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Abstract. We achieve a (randomized) polynomial-time approximation scheme (PTAS) for the
Steiner forest problem in doubling metrics. Before our work, a PTAS was given only for the Euclidean
plane in [G. Borradaile, P. N. Klein, and C. Mathieu, in FOCS, IEEE Computer Society, 2008,
pp. 115--124]. Our PTAS also shares similarities with the dynamic programming for sparse instances
used in [Y. Bartal, L. Gottlieb, and R. Krauthgamer, in STOC, ACM, 2012, pp. 663--672] and [T-H. H.
Chan and S.-H. Jiang, in SODA, SIAM, 2016, pp. 754--765]. However, extending previous approaches
requires overcoming several nontrivial hurdles, and we make the following technical contributions.
(1) We prove a technical lemma showing that Steiner points have to be ``near"" the terminals in
an optimal Steiner tree. This enables us to define a heuristic to estimate the local behavior of
the optimal solution, even though the Steiner points are unknown in advance. This lemma also
generalizes previous results in the Euclidean plane and may be of independent interest for related
problems involving Steiner points. (2) We develop a novel algorithmic technique known as ``adaptive
cells"" to overcome the difficulty of keeping track of multiple components in a solution. Our idea is
based on but significantly different from the previously proposed ``uniform cells"" in [G. Borradaile,
P. N. Klein, and C. Mathieu, in FOCS, IEEE Computer Society, 2008, pp. 115--124], where techniques
cannot be readily applied to doubling metrics.
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1. Introduction. We consider the Steiner forest problem (\sansS \sansF \sansP ) in a metric
space (X, d). An instance of the problem is given by a collection W of n terminal
pairs \{ (ai, bi) : i \in [n]\} in X, and the objective is to find a minimum weight graph F =
(V,E) (where V is a subset ofX and the edge weights are induced by the metric space)
such that every pair in W is connected in F .

1.1. Problem background. The problem is well known in the computer science
community. In general metrics, Chleb\'{\i}k and Chleb\'{\i}kov\'a [13] showed that \sansS \sansF \sansP is NP-
hard to approximate with a ratio better than 96

95 . The best known approximation
ratio achievable in polynomial time is 2 [19, 2]. Recently, Gupta and Kumar [21] gave
a purely combinatorial greedy-based algorithm that also achieves a constant ratio.
However, it is still an open problem to break the 2-approximation barrier in general
metrics for \sansS \sansF \sansP .

\bfsansS \bfsansF \bfsansP in Euclidean plane and planar graphs. In light of the aforementioned
hardness result [13], restrictions are placed on the metric space to achieve (1 + \epsilon )
approximation in polynomial time. In the Euclidean plane, a randomized polynomial-
time approximation scheme (PTAS) was obtained in [10] using the dynamic program-
ming framework proposed by Arora [3]. Later, a simpler analysis was presented in [8],
in which a new structural property was proved and additional information was incor-
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1706 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

porated in the dynamic programming algorithm. It was only suggested that similar
techniques might be applicable to higher-dimensional Euclidean space.

Going beyond the Euclidean plane, a PTAS for planar graphs was obtained in
[9] and, more generally, on bounded genus graphs. As a building block, they also
obtained a PTAS for graphs with bounded treewidth.

Steiner tree problems. A notable special case of \sansS \sansF \sansP is the Steiner tree problem
(\sansS \sansT \sansP ), in which all terminals are required to be connected. In general metrics, the
minimum spanning tree (MST) on the terminal points simply gives a 2-approximation.
There is a long line of research to improve the 2-approximation, and the state-of-the-
art approximation ratio 1.39 was presented in [11] via an LP rounding approach. On
the other hand, it is NP-hard to approximate \sansS \sansT \sansP with a ratio better than 96

95 [13].
For the group \sansS \sansT \sansP 1 in general metrics, it is NP-hard to approximate within

log2 - \epsilon n [22] unless \sansN \sansP \subseteq \sansZ \sansT \sansI \sansM \sansE (npolylog(n)). On the other hand, it is possible
to approximate within O(log3 n), as shown in [18]. Restricting ourselves to planar
graphs, the group \sansS \sansT \sansP can be approximated within O(log n poly log log n) [14], and
very recently this result was improved to a PTAS [7].

For more related works, we refer the reader to a survey by Hauptmann and
Karpi\'nski [23], who gave a comprehensive literature review of \sansS \sansT \sansP and its variations.

PTASs for other problems in doubling metrics. Doubling dimension cap-
tures the local growth rate of a metric space. A k-dimensional Euclidean dimension
has doubling dimensionO(k). A challenge in extending algorithms for low-dimensional
Euclidean space to doubling metrics is the lack of geometric properties in doubling
metrics. Although quasi-PTASs (QPTASs) for various approximation problems in
doubling metrics, such as the traveling salesman problem (\sansT \sansS \sansP ) and \sansS \sansT \sansP , were pre-
sented in [25], a PTAS was only recently achieved for \sansT \sansS \sansP [6]. Subsequently, a PTAS
was also achieved for group \sansT \sansS \sansP in doubling metrics [12]. Before this work, the exis-
tence of a PTAS for \sansS \sansF \sansP (or even the special case \sansS \sansT \sansP ) in doubling metrics remained
an open problem.

1.2. Our contribution and techniques. Although PTASs for \sansT \sansS \sansP (and its
group variant) were known, as we shall explain later, the nature of \sansS \sansF \sansP - and \sansT \sansS \sansP -
related problems is quite different. Hence, it is interesting to investigate what new
techniques are required for \sansS \sansF \sansP . Fundamentally, it is an important question whether
the notion of doubling dimension captures sufficient properties of a metric space to
design a PTAS for \sansS \sansF \sansP , even without the geometric properties that are crucially used
in obtaining approximation schemes for \sansS \sansF \sansP in the Euclidean plane [10].

In this paper, we settle this open problem by giving a (randomized) PTAS for
\sansS \sansF \sansP in doubling metrics. We remark that previously even a PTAS for \sansS \sansF \sansP in higher-
dimensional Euclidean space was not totally certain, as the authors of [10] only gave
a PTAS for the Euclidean plane, and whether their approach may be generalized to
higher dimensions is unknown.

Theorem 1.1 (PTAS for \sansS \sansF \sansP in doubling metrics). For any 0 < \epsilon < 1, there
is a (randomized) algorithm that takes an instance of \sansS \sansF \sansP with n terminal pairs in a
metric space with doubling dimension at most k, and returns a (1 + \epsilon )-approximate

solution with constant probability, running in time O(nO(1)k) \cdot exp(
\surd 
log n \cdot O(k\epsilon )

O(k)).

We next give an overview of our techniques. On a high level, we use the divide
and conquer framework that was originally used by Arora [3] to achieve a PTAS for

1The problem generalizes the \sansS \sansT \sansP , in such a way that each terminal point is replaced by a group
of points, and the goal is to find the minimum graph that visits at least one point from each graph.
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A PTAS FOR THE SFP IN DOUBLING METRICS 1707

\sansT \sansS \sansP in Euclidean space and was extended recently to doubling metrics [6].
However, we shall explain that it is nontrivial to adapt this framework to \sansS \sansF \sansP 

and explain how we overcome the difficulties encountered. Moreover, we shall provide
some insights regarding the relationship between Euclidean and doubling metrics and
discuss the implications of our technical lemmas.

Summary of framework. As in [6], a PTAS is designed for a class of special
instances known as sparse instances. Then, it can be shown that the general instances
can be decomposed into sparse instances. Roughly speaking, an instance is sparse if
there is an optimal solution such that for any ball B with radius r, the portion of the
solution in B has weight that is small with respect to r.

The PTAS for the sparse instances is usually based on a dynamic program, which
is based on a randomized hierarchical decomposition, as in [25, 6]. This framework
has also been successfully applied to achieve a PTAS for group \sansT \sansS \sansP in doubling
metrics [12]. Intuitively, sparsity is used to establish the property that with high
enough probability, a cluster in the randomized decomposition cuts a (near) optimal
tour only a few times [6, Lemma 3.1]. However, \sansS \sansF \sansP brings new significant challenges
when such a framework is applied. We next describe the difficulties and give an
overview of our technical contributions.

Challenge 1: It is difficult to detect a sparse instance, because which
Steiner points are used by the optimal solution are unknown. Let us first
consider \sansS \sansT \sansP , which is a special case of \sansS \sansF \sansP in which all (pairs of) terminals are
required to be connected. In other words, the optimal Steiner tree is the minimum
weight graph that connects all terminals. Unlike \sansT \sansS \sansP , in which the points visited by
a tour are clearly known in advance, it is not known which points will be included in
the optimal Steiner tree.

In [6], a crucial step was to estimate the sparsity of a ball B, which measures
the weight of the portion of the optimal solution restricted to B. For the \sansT \sansS \sansP tour,
this can be estimated from the points inside B that have to be visited. However,
for solution involving Steiner points, it is difficult to analyze the solution inside some
ball B, because it is possible that there are few (or even no) terminals inside B, but
the optimal solution could potentially have lots of Steiner points and a large weight
inside B.

Our solution: Analyzing the distribution of Steiner points in an optimal
Steiner tree in doubling metrics. We resolve this issue by showing a technical
characterization of Steiner points in an optimal Steiner tree for doubling metrics. This
technical lemma is used crucially in our proofs, and we remark that it could be of
interest for other problems involving Steiner points in doubling metrics.

Lemma 1.2 (formal version in Lemma 3.1). For a terminal set S with diameter
D, if an optimal Steiner tree spanning S has no edge longer than \gamma D, then every
Steiner point in the solution is within O(

\surd 
\gamma ) \cdot D distance to some terminal in S,

where the big O hides the dependence on the doubling dimension.

We observe that variants of Lemma 1.2 have been considered on the Euclidean
plane. In [16, 17], it was shown that if the terminal set consists of n evenly distributed
points on a unit circle, then for large enough n, there are no Steiner points in an
optimal Steiner tree. To see how this relates to our lemma, when n is sufficiently
large, it follows that adjacent points in the circle are very close to each other. Hence,
any long edge in a Steiner tree could be replaced by some short edge between adjacent
terminals in the circle. Our lemma then implies that all Steiner points must be near
the terminals, which is a weaker statement than the conclusion in [16] but is enough
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1708 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

for our purposes. We emphasize that the results in [16, 17] rely on the geometric
properties of the Euclidean plane. However, in our lemma, we only use that the
doubling dimension is bounded.

Implication of Lemma 1.2 on sparsity heuristic. We next demonstrate
an example of how we use this technical lemma. In Lemma 3.3, we argue that our
sparsity heuristic provides an upper bound on the weight of the portion of an optimal
solution F within some ball B.

The idea is that we remove the edges in F within B and add back some edges
of small total weight to maintain connectivity. We first add an MST H on some
net-points N within B of an appropriate scale \gamma \cdot D. Using the property of dou-
bling dimension, we argue that the number of points in H is bounded and so is its
weight. In one of our case analyses, there are two sets S and T of terminals that
are far apart d(S, T ) \geq D, and we wish to argue that in the optimal Steiner tree F
connecting S and T , there is an edge \{ u, v\} of length at least \Omega (\gamma ) \cdot D. If this is the
case, we could remove this edge and connect u and v to their corresponding net-points
directly. For contradiction's sake, we assume there is no such edge, but Lemma 1.2
implies that every Steiner point must be close to either S or T . Since S and T are
far apart, this means that there is a long edge after all.

Conversely, in Lemma 3.5, we also use this technical lemma to show that if the
sparsity heuristic for some ball B is large, then the portion of the optimal solution F
inside B is also large.

Challenge 2: In doubling metrics, the number of cells for keeping track
of connectivity in each cluster could be too large. Unlike the case for \sansT \sansS \sansP 
variants [6, 12], the solution for \sansS \sansF \sansP need not be connected. Hence, in the dynamic
programming algorithm for \sansS \sansF \sansP , in addition to keeping track of what portals are used
to connect a cluster to points outside, we need to keep information on which portals
the terminals inside a cluster are connected. In previous works [10], the notion of cells
was used for this purpose.

Previous technique: Cell property. The idea of cell property was first introduced
in [10], which gave a PTAS for \sansS \sansF \sansP in the Euclidean plane using dynamic program-
ming. Since there would have been an exponential number of dynamic program entries
if we kept information on which portal was used by every terminal to connect to its
partner outside the cluster, the high level idea is to partition a cluster into smaller
clusters (already provided by the hierarchical decomposition) known as cells. Loosely
speaking, the cell property ensures that every terminal inside the same cell must be
connected to points outside the cluster in the same way. More precisely, a solution F
satisfies the cell property if for every cluster C and every cell e inside C, there is only
one component in the portion of F restricted to C that connects e to points outside C.

