
Vision Guided Crop Detection in Field Robots
using FPGA-based Reconfigurable Computers

Cyrus Wing-Hei Chan
University of Hong Kong

Email: u3527884@connect.hku.hk

Philip H.W. Leong
University of Sydney

Email: philip.leong@sydney.edu.au

Hayden Kwok-Hay So
University of Hong Kong
Email: hso@eee.hku.hk

Abstract—A case study in applying modern FPGAs as a
platform to accelerate intelligent vision-guided crop detection in
agricultural field robots is presented. A state-of-the-art YOLOv3
object detection neural network was adapted to detect broccoli
and cauliflower in image dataset obtained from autonomous
agricultural robots. A baseline floating point implementation
achieved 96 % mAP, and an efficient, quantized implementation
suitable for FPGA implementation achieved 92 % mAP. The
proposed FPGA solution achieved 136.86 ms inference latency
while consuming 12.43 W in a low latency setup, and 28.48 frames
per second while consuming 17.78 W in a high throughput setup.
Compared to an embedded GPU implementation of the same
task, the FPGA solution is 4.12 times more power-efficient and
offers 6.85 times higher throughput, translating to faster and
longer operation of a battery-powered field robot.

I. INTRODUCTION

Machine learning approach based on imaging techniques
have been widely adopted in modern agriculture for tasks
ranging from crop detection to soil management [1]. Many of
these data analytic tasks are computationally demanding. In
applications where data can be processed offline with no real-
time constraints, such computational needs can be met with
reasonably high performance computing systems, either on-
site or in the cloud with acceleration using GPUs or FPGAs.
However, in real-time and mobile applications, such as when
used in autonomous field robots that must cover large areas
between each recharge, in-situ, high-performance but energy-
efficient embedded computing platforms that are also robust
and easy-to-program can improve utility.

In this work, a case study of accelerating real-time vision-
based crop detection with modern integrated FPGA for use
in autonomous field robot is presented. The state-of-the-art
YOLOv3 [2] neural network was modified and retrained to
identify broccoli and cauliflower in raw images taken from a
field robot that surveyed a growing field over a course of 10
weeks. Despite varying lighting conditions and growth stages
of the crops, the retrained neural network was capable of
detecting and classifying the 2 crops with high accuracy.

For deployment in autonomous field robots with real-time
requirements, inference of the retrained neural network was
accelerated with an FPGA MPSoC. While researchers have
previously demonstrated a hand-optimized binarized YOLOv2
inference accelerated with FPGA [3], we chose instead to
implement our neural network using the vendor-provided high-
level compilation framework DNNDK [4]. The use of high-

level compilation framework allows rapid prototyping and
deployment of deep neural network on FPGAs, which is a
necessary workflow for multidisciplinary research teams in
precision agriculture where not all members can be FPGA
hardware design expert.

We also implemented the same network on an embedded
GPU platform, which similarly provided high-performance
neural network inference with easy to program interfaces. Both
platforms were fabricated with 16 nm technologies and were
both tightly integrated to a host ARM processor. A comparison
of their throughput, power consumption, energy efficiency, and
development effort is presented.

II. RELATED WORK

Computer vision has long been utilized in industrialized
agriculture for tasks ranging from navigation in the field [5],
[6] to real-time crop detection [7] and weed detection. Re-
cently, there is an increasing interest in leveraging modern
machine learning algorithms to prepare these tasks to the
next generation [1]. For instances, a custom convolutional
neural network (CNN) was developed in [8] to classify carrot
in field images after a custom segmentation preprocessing
step. Using a custom encoder-decoder neural architecture,
researchers have also demonstrated real-time performance in
pixel-wise semantic segmentation for isolating weed from
crops [9]. Similarly, a custom CNN was designed to classify
weeds in segmented images for robot control in [10]. In all of
the above cases, in order to maintain real-time performance,
GPU has been employed as computer accelerators.

On the other hand, with the promise of superior power-
efficiency, numerous researchers have turned to the use of
FPGA to accelerate deep machine learning inference using
FPGA both in large-scale datacenters and in high-performance
embedded systems [11]. In the area of precision agriculture,
Lammie et al. have recently performed an extensive com-
parison and demonstrated the benefit of accelerating a weed
classification task using FPGAs for power-efficiency [12].

In this work, we similarly explore the use of FPGA for real-
time crop detection in autonomous field robots. We focus par-
ticularly on high-performance embedded systems with a goal
to improve power-efficiency of the system while maintaining
real-time performance.



