 0≥ ).  

Let y  ( 0≥ ) be the frequency of bus runs on the transit line. ( , )bw x y  ( 0≥ ) denotes the 

average waiting time cost of bus users at the bus stop on the transit line. The function w  is 

twice-continuously differentiable with respect to ( , )bx y . Meanwhile, it is assumed that 

( , ) 0b bw x y x∂ ∂ > , ( , ) 0bw x y y∂ ∂ < , and 2 2( , ) 0b bw x y x∂ ∂ ≥ . That is to say, the waiting 

time cost of bus users is positively (negatively) proportion to the number of bus users (the 

frequency of bus runs), and the function w  is increasing and convex (decreasing) with 

respect to bx  ( y ). Let bt  ( 0> ) stand for the average in-vehicle travel time cost of bus 
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users on the transit line. The notation ( , )bg x y  ( 0≥ ) denotes the average in-vehicle 

congestion cost of passengers in bus carriages and it reflects the discomfort generated by 

in-vehicle congestion, which has a significant effect on the choices of commuters between 

transit services and other transport modes (Huang, 2000, 2002; Huang et al., 2007; Parry and 

Small, 2009; Li et al., 2012; Pel et al., 2014; van den Berg and Verhoef, 2014; Wu and Huang, 

2014). The function g  is continuously differentiable with respect to ( , )bx y . It is assumed 

that ( , ) 0b bg x y x∂ ∂ >  and ( , ) 0bg x y y∂ ∂ < , i.e., the in-vehicle congestion cost increases 

(decreases) as the number of bus users (the frequency of bus runs) increases.  

For simplicity, the occupancy of each auto is assumed to be one. ( )a bt x  ( 0> ) represents 

the average travel time cost of auto users on the highway, including both the free flow travel 

cost and the road congestion cost. The function at  is twice-continuously differentiable with 

respect to bx . Moreover, it is supposed that d ( ) d 0a b bt x x <  and 2 2d ( ) d 0a b bt x x ≥ . This 

implies that the function at  is increasing and convex with respect to the number of auto 

users bd x− . After all, a higher number of auto users generate more congestion for auto 

users because there are more autos on the highway.  

The notation bp  stands for the transit fare charged from (or financial subsidy to) each 

bus user on the transit line. A positive (negative) bp -value represents a toll charge (financial 

subsidy). ap  ( 0≥ ) is the toll charge from each auto user on the highway. There are two 

travel modes and also the total travel demand is fixed in the transport system. Thus, to 

achieve the system time optimization objective, it is enough to adjust the transit fare (or 

financial subsidy) bp  for bus users while setting the toll charge ap  for auto users as a 

fixed value. Thus, it is assumed that the toll charge ap  is constant. All those costs and prices, 

mentioned above, are measured in monetary units.  

Commuters choose their travel modes according to the perceived generalized travel costs 

of the two modes. The perceived generalized travel costs ( , , )b b bc x y p  and ( )a bc x  of 

commuters using buses on the transit line and using autos on the highway are respectively 

formulated as  

( , , ) ( , ) ( , )b b b b b b b bc x y p w x y t g x y p ξ= + + + +  and  (1) 

( ) ( )a b a b a ac x t x p ξ= + + ,  (2) 

where the terms ( , ) ( , )b b b bw x y t g x y p+ + +  and ( )a b at x p+  are the actual generalized 

travel costs of bus and auto users, respectively, and bξ  and aξ  are two random error terms. 

The random error terms prescribe the differences between travel costs perceived by different 

commuters. Let bε  and aε  be two realizations of the two random variables bξ  and aξ , 
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respectively. Let b aξ ξ ξ= −  be the difference between bξ  and aξ  and b aε ε ε= −  be a 

realization of the random variable ξ . The random variable ξ  follows a distribution with the 

probability density function ( )fε ε  and the distribution function ( )Fε ε  over the 

support ( , )−∞ +∞ . The function f  is continuous with respect to ε , and hence F  is 

related to f  by ( ) ( )F fε ε′ = . In addition, it is assumed that ( ) 0f ε >  holds for any ε .  

At a stochastic user equilibrium (SUE) state, no commuter can reduce his/her perceived 

travel cost by unilaterally altering his/her travel mode (Sheffi, 1985). Mathematically, the 

SUE condition can be formulated as  

( ) ( ) ( )Pr ( , , ) ( ) Pr ( , , ) ( , , )b b b b a b b b b bx d c x y p c x d x y p dF x y pξ= < = < ∆ = ∆ ,  (3) 

where 

( , , ) ( ) ( , ) ( , )b b a b a b b b bx y p t x p w x y t g x y p∆ = + − − − − .  (4) 

 

2.2. Optimization of total system time cost 

Given a frequency of bus runs y  on the transit line, the optimization problem of 

minimizing the total system time cost of the transport system is formulated as 

( )
0
min ( , ) ( ) ( )

b
b b b b a bx d

V x w x y t d x t x
≤ ≤

= + + − .  (5) 

The total system time cost V  is the sum of the total waiting and travel time cost 

( )( , )b b bx w x y t+  of all bus passengers and the total travel time cost ( ) ( )b a bd x t x−  of all 

auto users.  

The feasible set [0, ]d  of the decision variable bx  is nonempty, compact, and convex. 

The system time cost V  is continuous with respect to bx . Furthermore, the second 

derivative of the system time cost V  satisfies  
2 22

2 2 2

( , ) ( , ) ( ) d ( )d 2 2 ( ) 0
d d

b b a b a b
b b

b b b b b

w x y w x y dt x t xV x d x
x x x dx x

∂ ∂
= + − + − >

∂ ∂
,  

due to ( , ) 0b bw x y x∂ ∂ > , 2 2( , ) 0b bw x y x∂ ∂ ≥ , d ( ) d 0a b bt x x < , and 2 2d ( ) d 0a b bt x x ≥ . Thus, 

V  is strictly convex with respect to bx . It follows that the globally optimal solution to the 

optimization problem (5) exists and also is unique. Meanwhile, *
bx  is the globally optimal 

solution (or globally minimum point) to the optimization problem (5) if and only if it satisfies 

the following Karush–Kuhn–Tucker (KKT) conditions:  

1 2
( , ) d ( )( , ) ( ) ( )

d
b a b

b b b a b b
b b

w x y t xw x y t x t x d x
x x

µ µ∂
+ + − + − = −

∂
,  (6) 

1 0µ ≥ , 0bx ≥ , 1 0bxµ = , 2 0µ ≥ , 0bd x− ≥ , and 2 ( ) 0bd xµ − = ,  (7) 
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where 1µ  and 2µ  are the Lagrange multipliers associated with the constraints 0bx ≥  and 

0bd x− ≥ , respectively.  

It is assumed that the globally optimal solution *
bx  is in the interior of the feasible set 

[0, ]d , i.e., both * 0bx >  and * 0bd x− >  hold. Then, the KKT conditions (6) and (7) can be 

further reduced as  

( , ) d ( )( , ) ( ) ( ) 0
d

b a b
b b b a b b

b b

w x y t xw x y t x t x d x
x x

∂
+ + − + − =

∂
.  (8) 

 

2.3. Trial-and-error procedure  

In the transport system, the in-vehicle congestion in bus carriages is considered to be a 

negative externality cost of affecting the modal choice of commuters. Meanwhile, commuters 

choose their travel modes according to the perceived travel costs of travel modes and the 

modal split at a stationary state satisfies the SUE condition (3). How does the manager of the 

transport system set the transit fare (or financial subsidy) for bus users, without resorting to 

the function of in-vehicle congestion costs and the distribution of perceived travel cost errors, 

so as to achieve a system time optimization objective? To answer this question, we propose a 

trial-and-error implementation of the bus fare (or subsidy) for the optimization objective.  