A great amount of work was actually needed in [10] and a subsequent work [8] to
show that it is enough to consider cells whose diameters are constant times smaller
than that of its cluster. This allows the number of dynamic program entries to be
bounded, which is necessary for a PTAS.

Difficulty encountered for doubling metrics. When the notion of cell is
applied to the dynamic program for \sansS \sansF \sansP in doubling metrics, an important issue is
that the diameters of cells need to be about \Theta (log n) times smaller than that of its
cluster, because there are around \Theta (log n) levels in the hierarchical decomposition.
Hence, the number of cells in a cluster is \Omega (poly log n), which would eventually lead
to a QPTAS only. A similar situation is observed when dynamic programming was
first used for \sansT \sansS \sansP on doubling metrics [25]. However, the idea of using sparsity as
in [6] does not seem to immediately provide a solution.
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Our solution: Adaptive cells. Since there are around \Theta (logn) levels in the
hierarchical decomposition, it seems very difficult to increase the diameter of cells
in a cluster. Our key observation is that the cells are needed only for covering the
portion of a solution inside a cluster that touches the cluster boundary. Hence, we
use the idea of adaptive cells. Specifically, for each connected component A in the
solution crossing a cluster C, we define the corresponding basic cells such that if the
component A has larger weight, then its corresponding basic cells (with respect to
cluster C) will have larger diameters. Combining with the notion of sparsity and
bounded doubling dimension, we can show that we only need to pay attention to a
small number of cells.

Further cells for refinement. Since the dynamic program entries are defined
in terms of the hierarchical decomposition and the entries for a cluster are filled
recursively with respect to those of its child clusters, we would like the cells to have a
refinement property; i.e., if a cluster C has some cell e (which itself is some descendant
cluster of C), then the child C \prime containing e has either e or all children of e as its
cells.

At first glance, a quick fix may be to push down each basic cell in C to its child
clusters. Although we could still bound the number of relevant cells, it would be
difficult to bound the cost to achieve the cell property. The reason is that the basic
cells from higher levels are too large for the descendant clusters. When more than one
relevant component intersects such a large cell, we need to add edges to connect the
components. However, if the diameter of the cell is too large compared to the cluster,
these extra edges would be too costly.

We resolve this issue by introducing nonbasic cells for a cluster: promoted cells
and virtual cells. These cells are introduced to ensure that every sibling of a basic cell
is present. Moreover, only nonbasic cells of a cluster will be passed to its children.
We show in Lemma 5.16 that the total number of effective cells for a cluster is not
too large. Moreover, Lemma 5.13 shows that the refinement property still holds even
if we only pass the nonbasic cells down to the child clusters. More importantly, we
show that as long as we enforce the cell property for the basic cells, the cell property
for all cells are automatically ensured. This means that it is sufficient to bound the
cost to achieve the cell property with respect to only the basic cells.

Further techniques: Global cell property. We note that the cell property
in [10] is localized. In particular, for each cluster C, we restrict the solution inside C,
which could have components disconnected within C but are actually connected glob-
ally. In order to enforce the localized cell property as in [10], extra edges would
need to be added for these locally disconnected components. Instead, we enforce a
global cell property, in which for every cell e in a cluster C, there is only one (global)
connected component in the solution that intersects e and crosses the boundary of
cluster C. A consequence of this is that if there are m components in the solution,
then at most m - 1 extra edges are needed to maintain the global cell property. This
implication is crucially used in our charging argument to bound the cost for enforcing
the cell property for the basic cells. However, this would imply that in the dynamic
program entries, we need to keep additional information on how the portals of a
cluster are connected outside the cluster.

Combining the ideas: A more sophisticated dynamic program. Even
though our approaches to tackling the encountered issues are intuitive, it is a nontrivial
task to balance between different tradeoffs and keep just enough information in the
dynamic program entries but still ensure that the entries can be filled in polynomial
time.
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2. Preliminaries. We consider a metric space M = (X, d) (see [15, 24] for
more details on metric spaces). For x \in X and \rho \geq 0, a ball B(x, \rho ) is the set
\{ y \in X | d(x, y) \leq \rho \} . The diameter \sansD \sansi \sansa \sansm (Z) of a set Z \subset X is the maximum
distance between points in Z. For S, T \subset X, we denote d(S, T ) := min\{ d(x, y) : x \in 
S, y \in T\} , and for u \in X, d(u, T ) := d(\{ u\} , T ). Given a positive integer m, we denote
[m] := \{ 1, 2, . . . ,m\} .

A set S \subset X is a \rho -packing if any two distinct points in S are at a distance more
than \rho away from each other. A set S is a \rho -cover for Z \subseteq V if for any z \in Z, there
exists x \in S such that d(x, z) \leq \rho . A set S is a \rho -net for Z if S is a \rho -packing and a
\rho -cover for Z. We assume that a \rho -net for any ball in X can be constructed efficiently.

We consider metric spaces with doubling dimension [5, 20] at most k; this means
that for all x \in X, for all \rho > 0, every ball B(x, 2\rho ) can be covered by the union
of at most 2k balls of the form B(z, \rho ), where z \in X. The following fact captures a
standard property of doubling metrics.

Fact 2.1 (packing in doubling metrics [20]). Suppose that in a metric space
with doubling dimension at most k, a \rho -packing S has diameter at most R. Then,
| S| \leq ( 2R\rho )k.

We consider undirected graphs G = (V,E) in the metric space, where V \subset X,
E \subseteq 

\bigl( 
V
2

\bigr) 
, and an edge e = \{ x, y\} \in E receives weight d(x, y) from the metric space

M . The weight w(G) or cost of a graph is the sum of its edge weights. Let V (G)
denote the vertex set of a graph G.

We consider the Steiner forest problem (\sansS \sansF \sansP ). Given a collection W = \{ (ai, bi) | 
i \in [n]\} of terminal pairs in X, the goal is to find an undirected graph F (having
vertex set in X) with minimum cost such that each pair of terminals is connected in
F . The nonterminal vertices in V (F ) are called Steiner points.

Rescaling instance. Fix constant \epsilon > 0. Since we consider asymptotic running
time to obtain (1 + \epsilon )-approximation, we consider sufficiently large n > 1

\epsilon . Suppose
R > 0 is the maximum distance between a pair of terminals. Then R is a lower bound
on the cost of an optimal solution. Moreover, the optimal solution F has cost at
most nR, and hence we do not need to consider distances larger than nR. Observe
that each Steiner point in F has degree at least 3, so the number of Steiner points
is at most the number of terminal points. Moreover, there are at most 2n terminal
points, since | W | = n. Hence, F contains at most 4n vertices. Because of this, if
we consider an \epsilon R

32n2 -net S for X and replace every point in F with its closest net-
point in S, the cost increases by at most \epsilon \cdot \sansO \sansP \sansT . Hence, after rescaling, we can
assume that the interpoint distance is at least 1 and we consider distances up to

O(n
3

\epsilon ) = poly(n). By the property of doubling dimension (Fact 2.1), we can hence

assume | X| \leq O(n\epsilon )
O(k) \leq O(n)O(k).

Hierarchical nets. As in [6], we consider some parameter s = (log n)
c
k \geq 4,

where 0 < c < 1 is a universal constant that is sufficiently small (as required in
Lemma 5.31). Set L := O(logs n) = O( k logn

log logn ). A greedy algorithm can construct
NL \subseteq NL - 1 \subseteq \cdot \cdot \cdot \subseteq N1 \subseteq N0 = N - 1 = N - 2 = N - 3 = \cdot \cdot \cdot = X such that for each i,
Ni is an si-net for X, where we say distance scale si is of height i.

Net-respecting solution. As defined in [6], a graph F is net-respecting with
respect to \{ Ni\} i\in [L] and \epsilon > 0 if for every edge \{ x, y\} in F , both x and y belong to
Ni, where si \leq \epsilon \cdot d(x, y) < si+1.

The following lemma from [6] shows that any graph may be converted to a net-
respecting graph edge-by-edge, and the weight of the graph is not increased a lot.
In all our arguments, we shall use Lemma 2.2 implicitly when we need to convert a
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A PTAS FOR THE SFP IN DOUBLING METRICS 1711

solution to be net-respecting.

Lemma 2.2 (conversion to net-respecting solution [6]). For any edge e := \{ u, v\} ,
there is a net-respecting path P such that w(P ) \leq (1 +O(\epsilon )) \cdot w(e).

Given an instance W of a problem, let \sansO \sansP \sansT (W ) be an optimal solution; when
the context is clear, we also use \sansO \sansP \sansT (W ) to denote the cost w(\sansO \sansP \sansT (W )) as well;
similarly, \sansO \sansP \sansT nr(W ) refers to an optimal net-respecting solution. By Lemma 2.2,
w(\sansO \sansP \sansT nr(W )) \leq (1 +O(\epsilon )) \cdot w(\sansO \sansP \sansT (W )).

2.1. Overview. As in [6, 12], we achieve a PTAS for \sansS \sansF \sansP by the framework of
sparse instance decomposition.

Sparse solution and dynamic program. Given a graph F and a subset
S \subseteq X, F | X is the subgraph induced by the vertices in V (F )\cap X. A graph F is called
q-sparse if for all i \in [L] and all u \in Ni, w(F | B(u,3si)) \leq q \cdot si.

We show that for \sansS \sansF \sansP (in section 5) there is a dynamic program \sansD \sansP that runs in
polynomial time such that if an instance W has an optimal net-respecting solution
that is q-sparse for some small enough q, \sansD \sansP (W ) returns a (1+\epsilon )-approximation with
high probability (at least 1 - 1

poly(n) ).

Sparsity heuristic. Since one does not know the optimal solution in advance,
we estimate the local sparsity with a heuristic. For i \in [L] and u \in Ni, given an

instance W , the heuristic \sansH 
(i)
u (W ) is supposed to estimate the sparsity of an optimal

net-respecting solution in the ball B\prime := B(u,O(si)).2 We shall see in section 3 that
the heuristic actually gives a constant approximation to some appropriately defined
subinstance W \prime in the ball B\prime .

Generic algorithm. We describe a generic framework that applies to \sansS \sansF \sansP . A
similar framework is also used in [12, 6] to obtain PTASs for TSP-related problems.
Given an instance W , we describe the recursive algorithm \sansA \sansL \sansG (W ) as follows:

1. Base case. If | W | = n is smaller than some constant threshold, solve the
problem by brute force, recalling that | X| \leq O(n\epsilon )

O(k).

2. Sparse instance. If for all i \in [L], for all u \in Ni, \sansH 
(i)
u (W ) is at most q0 \cdot si,

for some appropriate threshold q0, call the subroutine \sansD \sansP (W ) to return a
solution, and terminate.

3. Identify critical instance. Otherwise, let i be the smallest height such that

there exists u \in Ni with critical \sansH 
(i)
u (W ) > q0 \cdot si; in this case, choose u \in Ni

such that \sansH 
(i)
u (W ) is maximized.

4. Decomposition into sparse instances. Decompose the instance W into
appropriate subinstances W1 and W2 (possibly using randomness). Loosely
speaking, W1 is a sparse enough subinstance induced in the region around u

at distance scale si, and W2 captures the rest. We note that \sansH 
(i)
u (W2) \leq q0 \cdot si

such that the recursion will terminate. We also require the the subinstances
contain some common terminal pairs, so that the union of the solutions to
the subinstances will be a solution to W . Moreover, the following property
holds:

(2.1) E[\sansO \sansP \sansT (W1)] \leq 
1

1 - \epsilon 
\cdot (\sansO \sansP \sansT nr(W ) - E[\sansO \sansP \sansT nr(W2)]),

where the expectation is over the randomness of the decomposition.

2Depending on the context, we may use \sansH 
(i)
u (W ) to denote the value or the solution.
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1712 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

5. Recursion. Call the subroutine F1 := \sansD \sansP (W1), and solve F2 := \sansA \sansL \sansG (W2)
recursively; return the union F1 \cup F2.

Analysis of approximation ratio. We follow the inductive proof as in [6] to
show that with constant probability (where the randomness comes from \sansD \sansP ), \sansA \sansL \sansG (W )
returns a tour with expected length at most 1+\epsilon 

1 - \epsilon \cdot \sansO \sansP \sansT 
nr(W ), where expectation is

over the randomness of decomposition into sparse instances in step 4.
As we shall see, in \sansA \sansL \sansG (W ), the subroutine \sansD \sansP is called at most poly(n) times

(either explicitly in the recursion or the heuristic \sansH (i)). Hence, with constant prob-
ability, all solutions returned by all instances of \sansD \sansP have appropriate approximation
guarantees.

Suppose F1 and F2 are solutions returned by \sansD \sansP (W1) and \sansA \sansL \sansG (W2), respectively.
Since we assume that W1 is sparse enough and \sansD \sansP behaves correctly, w(F1) \leq (1 +
\epsilon ) \cdot \sansO \sansP \sansT (W1). The induction hypothesis states that E[w(F2)| W2] \leq 1+\epsilon 

1 - \epsilon \cdot \sansO \sansP \sansT 
nr(W2).