+=

Residual block 
arranged back-to-back

1x 2x 8x 8x 4x

Input
(416x416x3)

Residual block #1
(208x208x64)

Residual block #2
(104x104x128)

Residual block #3
(52x52x256) Residual block #4

(26x26x512)
Residual block #5
(13x13x1024)

Base Network: 
Darknet-53

Prediction_1
(13x13x36)

Prediction_2
(26x26x36)

YOLO layer

Up-sampling

Concatenation

YOLO layer

Prediction_3
(52x52x36)

YOLO layer

Concatenation
Up-sampling

+

+

Predictions at 
different scales

Fig. 1. Architecture of the adopted YOLOv3 network

III. SYSTEM DESIGN

Our system was designed to be deployed in field robots
that autonomously patrol crop beds and perform necessary
actions such as weed control. Specifically, we studied the
task of identifying valuable crops from their bed using visible
spectrum imaging in real-time on autonomous robots.

A. Dataset

For this study, the Ladybird Cobbitty 2017 Brassica Dataset
was used [13], [14]. The dataset contains 1248 annotated
images that were collected by the Ladybird autonomous agri-
cultural robot while monitoring 4 crop beds over a period of 10
weeks. The dataset was annotated with bounding boxes on the
2 crops at various growth stages, as well as 5 color checkers
and calibration panels, namely, “Spectralon 15 %”, “Spectralon
30 %”, “Spectralon 60 %”, “Xrite ColorChecker Classic” and
“Xrite ColorChecker Grayscale”. These calibration panels
were put in the field to allow calibration of the camera during
different lighting condition. While the sensing elements on the
Ladybird included a hyperspectral camera, a thermal camera,
as well as a pair of high-resolution stereo camera, only the
left image from the stereo camera were used in this work.

B. Network Architecture

Our crop detection neural network was based on the original
full size YOLOv3 network [2]. The YOLO family of neural
network is currently one of the fastest object detection network
with high-accuracy real-time implementations. The YOLOv3
network calculates feature maps at multiple scales, and hence
improves the detection of object with varying input sizes.
The feature extractor in YOLOv3, termed “Darknet-53”, is
made up of 23 (1 + 2 + 8 + 8 + 4) residual blocks, using
feature extractors composed of 1 × 1 and 3 × 3 convolution
filters (see Figure 1), and with batch normalization and Leaky
ReLU applied to each layer. The feature map is extracted at 3
scales, and pushed through the detection block to obtain the
predictions. These prediction results are then combined and
go through Non-Maximum Suppression (NMS) to produce

Pre-processing
(e.g. resizing)

Data flow on 
Xilinx ZCU102

Inference
(DPU mode)

Fetch image from 
storage/network

Post-processing
(e.g. non-maximum 
suppression)

ARM core (CPU side) DPU core (FPGA side)

Inference
(CPU-only mode)

Data flow on 
Nvidia TX2

Inference

Fetch image from 
storage/network

Post-processing
(e.g. non-maximum 
suppression)

ARM core (CPU side) CUDA core (GPU side)

Pre-processing
(e.g. resizing)

Fig. 2. Timings of the different stages, with inference highlighted.

the final predicted bounding boxes. To adapt to our object
detection task, we shrink the number of detection classes from
the original 20 down to 7, corresponding to the 2 crops and the
5 calibration panels. As shown in Figure 1, the output of the
detection block (layer 81, 93 and 105) have the dimension of
N×N×36, containing 3 bounding box predictions, each with
1 objectness score, 4 parameters for bounding box coordinates
and 7 class confidence.

C. System Configuration

Our hardware prototype was based on the Xilinx ZCU102
development board, featuring a Zynq UltraScale+ XCZU9EG-
2FFVB1156 MPSoC [15]. The chip combined a quad-core
ARM Cortex-A53 processor system (PS) with user program-
ming logic (PL). The task of neural network inference was
offloaded to the PL, while the image pre- and post-processing
were performed on the ARM cores. Three (3) deep learning
processing units (DPUs) from the vendor (Xilinx, V1.4.0) with
the B4096 architecture running at 325 MHz were configured
in the PL under the control of the PS (Figure 2).

The neural network inference accelerator was developed
using the DNNDK framework [4] based on our modified
YOLOv3 network. The original dataset was split into a training
set with 739 images and a validation set with 509 images.
Using the Darknet framework [16], the YOLOv3 network
was re-trained using pre-trained weight on the PASCAL VOC
dataset [17]. During the transfer learning phase, we initialized
the feature extractor (top half in Figure 1) with the weights
from the aforementioned model, and randomly initialized the
classification layers (lower half in Figure 1), which were
shrunk down to 36 filters. The input filter size of the YOLOv3
filter was kept at 416× 416.

The trained network with floating-point (fp32) weights
was then converted and quantized to 8-bit integers (int8)
for FPGA implementation. It was accomplished using the
min-diffs method with the DNNDK framework using only
samples from the training set. The quantization only affected
the truncated bits and did not retrain the weights of the other
parts of the network.