It is worth mentioning that the trial-and-error methods in existing studies, e.g., Li (2002), 

Yang et al. (2004), Han and Yang (2009), Yang et al. (2010), Wang and Yang (2012), Zhou et 

al. (2015), and Wang et al. (2018), cannot be directly applied to solve the operating problem 

in our study because the implementation objectives and preconditions in those existing 

studies and in our study are different. In those existing studies, the system cost of a transport 

network is minimized under the precondition that the demand functions of travelers are 

unknown or the traffic flows on a set of links are restricted below desirable upper bounds 

under the precondition that the demand functions and travel cost functions of travelers are 

unknown in general. However, in our study, the system time cost of a transport system is 

minimized and the operating profit of a transit operator is maximized without resorting to 

both the function of in-vehicle congestion costs and the distribution of perceived travel cost 

errors (in addition, the social/system cost, including not only waiting and travel time cost but 

also in-vehicle congestion cost and transit operating cost, is optimized without resorting to 

the function of in-vehicle congestion costs in the appendix of this paper).  

Assuming a fixed frequency of bus runs y , we summarize the iterative trial-and-error 

procedure for determining the transit fare (or subsidy) as follows.  

Step 1. Let (0)
bp  be the initial transit fare (or subsidy) for bus users, set an initial iterative 
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step size 0α  ( 0> ) and a convergence tolerance ε  ( 0> ), and set 0n = . 

Step 2. Observe the revealed number of bus users ( )n
bx  at the equilibrium state after the 

imposition of the transit fare (or subsidy) ( )n
bp .  

Step 3. Set the transit fare (or subsidy) ( ) ( )n n
b bp p p= + ∆  and then observe the revealed 

number of bus users ( )n
bx  at the equilibrium state.  

Step 4. Compute the iterative direction ( )n
pG  of the transit fare (or subsidy) according to  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

, d
,

d

n n n n
b a bn n n n n b b

p b b b a b bn n
b b

w x y t x x xG w x y t x t x d x
x x p

 ∂ − = + + − + −
 ∂ ∆ 

.  (9) 

Step 5. If 0n n< , then set ( )
0

nα α= ; otherwise, set ( ) ( 1) 2n nα α −= .  

Step 6. Update the transit fare (or subsidy) by the following formula:  
( ) ( ) ( )

( 1)
( ) ( )

, if 0,
, otherwise.

n n n
n b p

b n n
b

p G
p

p
α
α

+  − <
= 

+
  (10) 

Step 7. If ( 1) ( )n n
b bp p ε+ − <  , then stop; otherwise, set 1n n= +  and go to Step 2.  

We call the above trial-and-error implementation the trial-and-error system time 

optimization (TESTO) procedure. In the TESTO procedure, the difference parameter p∆  is 

positive and sufficiently small. The convergence tolerance ε  is sufficiently small. Step 2 (or 

Step 3) means that, under the implementation of the transit fare (or subsidy) ( )n
bp  (or ( )n

bp ), 

the number of bus users ( )n
bx  (or ( )n

bx ), which satisfies the SUE condition (3), is observed. 

Obviously, in the TESTO procedure, the function of in-vehicle congestion costs and the 

distribution of perceived travel cost errors are not involved, i.e., the manager need not know 

the function of congestion costs and the distribution of perceived travel cost errors to 

implement the TESTO procedure.  

To show how the TESTO procedure takes effect, we first prove that bx  is a continuously 

differentiable function of bp  and y  in the SUE condition (3).  

 

Proposition 1. In the SUE condition (3), bx  is a continuously differentiable function of bp  

and y  and the partial derivatives of bx  with respect to bp  and y  can be governed by  

( )

( )

( , , )
d ( ) ( , ) ( , )1 ( , , )

d

b bb

b a b b b
b b

b b b

df x y px
p t x w x y g x ydf x y p

x x x

− ∆∂
=

∂  ∂ ∂+ ∆ − + + ∂ ∂ 

 and  (11) 

( )

( )

( , ) ( , )( , , )

d ( ) ( , ) ( , )1 ( , , )
d

b b
b b

b

a b b b
b b

b b b

w x y g x ydf x y p
y yx

y t x w x y g x ydf x y p
x x x

 ∂ ∂− ∆ + ∂ ∂∂  =
∂  ∂ ∂+ ∆ − + + ∂ ∂ 

.  (12) 
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Proof. We first prove that bx  is a function of bp  and y . Let a function H  be formulated 

as  

( )( , , ) ( , , )b b b b bH x p y x dF x y p= − ∆ .  (13) 

Due to ( ) 0f ε >  for any ( , )ε ∈ −∞ +∞ , it is concluded that  

( )(0, , ) 0 (0, , ) 0b bH p y dF y p= − ∆ <  and ( )( , , ) ( , , ) 0b bH d p y d dF d y p= − ∆ > ,  

for any ( , )bp y . On the other hand, the partial derivative of the function H  with respect to 

bx  satisfies  

( )( , , ) d ( ) ( , ) ( , )1 ( , , ) 0
d

b b a b b b
b b

b b b b

H x p y t x w x y g x ydf x y p
x x x x

 ∂ ∂ ∂
= + ∆ − + + > ∂ ∂ ∂ 

,  (14) 

owing to ( )( , , ) 0b bf x y p∆ > , d ( ) d 0a b bt x x < , ( , ) 0b bw x y x∂ ∂ > , and ( , ) 0b bg x y x∂ ∂ > . 

That is to say, the function H  is increasing with respect to bx . In addition, the function H  

is continuous with respect to bx . Thus, given any ( , )bp y , there is a unique bx , which 

satisfies ( , , ) 0b bH x p y = , or equivalently, bx  is a function of bp  and y .  

We then prove that the function ( , )b bp y x  determined by the SUE condition is 

continuously differentiable. On one hand, the partial derivatives of the function H  with 

respect to bp  and y  are formulated as  

( )( , , ) ( , , )b b
b b

b

H x p y df x y p
p

∂
= ∆

∂
 and  (15) 

( )( , , ) ( , ) ( , )( , , )b b b b
b b

H x p y w x y g x ydf x y p
y y y

 ∂ ∂ ∂
= ∆ + ∂ ∂ ∂ 

.  (16) 

In formulae (14) to (16), the function f  is continuous and the functions at , w , and g  are 

continuously differentiable. Thus, the function H  is continuously differentiable with respect 

to ( , , )b bx p y . On the other hand, ( , , ) 0b b bH x p y x∂ ∂ ≠  holds. Therefore, by Theorem 6.4.1 

by Trench (2003), bx  is continuously differentiable with respect to ( , )bp y . Moreover, the 

partial derivatives of bx  with respect to bp  and y  are expressed as  

( )

( )

( , , )
( , , )

( , , ) d ( ) ( , ) ( , )1 ( , , )
d

b b

b bb b

b bb a b b b
b b

b b b b

H x p y
df x y px p

H x p yp t x w x y g x ydf x y px x x x

∂
− ∆∂ ∂

= − =
∂∂  ∂ ∂

+ ∆ − + + ∂ ∂ ∂ 

 and  
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( )

( )

( , ) ( , )( , , ) ( , , )

( , , ) d ( ) ( , ) ( , )1 ( , , )
d

b bb b
b b

b

b b a b b b
b b

b b b b

w x y g x yH x p y df x y p
y yx y

H x p yy t x w x y g x ydf x y px x x x

 ∂ ∂∂ − ∆ + ∂ ∂∂ ∂  = − =
∂∂  ∂ ∂

+ ∆ − + + ∂ ∂ ∂ 

.  

This completes the proof.  ■ 

The system time cost V  in the optimization problem (5) is determined by the variable 

bx . Given a fixed y -value, the variable bx  is a function of bp  and hence the system time 

cost V  is finally determined by bp . The derivative of V  with respect to bp  can be 

governed by  

d ( , ) d ( )( , ) ( ) ( )
d d

b a b b
b b b a b b

b b b b

V w x y t x xw x y t x t x d x
p x x p

 ∂ ∂
= + + − + − ∂ ∂ 

.  (17) 

To minimize the system time cost V  by using a gradient-based method, the decision 

variable bp  could be updated in the negative gradient direction d d bV p−  in each iteration. 