In step 4, (2.1) guarantees thatE[\sansO \sansP \sansT (W1)] \leq 1
1 - \epsilon \cdot (\sansO \sansP \sansT 

nr(W ) - E[\sansO \sansP \sansT nr(W2)]).

Hence, it follows that E[w(F1) + w(F2)] \leq 1+\epsilon 
1 - \epsilon \cdot \sansO \sansP \sansT 

nr(W ) = (1 + O(\epsilon )) \cdot \sansO \sansP \sansT (W ),
achieving the desired ratio.

Analysis of running time. As mentioned above, if \sansH 
(i)
u (W ) is found to be

critical, then the instance is decomposed subinstances W1 and W2, and \sansH 
(i)
u (W2)

should be small. This implies \sansH 
(i)
u (W2) should not be critical again, and hence it

follows that there will be at most | X| \cdot L = poly(n) recursive calls to \sansA \sansL \sansG . Therefore,
as far as obtaining polynomial running times, it suffices to analyze the running time
of the dynamic program \sansD \sansP . The details are in section 5.4.

2.2. Paper organization. In order to apply the above framework to obtain a
PTAS for \sansS \sansF \sansP , we shall describe in detail the following components:

1. (section 3) Design a heuristic \sansH such that for each i \in [L] and u \in Ni, the

heuristic \sansH 
(i)
u (W ) gives an upper bound for \sansO \sansP \sansT nr(W )| B(u,3si).

2. (section 4) When a critical \sansH 
(i)
u (W ) is found, decompose W into instances

W1 and W2 such that (2.1) holds.
3. (section 5) Design a dynamic program \sansD \sansP that gives (1 + \epsilon )-approximation

to sparse instances in polynomial time.

3. Sparsity heuristic for \bfsansS \bfsansF \bfsansP . Suppose a collection W of terminal pairs is
an instance of \sansS \sansF \sansP . For i \in [L] and u \in Ni, recall that we wish to estimate

\sansO \sansP \sansT nr(W )| B(u,3si) with some heuristic \sansH 
(i)
u (W ). We consider a more general heuristic

\sansT 
(i,t)
u associated with the ball B(u, tsi) for t \geq 1. The following auxiliary subinstance

deals with terminal pairs that are separated by the ball.
Auxiliary subinstance. Fix \delta := \Theta ( \epsilon 

k ), where the constant depends on the

proof of Lemma 4.3. For i \in [L], u \in Ni, and t \geq 1, the subinstance W
(i,t)
u is induced

by each pair \{ a, b\} \in W as follows:
(a) If both a, b \in B(u, tsi), or if exactly one of them is in B(u, tsi) and the other

in B(u, (t+ \delta )si), then \{ a, b\} is also included in W
(i,t)
u .

(b) Suppose j is the index such that sj < \delta si \leq sj+1. If a \in B(u, tsi) and

b /\in B(u, (t + \delta )si), then \{ a, a\prime \} is included in W
(i,t)
u , where a\prime is the nearest

point to a in Nj .
(c) If both a and b are not in B(u, tsi), then the pair is excluded.

Defining heuristic. We define \sansH 
(i)
u (W ) := \sansT 

(i,4)
u (W ) in terms of a more general

heuristic, where \sansT 
(i,t)
u (W ) is the cost of a constant approximate net-respecting solu-
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tion of \sansS \sansF \sansP on the instance W
(i,t)
u . For example, we can first apply the primal-dual

algorithm in [19] that gives a 2-approximation of \sansS \sansF \sansP and then make it net-respecting,

and we have \sansT 
(i,t)
u (W ) \leq 2(1 + \Theta (\epsilon )) \cdot \sansO \sansP \sansT (W (i,t)

u ).
One potential issue is that \sansO \sansP \sansT nr(W ) might use Steiner points in B(u, tsi), even

if W
(i,t)
u is empty. We shall prove a structural property of the optimal Steiner tree3 in

Lemma 3.1, and Lemma 3.1 implies Lemma 3.2, which helps us to resolve this issue.

Lemma 3.1 (distribution of Steiner points in the optimal Steiner tree). Suppose
S is a terminal set with \sansD \sansi \sansa \sansm (S) \leq D, and suppose F is an optimal Steiner tree with
terminal set S. If the longest edge in F has weight at most \gamma D (0 < \gamma \leq 1), then for
any Steiner point r in F , d(r, S) \leq 4k\gamma log2

4
\gamma \cdot D.

Proof. Since F is an optimal solution, all Steiner points in F have degree at least
3. Fix any Steiner point r in F .

Denote K := \lceil log2(\gamma D)\rceil . Suppose we consider r as the root of the tree F . We
shall show that there is a path of small weight from r to some terminal. Without loss
of generality, we can assume that all terminals are leaves, because once we reach a
terminal, there is no need to visit its descendants. For simplicity, we can assume that
each internal node (Steiner point) has exactly two children, because we can ignore
extra branches if an internal has more than two children.

For i \leq K, let Ei be the set of edges in F that have weights in the range (2i - 1, 2i],
and we say that such an edge is of type i. For each node u in F , denote Fu as the
subtree rooted at u. Suppose we consider Fu and remove all edges in \cup j\geq iEj from Fu;

in the resulting forest, let M
(i)
u be the number of connected components that contain

at least one terminal. We shall prove the following statement by structural induction
on the tree F .

For each node u \in F , there exists a leaf x \in Fu such that

d(x, u) \leq 
\sum 
i\leq K

2i log2 M
(i)
u .

Base case. If u is a leaf, then the statement is true.
Inductive step. Suppose u has children u1 and u2 such that \{ u, u1\} \in Ei and

\{ u, u2\} \in Ei\prime , where i \geq i\prime . Suppose x1 and x2 are the leaves in Fu1
and Fu2

,

respectively, from the induction hypothesis. Observe that M
(i)
u = M

(i)
u1 + M

(i)
u2 . We

consider two cases:
(1) Suppose M

(i)
u1 \leq M

(i)
u2 . Then, we can pick x1 to be the desired leaf, because the

extra distance d(u1, u) \leq 2i can be accounted for, as 2M
(i)
u1 \leq M

(i)
u , and M

(j)
u1 \leq M

(j)
u

for j \not = i. More precisely, d(x1, u) \leq d(x1, u1) + d(u1, u) \leq 2i \cdot (1 + log2 M
(i)
u1 ) +\sum 

j\leq K:j \not =i 2
j log2 M

(j)
u1 \leq 

\sum 
j\leq K 2j log2 M

(j)
u , where the second inequality follows from

the induction hypothesis for u1.

(2) Suppose M
(i)
u2 < M

(i)
u1 . Then, similarly we pick x2 to be the desired leaf,

because the extra distance is d(u2, u) \leq 2i
\prime \leq 2i. This completes the inductive step.

Next, it suffices to give an upper bound for each M (i) := M
(i)
r for root r. Suppose

after removing all tree edges in \cup j\geq iEj , P and Q are two connected components each
containing at least one terminal. Then, observe that the path in F connecting P and
Q must contain an edge e with weight at least 2i - 1. It follows that d(P,Q) \geq 2i - 1;

3Recall that the Steiner tree problem is a special case of \sansS \sansF \sansP where the goal is to return a
minimum cost tree that connects all terminals.
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1714 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

otherwise, we can replace e in F with another edge of length less than 2i - 1 to obtain
a Steiner tree with strictly less weight. It follows that each cluster has a terminal
representative that form a 2i - 1-packing. Hence, we have M (i) \leq ( 4D2i )

k by the packing
property of doubling metrics (Fact 2.1).

Therefore, every Steiner point r in F has a terminal within distance
\sum 

i\leq K k \cdot 
2i log2

4D
2i \leq 4k\gamma D log2

4
\gamma .

Given a graph F , a chain in F is specified by a sequence of points (p1, p2, . . . , pl)
such that there is an edge \{ pi, pi+1\} in F between adjacent points, and the degree of
an internal point pi (where 2 \leq i \leq l  - 1) in F is exactly 2.

The following lemma is crucially used in Lemmas 3.3 and 3.5. Since both lemmas
are dealing with optimal net-respecting solutions, we need to consider net-respecting
solutions in Lemma 3.2 as well. We note that in an optimal net-respecting solution, a
Steiner point can have a Steiner point of degree 2, and that is the reason we consider
long chains instead of long edges.

Lemma 3.2 (Steiner tree of well-separated terminals contains a long chain). Sup-
pose S and T are terminal sets in a metric space with doubling dimension at most k
such that \sansD \sansi \sansa \sansm (S \cup T ) \leq D, and d(S, T ) \geq \tau D, where 0 < \tau < 1. Suppose F is an
optimal net-respecting Steiner tree connecting the points in S \cup T . Then, there is a

chain in F with weight at least \tau 2

4096k2 \cdot D such that any internal point in the chain is
a Steiner point.

Proof. Denote \gamma := \tau 2

4096k2 . Suppose for contradiction's sake that all chains in

F have weight less than \gamma D. We consider a minor \widehat F that is obtained from F by
merging Steiner points of degree 2 with adjacent points. Hence, the vertex set of \widehat F
is comprised of the terminals together with Steiner points in F with degree at least
3. Moreover, an edge in \widehat F corresponds to a chain in F , and its weight is defined to
be the weight of the corresponding chain.

Then, by using the argument in Lemma 3.1, we can prove that every point u in \widehat F
is within distance at most 4k\gamma log2

8
\gamma \cdot D to a terminal. Precisely, we shall replace the

F in the argument of Lemma 3.1 with \widehat F . We observe that the only difference caused
by this replacement is when we use the optimality of the solutions. Specifically,
in Lemma 3.1, we use the fact that when an edge e connects point sets P and Q,
both contain at least one terminal (i.e., removing e results in the disconnectivity

of P and Q); it has to be d(P,Q) \geq w(e), while the corresponding fact for \widehat F is

d(P,Q) \geq w(e)
1+\Theta (\epsilon ) \geq w(e)

2 , where the first inequality follows from the optimality of

F and the fact that there exists a path connecting P and Q with weight at most
(1 +O(\epsilon )) \cdot d(P,Q) by Lemma 2.2.

Obtaining contradiction. Recall that the terminal sets S and T are well sepa-
rated: d(S, T ) \geq \tau D. Since all Steiner points in \widehat F are at distance at most 4k\gamma log2

8
\gamma \cdot D

from the terminals, it follows that there must be an edge in \widehat F with length at least
\tau D  - 8k\gamma log2

8
\gamma \cdot D > \tau D  - 32k

\surd 
\gamma D > \gamma D.

Lemma 3.3. Suppose F is an optimal net-respecting solution for an \sansS \sansF \sansP instance

W . Then, for any i and u \in Ni and t \geq 1, w(F | B(u,tsi)) \leq \sansT 
(i,t+1)
u (W )+O( skt\epsilon )O(k)si.

Proof. Given an optimal net-respecting solution F , we shall construct another
net-respecting solution in the following steps:

1. Remove edges in F | B(u,tsi).

2. Add edges corresponding to the heuristic \sansT 
(i,t+1)
u (W ).
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3. Add edges in an MST H of Nj \cap B(u, (t+2)si), where sj \leq \Theta ( \epsilon 
(t+1)k2 ) \cdot si <

sj+1, where the constant in \Theta depends on Lemma 3.2; convert each added
edge into a net-respecting path if necessary.
By the choice of j and the packing property, | H| \leq O( stk\epsilon )O(k), and hence

the weight of edges added in this step is O( stk\epsilon )O(k) \cdot si.
4. To ensure feasibility, replace some edges without increasing the weight.

If we can show that the resulting solution is feasible for W , then the optimality
of F implies the result. We denote B := B(u, tsi) and \widehat B := B(u, (t+ 1)si).

Feasibility. Define\widehat V1 := \{ x : x \in B | \exists \{ x, y\} \in F

s.t. y /\in B and y is connected in F | X\setminus B to some point outside \widehat B\} 

and \widehat V2 := \{ x : x \in \widehat B \setminus B | x is connected in F | \widehat B to some point in \widehat V1,

\exists \{ x, y\} \in F s.t. y /\in \widehat B\} .

In step 4, we will ensure that all points in \widehat V1 \cup \widehat V2 are connected to the MST H.
If a pair \{ a, b\} \in W has both terminals in \widehat B, then they will be connected by the

edges corresponding to \sansT 
(i,t+1)
u (W ). If a \in \widehat B and b /\in \widehat B, then edges for the heuristic

\sansT 
(i,t+1)
u (W ) ensure that a is connected to H; moreover, in the original tree F , if the

path from a to b does not meet any node in \widehat V2, then this path is preserved; otherwise,
there is a portion of the path from a point in \widehat V2 to b that is still preserved. If both
a and b are outside \widehat B, then they might be connected in F via points in \widehat V2; however,
since all points in \widehat V2 are connected to H, feasibility is ensured.