IV. EXPERIMENTAL RESULTS

A. Detection Quality

Our retrained network with floating point weights achieved
96 % mAP on the validation set using the default PASCAL
VOC metrics [17]. The VOC2007 metrics specifies that the
intersection over union (IoU) of the detection and the ground
truth must be larger than 0.5 to be counted as a successful
detection. After quantization of weights as 8-bit integers
(int8) weights, the accuracy dropped to about 92 % mAP
with NMS threshold set to 0.5.

As shown in Figure 3, the network was able to detect crops
with different sizes at different growth stages over the span of
10 weeks in the dataset. High accuracy was achieved even for
cases where the source images were underexposed. Common
detection errors (Figure 4) included duplicates and missing
detection, especially when calibration panels were involved.
We theorize that this may be caused by the small number of
panels originally presented in the training dataset.

B. Performance & Power

Table I summarizes the performance and power consump-
tion of our FPGA implementation. Latency, throughput, and
power measurements are defined as follow:

Latency was obtained by measuring the end-to-end delay of
processing 1 image by the 2 stages of our processing pipeline.
The first stage of this processing pipeline was responsible for
pre-processing the input images, which included resizing and
quantizing the input images from 848× 565 to 416× 416 for
inference. In the second stage, inference and post-processing
of the results, including NMS computation were performed.
Processing latency for each of the image in the dataset were
measured and the average value is reported here. Throughput
was obtained by dividing the size of the image dataset (1248
images) by the total time required to perform inference on the
dataset. Power consumption values were obtained from the
on board INA226 power IC. We monitored the current drawn
from the power rails to obtain the average power over a 10 s
interval.

Two different hardware/software setups were experimented.
In the low-latency setup, a single processing pipeline was
used in the host software. In the high-throughtput setup, 3
processing pipelines executing as parallel threads on the host
CPU were used. As controlled by the runtime environment, 1
DPU was activated in the low-latency setup and 3 DPUs were
activated in the high-throughput setup.

The results in Table I indicate that the lowest processing
latency was achieved when a single processing pipeline was
used. Highest throughput was achieved when 3 processing
pipelines were used, which caused all 3 available DPUs to be
activated. However, the increased I/O contention, as indicated
by underutilized DPUs, also resulted in increased per-image
processing latency.

C. Comparison with Embedded CPU & GPU

In this section we compare the performance of the network
against an embedded GPU platform and the embedded ARM

CPU on the FPGA. The Jetson TX2 is an embedded GPU
platform that integrates a quad-core ARM Cortex-A57 CPU
with a 256-core NVIDIA Pascal GPU fabricated using TSMC
16 nm technology [18]. We ran the customized floating-point
YOLOv3 network using the Jetson TX2 GPU and the Darknet
framework [16] with CUDA and cuDNN support. For the
embedded CPU only case, we compiled Darknet with OpenMP
support. In all cases we set the batch size to 1.

As shown in Table I, while the the floating point infer-
ence on GPU results in the best accuracy, the quantized
implementations on FPGA result in the best inference latency
and throughput. The FPGA setup achieves the highest power
efficiency, reaching 1.6 fps/W or 0.624 J/frame, which is 6.85
times higher than the embedded GPU solution. On the other
hand, the embedded GPU has the lowest power consumption,
both when idle and during inference.

We also tested with larger batch sizes on the Jetson TX2,
and only observed a minimal throughput increase. At a batch
size of 3, the setup achieved a latency of 0.65 s, throughput
of 4.92 fps and drew 12.78 W of power.

V. CONCLUSION AND FUTURE WORK

This work presents the feasibility to use FPGA-based
machine learning solution for object detection in precision
agriculture. After quantization, the network experience a sight
accuracy drop but offers performance comparable to using
GPU accelerated solution. The low and consistent latency also
benefits real-time robot control. Our FPGA implementation
achieved 6.8 times better power-efficiency than our embedded
GPU solution. This translates to longer operation time on field
robots.

The FPGA-based solution is more suitable for use in
harsh conditions in farmlands, where extreme temperature and
humidity may arise throughout the growing season. Its high
power-efficiency allows intelligent data processing at the edge,
which significantly improves response time and reliability of
the field robot in harsh environment with unreliable network
coverage. The Linux OS running on the ARM processor cores
enables easy integration with existing robot parts.

Timing analysis of our current implementation suggests that
software resizing of larger images will become the system
bottleneck. Therefore in the future, we plan to integrate image
preprocessing steps with our hardware inference engine for
acceleration. We also plan to explore the accuracy and speed
trade-offs using different object detection networks, and will
explore dropout and data augmentation to reduce overfitting.

ACKNOWLEDGMENT

We would like to thank Dr. Asher Bender and Prof. Salah
Sukkarieh of Australian Centre for Field Robotics for the
comprehensive Ladybird Cobbitty 2017 Brassica Dataset. This
work was supported in part by the HKU-USydney Strategic
Partnership Fund and by the HKU Undergraduate Research
Fellowship Programme.