However, the in-vehicle congestion cost function and the perceived travel cost error 

distribution (i.e., the functions g  and f ) are unknown, and hence the negative gradient 

direction d d bV p−  cannot be computed by formula (17) and cannot be directly applied to 

solve the optimization problem (5).  

In the TESTO procedure, Steps 3 and 4 are employed to estimate the derivative of bx  

with respect to bp  without resorting to the functions g  and f . As the difference 

parameter p∆  is positive and sufficiently small, it is concluded that  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

n n n n n
b b b b b

n n n
b b b

x x x x x
p p p p

− − ∂
= ≈

− ∆ ∂
.  

It immediately follows that  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

, d d,
d d

n n n n
b a bn n n n b b

b b b a b bn n n
b b b

w x y t x x x Vw x y t x t x d x
x x p p

 ∂ −
+ + − + − ≈ − 

 ∂ ∆ 
,  

i.e., in Step 4 of the TESTO procedure, the decision variable bp  is updated in an 

approximate negative gradient direction of V  (i.e., a descent direction) despite that the 

functions g  and f  are not used.  

The following proposition shows that the optimal bus fare (or subsidy) for minimizing the 

system time cost V  exists and is unique. Moreover, V  is decreasing with respect to bp  

on the left-hand side of the optimal bus fare (or subsidy) and is increasing with respect to bp  

on the right-hand side of the optimal bus fare (or subsidy).  
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Proposition 2. There exists a unique bus fare (or subsidy) *
bp  so that the system time cost 

V  is minimum at the point *
bp . Furthermore, V  is decreasing with respect to 

*( , )b bp p∈ −∞  and increasing with respect to *( , )b bp p∈ +∞ .  

 

Proof. By the SUE condition (3), it is obtained that when the bus fare (or subsidy) bp → −∞ , 

the number of bus users bx d→ ; when bp → +∞ , 0bx → . In addition, in virtue of 

( )( , , ) 0b bf x y p∆ > , d ( ) d 0a b bt x x < , ( , ) 0b bw x y x∂ ∂ > , and ( , )b bg x y x∂ ∂ , the partial 

derivative formulated by expression (11) is always negative, i.e., 0b bx p∂ ∂ < . That is to say, 

bx  is decreasing with respect to ( , )bp ∈ −∞ +∞ . Thus, the increase in bp  from −∞  to 

+∞  corresponds to the decrease in bx  from d  to 0 .  

The system time cost V  in the optimization problem (5) is strictly convex with respect 

to [0, ]bx d∈ . Meanwhile, the globally optimal solution *
bx  to the optimization problem (5) 

is in the interior of the feasible set [0, ]d . Therefore, V  is decreasing with respect to 
*[0, )b bx x∈  and increasing with respect to *( , ]b bx x d∈ .  

Associating the above two facts results in that there exists a unique optimal bus fare (or 

subsidy) *
bp , at which the system time cost V  is minimum, and also V  is decreasing with 

respect to *( , )b bp p∈ −∞  and increasing with respect to *( , )b bp p∈ +∞ . This completes the 

proof.  ■ 

 

Figure 1 shows the relationship between bp , bx , and V , which can help to understand 

the proof of proposition 2. In the figure, 1
bp , *

bp , and 2
bp  satisfy 1 * 2

b b bp p p< < . Through 

the function relationship between bp , bx , and V , 1
bp , *

bp , and 2
bp  correspond to 1V , 

*V , and 2V , respectively. It immediately follows that 1 *V V>  holds if 1 *
b bp p< , and 

2 *V V>  holds if 2 *
b bp p> . This indicates that the system time cost V  takes the minimum 

value at the point *
bp , and V  is decreasing with respect to *( , )b bp p∈ −∞  and increasing 

with respect to *( , )b bp p∈ +∞ .  
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Figure 1. The relationship between bp , bx , and V . 

 

The number 0n  in Step 5 is used to record the iteration, in which the iterative direction 
0( )n

pG  is different from the previous iterative directions 0( 1)n
pG − , 0( 2)n

pG − ,  , (1)
pG , and (0)

pG . 

That is to say, before iteration 0n , the iterative directions remain unchanged; in iteration 0n , 

the iterative direction changes for the first time. In each of the first 0 1n −  iterations, after the 

iterative direction ( )n
pG  is determined in Step 4, the iterative step size ( )nα  takes the fixed 

value 0α  in Step 5 to search for the interval that contains the optimal solution. The interval 

of containing the optimal solution has a property, i.e., the derivative of V  with respect to 

bp , d d bV p , at the left boundary point of the interval is negative and the derivative d d bV p  

at the right boundary point of the interval is positive. Thus, if the iterative directions in two 

successive iterations are different for the first time, then the interval of containing the optimal 

solution is known. After the interval containing the optimal solution is determined, the 

bisection iterative method is used to gradually reduce the interval so that the optimal solution 

is found. Figure 2 gives an example, which shows how the TESTO procedure takes effect for 

optimizing the total system time cost V . 
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Figure 2. An iterative procedure for determining bp  for optimizing the total system time 

cost V . 

 

Based on the above analyses, we obtain the following proposition about the convergence 

of the TESTO procedure to the optimum solution.  

 

Proposition 3. For an initial point (0) ( , )bp ∈ −∞ +∞ , the TESTO procedure is convergent, i.e., 

the sequence { }( ) , 0,1,2,n
bx n =   is convergent to the optimum solution.  

 

The TESTO procedure can be extended to handle cases with multiple bus lines with 

different fares and the flow interactions between buses and cars in a general network. This 

extension is described in Appendix A. 

 

3. Trial-and-error implementation for transit profit maximization 
3.1. Optimization of transit’s operating profit 

When the transit line is operated by a private transit operator, the operator would like to 

deliberately set the transit fare and bus run frequency so as to maximize its operating profit. 

Let ( )k y  be the operating cost of the transit line. The function k  is continuously 

differentiable with respect to y . It is supposed that d ( ) d 0k y y > , which this means that the 

function k  is increasing with respect to y . The total operating profit of the transit operator 

is governed by  

( )b bU x p k y= − ,  (18) 

i.e., the total profit is equal to the difference between the revenue b bx p  from the transit fare 

and the operating cost ( )k y .  
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The operator maximizes the total profit at the SUE state by determining the transit fare 

bp  and the bus run frequency y . The optimal transit fare and bus run frequency are 

obtained by solving the following optimization problem  

( , )
max ( )

b
b bp y

U x p k y= − ,  (19) 

where the decision variable ( , )bp y  is subject to   

( )( , , )b b bx dF x y p= ∆ , 0bp ≥ , and 0y ≥ .  (20) 

The first constraint is the SUE condition formulated by expression (3) and the last two 

constraints are the non-negativity constraints for the transit fare and the bus run frequency. It 

is assumed that the optimal solution to the optimization problem (19) exists.  

 

3.2. Trial-and-error procedure 

We now propose an iterative trial-and-error procedure for determining the transit fare and 

bus run frequency to globally or locally maximize the operating profit of the operator without 

resorting to the function of in-vehicle congestion costs and the distribution of perceived travel 

cost errors. The iterative trial-and-error procedure is summarized as follows.  

Step 1. Let the initial transit fare and bus run frequency be (0)
bp  ( 0≥ ) and (0)y  ( 0≥ ), set 

an initial iterative step size of transit fare 0pβ  ( 0> ) and an initial iterative step size of 

bus run frequency 0yβ  ( 0> ), and set 0n = .  

Step 2.1. Let (0) ( )n
b bp p=  and set 0m = .  

Step 2.2. Observe the revealed number of bus users ( )m
bx  at the SUE state under the 

implementation of the transit fare ( )m
bp  and the bus run frequency ( )ny .  

Step 2.3. Set the transit fare ( ) ( )m m
b bp p p= + ∆ , the bus run frequency ( )ny  remains 

unchanged, and then observe the revealed number of bus users ( )m
bx  at the SUE state.  