We next elaborate on how step 4 is performed. Consider a connected component
U in F | \widehat V1\cup ( \widehat B\setminus B) that contains a point in \widehat V1. Let S1 := U \cap \widehat V1 and S2 := U \cap \widehat V2.

If S2 = \emptyset , then there is an edge connecting S1 directly to a point outside \widehat B. This
means that both its end-points are in Nj by the net-respecting property, and hence
S1 is already connected to H.

Next, if there is a point z /\in \widehat B connected directly to some point y \in S2 such that

d(y, z) \geq si

2 , then by the net-respecting property, y \in Nj , and so again U is connected

to H. Otherwise, we have d(S1, S2) \geq si

2 . We next replace U with an optimal net-

respecting Steiner tree \widehat U connecting S1 \cup S2. Since U itself is net-respecting, this
does not increase the cost.

Observing that \sansD \sansi \sansa \sansm (S1 \cup S2) \leq 2(t + 1)si, we can use Lemma 3.2 to conclude

that there exists a chain in \widehat U from some point u to v such that its length is at
least \Theta ( 1

k2(t+1) ) \cdot s
i. Hence, we can remove this chain and use its weight to add a

net-respecting path from each of u and v to its nearest point in Nj . This does not
increase the cost and ensures that both S1 and S2 are connected to H.

Therefore, we have shown that step 4 ensures that all points in \widehat V1 and \widehat V2 are
connected to H.

It is because of Lemma 3.3 that we choose \sansH 
(i)
u (W ) := \sansT 

(i,4)
u (W ) to be the heuris-

tic.

Corollary 3.4 (threshold for critical instance). Suppose F is an optimal net-
respecting solution for an \sansS \sansF \sansP instance W , and q \geq \Theta ( sk\epsilon )

\Theta (k). If for all i \in [L] and

u \in Ni, \sansH 
(i)
u (W ) \leq qsi, then F is 2q-sparse.
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Lemma 3.5. Suppose W is an \sansS \sansF \sansP instance. Consider i \in [L], u \in Ni, and

t \geq t\prime \geq 1. Suppose F is a net-respecting solution for W
(i,t)
u . Then, \sansT 

(i,t\prime )
u (W ) \leq 

4(1 + \epsilon ) \cdot w(F ) +O( skt
\prime 

\epsilon )O(k)si.

Proof. We first show that there is a feasible solution for W
(i,t\prime )
u with weight at

most 2 \cdot w(F ) + O( skt
\prime 

\epsilon )O(k)si. Then, the heuristic \sansT 
(i,t\prime )
u (W ) gives the weight of a

net-respecting solution with cost at most 4(1 + \epsilon ) \cdot w(F ) +O( skt
\prime 

\epsilon )O(k)si.
We first include F in the solution. It suffices to handle the terminal pairs in

W
(i,t\prime )
u \setminus W

(i,t)
u . Such a pair \{ a, a\prime \} must be induced from \{ a, b\} \in W

(i,t)
u such that

a \in B(u, t\prime si) and b \in B(u, (t+ \delta )si) \setminus B(u, (t\prime + \delta )si). We next add more edges such

that a is connected to a\prime , which lies in Nj , where sj \leq \Theta ( \delta 2

t\prime k2 ) \cdot si < sj+1.
We add an MST H on the points in Nj \cap B(u, (t\prime + \delta )si). This has cost at most

O( skt
\prime 

\epsilon )O(k) \cdot si.
Consider a connected component U of F . Consider the terminal pairs \{ a, b\} \in 

W
(i,t)
u connected by U such that a \in B(u, t\prime si) and b \in B(u, (t+ \delta )si); let S1 be those

terminals a, and let S2 be those terminals b. Suppose \widehat U is an optimal net-respecting
Steiner tree connecting S1 \cup S2. Since U is also net-respecting, it follows that the
weight of \widehat U is at most that of U .

Since d(S1, S2) \geq \delta si and \sansD \sansi \sansa \sansm (S1 \cup S2) \leq \Theta (t\prime )si, it follows from Lemma 3.2

that there exists a chain from p to q in \widehat U with weight at least \Theta ( \delta 2

t\prime k2 ) \cdot si. Hence, we
can remove this chain and use this weight to connect p and q to each of their closest
points in Nj . This ensures that each point a \in S1 is connected to its closest point in
Nj via the MST H.

If we perform this operation on each connected component U of F , the weight of
edges added is at most w(F ). Hence, we have shown that there is a feasible solution

to W
(i,t\prime )
u with cost at most 2 \cdot w(F ) +O( skt

\prime 

\epsilon )O(k)si, as required.

4. Decomposition into sparse instances. In section 3, we defined a heuristic

\sansH 
(i)
u (W ) to detect a critical instance around some point u \in Ni at distance scale si.

We next describe how the instance W can be decomposed into W1 and W2 such that
(2.1) in section 2.1 is satisfied.

Since the ball centered at u with radius around si could potentially separate
terminal pairs inW , we use the idea in section 3 for defining the heuristic to decompose
the instance.

Decomposing a critical instance. We define a threshold q0 := \Theta ( sk\epsilon )
\Theta (k)

according to Corollary 3.4. As stated in section 2.1, a critical instance is detected
by the heuristic when a smallest i \in [L] is found for which there exists some u \in Ni

such that \sansH 
(i)
u (W ) = \sansT 

(i,4)
u (W ) > q0s

i. Moreover, in this case, u \in Ni is chosen to

maximize \sansH 
(i)
u (W ). To achieve a running time with an exp(O(1)k log(k)) dependence

on the doubling dimension k, we also apply the technique in [12] to choose the cutting
radius carefully.

Claim 4.1 (choosing radius of cutting ball). Denote \sansT (\lambda ) := \sansT 
(i,4+2\lambda )
u (W ).

Then, there exists 0 \leq \lambda < k such that \sansT (\lambda + 1) \leq 30k \cdot \sansT (\lambda ).

Proof. Suppose the contrary is true. Then, it follows that \sansT (k) > (30k)k \cdot \sansT (0).
We shall obtain a contradiction by showing that there is a solution for the instance

W
(i,4+2k)
u corresponding to \sansT (k) = \sansT 

(i,4+2k)
u (W ) with small weight.

Define N \prime 
i to be the set of points in Ni that cover B(u, (2k + 5)si), and similarly
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define N \prime 
j , where sj \leq \delta \cdot si \leq sj+1.

Define edge set F to be the union of an MST on N \prime 
j together with the union of

the edge sets \sansH 
(i)
v over v \in N \prime 

i . It follows that F is a feasible solution for the instance

W
(i,4+2k)
u . By the choice of u and q0, we have w(F ) \leq | N \prime 

j | \cdot 2(2k+5) \cdot si+ | N \prime 
i | \cdot \sansT (0) \leq 

q0s
i + (4k + 10)k \cdot \sansT (0) \leq (15k)k \cdot \sansT (0).
Hence, we have an upper bound for the heuristic \sansT (k) \leq 2(1 + \Theta (\epsilon )) \cdot w(F ) \leq 

(30k)k \cdot \sansT (0), which gives us the desired contradiction.

Cutting ball and subinstances. Suppose \lambda \geq 0 is picked as in Claim 4.1,
and sample h \in [0, 1

2 ] uniformly at random. Recall that \delta := \Theta ( \epsilon 
k ). Define B :=

B(u, (4+ 2\lambda +h)si) and \widehat B := B(u, (4+ 2\lambda +h+ \delta )si). The instances W1 and W2 are
induced by each pair \{ a, b\} \in W as follows:

(a) If a \in B and b \in \widehat B, then include \{ a, b\} in W1.

(b) If a \in B and b /\in \widehat B, then include \{ a, a\prime \} in W1 and \{ a\prime , b\} in W2, where a\prime is
the closest point in Nj to a and sj \leq \delta \cdot si < sj+1.

(c) If both a and b are not in B, then include \{ a, b\} in W2.

Lemma 4.2 (subinstances are sparse). The subinstances W1 and W2 satisfy the
following:

(i) If F1 is feasible for W1 and F2 is feasible for W2, then the union F1 \cup F2 is
feasible for W .

(ii) The subinstance W2 does not have a critical instance with height less than i,

and \sansH 
(i)
u (W2) = 0.

(iii) \sansH 
(i)
u (W1) \leq O(s)O(k) \cdot q0 \cdot si.

Proof. The first two statements follow immediately from the construction (to see
(ii), recall the definition of auxiliary subinstance defined in section 3). For the third
statement, we use the fact that there is no critical instance at height i  - 1 to show
that there is a solution to W1 with small cost.

Specifically, we consider an MST H on Nj \cap B(u, 5si), where sj \leq \delta \cdot si - 1 < sj+1.
Then, we have w(H) \leq q0 \cdot si.

Moreover, we consider the union of solutions corresponding to \sansH 
(i - 1)
v (W ) over

v \in Ni - 1 \cap B(u, 5si). The cost is O(s)O(k) \cdot q0 \cdot si.
Hence, the union of H together with the edges for the \sansH 

(i - 1)
v (W )'s is feasible for

W1, and this implies that \sansH 
(i)
u (W1) \leq O(s)O(k) \cdot q0 \cdot si.

Lemma 4.3 (combining costs of subinstances). Suppose F is an optimal net-
respecting solution for W . Then, for any realization of the decomposed subinstances
W1 and W2 as described above, there exist net-respecting solutions F1 and F2 for
W1 and W2, respectively, such that (1  - \epsilon ) \cdot E[w(F1)] + E[w(F2)] \leq w(F ), where the
expectation is over the randomness to generate W1 and W2.

Proof. Let B and \widehat B be defined as above, and denote B := B(u, (4 + 2\lambda +1) \cdot si).
Since \delta is sufficiently small, we have B \subset \widehat B \subset B.

We start by including F | B in T1 and including the remaining edges in F in F2.
We will then show how to add extra edges with expected weight at most \epsilon \cdot E[w(F1)]
to make F1 and F2 feasible. This will imply the lemma.

DefineN to be the subset ofNj that covers the points in B, where sj < \delta si \leq sj+1.
We include a copy of an MST H of N in each of F1 and F2 and make it net-respecting.
This costs at most | N | \cdot O(k) \cdot si \leq O(ks\epsilon )

O(k) \cdot si.
We next include the edges of F in the annulus \widehat B \setminus B (of width \delta ) into F1. This
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1718 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

has expected cost at most \delta \cdot w(F | B).
Connecting crossing points. To ensure the feasibility of F1, we connect the

following sets of points to N . We denote V1 := \{ x \in B | \exists y \in \widehat B \setminus B, \{ x, y\} \in F\} ,
V2 := \{ y \in \widehat B \setminus B | \exists x \in B, \{ x, y\} \in F\} , and V3 := \{ x \in \widehat B | \exists y /\in \widehat B, \{ x, y\} \in F\} .

We shall connect each point in V1 \cup V2 \cup V3 to its closest point in N . Note

that if such a point x is incident to some edge in F with weight at least si

4 , then
the net-respecting property of F implies that x is already in N . Otherwise, this is
because some edge \{ x, y\} in F is cut by either B or \widehat B, which happens with probability

at most O(d(x,y)si ). Hence, each edge \{ x, y\} \in F | B has an expected contribution of

\delta si \cdot O(d(x,y)si ) = O(\delta ) \cdot d(x, y).
Similarly, to ensure the feasibility of F2, we ensure each point in the following

set is connected to N . Denote \widehat V1 := \{ x \in B | \exists y /\in B, \{ x, y\} \in F\} . By the same
argument, the expected cost to connect each point to N is also at most O(\delta ) \cdot w(F | B).

Charging the extra costs to \bfitF \bfone . Apart from using edges in F , the extra edges
come from two copies of the MST H and other edges with cost O(\delta ) \cdot w(F | B). We
charge these extra costs to F1.

Since T
(i,4)
u (W ) > q0 \cdot si and F1 is a net-respecting solution for W

(i,4+2\lambda +h)
u , by

Lemma 3.5, w(F1) \geq 1
4(1+\epsilon ) (T

(i)(u, 4)  - O( sk\epsilon )
O(k) \cdot si) > q0

8 \cdot si by choosing large

enough q0.
Therefore, the cost for the two copies of the MST H is at most O(ks\epsilon )

O(k) \cdot si \leq 
\epsilon 
2 \cdot w(F1).

We next give an upper bound on w(F | B), which is at most \sansT 
(i,4+2(\lambda +1))
u (W ) +

O( sk\epsilon )
O(k) \cdot si, by Lemma 3.3. By the choice of \lambda , we have \sansT 

(i,4+2(\lambda +1))
u (W ) \leq 30k \cdot 

\sansT 
(i,4+2\lambda )
u (W ). Moreover, by Lemma 3.5, \sansT 

(i,4+2\lambda )
u (W ) \leq 4(1+\epsilon )\cdot w(F1)+O( sk\epsilon )

O(k)\cdot si.
Hence, we can conclude that w(F | B) \leq O(k) \cdot w(F1).