(a) Cauliflower bed, week 2 (b) Broccoli bed, week 5 (c) Cauliflower bed, week 6

(d) Cauliflower bed, week 8 (e) Weed with calibration panel (f) Full calibration panel set

Fig. 3. Examples of successful detection with detection bounding boxes overlay on the original image. Images are brightened for presentation clarity.

(a) Missing detection (b) Incorrect detection (c) Duplicated detection

Fig. 4. Examples of failed detection. Images are brightened for presentation clarity.

TABLE I
PERFORMANCE COMPARISON BETWEEN FPGA, EMBEDDED CPU, AND EMBEDDED GPU IMPLEMENTATIONS. IN THE LOW LATENCY FPGA SETUP, 1

PROCESSING PIPELINE WAS USED. IN THE HIGH THROUGHPUT FPGA SETUP, 3 PRODESSING PIPELINES WERE USED.

Unit FPGA (1 pipeline) FPGA (3 pipelines) CPU GPU

Latency (Total) ms 136.86 160.68 27.09 × 103 274.53
. preprocess ms 68.45 74.90 220.49 36.35
. inference ms 68.41 85.78 27.08 × 103 238.18

Throughput fps 14.48 28.48 36.92 × 10−3 4.16
Power (Idle) W 6.19 6.19 6.19 2.12
Power (Load) W 12.43 17.78 7.71 10.71
Power Efficiency fps/W 1.16 1.60 4.79 × 10−3 388.42 × 10−3



REFERENCES

[1] K. G. Liakos, P. Busato et al., “Machine learning in agriculture: A
review,” Sensors, vol. 18, no. 8, 2018.

[2] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018.

[3] H. Nakahara, H. Yonekawa et al., “A lightweight YOLOv2: A binarized
CNN with a parallel support vector regression for an FPGA,” in Pro-
ceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’18. New York, NY, USA:
ACM, 2018, pp. 31–40.

[4] DNNDK User Guide, UG1327 (v1.6), Xilinx, Aug 2019.
[5] V. Dworak, M. Huebner, and J. Selbeck, “Precise navigation of small

agricultural robots in sensitive areas with a smart plant camera,” Journal
of Imaging, vol. 1, no. 1, pp. 115–133, 2015.

[6] T. Bak and H. Jakobsen, “Agricultural robotic platform with four wheel
steering for weed detection,” Biosystems Engineering, vol. 87, no. 2, pp.
125 – 136, 2004.

[7] U. Weiss and P. Biber, “Plant detection and mapping for agricultural
robots using a 3D LIDAR sensor,” Robotics and Autonomous Systems,
vol. 59, no. 5, pp. 265 – 273, 2011, special Issue ECMR 2009.

[8] F. J. Knoll, V. Czymmek et al., “Real-time classification of weeds in
organic carrot production using deep learning algorithms,” Computers
and Electronics in Agriculture, p. 105097, 2019.

[9] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmenta-
tion of crop and weed for precision agriculture robots leveraging back-
ground knowledge in CNNs,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA), May 2018, pp. 2229–2235.

[10] A. dos Santos Ferreira, D. M. Freitas et al., “Weed detection in soybean
crops using ConvNets,” Computers and Electronics in Agriculture, vol.
143, pp. 314 – 324, 2017.

[11] M. P. Véstias, “A survey of convolutional neural networks on edge with
reconfigurable computing,” Algorithms, vol. 12, no. 8, 2019.

[12] C. Lammie, A. Olsen et al., “Low-power and high-speed deep FPGA
inference engines for weed classification at the edge,” IEEE Access,
vol. 7, pp. 51 171–51 184, 2019.

[13] A. Bender, B. Whelan, and S. Sukkarieh, “A high-resolution, multimodal
data set for agricultural robotics: A Ladybird’s-eye view of Brassica,”
Journal of Field Robotics, vol. 37, no. 1, pp. 73–96, 2020.

[14] ——, “Ladybird Cobbitty 2017 Brassica dataset,”
https://doi.org/10.25910/5c941d0c8bccb, The University of Sydney,
Mar. 2019.

[15] Zynq UltraScale MPSoC Data Sheet: Overview, DS891 (v1.8), Xilinx,
Oct 2019.

[16] J. Redmon, “Darknet: Open source neural networks in C,”
http://pjreddie.com/darknet/, 2013–2016.

[17] M. Everingham, L. Van Gool et al., “The pascal visual object classes
(VOC) challenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, Jun 2010.

[18] D. Franklin. (2017, Mar) NVIDIA Jetson TX2 delivers twice the
intelligence to the edge. https://devblogs.nvidia.com/jetson-tx2-delivers-
twice-intelligence-edge/.