Step 2.4. Compute the iterative direction ( )m
pG  of the transit fare according to  

( ) ( )
( ) ( ) ( )

m m
m m mb b

p b b
x xG p x

p
−

= +
∆


  .  (21) 

Step 2.5. If 0pm m< , then ( )
0

m
p pβ β= ; otherwise, set ( ) ( 1)m m

b bp pβ −= −   and ( ) 2m
pβ β= .  

Step 2.6. Update the transit fare by the following formula  

{ }( ) ( ) ( )
( 1)

( ) ( )

max ,0 , if 0,

, otherwise.

m m m
b p pm

b m m
b p

p G
p

p

β

β
+

 − <= 
+







  (22) 

Step 2.7. If ( 1) ( )m m
b b pp p ε+ − <  , then set ( 1) ( 1)n m

b bp p+ +=   and go to Step 3.1; otherwise, set 

1m m= +  and go to Step 2.2.  

Step 3.1. Let (0) ( )ny y=  and set 0m = .  
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Step 3.2. Observe the revealed number of bus users ( )m
bx  at the SUE state under the 

implementation of the bus run frequency ( )my  and the transit fare ( 1)n
bp + .  

Step 3.3. Set the bus run frequency ( ) ( )m my y y= + ∆ , the transit fare ( 1)n
bp +  remains 

unchanged, and then observe the revealed number of bus users ( )m
bx  at the SUE state.  

Step 3.4. Compute the iterative direction ( )m
yG  of the bus run frequency according to  

( )( )( ) ( )
( ) ( 1)

( )

d
d

mm m
m n b b

y b m

k yx xG p
y y

+ −
= −

∆







.  (23) 

Step 3.5. If 0ym m< , then ( )
0

m
y yβ β= ; otherwise, set ( ) ( 1)m my yβ −= −

   and ( ) 2m
yβ β=  .  

Step 3.6. Update the bus run frequency by the following formula  

{ }( ) ( ) ( )
( 1)

( ) ( )

max ,0 , if 0,

, otherwise.

m m m
y ym

m m
y

y G
y

y

β

β
+

 − <= 
+







  (24) 

Step 3.7. If ( 1) ( )m m
yy y ε+ − <  , then set ( 1) ( 1)n my y+ +=   and go to Step 4; otherwise, set 

1m m= +  and go to Step 3.2.  

Step 4. If ( ) ( )( 1) ( 1) ( ) ( ), ,n n n n
b bp y p y ε+ + − < , then stop; otherwise, set 1n n= +  and go to Step 

2.1.  

We call the above iterative trial-and-error procedure the trial-and-error profit 

maximization (TEPM) procedure. In the TEPM procedure, the difference parameters p∆  

and y∆  are positive and also sufficiently small. The operator max{ ,0}⋅  is used to 

guarantee the feasibility of bp  and y  after their update in formulae (22) and (24). pε , yε , 

and ε  are three convergence tolerances and they are positive and sufficiently small. || ||⋅  in 

Step 4 denotes the Euclidean norm, e.g., for a row vector v , T|| ||=v vv . One can see that 

the operator need not know the function of in-vehicle congestion costs and the distribution of 

perceived travel cost errors (i.e., the functions g  and f ) to implement the TEPM 

procedure.  

The operating profit U  in the optimization problem (19) is determined by the variables 

bx , y , and bp . By Proposition 1, the variable bx  is a function of y  and bp , and hence 

the operating profit U  is finally determined by y  and bp . The partial derivatives of U  

with respect to bp  and y  can be formulated as  

b
b b

b b

U xp x
p p
∂ ∂

= +
∂ ∂

 and d ( )
d

b
b

U x k yp
y y y

∂ ∂
= −

∂ ∂
,  (25) 

where b bx p∂ ∂  and bx y∂ ∂  are given by expressions (11) and (12), respectively. To 

optimize the operating profit U  by using a gradient-based algorithm, the decision variable 

( , )bp y  could be updated in the gradient direction ( ),bU p U y∂ ∂ ∂ ∂  in each iteration. 
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However, the in-vehicle congestion costs of commuters in bus carriages and the perceived 

errors of commuters for travel costs (i.e., the functions g  and f ) are unknown, and hence 

the gradient direction ( ),bU p U y∂ ∂ ∂ ∂  cannot be computed by formula (25) to solve the 

optimization problem (19).  

In the TEPM procedure, Steps 2.3 and 2.4 are used to estimate the partial derivative of 

bx  with respect to bp  and Steps 3.3 and 3.4 are used to estimate the partial derivative of 

bx  with respect to y  without resorting to the functions g  and f . As the difference 

parameters p∆  and y∆  are positive and also sufficiently small, we conclude  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

m m m m m
b b b b b

m m m
b b b

x x x x x
p p p p

− − ∂
= ≈

− ∆ ∂
  

 

 and 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

m m m m m
b b b b b

m m m
x x x x x
y y y y

− − ∂
= ≈

− ∆ ∂
  

 

.  

It immediately follows that  
( ) ( )

( ) ( )
( )

m m
m mb b

b b m
b

x x Up x
p p
− ∂

+ ≈
∆ ∂


 



 and 
( )( )( ) ( )

( 1)
( ) ( )

d
d

mm m
n b b

b m m

k yx x Up
y y y

+ − ∂
− ≈

∆ ∂





 

.  

In Steps 2.1 to 2.7 of the TEPM procedure, the bus run frequency ( )ny  remains 

unchanged and the bus fare bp  is updated in an approximate ascent direction ( )m
pG  of U  

with respect to bp  until a maximum point ( 1)n
bp +  is generated. After the iterative direction 

( )m
pG  of the transit fare is determined in Step 2.4, the iterative step size ( )m

pβ  is generated in 

Step 2.5 in a similar way as the iterative step size ( )nα  in the TESTO procedure in Section 

2.3. The number 0pm  in Step 2.5 records the iteration, in which the iterative direction 

changes for the first time. In each of the first 0 1pm −  iterations, the iterative step size ( )m
pβ  

takes the fixed value 0pβ  to obtain the interval in which the optimal solution lies.  

In iteration 0pm  and subsequent iterations, a bisection iterative method is used to find 

the optimal solution in the interval. However, the bisection iterative method in the TEPM 

procedure is different from that in the TESTO procedure due to the non-negative constraint 

on the bus fare bp . In fact, in the TEPM procedure, when the bus fare bp  is updated in the 

left direction, the width of the obtained interval of containing the optimal solution may be 

less than the step size 0pβ  because the bus fare bp  is non-negative. For example, in the 

iterative procedure shown in Figure 3, (1)
0 0b pp β− <  holds. It follows that 

{ }(2) (1)
0max ,0 =0b b pp p β= −  and the width of the interval containing the optimal solution 

(2) (1)
0b b pp p β− <  . Thus, in the bisection iterative method, half of ( ) ( 1)m m

b bp pβ −= −   rather 

than half of 0pβ  is used in each iteration.  
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Figure 3. An iterative procedure for determining bp  for optimizing the operating profit U . 

 

In Steps 3.1 to 3.7 of the TEPM procedure, given the transit fare ( 1)n
bp + , the bus run 

frequency y  is updated in an approximate ascent direction ( )m
yG  of U  with respect to y  

until a maximum point ( 1)ny +  is obtained. The update rules of Steps 3.1 to 3.7 are identical to 

the update rules of Steps 2.1 to 2.7. The number 0ym  in Step 3.5 records the iteration, in 

which the iterative direction changes for the first time. In each of the first 0 1ym −  iterations, 

the iterative step size ( )m
yβ  takes the fixed value 0yβ  to obtain the interval of containing the 

optimal solution. In iteration 0ym  and subsequent iterations, a bisection iterative method is 

used to find the optimal solution in the interval.  

In this way, in each iteration of the TEPM procedure, the operating profit U  increases 

by a certain value until the iterative trajectory gets to a globally or locally maximum point. 

Based on the above analyses, we conclude the following convergence of the TEPM 

procedure.  