Hence, by choosing small enough \delta = \Theta ( \epsilon 
k ), we can conclude that the extra costs

O(\delta ) \cdot w(F | B) \leq 
\epsilon 
2 \cdot w(F1).

Therefore, we have shown that E[w(F1)] + E[w(F2)] \leq w(F ) + \epsilon \cdot w(F1), where
the right-hand side is a random variable. Taking expectation on both sides and
rearranging gives the required result.

5. A PTAS for sparse \bfsansS \bfsansF \bfsansP instances. Our dynamic program follows the
divide and conquer strategy as in previous works on \sansT \sansS \sansP [3, 25, 6] that are based
on hierarchical decomposition. However, to apply the framework to \sansS \sansF \sansP , we need a
version of the cell property that is more sophisticated than previous works [10, 8].

We shall first give a review of the hierarchical decomposition techniques in sec-
tion 5.1. In section 5.2, we shall give a high level overview of our new ideas. In
section 5.3, we shall elaborate on the precise implementations of the ideas. Finally,
we shall show the details of \sansD \sansP in section 5.4 and conclude a PTAS for sparse \sansS \sansF \sansP 
instances (in Corollary 5.35).

5.1. Review on hierarchical decomposition.

Definition 5.1 (single-scale decomposition [1]). At height i, an arbitrary or-
dering \pi i is imposed on the net Ni. Each net-point u \in Ni corresponds to a cluster
center and samples random hu from a truncated exponential distribution \sansE \sansx \sansp i having

density function t \mapsto \rightarrow \chi 
\chi  - 1 \cdot ln\chi 

si \cdot e - 
t ln\chi 

si for t \in [0, si], where \chi = O(1)k. Then, the

cluster at u has random radius ru := si + hu.
The clusters induced by Ni and the random radii form a decomposition \Pi i, where

a point p \in X belongs to the cluster with center u \in Ni such that u is the first point
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A PTAS FOR THE SFP IN DOUBLING METRICS 1719

in \pi i to satisfy p \in B(u, ru). We say that the partition \Pi i cuts a set P if P is not
totally contained within a single cluster.

The results in [1] imply that the probability that a set P is cut by \Pi i is at most
\beta \cdot \sansD \sansi \sansa \sansm (P )

si , where \beta = O(k).

Definition 5.2 (hierarchical decomposition). Given a configuration of random
radii for \{ Ni\} i\in [L], decompositions \{ \Pi i\} i\in [L] are induced as in Definition 5.1. At the
top height L - 1, the whole space is partitioned by \Pi L - 1 to form height-(L - 1) clusters.
Inductively, each cluster at height i+ 1 is partitioned by \Pi i to form height-i clusters,
until height 0 is reached. Observe that a cluster has K := O(s)k child clusters. Hence,
a set P is cut at height i if and only if the set P is cut by some partition \Pi j such that

j \geq i; this happens with probability at most
\sum 

j\geq i
\beta \cdot \sansD \sansi \sansa \sansm (P )

si = O(k)\cdot \sansD \sansi \sansa \sansm (P )
si .

Portals. As in [4, 25, 6], each height-i cluster U is equipped with portals such
that a solution F is portal-respecting if for every edge \{ x, y\} in F between a point x in
U and some point y outside U , at least one of x and y must be a portal of cluster U .
As mentioned in [6], the portals of a cluster need not be points of the cluster itself but
are just used as connection points. For a height-i cluster C, its portals are comprised
of the subset of net-points in Ni\prime that cover C, where i\prime is the maximum index such
that si

\prime \leq max\{ 1, \epsilon 
4\beta L \cdot si\} . As noted in [25, 6, 12], any solution can be made to be

portal-respecting with a multiplicative factor of 1 +O(\epsilon ) in cost.
Since a height-i cluster has diameter O(si), by Fact 2.1, the cluster has at most

m := O(\beta Ls
\epsilon )k portals.

(\bfitm , \bfitr )-light solution. A solution F is called (m, r)-light if it is portal-respecting
for a hierarchical decomposition in which each cluster has at most m portals, and for
each cluster, at most r of its portals are used in F to connect points in the cluster to
the points outside.

5.2. Proof overview. As discussed in section 1, the \sansD \sansP entry has to keep track
of the portals to which each terminal is connected, and a naive implementation can
lead to an exponential run time. In the Euclidean plane, the notion of cells was
introduced in [10] to resolve the issue, and the idea is to group several terminals
in a cell (which is a subset of points) such that all terminals in a cell have similar
connectivity and to argue that enforcing the connectivity is not very costly. Moreover,
the number of cells is small for each cluster, which is a constant for the Euclidean
plane, and it is feasible to keep track of the portals to which each cell is connected.

Indeed, it is natural to define the cells in a uniform way such that all child clusters
of diameter \gamma D are cells of a cluster of diameter D, where 0 < \gamma < 1. However, in
doubling metrics, it turns out \gamma has to be set to as small as 1

L , which leads to poly log n
number of cells for each cluster. This only gives a QPTAS.

Our idea is to use the sparsity to reduce the number of cells. One implication of
the sparsity is that the solution may be cheaply modified such that there are only a
small number of components crossing a cluster. Moreover, in the cell idea of [10], it
is actually sufficient that cells only cover the crossing components. Hence, we define
a cell for each crossing component, and we make the size of the cells depend on the
weight of the components. That is, we use cells of a coarse gratitude to cover larger
cells and use cells of a fine gratitude to cover small cells. Figure 5.1 illustrates how
our cells differ from the uniform cells used in [10]. We implement this idea by defining
basic cells in Definition 5.6.
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(a) Uniform cells (b) Adaptive cells

Fig. 5.1. Uniform cells versus adaptive cells.

Observe that our cell set is not uniform, and one consequence is that the cell
set for a child cluster may not be a refinement (see Definition 5.12) of that of the
parent cluster. This is a severe issue for the dynamic programming algorithm, as it
may not deduce the correct connectivity information of a subproblem from its child
subproblems. To resolve this issue, we introduce nonbasic cells (see Definition 5.10)
which together with the basic cells form the final cell set which we call the effective
cells (see Definition 5.11).

We show that our cell is indeed of a small number in Lemma 5.16. Furthermore,
even though the cells are defined with respect to the optimal solution which is unknown
in advance, we can afford to ``guess"" the cell set, and the possibilities of all possible
cell sets is bounded, which follows from Lemma 5.15.

Finally, we introduce a new cell property (see Definition 5.18) which is a weaker
version of that considered in [10]. Our cell property requires that all components that
connect a cell to outside its cluster be connected in the eventual solution, while in [10]
it is required to connect all components inside the cluster. The new cell property
enables a charging argument in Lemma 5.19 to show that the optimal solution may
be modified to satisfy the cell property cheaply.

5.3. Structural property. In this section, we shall define the cell property
(Definition 5.18) with respect to the effective cells (Definition 5.11), where the ef-
fective cells are carefully chosen to implement our adaptive cells idea. Specifically,
the effective cells are defined by the union of the basic cells (Definition 5.6) and the
nonbasic cells (Definition 5.10). Moreover, the virtual cells and the promoted cells
(Definition 5.8) are introduced in order to define the nonbasic cells. Finally, we shall
prove the structural property in Lemma 5.19.

Notations and parameters. Let \sansh \sanst (C) denote the height of a cluster C, \sansd \sanse \sanss (C)
denote the collection of all descendant clusters of C (including C), and \sansp \sansa \sansr (C) denote
the parent cluster of C. For x \in \BbbR +, let \lfloor x\rfloor s denote the largest power of s that
is at most x, and let \lceil x\rceil s denote the smallest power of s that is at least x. Define
\^\gamma 0 := \Theta ( \epsilon 

ks2L ), and define \^\gamma 1 := \Theta ( \epsilon 
s2 ). Define \gamma 0 such that 1

\gamma 0
:= \lceil 1

\^\gamma 0
\rceil s, and define

\gamma 1 such that 1
\gamma 1

:= \lfloor 1
\^\gamma 1
\rfloor s. We note that \gamma 0 < \gamma 1.

Definition 5.3 (cell). Suppose C is a cluster of height i. A p-cell of C is a
height-logs p child cluster of C.

Definition 5.4 (crossing component). Suppose C is some cluster and F is a
solution for \sansS \sansF \sansP . We say that a subset A crosses C if there exist points x, y \in A such
that x \in C and y /\in C. A component A in F is called a crossing component of C if A
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crosses C.

In the following, we shall introduce the notions of basic cells, owner of basic cells,
promoted cells, virtual cells, nonbasic cells, and effective cells. All of these are defined
with respect to some feasible solution to \sansS \sansF \sansP . We assume there is an underlying
feasible solution F when talking about these definitions.

The basic cells are defined with respect to crossing components. Also, the size of
the cell depends on the size of the crossing component, and in the following definition,
we specify its precise size by function h(i, l).

Adaptive cells. For each cluster C, we shall define its basic cells whose heights
depend on the weights l of the crossing components of C in the solution F . We
consider three cases.

Define I1(l) := \{ i | \lfloor l\rfloor s \geq si\} , I2(l) := \{ i | \gamma 0

\gamma 1
si \leq \lfloor l\rfloor s < si\} , and I3(l) := \{ i | i \leq 

L, \lfloor l\rfloor s < \gamma 0

\gamma 1
si\} . Define a function h : [L]\times \BbbR + \rightarrow \BbbR + such that

h(i, l) =

\left\{     
\gamma 1s

i for i \in I1(l),

\gamma 1\lfloor l\rfloor s for i \in I2(l),

\gamma 0s
i for i \in I3(l).

Lemma 5.5. h(i+1,l)
s \leq h(i, l) \leq h(i+ 1, l).

Proof. If both i and i + 1 lie in the same Ij(l) (j \in \{ 1, 2, 3\} ), then it holds
immediately.

Otherwise, it is either i \in I2(l) but i + 1 \in I3(l), or i \in I1(l) but i + 1 \in I2(l),
noting that it is not possible that i \in I1(l) and i+ 1 \in I3(l):

\bullet If i \in I1(l) and i + 1 \in I2(l). This implies si = \lfloor l\rfloor s. Hence, h(i, l) = \gamma 1s
i =

\gamma 1\lfloor l\rfloor s = h(i+ 1, l).
\bullet If i \in I2(l) and i + 1 \in I3(l). This implies si = \gamma 1

\gamma 0
\lfloor l\rfloor s. Hence, s \cdot h(i, l) =

s \cdot \gamma 1\lfloor l\rfloor s = \gamma 0s
i+1 = h(i+ 1, l).

This implies the inequality.

Definition 5.6 (basic cell). Suppose C is a cluster of height i and A is a crossing
component of C. Define l := w(A). Define the basic cells of A in C, \sansB \sansa \sanss A(C), to
be the collection of the h(i, l)-cells of C that intersect A. Define the basic cells of C,
\sansB \sansa \sanss (C), to be the union of \sansB \sansa \sanss A(C) for all crossing components A of C.

Definition 5.7 (owner of a basic cell). For some cluster C, define the owner of
e \in \sansB \sansa \sanss (C) to be the minimum weight crossing component A such that e \in \sansB \sansa \sanss A(C).

As noted in section 5.2, the nonbasic cells are used make sure the cells satisfy
the refinement property. The promoted cells and virtual cells are used to define the
nonbasic cells, and the detailed definition is as follows.

Definition 5.8 (promoted cell and virtual cell). Suppose C is a cluster of height
i. Let S be the set of child clusters of C that is not in \sansB \sansa \sanss (C) but has a sibling in
\sansB \sansa \sanss (C).

Consider each e \in S:
\bullet If there exists a child cluster C \prime of C such that e \in \sansB \sansa \sanss (C \prime ), then define
\sansP \sansr \sanso e(C) := \sansd \sanse \sanss (e) \cap \sansB \sansa \sanss (C \prime ), and define \sansV \sansi \sansr e(C) := \emptyset , where C \prime \subset C is any
one that satisfies e \in \sansB \sansa \sanss (C \prime ).

\bullet Otherwise, define \sansP \sansr \sanso e(C) := \emptyset , and define \sansV \sansi \sansr e(C) := e.
Finally, \sansP \sansr \sanso (C) :=

\bigcup 
e\in S \sansP \sansr \sanso e(C), and \sansV \sansi \sansr (C) :=

\bigcup 
e\in S \sansV \sansi \sansr e(C), and elements in

\sansP \sansr \sanso (C) and \sansV \sansi \sansr (C) are called promoted cells and virtual cells, respectively.
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Lemma 5.9. For any cluster C, if e \in \sansV \sansi \sansr (C), then for any cluster C \prime \subset C
(C \prime may equal C), e\setminus \{ e\prime \in \sansB \sansa \sanss (C \prime ) | e\prime \subsetneq e\} has no intersection with any crossing
component of C \prime .