 

Proposition 4. For an initial point ( )(0) (0),bp y  that satisfies (0) 0bp ≥  and (0) 0y ≥ , the 

TEPM procedure is convergent, i.e., the sequence ( ){ }( ) ( ), , 0,1, 2,n n
bp y n =   is convergent 

to a locally or globally optimal solution.  

 

The problem (19) is an optimization problem with equilibrium constraints, and hence the 

optimal solution to the problem may not be unique. When the problem has multiple optimal 

solutions, the TEPM procedure can be used together with other methods, e.g., a segmentation 

technology of the feasible set or the implementation of the TEPM from different initial points, 

to find the globally optimal solution. 

Very often a bus operator cannot adjust its price and bus run frequency freely. For 
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example, the government always sets a bound for the bus fare or defines the minimum bus 

frequency for the profit-maximizing case. When the bus fare has an upper bound or the bus 

run frequency has a lower bound, the trial-and-error procedure can be designed and 

developed in a similar way. In this case, the transit fare and the bus run frequency are 

required to be iterated and updated in their feasible sets with interval constraints.  

In the profit maximization objective (18), the operating cost can be related to the flow of 

bus users. The proposed trial-and-error method works for an operation problem, in which the 

in-vehicle congestion cost and the perceived error terms do not appear in the manager or 

operator’s optimization objective. Thus, when an operating cost that relates to the flow of bus 

users is considered in the profit maximization objective, the trial-and-error procedure can also 

be developed similarly.  

The TEPM procedure can be extended to handle cases with more bus lines in a general 

network and the flow interactions between cars and buses. This extension is introduced in 

Appendix B.  

 

4. Numerical examples 
In this section, we give a set of numerical examples to show the effectiveness of the two 

classes of trial-and-error implementations. In the trial-and-error procedures, the dynamic 

modal choice of commuters can be formulated as (Li and Yang, 2016; Guo and Szeto, 2018)  

( )( )( 1) ( ) ( ) ( ) ( 1)(1 ) , ,i i i i i
b b b bx x dF x y pδ δ+ += − + ∆ ,  (26) 

for 0,1,2,i =  . The superscript (i) refers to the ith day, e.g., ( )i
bx  represents the number of 

bus users on the transit line on day i . The adjustment parameter (0,1]δ ∈ . Formula (26) 

states that on day 1i + , a portion of commuters does not change their travel modes chosen on 

the previous day i  due to inertia. The other portion of commuters does reconsider their 

travel modes based on the waiting time, travel time, and congestion costs 

( ) ( )( ) ( ) ( ) ( ), ,i i i i
b b bw x y t g x y+ +  and ( )( )i

a bt x  on the previous day i  and the transit fare (or 

financial subsidy) and the auto toll ( 1)i
bp +  and ap  on that day 1i + . These commuters with 

the perceived generalized travel cost of buses ( )( ) ( ) ( 1), ,i i i
b b bc x y p +  less than (more than) the 

perceived generalized travel cost of autos ( )( )i
a bc x  choose to use the bus mode (auto mode). 

Given the bus run frequency y , the transit fare (or subsidy) bp , and the auto toll ap , the 

stationary state of the dynamical system (26) is equivalent to the SUE state that satisfies 

condition (3) and also the trajectory of the dynamical system is convergent to the SUE state 

(Li and Yang, 2016).  

The total number of commuters is 42 10d = × . The toll charge for auto users is 0ap = . 
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The waiting time cost of bus users at the bus stop on the transit line is governed by  
2

4
5( , ) 5 10

10
b

b
xw x y

y
−

−

 
= × × + 

.  

The in-vehicle travel time cost of bus users on the transit line is 10bt = . The in-vehicle 

congestion cost of passengers on the transit line is expressed as  
2

4
5( , ) 3 10

10
b

b
xg x y

y
−

−

 
= × × + 

. 

The travel time cost of auto users on the highway is formulated as  
4

3( ) 8 10 8
2400

b
a b

d xt x − − = × × + 
 

.  

The random variable ξ  follows a bimodal distribution with the probability density 

function  
2 2

1 2
2 2

( ) ( )1( ) exp exp
2 22 2

f ε µ ε µε
σ σπσ

    − −
= − + −    

    
, ( , )ε ∈ −∞ +∞ ,  

where the parameters 1 3µ = − , 2 4µ = , and 2σ = . The bimodal distribution is a mixture of 

two different unimodal distributions and it prescribes that two groups of commuters have an 

obvious preference to the two modes, respectively. For example, some commuters have no 

private cars, and hence they have to choose to travel by public transit. Some commuters, who 

have private cars, may always choose to travel by private auto mode due to inertia or aversion 

to in-vehicle congestion in bus carriages. Moreover, the two parameters 1µ  and 2µ  satisfy 

1 2| |µ µ< . This means that commuters prefer to use private transport.  

First, we show the effectiveness of the TESTO procedure in Section 2.3. The frequency of 

bus runs is 200y = . The adjustment parameter δ  in formula (26) takes 0.01 . The initial 

iterative step size is set as 0 5α = , the difference parameter 0.1p∆ = , and the convergence 

tolerance 1010ε −= . Figure 4 shows the relation of the system time cost V  of the transport 

system and the transit fare (or subsidy) bp  for bus users. One can see that the V -value is 

minimum and is equal to 212652.71 at the point of 5.05bp = − . On the left (right) hand 

side of the minimum point, V  is decreasing (increasing) with respect to bp .  

Figure 5 displays the convergence of bp  when the TESTO procedure is applied to the 

transport system and the initial transit fare (or subsidy) (0)
bp  varied from 20−  to 50  with 

an interval of 5 . It can be seen that the bp -values for all these initial points converge to the 

same value of 5.05− . Figure 6 depicts the corresponding changes in the total system time 

cost V  as the number of iterations increases. One can see that all of the V -values finally 
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reduce to the same value of 212652.71. Therefore, the TESTO procedure is effective for 

optimizing the total system time cost of the transport system, regardless of initial points.  
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Figure 4. The total system time cost V  of the transport system against the transit fare (or 

subsidy) bp  for bus users.  
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Figure 5. The convergence of bp  when the TESTO procedure was applied to the transport 

system and the initial transit fare (or subsidy) (0)
bp  varied from 20−  to 50  with an 

interval of 5 . 
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Figure 6. The convergence of the total system time cost V  for the initial transit fare (or 

subsidy) (0)
bp  that varies from 20−  to 50  with an interval of 5 . 

 

We then demonstrate the effectiveness of the TEPM procedure for optimizing transit 

operating profit in Section 3.2. The operating cost of the transit line is governed by  
4( ) 50 3 10k y y= + × .  

The adjustment parameter δ  in formula (26) takes 0.01 . The initial iterative step sizes are 

set as 0 5pβ =  and 0 10yβ = , the difference parameters 0.1p∆ =  and 0.1y∆ = , and the 

convergence tolerances 510ε −= , 1010pε
−= , and 1010yε

−= . Figure 7 shows the relation of 

the total operating profit U , formulated by expression (18), to the transit fare bp  and the 

bus run frequency y  that belong to the feasible set  

{ }( , ) | 0 50,1 400b bp y p yΩ = ≤ ≤ ≤ ≤ .  

One can see that the total operating profit U  is a unimodal function with respect to ( , )bp y . 

The total operating profit U  takes the maximum value 30420.63  at the point 

( , ) (18.72,111.99)bp y = . Figure 8 depicts the iterative trajectories of ( , )bp y  when the 

TEPM procedure is applied to the transport system and the initial points ( )(0) (0),bp y  are on 

the boundary of the feasible set Ω . It can be seen that all these trajectories of ( , )bp y  adjust 

to the same optimal point ( , ) (18.72,111.99)bp y = . Figure 9 exhibits the changes of the total 

operating profit U  for all these initial points as the number of iterations increases. One can 

see that the total operating profits for all these initial points converge to the same maximum 

value 30420.63 . Thus, the TEPM procedure is effective for optimizing transit operating 
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profit.  
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Figure 7. The relation of the total operating profit U , formulated by expression (18), to the 

transit fare bp  and the bus run frequency y  that belong to the feasible set Ω .  

 

 

p
b

0 10 18.72 30 40 50

y

50

111.99

150

200

250

300

350

400

 

Figure 8. The iterative trajectories of ( , )bp y  when the TEPM procedure is applied to the 

transport system and the initial points ( )(0) (0),bp y  are on the boundary of the feasible set Ω .  
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Figure 9. The changes in the total operating profit U  for all these initial points on the 

boundary of the set Ω  as the number of iterations increases.  

 

5. Conclusions  
In this paper, we concern a bimodal transport system that comprises an origin-destination 

(OD) pair connected by a transit line in parallel to a highway. The highway is only used by 

autos and the transit line is only used by buses. The transport system has two characteristics. 

First, the in-vehicle congestion in bus carriages is regarded as a negative external cost for 

commuters to choose their travel modes, i.e., commuters choose their travel modes according 

to not only the waiting time and travel time costs of both modes but also the in-vehicle 

congestion costs in bus carriages. Second, commuters choose their travel modes according to 

the perceived travel costs of both modes rather than the actual travel costs and the modal split 

at a stationary state follows the stochastic user equilibrium (SUE) rather than the 

deterministic user equilibrium (DUE).  

It is difficult to obtain the function of in-vehicle congestion costs and the distribution of 

perceived travel cost errors. Thus, we propose two trial-and-error procedures for the transport 

system to achieve two objectives without resorting to both the in-vehicle congestion cost 

function and the perceived travel cost error distribution. The first objective is to minimize the 

total system time cost of the transport system from the viewpoint of the government through 

reasonably determining the transit fare (or financial subsidy) for bus users. The second 

objective is to maximize the total profit of operating the transit line through setting the transit 

fare and the bus run frequency when the transit line is operated by a private firm. Moreover, 
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we demonstrate that the two trial-and-error procedures are effective for achieving the two 

objectives by both theoretical analyses and numerical examples. This study gives new 

insights and avenues for the practical implementation of both congestion control and public 

transit operation schemes. The results indicate that it is unnecessary to know the function of 

in-vehicle congestion costs and the distribution of perceived travel cost errors so as to 

optimize the system time cost or operating profit of a multi-modal transport system. 

In Section 2.3, only the waiting and travel time cost of all commuters is optimized by 

adjusting the transit fare (or subsidy) for bus users while the frequency of bus runs is fixed. In 

Appendix C, we extend the trial-and-error method to optimize the social/system cost of the 

transport system, including not only the waiting and travel time cost of all commuters but 

also the in-vehicle congestion cost of passengers in bus carriages and the operating cost of 

bus transit, through adjusting both the bus fare (or subsidy) and bus run frequency. In the 

extended trial-and-error procedure, the function of in-vehicle congestion costs is not needed; 

however, the distribution of perceived travel cost errors has to be involved.  

In this paper, the travel demand of each individual mode is elastic but the total number of 

travelers selecting the two modes is fixed. We used this assumption not only to simplify the 

analysis but also to illustrate the nature of the problem clearly. The extension to the elastic 

demand case is interesting and is left to future study.   
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Appendix A. Extension of the TESTO procedure to handle a general 
network instance 

In this appendix, we extend the TESTO procedure for the system time optimization of a 

general traffic network with both private auto and public transit modes. Let W  be the set of 

OD pairs. Commuters between OD pair w W∈  can choose to travel by either auto running 

on auto routes or bus running on transit routes. The travel demands in the network are 

assumed to be fixed and denoted by a column vector ( )T,wd w W= ∈d , where wd  is the 
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travel demand between OD pair w W∈ . wg  stands for the flow of bus users between OD 

pair w W∈  and ( )T,wg w W= ∈g  is the vector of flows of bus users. The occupancy of 

each auto is assumed to be one. Let wf  be the flow of auto users between OD pair w W∈  

and ( )T,wf w W= ∈f  be the vector of flows of auto users. Naturally, we have = +d g f . 

The set Ω  of feasible flows of bus and auto users is formulated as  

{ }( , ) , ,Ω ≡ = + ≥ ≥g f d g f g 0 f 0 .  (A.1) 

In the transport system, the total flow of bus users on all transit routes (auto users on all 

auto routes) between an OD pair is regarded as an entirety and the specific flow of bus users 

on a transit route (auto users on an auto route) is not considered. The interactions between 

bus user flows, bus run frequencies, and auto user flows (on either an OD pair or different 

OD pairs) are formulated by non-separable cost functions. Thus, we actually examine a 

general case in this appendix.  

Let wy  be the frequency of bus runs between OD pair w W∈  and ( )T,wy w W= ∈y  is 

the vector of bus run frequencies. Let ˆ ( , )wc g y  denote the waiting time cost of bus users 

between OD pair w W∈  and ( )Tˆ ˆ( , ) ( , ),wc w W= ∈c g y g y  is the corresponding vector. That 

is to say, the waiting time cost of bus users between an OD pair depends on not only the bus 

user flow and bus run frequency between the OD pair but also the bus user flows and bus run 

frequencies between other OD pairs. Let ( , )wc f y  stand for the in-vehicle travel time cost of 

bus users between OD pair w W∈  and ( )T( , ) ( , ),wc w W= ∈c f y f y  is the corresponding 

vector. This indicates that there are interactions between public transit and private car mode 

on roads. The notation ( , )wc g y  denotes the in-vehicle congestion cost of passengers in bus 

carriages between OD pair w W∈  and ( )T( , ) ( , ),wc w W= ∈c g y g y   is the corresponding 

vector. This means that the in-vehicle congestion cost of passengers between an OD pair 

depends on not only the bus user flow and bus run frequency between the OD pair but also 

the bus user flows and bus run frequencies between other OD pairs. 

Let ( , )wc f y  represent the travel time cost of auto users between OD pair w W∈  and 

( )T( , ) ( , ),wc w W= ∈c f y f y  is the corresponding vector. That is to say, there are interactions 

between private cars and public transit on roads. The notation wp  ( 0≥ ) stands for the 

transit fare charged from each bus user between OD pair w W∈  and ( )T,wp w W= ∈p  is 

the vector of transit fares. All those costs and prices, mentioned above, are measured in 

monetary units.  

Commuters choose their travel modes according to their perceived travel costs. The SUE 

conditions are governed by  

( , , , )w w wg d G= g f y p  and ( , , , )w w wf d F= g f y p , w W∀ ∈ ,  (A.2) 
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where ( , , , )wG g f y p  is the probability that the public transit mode between OD pair w W∈  

is chosen and ( , , , )wF g f y p  is the probability that the private car mode between OD pair 

w W∈  is chosen.  

Given a vector y  of bus run frequencies, the optimization problem of minimizing the 

total system time cost of the transport system is formulated as 

( )T T

( , , )
ˆmin ( , ) ( , ) ( , )V = + +

p g f
g c g y c f y f c f y ,  (A.3) 

where the decision variables p , g , and f  are subject to the SUE condition (A.2), 

( , )∈Ωg f , and ≥p 0 .  

In the trial-and-error procedure, the SUE condition (A.2) is met under the implementation 

of the transit fares p  in each iteration, that is to say, an equilibrium flow assignment ( , )g f  

is observed once the transit fares p  are implemented. Thus, when the trial-and-error 

procedure is applied to solve optimization problem (A.3), the system time cost V  is finally 

determined by p . The iterative trial-and-error procedure for determining p  to solve 

problem (A.3) is summarized as follows.  

Step 1. Let (0)p  (≥ 0 ) be the initial vector of transit fares, and set a convergence tolerance 

ε  ( 0> ) and 0n = . 

Step 2. Observe the revealed vectors ( )ng  and ( )nf  of bus and auto user flows at the SUE 

state after the imposition of the transit fares ( )np .  

Step 3. For any OD pair w W∈ , set the transit fare ( ) ( )n n
w wp p p= + ∆  and ( ) ( )n n

u up p=  for 

any \{ }u W w∈ , and then observe the revealed vectors ( , )n wg  and ( , )n wf  of bus and 

auto user flows at the SUE state, respectively.  