Proof. Suppose not. Then, there exist a cluster C \prime \subset C and a crossing component
A of C \prime such that A intersects u := e\setminus \{ e\prime \in \sansB \sansa \sanss (C \prime ) | e\prime \subsetneq e\} . This implies that
there exists u\prime \in \sansB \sansa \sanss A(C

\prime ) such that e \subset u\prime . By Lemma 5.5 and the fact that
h(\sansh \sanst (C \prime ), w(A)) \geq s\sansh \sanst (e) and that h(0, w(A)) < s\sansh \sanst (e), we know that there exists a
cluster C \prime \prime \subset C \prime \subset C such that e \in \sansB \sansa \sanss A(C

\prime \prime ). This contradicts the definition of
virtual cells.

Definition 5.10 (nonbasic cell). We define the nonbasic cells \sansN \sansB \sansa \sanss (C) for a
cluster C. If C is the root cluster, then \sansN \sansB \sansa \sanss (C) := \sansP \sansr \sanso (C)\cup \sansV \sansi \sansr (C)\setminus \sansB \sansa \sanss (C). For any
other cluster C, let \sansN \sansB \sansa \sanss (C) := \{ e\cap C | e \in \sansP \sansr \sanso (C)\cup \sansV \sansi \sansr (C)\cup \sansN \sansB \sansa \sanss (\sansp \sansa \sansr (C))\setminus \sansB \sansa \sanss (C)\} .

Definition 5.11 (effective cell). For a cluster C, define the effective cells of C
as \sansE ff(C) := \sansB \sansa \sanss (C) \cup \sansN \sansB \sansa \sanss (C).

Definition 5.12 (refinement). Suppose S1 and S2 are collections of clusters.
We say S1 is a refinement of S2 if for any e \in S2, either e \in S1, or all child clusters
of e are in S1.

Lemma 5.13. Suppose C is a cluster that is not a leaf. Define \{ Ci\} i to be the
collection of all the child clusters of C. Then, \cup i\sansE ff(Ci) is a refinement of \sansE ff(C).

Proof. Define S := \cup i\sansE ff(Ci). It is sufficient to prove that for any e \in \sansE ff(C),
either e \in S, or all child clusters of e are in S.

If e \in \sansN \sansB \sansa \sanss (C) and e \not = C, then e \in S follows from Definitions 5.10 and 5.11. If
e \in \sansN \sansB \sansa \sanss (C) but e = C, then also by Definitions 5.10 and 5.11, C\cap Ci = Ci \subset \sansE ff(Ci),
and this implies that all child clusters of e are in S.

Otherwise, e \in \sansB \sansa \sanss (C); then by Lemma 5.5, we know that either e \in S, or there
exists e\prime \subset e such that \sansh \sanst (e\prime ) = \sansh \sanst (e)  - 1 and e\prime \in S. Then, all siblings of e\prime are
in S by the definition of promoted cells and virtual cells. This implies that all child
clusters of e are in S.

The following is to show that the number of cells in each cell set is small, and the
number of possible cell sets for each cluster is also bounded.

Definition 5.14 (candidate center). Suppose C is a cluster of height i. The set
of candidate centers of C, denoted as \sansC \sansa \sansn (C), is the subset of \cup i

j=logs \gamma 2
0s

iNj that may

become a center of C's child cluster in the hierarchical decomposition.

Lemma 5.15. For any cluster C, the centers of clusters in \sansE ff(C) are chosen from
\sansC \sansa \sansn (C), and | \sansC \sansa \sansn (C)| \leq \kappa , where \kappa := O( 1

\gamma 0
)O(k).

Proof. We first prove that centers of cluster in \sansE ff(C) are chosen from \sansC \sansa \sansn (C):
\bullet For e \in \sansB \sansa \sanss (C), by the definition of the basic cells, we have \sansh \sanst (e) \geq logs \gamma 0s

i.
\bullet For e \in \sansP \sansr \sanso (C), we have that e is a basic cell of some cluster C \prime , and hence
\sansh \sanst (e) \geq logs \gamma 

2
0s

i.
\bullet For e \in \sansV \sansi \sansr (C), since it is a sibling of a basic cell, \sansh \sanst (e) \geq logs \gamma 0s

i.
\bullet For e \in \sansN \sansB \sansa \sanss (C), there is a cluster C \prime \prime such that C \subset C \prime \prime and e \in \sansP \sansr \sanso (C \prime \prime ) \cup 

\sansV \sansi \sansr (C \prime \prime ).
Hence, \sansh \sanst (e) \geq logs \gamma 

2
0s

i. Therefore, centers of clusters in \sansE ff(C) are in \sansC \sansa \sansn (C).
We then bound | \sansC \sansa \sansn (C)| . Suppose i := \sansh \sanst (C). Observe that a center of height

j \leq i that may become a center of a child cluster of C is contained in a ball of
diameter O(si). Moreover, Nj is an sj packing. Hence, by the packing property,
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| \sansC \sansa \sansn (C)| \leq O( 1
\gamma 0
)O(k).

Lemma 5.16. Suppose \sansE ff is defined in terms of a solution that is (m, r)-light.
Then, for each cluster C, | \sansE ff(C)| \leq \rho , where \rho := O(logs

1
\gamma 0
) \cdot r2 \cdot O( s

\gamma 1
)O(k).

Proof. Suppose C is of height i. We give upper bounds for | \sansB \sansa \sanss (C)| , | \sansP \sansr \sanso (C)| ,
| \sansV \sansi \sansr (C)| , and | \sansN \sansB \sansa \sanss (C)| , respectively.

Bounding | \bfsansB \bfsansa \bfsanss (\bfitC )| . Fix a crossing component A of C, and suppose l := w(A).
We upper bound | \sansB \sansa \sanss A(C)| :

\bullet If i \in I1(l), then \sansB \sansa \sanss A(C) is a subset of \gamma 1s
i-cells of C. By the packing

property, | \sansB \sansa \sanss A(C)| \leq O( 1
\gamma 1
)k.

\bullet If i \in I2(l), then \sansB \sansa \sanss A(C) is a subset of \gamma 1\lfloor l\rfloor s-cells of C. Since all the
\gamma 1\lfloor l\rfloor s-cells that intersect A are inside a ball of diameter O(l), by the packing
property, | \sansB \sansa \sanss A(C)| \leq O( s

\gamma 1
)O(k).

\bullet If i \in I3(l), then \sansB \sansa \sanss A(C) is a subset of \gamma 0s
i-cells of C. Since all the \gamma 0s

i-cells
that intersect A are inside a ball of diameter O(\gamma 0

\gamma 1
si) (which follows from

i \in I3(l) so that A is small), by the packing property, | \sansB \sansa \sanss A(C)| \leq O( 1
\gamma 1
)k.

Since the solution is r-light, there are at most r crossing components. Therefore,

| \sansB \sansa \sanss (C)| \leq r \cdot O
\biggl( 

s

\gamma 1

\biggr) O(k)

.

Bounding | \bfsansP \bfsansr \bfsanso (\bfitC )| and | \bfsansV \bfsansi \bfsansr (\bfitC )| . Recall that for e \in \sansB \sansa \sanss (C), and for e\prime /\in 
\sansB \sansa \sanss (C) that is a sibling of e, we either include e to \sansV \sansi \sansr (C), or include \sansd \sanse \sanss (e)\cap \sansB \sansa \sanss (C \prime )
to \sansP \sansr \sanso (C), for some child cluster C \prime of C. In either case, the number of added elements
is at most r \cdot O( s

\gamma 1
)O(k), and we charge this to e.

We observe that for each e \in \sansB \sansa \sanss (C), it has at most O(s)k siblings by the packing
property. Therefore, each e is charged at most O(s)k times. We conclude that

| \sansP \sansr \sanso (C) \cup \sansV \sansi \sansr (C)| \leq O(s)k \cdot r2 \cdot O
\biggl( 

s

\gamma 1

\biggr) O(k)

.

Bounding | \bfsansN \bfsansB \bfsansa \bfsanss (\bfitC )| . Suppose P is the set consisting of C and all its ancestor
clusters. Recalling the definition, \sansN \sansB \sansa \sanss (C) is a subset of the inside C clusters of
\cup p\in P (\sansP \sansr \sanso (p) \cup \sansV \sansi \sansr (p)).

We shall first prove that if \sansh \sanst (p)  - \sansh \sanst (C) > 2 logs
1
\gamma 0
, then there is no element

in \sansP \sansr \sanso (p) \cup \sansV \sansi \sansr (p) that can appear in \sansN \sansB \sansa \sanss (C) for any p \in P . Suppose not, and
consider some p such that \sansh \sanst (p)  - \sansh \sanst (C) > 2 logs

1
\gamma 0
. Let j := \sansh \sanst (p). We observe

that all elements in \sansP \sansr \sanso (p) \cup \sansV \sansi \sansr (p) have height at least logs \gamma 
2
0s

j = j  - 2 logs
1
\gamma 0

by Definitions 5.8 and 5.6. However, if some element in \sansP \sansr \sanso (p) \cup \sansV \sansi \sansr (p) appears in
\sansN \sansB \sansa \sanss (C), then it has height less than j  - 2 logs

1
\gamma 0

by \sansh \sanst (C) < \sansh \sanst (p) - 2 logs
1
\gamma 0
. This

is a contradiction. Therefore,

| \sansN \sansB \sansa \sanss (C)| \leq O

\biggl( 
logs

1

\gamma 0

\biggr) 
\cdot r2 \cdot O

\biggl( 
s

\gamma 1

\biggr) O(k)

.

Hence, | \sansE ff(C)| = | \sansB \sansa \sanss (C)| + | \sansN \sansB \sansa \sanss (C)| \leq O(logs
1
\gamma 0
) \cdot r2 \cdot O( s

\gamma 1
)O(k).

Definition 5.17 (disjointness). For a collection of clusters S, define \sansD \sansi \sanss (S) :=
\{ e\setminus \cup e\prime \in S:e\prime \subsetneq e e

\prime \} e\in S. We say e is induced by u in S if u \in S and e = u\setminus \cup e\prime \in S:e\prime \subsetneq u e
\prime .

Define the height of e as the height of u.
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1724 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

Definition 5.18 (cell property). Suppose F is an \sansS \sansF \sansP solution, and suppose f
maps a cluster C to a collection of child clusters of C. We say that f satisfies the
cell property in terms of F if for all clusters C, for all e \in \sansD \sansi \sanss (f(C)), there is at most
one crossing component of C in F that intersects e.

Lemma 5.19 (structural property). Suppose an instance has a q-sparse optimal
net-respecting solution F . Moreover, for each i \in [L], for each u \in Ni, point u sam-
ples O(k log n) independent random radii as in Definition 5.1. Then, with constant
probability, there exists a configuration from the sampled radii that defines a hierarchi-
cal decomposition, under which there exists an (m, r)-light solution F \prime that includes
all the points in F , and \sansE ff defined in terms of F \prime satisfies the cell property, where
the following hold:

\bullet E[w(F \prime )] \leq (1 +O(\epsilon )) \cdot w(F ).
\bullet m := O( skL\epsilon )k and r := O(1)k \cdot q logs log n+O(k\epsilon )

k +O( s\epsilon )
k.

Proof. We observe that the argument in [6, Lemma 3.1] readily gives an (m, r)-

light solution \widehat F with the desired m and r and also satisfies E
\bigl[ 
w( \widehat F )

\bigr] 
\leq (1+ \epsilon ) \cdot w(F ).

We shall first show additional steps with additional cost at most \epsilon w(F ) in expec-
tation, so that \sansB \sansa \sanss defined in terms of the resultant solution satisfies the cell property.
Then, we shall show that this implies that \sansE ff defined in terms of the resultant solution
also satisfies the cell property (hence no more additional cost caused).

Maintaining cell property: Basic cells. For i := L,L  - 1, L  - 2, . . . , 0, for
each height-i cluster C, we examine e \in \sansD \sansi \sanss (\sansB \sansa \sanss (C)) in the nondecreasing order of its
height. If there are at least two crossing components that intersect e, we add edges in
e to connect all crossing components that intersect e. We note that each added edge
connects two components in F , and edges added are of length at most \sansD \sansi \sansa \sansm (e). At
the end of the procedure, we define the solution as F \prime . We observe that \sansB \sansa \sanss defined
in terms of F \prime satisfies the cell property.

Recall that each added edge connects two components. We charge the cost of the
edge to one of the components to which it connects. Moreover, after a rearrangement
(at the end of the procedure), we can make sure each edge is charged to one of the
components to which it connects and each component is charged at most once.

Bounding the cost. We shall show that for a fixed component A, the expected
cost it takes charge of is at most \epsilon \cdot w(A). Define l := w(A). The expected cost that
A is charged for is at most the following (up to a constant):

L\sum 
i=1

Pr[A is charged for an edge in a cell of height i] \cdot si+1.

Define pi := Pr[A is charged for an edge in a cell of height i]. Then,

L\sum 
i=0

pi \cdot si+1 \leq 
\sum 

i:si\leq 2\gamma 1l

si+1 +
\sum 

i:si>2\gamma 1l

pis
i+1

\leq O(\gamma 1s)l +
\sum 

i:si>2\gamma 1l

pis
i+1

\leq O(\epsilon )l +
\sum 

i:si>2\gamma 1l

pis
i+1.

Fix an i such that si > 2\gamma 1l, and we shall upper bound pi. Suppose in the event
corresponding to pi that A takes charge of an edge inside a cell e that is a basic cell
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of some height-h cluster. Note that h and e are random, and recall that the edge is
inside a cell of height i. We shall give a lower bound of h.

Claim 5.20. sh \geq si

2\gamma 0
.

Proof. Define the weight of the owner of e to be l\prime . We first show that h must be
in I3(l

\prime ). By the procedure of maintaining cell property, we know that l\prime \leq l.
If h \in I1(l

\prime ), then \lfloor l\prime \rfloor s \geq sh, and si \leq 2\gamma 1s
h by e is of height i and the choice of

radius in the single-scale decomposition. This implies that si \leq 2\gamma 1s
h \leq 2\gamma 1l, which

cannot happen, since we assume si > 2\gamma 1l.
If h \in I2(l

\prime ), then si \leq 2\gamma 1\lfloor l\prime \rfloor s. This implies that si \leq 2\gamma 1l, which cannot happen
as well.

Therefore, h \in I3(l
\prime ). This implies that 2\gamma 0s

h \geq si.

Since the event that the edge is taken by A automatically implies that A is cut by
a height-h cluster, and the probability that A is cut at a height-j cluster is at most
O(k) \cdot l

sj for j \in [L], we conclude that

pi \leq 
\sum 

j:sj\geq si

2\gamma 0

Pr[A is cut at height j] \leq O(k) \cdot 
\sum 

j:sj\geq si

2\gamma 0

l

sj
\leq O(\gamma 0k) \cdot 

l

si
.

Hence
\sum 

i:si>2\gamma 1l
pis

i+1 \leq O(\gamma 0ksL) \cdot l \leq O(\epsilon )l.
Maintaining cell property: Effective cells. Next we show that \sansB \sansa \sanss defined

in terms of F \prime satisfies that the cell property implies that \sansE ff defined in terms of F \prime 

also satisfies the cell property.
Fix a cluster C, and fix e \in \sansD \sansi \sanss (\sansE ff(C)). We shall prove that there is at most one

crossing component of C that intersects e in F \prime . Suppose e is induced by u in \sansE ff(C).

Lemma 5.21. If there is no cluster \widehat C such that C \subset \widehat C and u \in \sansV \sansi \sansr ( \widehat C), then there
exists cluster C \prime such that u \in \sansB \sansa \sanss (C \prime ), \sansh \sanst (C \prime ) \leq \sansh \sanst (C), and \sansE ff(C) is a refinement
of \sansd \sanse \sanss (u) \cap \sansB \sansa \sanss (C \prime ).

Proof. If u \in \sansB \sansa \sanss (C), then we define C \prime = C, and the lemma follows.
If u \in \sansN \sansB \sansa \sanss (C), then there exists C \prime \prime such that C \subset C \prime \prime and u \in \sansP \sansr \sanso (C \prime \prime ). This is

by the definition of nonbasic cells, and by the assumption that there is not cluster \widehat C
such that C \subset \widehat C and u \in \sansV \sansi \sansr ( \widehat C). Then, by the definition of the promoted cells, there
exists cluster C \prime such that u \in \sansB \sansa \sanss (C \prime ), \sansh \sanst (C \prime ) < \sansh \sanst (C \prime \prime ), and \sansd \sanse \sanss (u) \cap \sansB \sansa \sanss (C \prime ) \subset 
\sansE ff(C \prime \prime ). Since u \in \sansN \sansB \sansa \sanss (C) \subset \sansE ff(C) and by Lemma 5.13, we know that \sansE ff(C) is a
refinement of \sansd \sanse \sanss (u) \cap \sansB \sansa \sanss (C \prime ). Hence, it remains to show \sansh \sanst (C \prime ) \leq \sansh \sanst (C).

Suppose for contradiction that \sansh \sanst (C \prime ) > \sansh \sanst (C), so \sansh \sanst (C) < \sansh \sanst (C \prime ) < \sansh \sanst (C \prime \prime ).
By the definition of nonbasic cells, we have that \sansN \sansB \sansa \sanss (C \prime ) \cap \sansB \sansa \sanss (C \prime ) = \emptyset . Since
u \in \sansB \sansa \sanss (C \prime ), we know that u /\in \sansN \sansB \sansa \sanss (C \prime ). However, this implies that u /\in \sansN \sansB \sansa \sanss (C),
which contradicts the assumption that u \in \sansN \sansB \sansa \sanss (C).

If there exists cluster \widehat C such that u \in \sansV \sansi \sansr ( \widehat C) and C \subset \widehat C, then by Lemma 5.9,
there is no crossing component of C in F \prime that intersects e.

Otherwise, there is no cluster \widehat C such that u \in \sansV \sansi \sansr ( \widehat C) and C \subset \widehat C. By Lemma 5.21,
there exists a cluster C \prime such that u \in \sansB \sansa \sanss (C \prime ), \sansh \sanst (C \prime ) \leq \sansh \sanst (C), and \sansE ff(C) is a
refinement of \sansd \sanse \sanss (u)\cap \sansB \sansa \sanss (C \prime ). We pick any one of such C \prime . Define e\prime \in \sansD \sansi \sanss (\sansB \sansa \sanss (C \prime ))
as the one induced by u in \sansB \sansa \sanss (C \prime ). Since \sansB \sansa \sanss defined in terms of F \prime satisfies the cell
property, there is at most one crossing component of C \prime that intersects e\prime .
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Lemma 5.22. e \subset e\prime .

Proof. Recall that e \in \sansD \sansi \sanss (\sansE ff(C)) is induced by u in \sansE ff(C) and e\prime \in \sansD \sansi \sanss (\sansB \sansa \sanss (C \prime ))
is induced by u in \sansB \sansa \sanss (C \prime ). Then, we can write e = u\setminus P and e\prime = u\setminus P \prime such that
P \subset \sansE ff(C) and P \prime \subset \sansB \sansa \sanss (C \prime ). Since P \prime = \sansd \sanse \sanss (u)\cap \sansB \sansa \sanss (C \prime ) and \sansE ff(C) is a refinement
of \sansd \sanse \sanss (u) \cap \sansB \sansa \sanss (C \prime ), we know that P \prime \subset P . This implies that e \subset e\prime .

Since \sansh \sanst (C) \geq \sansh \sanst (C \prime ), any crossing component of C is also a crossing component
of C \prime . Moreover, Lemma 5.22 implies that e \subset e\prime . Hence, if there are two crossing
components A1, A2 of C that intersect e, then A1 and A2 are also crossing components
of C \prime and both of them intersect e\prime . However, this cannot happen, since \sansB \sansa \sanss satisfies
the cell property and there is at most one crossing component in C \prime that intersects
e\prime . Therefore, there is at most one crossing component of C that intersects e.

5.4. Dynamic program. Recall that the input of \sansD \sansP is an instance that has
a q-sparse optimal net-respecting solution, where q \leq O(s)O(k) \cdot q0, by Lemma 4.2
and Corollary 3.4. In the \sansD \sansP algorithm, O(k log n) random radii are independently
sampled for each u \in Ni, i \in [L], and then a dynamic programming based algorithm is
used to find a near optimal \sansS \sansF \sansP solution over all hierarchical decompositions defined
by the radii. In this section, we shall describe in detail the dynamic program and
an algorithm that solves the dynamic program efficiently. For completeness, we shall
also analyze the correctness of the dynamic program.

We first describe the information needed to identify each cluster at each height.
Information to identify a cluster. Each cluster is identified by the following

information:
1. Height i and cluster center u \in Ni. This has L \cdot O(nk) combinations, recalling

that | Ni| \leq O(nk).
2. For each j \geq i, and v \in Nj such that d(u, v) \leq O(sj), the random radius

chosen by (v, j). Observe that the space around B(u,O(si)) can be cut by
net-points in the same or higher heights that are nearby with respect to
their distance scales. As argued in [6], the number of configurations that are

relevant to (u, i) is at most O(k log n)L\cdot O(1)k = nO(1)k , where L = O(logs n)

and s = (log n)\Theta ( 1
k ).

3. For each j > i, which cluster at height j (specified by the cluster center vj \in 
Nj) contains the current cluster at height i. This has O(1)kL = nO( k2

log log n )

combinations.
To define the dynamic program, we start by defining the entries.
Entries of \bfsansD \bfsansP . We define entries as (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )). Define

U := \sansD \sansi \sanss (\sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS ). We define the following internal constraints for entries, where
the parameters m, r are as defined in Lemma 5.19, and \rho is as defined in Lemma 5.16:

\bullet C is a cluster.
\bullet R is a subset of the m predefined portals such that | R| \leq r. This will denote
the active portals.

\bullet Y \subset 2R is a partition of R. We intend to use it to record the subsets of
portals that are connected inside C.

\bullet \sansB \sansA \sansS and \sansN \sansB \sansA \sansS are collections of subclusters of C such that \sansB \sansA \sansS \cap \sansN \sansB \sansA \sansS = \emptyset 
and | \sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS | \leq \rho , and the centers of the clusters in \sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS are
chosen from \sansC \sansa \sansn (C). Moreover, e \in \sansB \sansA \sansS implies that any sibling cluster of e
is in \sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS . We intend to use this to record the basic cells and nonbasic
cells.

\bullet g is a mapping from U to 2Y . For some e \in U , we intend to use g(e) to
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denote the portals to which e connects inside C.
\bullet P \subset 2Y is a partition of Y such that for all e \in U , g(e) = Q implies that Q is

a subset of a part in P . The intended use of P is to denote the portals that
are to be connected outside C.

We only consider the entries that satisfy the internal constraints. We capture the
intended use of an entry formally as follows.

Definition 5.23 (compatibility). Suppose F is a graph on the metric space and
E is an entry. Let E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )). Define F \prime := F | C\cup R. We
say F is compatible to E if F \prime satisfies the following:

1. A part y is in Y if and only if F \prime connects all the portals in y.
2. \sansB \sansA \sansS covers all components of F \prime that intersect R.
3. For e \in U , g(e) is exactly the collection of subsets of Y to which e is connected

by F \prime .
4. Every terminal in C is visited by F \prime .
5. Every isolated terminal of C is connected to at least one portal in R by F \prime .
6. Every terminal pair that both lie in C is either in the same component of F \prime ,

or they are connected to y1 and y2 in Y by F \prime and \{ y1, y2\} is a subset of a
part in P .

We bound the number of entries in the following lemma.

Lemma 5.24 (number of entries). There are at most O(nO(1)k) \cdot O(\kappa mr)O(k)k\cdot \rho r

number of entries. Moreover, for any fixed cluster C, the number of entries with C

as the cluster is at most O(\kappa mr)O(k)k\cdot \rho r. (\kappa is defined as in Lemma 5.15.)

Proof. Since R is a set of at most r portals chosen from m predefined portals,
there are at most O(mr) possibilities of R. Then, after R is fixed, there are O(rr)
possibilities of Y , since Y is a partition of Y and | R| \leq r.

To count the number of \sansB \sansA \sansS and \sansN \sansB \sansA \sansS , we count the union S := \sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS 
of them, and then for any fixed S, we count the number of ways to assign elements
in S to \sansB \sansA \sansS and \sansN \sansB \sansA \sansS . Since it is required that the centers of clusters in S be cho-
sen from \sansC \sansa \sansn (C), to form S, we first choose at most \rho centers from \sansC \sansa \sansn (C). There
are at most O(\kappa \rho ) possibilities for this by Lemma 5.15. For each chosen center u
that is of height iu, we count the number of configurations of the cluster Cu cen-
tered at u. Since C is already fixed, we only need to consider relevant radii for
clusters of height less than \sansh \sanst (C) and at least iu. Since u \in \sansC \sansa \sansn (C), and for j \geq iu
there are O(1)k clusters of height-j can affect u, we conclude that there are at most

O(k log n)
O(1)k\cdot logs ( 1

\gamma 2
0
)
\leq O(k log n)O(k)k configurations for Cu. Since | S| \leq \rho , there

are at most O(k log n)O(k)k\cdot \rho configurations for all clusters in S, for any given centers.