Step 4. Compute the iterative direction ( )T( ) ( ) ,n n
wP w W= ∈P  of transit fares according to  

( ) ( ) ( )( ) ( ) ( , )
( ) ( ) ( ) ( )

( )

ˆ ,
ˆ , ,

n n n w
vn n n n u u

w u u v n
u W v W u

c g gP c c g
g p∈ ∈

 ∂ − = + +
 ∂ ∆ 

∑ ∑
g y

g y f y  

( ) ( ) ( )( ) ( ) ( ) ( , )
( ) ( ) ( )

( ) ( )

, ,
,

n n n n w
v vn n n u u

v u vn n
u W v W v Wu u

c c f fg c f
f f p∈ ∈ ∈

 ∂ ∂ − + + +
 ∂ ∂ ∆ 

∑ ∑ ∑
f y f y

f y .  (A.4) 

Step 5. Update the transit fares by the following formula:  

{ }( 1) ( ) ( ) ( )max ,n n n nα+ = +p p P 0 .  (A.5) 

Step 6. If ( 1) ( )n n ε+ − <p p  , then stop; otherwise, set 1n n= +  and go to Step 2.  

In the above procedure, the convergence tolerance ε  is sufficiently small. The 

difference parameter p∆  is positive and sufficiently small. ( )nα  ( 0> ) is the step size in 

iteration n . The step sizes { }( ) , 0,1,2,n nα =   can be a predetermined sequence that 

satisfies the following conditions:  
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( )
0

n
n
α∞

=
= +∞∑  and ( )2( )

0
n

n
α∞

=
< +∞∑ .  

For example, a typical step size is ( ) 1 ( 1)n nα = + . The operator max{ , }⋅ 0  is used to 

guarantee the feasibility of p  after its update. Obviously, in the above procedure, the 

function of in-vehicle congestion costs and the distribution of perceived travel cost errors are 

not involved.  

 

Appendix B. Extension of the TEPM procedure to handle a general 
network instance 

We extend the TEPM procedure for transit profit maximization to handle the general 

network introduced in Appendix A. When all transit lines are operated by a private transit 

operator, the operator would like to deliberately set the vector p  of transit fares and the 

vector y  of bus run frequencies so as to maximize its operating profit at the SUE state. Let 

( )wk y  be the operating cost of the transit route between OD pair w W∈ . The optimal transit 

fares and bus run frequencies are obtained by solving the following optimization problem:  
T

( , , , )
max ( )ww W

U k
∈

= −∑p y g f
g p y ,  (A.6) 

where the decision variables p , y , g  and f  are subject to the SUE condition (A.2), 

≥p 0 , and ≥y 0 .  

An iterative trial-and-error procedure for solving problem (A.6) is summarized as 

follows.  

Step 1. Let (0)p  (≥ 0 ) and (0)y  (≥ 0 ) be the initial vectors of transit fares and bus run 

frequencies respectively, and set 0n = .  

Step 2. Observe the revealed vectors ( )ng  and ( )nf  of bus and auto user flows at the SUE 

state respectively under the implementation of the transit fares ( )np  and the bus run 

frequencies ( )ny .  

Step 3. For any OD pair w W∈ , set the transit fare ( ) ( )n n
w wp p p= + ∆  and ( ) ( )n n

u up p=  for 

any \{ }u W w∈  (the bus run frequency vector remains unchanged), and then observe 

the revealed vectors ( , )n wg  and ( , )n wf  of bus and auto user flows at the SUE state; set 

the bus run frequency ( ) ( )n n
w wy y y= + ∆  and ( ) ( )n n

u uy y=  for any \{ }u W w∈  (the transit 

fare vector remains unchanged), and then observe the revealed vectors ( , )n wg  and ( , )n wf  

of bus and auto user flows at the SUE state.  

Step 4. Compute the iterative directions ( )T( ) ( ) ,n n
wP w W= ∈P  and ( )T( ) ( ) ,n n

wY w W= ∈Y  of 

transit fares and bus run frequencies according to  
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( , ) ( )
( ) ( ) ( )

n w n
n n nu u

w u w
u W

g gP p g
p∈

−
= +

∆∑  and 
( )( )( , ) ( )

( ) ( )
( )

nn w n
un n u u

w u n
u W u W w

kg gY p
y y∈ ∈

∂−
= −

∆ ∂∑ ∑
y



.  (A.7) 

Step 5. Update the transit fares and bus run frequencies by the following formulae:  

{ }( 1) ( ) ( ) ( )max ,n n n nβ+ = +p p P 0  and { }( 1) ( ) ( ) ( )max ,n n n nβ+ = +y y Y 0 .  (A.8) 

Step 6. If ( ) ( )( 1) ( 1) ( ) ( ), ,n n n n ε+ + − <p y p y , then stop; otherwise, set 1n n= +  and go to Step 

2.  

In the above procedure, the difference parameters p∆  and y∆  are positive and also 

sufficiently small. ( )nβ  ( 0> ) is the step size in iteration n , e.g., a typical step size is 
( ) 1 ( 1)n nβ = + . ε  is a convergence tolerance and it is positive and sufficiently small. One 

can see that the transit operator need not know the function of in-vehicle congestion costs and 

the distribution of perceived travel cost errors to implement the above procedure.  

 

Appendix C. Extension to the optimization of social/system cost 
In this appendix, we extend the trial-and-error method to optimize the social/system cost 

of the transport system. The optimization problem is formulated as  

( )
( , )
min ( , ) ( , ) ( ) ( ) ( )

b
b b b b b a bx y

V x w x y t g x y d x t x k y= + + + − + ,  (A.9) 

where the variable ( , )bx y  is subject to 0 bx d≤ ≤  and 0y ≥ . Compared with the 

optimization problem (5) for minimizing system time cost, the optimization objective of the 

optimization problem (A.9) includes not only the waiting and travel time cost 

( )( , )b b bx w x y t+  of bus passengers and the travel time cost ( ) ( )b a bd x t x−  of auto users but 

also the in-vehicle congestion cost ( , )b bx g x y  of bus passengers and the operating cost 

( )k y  of bus transit. The toll charges or financial subsidies are transferred between 

commuters and the manager of the transport system. Therefore, the toll charges or financial 

subsidies are excluded from the objective function.  

We develop an iterative trial-and-error procedure for determining the transit fare (or 

subsidy) bp  and the bus run frequency y  to optimize the social/system cost of the 

transport system without resorting to the function of in-vehicle congestion costs. The iterative 

trial-and-error procedure is summarized as follows.  

Step 1. Let (0)
bp  and (0)y  ( 0≥ ) be the initial transit fare (or subsidy) and bus run frequency 

respectively, set an initial iterative step size of transit fare 0pγ  ( 0> ) and an initial 

iterative step size of bus run frequency 0yγ  ( 0> ), and set 0n = .  

Step 2.1. Let (0) ( )n
b bp p=  and set 0m = .  

Step 2.2. Observe the revealed number of bus users ( )m
bx  at the SUE state under the 
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implementation of the transit fare (or subsidy) ( )m
bp  and the bus run frequency ( )ny .  

Step 2.3. Set the transit fare (or subsidy) ( ) ( )m m
b bp p p= + ∆ , the bus run frequency ( )ny  

remains unchanged, and then observe the revealed number of bus users ( )m
bx  at the 

SUE state.  

Step 2.4. Compute the iterative direction ( )m
pG  of the transit fare (or subsidy) according to  

( ) ( )( )
( )( )( ) ( ) ( )

( ) ( ) 1 ( ) ( )
( )1 ( )

d
d

mm m m
a bm m m mb b b

p a b b bmm
bb

t xx x xG p p F x d d x
x pdf F x d

−

−

  − = − − − + +
  ∆
 



 

  





. (A.10) 

Step 2.5. If 0pm m< , then ( )
0

m
p pγ γ= ; otherwise, set ( ) ( 1) 2m m

p pγ γ −= .  

Step 2.6. Update the transit fare (or subsidy) by the following formula  
( ) ( ) ( )

( 1)
( ) ( )

, if 0,
, otherwise.

m m m
b p pm

b m m
b p

p G
p

p
γ
γ

+  − <=  +







  (A.11) 

Step 2.7. If ( 1) ( )m m
b b pp p ε+ − <   , then set ( 1) ( 1)n m

b bp p+ +=   and go to Step 3.1; otherwise, set 

1m m= +  and go to Step 2.2.  

Step 3.1. Let (0) ( )ny y=  and set 0m = .  

Step 3.2. Observe the revealed number of bus users ( )m
bx  at the SUE state under the 

implementation of the bus run frequency ( )my  and the transit fare (or subsidy) ( 1)n
bp + .  

Step 3.3. Set the bus run frequency ( ) ( )m my y y= + ∆ , the transit fare (or subsidy) ( 1)n
bp +  

remains unchanged, and then observe the revealed number of bus users ( )m
bx  at the 

SUE state.  

Step 3.4. Compute the iterative direction ( )m
yG  of the bus run frequency according to  

( ) ( )( )
( )( )( )

( ) ( 1) 1 ( )
( )1 ( )

d
d

mm
a bm n m b

y a b b mm
bb

t xxG p p F x d d
xdf F x d

+ −

−

 
 = − − − +
 
 











 

( )( )( ) ( )

( )

d
d

mm m
b b

m

k yx x
y y
−

× −
∆







.  (A.12) 

Step 3.5. If 0ym m< , then ( )
0

m
y yγ γ= ; otherwise, set ( ) ( 1)m my yγ −= −    and ( ) 2m

yγ γ=  .  

Step 3.6. Update the bus run frequency by the following formula  

{ }( ) ( ) ( )
( 1)

( ) ( )

max ,0 , if 0,

, otherwise.

m m m
y ym

m m
y

y G
y

y

γ

γ
+

 − <= 
+







  (A.13) 

Step 3.7. If ( 1) ( )m m
yy y ε+ − <   , then set ( 1) ( 1)n my y+ +=   and go to Step 4; otherwise, set 

1m m= +  and go to Step 3.2.  

Step 4. If ( ) ( )( 1) ( 1) ( ) ( ), ,n n n n
b bp y p y ε+ + − <  , then stop; otherwise, set 1n n= +  and go to Step 
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2.1.  

We call the above trial-and-error implementation the trial-and-error social/system cost 

optimization (TESCO) procedure. In the TESCO procedure, the difference parameters p∆  

and y∆  are positive and also sufficiently small. The operator max{ ,0}⋅  is used to 

guarantee the feasibility of y  after its update in formula (A.13). pε
 , yε

 , and ε  are three 

convergence tolerances and they are positive and sufficiently small. One can see that the 

manager need not know the function of in-vehicle congestion costs to implement the above 

trial-and-error procedure.  

The social/system cost V  in the optimization problem (A.9) is determined by the 

variables bx  and y . By Proposition 1, the variable bx  is a function of bp  and y , and 

hence the social/system cost V  is finally determined by bp  and y . The partial derivatives 

of V  with respect to bp  and y  can be formulated as  

( , ) ( , )( , ) ( , ) ( )b b
b b b b a b

b b b

w x y g x yV w x y t g x y x t x
p x x

  ∂ ∂∂
= + + + + −  ∂ ∂ ∂ 

 

d ( )( )
d
a b b

b
b b

t x xd x
x p

 ∂
+ −  ∂

 and  (A.14) 

( , ) ( , )( , ) ( , ) ( )b b
b b b b a b

b b

w x y g x yV w x y t g x y x t x
y x x

  ∂ ∂∂
= + + + + −  ∂ ∂ ∂ 

 

d ( ) ( , ) ( , ) d ( )( )
d d
a b b b b

b b
b

t x x w x y g x y k yd x x
x y y y y

  ∂ ∂ ∂
+ − + + +  ∂ ∂ ∂ 

,  (A.15) 

where b bx p∂ ∂  and bx y∂ ∂  are given by expressions (11) and (12), respectively. To 

optimize the social/system cost V  by using a gradient-based algorithm, the decision 

variables ( , )bp y  could be updated in the negative gradient direction ( ),bV p V y− ∂ ∂ ∂ ∂  in 

each iteration. However, the in-vehicle congestion costs of commuters in bus carriages are 

unknown, and hence the negative gradient direction ( ),bV p V y− ∂ ∂ ∂ ∂  cannot be computed 

by formulae (A.14) and (A.15) to solve the optimization problem (A.9).  

It follows from the SUE condition (3), definition (4), and expressions (11) and (12) that  

( )1( , ) ( ) ( , )b a b a b b b bg x y t x p w x y t p F x d−= + − − − − ,  (A.16) 

( )( )1

( , ) d ( ) ( , )1 1
d

b a b b

b b b b bb

g x y t x w x y
x x p x xdf F x d−

∂ ∂
= − − + −

∂ ∂ ∂ ∂
, and  (A.17) 

( , ) ( , )b b b

b b

g x y x y w x y
y x p y

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂
.  (A.18) 
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Substituting formulae (A.16) to (A.18) into (A.14) and (A.15) generates  

( )
( )( )

1
1

d ( )
d

b a b b
a b b b

b b bb

x t x xV p p F x d d x
p x pdf F x d

−
−

  ∂∂  = − − − + −
 ∂ ∂ 

 and  (A.19) 

( )
( )( )

1
1

d ( ) d ( )
d d

b a b b
a b b

bb

x t x xV k yp p F x d d
y x y ydf F x d

−
−

  ∂∂  = − − − + +
 ∂ ∂ 

.  (A.20) 

The difference parameters p∆  and y∆  are positive and also sufficiently small. Thus, by 

comparing formulae (A.10) and (A.19) and comparing (A.12) and (A.20), it can be seen that 

Steps 2.4 and 3.4 of the TESCO procedure are adopted to estimate bV p−∂ ∂  and V y−∂ ∂  

without resorting to the function g .  

In Steps 2.1 to 2.7, the bus run frequency ( )ny  remains unchanged and the bus fare (or 

subsidy) bp  is updated in an approximate descent direction ( )m
pG  of V  with respect to 

bp  until a minimum point ( 1)n
bp +  is generated. After the iterative direction ( )m

pG  of the 

transit fare (or subsidy) is determined in Step 2.4, the iterative step size ( )m
pγ  is generated in 

Step 2.5 in the same way as the iterative step size ( )nα  in the TESTO procedure in Section 

2.3. The number 0pm  in Step 2.5 records the iteration, in which the iterative direction 

changes for the first time. In each of the first 0 1pm −  iterations, the iterative step size ( )m
pγ  

takes the fixed value 0pγ  to obtain the interval in which the optimal solution lies. In iteration 

0pm  and subsequent iterations, a bisection iterative method is used to find the optimal 

solution in the interval.  

In Steps 3.1 to 3.7, given the transit fare (or subsidy) ( 1)n
bp + , the bus run frequency y  is 

updated in an approximate descent direction ( )m
yG  of V  with respect to y  until a 

minimum point ( 1)ny +  is obtained. After the iterative direction ( )m
yG  of the bus run 

frequency is determined in Step 3.4, the iterative step size ( )m
yγ  is generated in Step 3.5 in 

the same way as the iterative step size ( )m
yβ  in the TEPM procedure in Section 3.2. The 

number 0ym  in Step 3.5 records the iteration, in which the iterative direction changes for the 

first time. In each of the first 0 1ym −  iterations, the iterative step size ( )m
yγ  takes the fixed 

value 0yγ  to obtain the interval of containing the optimal solution. In iteration 0ym  and 

subsequent iterations, a bisection iterative method is used to find the optimal solution in the 

interval.  

In this way, in each iteration of the TESCO procedure, the social/system cost V  

decreases by a certain value until the iterative trajectory gets to a globally or locally 

minimum point.  
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