Therefore, there are O(\kappa )O(k)k\cdot \rho possibilities for S in total. Then, we assign elements
in S to one of \sansB \sansA \sansS ,\sansN \sansB \sansA \sansS , and there are at most 2| S| \leq 2\rho numbers of them. In

conclusion, the number of possibilities for \sansB \sansA \sansS and \sansN \sansB \sansA \sansS is at most O(\kappa )O(k)k\cdot \rho .
With S fixed, we count the number of possibilities of g. Since g is a mapping from

U to 2Y , the number of such a mapping is at most O((2| Y | )| U | ) \leq O(2\rho \cdot r). Finally,
observe that P is a partition of Y , and | Y | \leq r. This implies that P has at most
O(rr) possibilities.

Therefore, after fixing C, there are at most O(\kappa mr)O(k)k\cdot \rho r possibilities for tuples
((R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )).

We then count the number of possibilities of C. Observe that there are O(n)O(k)

centers for C. For a fixed center, since the number of configurations is at most nO(1)k ,
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1728 T-H. HUBERT CHAN, S. HU, AND S. H.-C. JIANG

we conclude that there are at most O(nO(1)k) \cdot O(\kappa mr)O(k)k\cdot \rho r entries in total.

After we define the entries, we shall (recursively) define the value that is associated
with each entry. The intended value of an entry E is the weight of the minimum graph
that is recursively compatible with E (see Definition 5.28).

Definition 5.25 (child entry collection). Consider an entry E with cluster C.
We say a collection of entries \{ (Ci, (Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi))\} i is a child entry
collection of E if \{ Ci\} i is a partition of C with \sansh \sanst (Ci) = \sansh \sanst (C) - 1 for all i.

Definition 5.26 (portal graph). We say a graph G is a portal graph of a collec-
tion of entries I := \{ (Ci, (Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi))\} i if the vertex set of G is
\cup iRi.

Definition 5.27 (consistency checking). Consider an entry E denoted as E :=
(C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )), a child entry collection I of E denoted as I :=
\{ (Ci, (Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi))\} i, and a portal graph G of I. We say G and I
are consistent with E if all checks in the following procedure are passed:

1. Check whether \cup i(Ci \cup Ri) = C \cup R.
2. We shall define Y \prime to be a partition of R\prime := \cup iRi. Initialize Y \prime := \cup iYi, and

whenever there are y1, y2 \in Y \prime connected by G or y1 \cap y2 \not = \emptyset , replace them
by the union of them. Check whether Y \prime restricted to R is exactly Y .

3. For each e \in \sansB \sansA \sansS , check whether there exists i and e\prime \in \sansB \sansA \sansS i such that e\prime = e
or e\prime is a child cluster of e.

4. For each e \in \sansN \sansB \sansA \sansS , check whether either there exists i and e\prime \in \sansB \sansA \sansS i\cup \sansN \sansB \sansA \sansS i
such that e = e\prime , or all child clusters of e are in \cup i(\sansB \sansA \sansS i \cup \sansN \sansB \sansA \sansS i).

5. Define g\prime i to be a mapping from Ui to 2Y , where g\prime i(e) := \{ y\cap R | y \in Y \prime \wedge \exists y\prime :
(y\prime \in gi(e) \wedge y \cap y\prime \not = \emptyset )\} for e \in Ui. Here g\prime i(e) intends to mean the parts
in Y to which e connects, which is defined by ``extending"" gi(e) with respect
to G. For each i and u \in \sansB \sansA \sansS i, if there exists e \in Ui such that e \subset u and
g\prime i(e) \not = \emptyset , then check whether there exists u\prime \in \sansB \sansA \sansS such that u = u\prime or u is
a child cluster of u\prime .

6. Define a mapping g\prime from U to 2Y , where g\prime (e) := \cup i\cup e\prime \in Ui:e\prime \subset eg
\prime 
i(e

\prime ) for
e \in U . Check whether g\prime is exactly g. We observe that here we consider
e\prime \subset e only, and we shall see later why this is sufficient.

7. For each i, for each y1, y2 \in Yi (y1 \not = y2) such that y1, y2 are in the same part
of Pi, check whether either there exists y \in Y \prime such that y1 \cup y2 \subset y, or there
exist y\prime 1, y

\prime 
2 \in Y \prime such that y\prime 1 \not = y\prime 2, y1 \subset y\prime 1, y2 \subset y\prime 2, y

\prime 
1 \cap R \not = \emptyset , y\prime 2 \cap R \not = \emptyset ,

and \{ y\prime 1\cap R, y\prime 2\cap R\} is a subset of a part in P . This intends to check whether
the parts in Pi are connected by G or the information in Pi's is passed to P .

8. For each terminal pair (a, b) such that a \in Ci and b \in Cj for i \not = j, suppose
a \in ei and b \in ej for ei \in Ui and ej \in Uj. Check whether gi(ei) is connected
by G to gj(ej) or whether g

\prime 
i(ei) \not = \emptyset , g\prime j(ej) \not = \emptyset , and g\prime i(ei)\cup g\prime j(ej) is a subset

of a part in P . This intends to check whether (a, b) are already connected by
G; otherwise, they will be connected outside C.

9. For each isolated terminal a in C, check whether there exists i and e \in Ui

such that a \in e and g\prime i(e) is nonempty.

Definition 5.28 (recursive compatibility). Consider some graph F on the met-
ric space and an entry E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )). F is recursively com-
patible with E if there exists a set S of entries with E \in S and with a unique entry in S
that corresponds to each descendant cluster of C such that the following requirements
hold:
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\bullet For each E\prime := (C \prime , (R\prime , Y \prime ), (\sansB \sansA \sansS \prime ,\sansN \sansB \sansA \sansS \prime ), (g\prime , P \prime )) in S, we require that
F \prime := F | C\prime \cup R\prime be compatible with E\prime .

\bullet For each E\prime := (C \prime , (R\prime , Y \prime ), (\sansB \sansA \sansS \prime ,\sansN \sansB \sansA \sansS \prime ), (g\prime , P \prime )) in S, suppose that the
child entry collection consisting of elements in S is I \prime , and define I \prime :=
\{ (Ct, (Rt, Yt), (\sansB \sansA \sansS t,\sansN \sansB \sansA \sansS t), (gt, Pt))\} t. Define G\prime := F | \bigcup 

t Rt
. (Note that

G\prime is a portal graph of I \prime .) We require that I \prime and G\prime be consistent with E\prime .

Value of entries. For any entry E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )), we shall
define its value \sansv \sansa \sansl (E). The height-0 clusters are corresponding to the base cases. In
particular, for any C := \{ x\} that is a height-0 cluster, we define entries with such
C and with \sansB \sansA \sansS := \{ C\} , \sansN \sansB \sansA \sansS := \emptyset , R := C, Y := \{ R\} , g(C) := Y , P := \{ Y \} to
be the base entries. All base entries have value 0. All other (nonbase) entries with
height-0 clusters have value \infty .

We then define \sansv \sansa \sansl (E) when \sansh \sanst (C) \not = 0. Define \scrI E to be the set of tuples (I,G)
such that I is a child entry collection of E and G is a portal graph of I, and I,G
are consistent. The value of E is defined as \sansv \sansa \sansl (E) := min(I,G)\in \scrI E

\{ w(G) + \sansv \sansa \sansl (I)\} ,
where \sansv \sansa \sansl (I) =

\sum 
E\prime \in I \sansv \sansa \sansl (E

\prime ). As we shall see in Lemma 5.32, for any entry E, if
\sansv \sansa \sansl (E) \not = \infty , then there actually exists a graph that is recursively compatible with E
with weight \sansv \sansa \sansl (E).

Lemma 5.29 (counting \scrI E). For any entry E, the number of possibilities of \scrI E
is at most O(k log n)O(s)k \cdot O(\kappa mr)O(sk)O(k)\cdot \rho r2 , where \kappa is defined as in Lemma 5.15.

Proof. Define E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )). We first bound the number
of possibilities of child entry collections I := \{ (Ci, (Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi))\} i
of C. To define I, we start by defining \{ Ci\} i. By the packing property, there are at
most O(s)k centers for the child clusters of C. For each center u of the child cluster,

there are at most O(k log n) possible radii. Hence, there are at most O(k log n)O(s)k

possibilities for \{ Ci\} i.
By Lemma 5.24, for any fixed Ci, there are at most Z possibilities for tuples

((Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi)), where Z := O(\kappa mr)O(k)k\cdot \rho r. Therefore, there are

at most ZO(s)k \cdot O(k log n)O(s)k possibilities of I.
For a fixed I, the vertex set of the portal graph G of I is fixed, and there are at

most O(s)k \cdot r vertices in G. Then, the number of possibilities of G for a fixed I is at

most the number of edge sets, and it is at most 2O(s)O(k)\cdot r2 , since there are at most
(O(s)k \cdot r)2 edges.

In conclusion, there are at most O(k log n)O(s)k \cdot ZO(s)k \cdot 2O(s)O(k)\cdot r2 possibilities

of \scrI E , which is at most O(k log n)O(s)k \cdot O(\kappa mr)O(sk)O(k)\cdot \rho r2 .

Final entry. The final entry is the entry with C being the root cluster, R, \sansB \sansA \sansS ,
\sansN \sansB \sansA \sansS being \emptyset , and Y, g, P being uniquely defined from R,\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS = \emptyset . We use
the value of the final entry as the output of \sansD \sansP .

Evaluating the final entry Although we only care about the value of the final
entry, it may be necessary to evaluate the value of other entries. We shall define a
(recursive) algorithm in Definition 5.30 that takes an entry and returns the value of
the input. To get the value of the final entry which is the output of \sansD \sansP , we invoke
the algorithm with the final entry as the input.

We note that the counting arguments in Lemmas 5.24 and 5.29 can both be natu-
rally implemented as algorithms, with additional O(nO(k)) factors in the running time
compared with the corresponding counting bounds. We will make use of these imple-
mentations as subroutines in Definition 5.30. Moreover, the natural implementation
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of the consistency checking procedure in Definition 5.27 runs in time O(nO(k)).

Definition 5.30 (algorithm for evaluating value of entries). We define a recur-
sive procedure that evaluates the value of an input entry E with cluster C:

\bullet If \sansh \sanst (C) = 0, then the value of it is already defined, and we return its value.
\bullet If \sansh \sanst (C) > 0 and \sansv \sansa \sansl (E) is already calculated, then we return the calculated
value.

\bullet Otherwise, \sansh \sanst (C) > 0 and \sansv \sansa \sansl (E) has not yet calculated. The following pro-
cedure is executed:
1. Set the default value for \sansv \sansa \sansl (E) := \infty .
2. Calculate \scrI E.
3. For each element (I,G) \in \scrI E, use the consistency checking procedure

defined in Definition 5.27 to check whether I and G are consistent with
E. If they are consistent, then recursively use this procedure to calculate
\sansv \sansa \sansl (I)+w(G), and update \sansv \sansa \sansl (E) if \sansv \sansa \sansl (E)+w(G) is smaller than \sansv \sansa \sansl (E).

4. Finally, return \sansv \sansa \sansl (E) as the output.

Lemma 5.31 (running time). The running time for the algorithm defined in

Definition 5.30 is at most O(nO(1)k) \cdot exp(
\surd 
log n \cdot O(k\epsilon )

O(k)).

Proof. Suppose the input is E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )). We observe
that once the value for some entry is calculated, it would not be calculated again, and
recalling the value takes constant time. Then, we shall bound the time when \sansv \sansa \sansl (E)
is not yet calculated and \sansh \sanst (C) \not = 0.

Observe that for any given I with \sansv \sansa \sansl (E\prime ) for all E\prime \in I known and a graph
G such that (I,G) \in \scrI E , evaluating \sansv \sansa \sansl (I) + w(G) takes O(n)O(k) time. Therefore,

combining with Lemmas 5.24 and 5.29, there are at most O(nO(1)k) \cdot Z entries, and

it takes O(n)O(k) \cdot O(k log n)O(s)k \cdot O(\kappa mr)O(sk)O(k)\cdot \rho r2 time to evaluate each. In

conclusion, the time for evaluating all the entries is at most O(nO(1)k)\cdot O(k log n)O(s)k \cdot 
O(\kappa mr)O(sk)O(k)\cdot \rho r2 .

Substituting parameters. Recall that we consider q \leq O(s)O(k) \cdot q0. Observe

that 1
\gamma 0

:= \lceil 1
\^\gamma 0
\rceil s \leq O(ks

3L
\epsilon ), and 1

\gamma 1
:= \lfloor 1

\^\gamma 1
\rfloor s \leq O( s

2

\epsilon ). Substituting \gamma 0 and \gamma 1, we

have \kappa \leq O(ksL\epsilon )O(k) and \rho \leq O( sk\epsilon )
O(k). Moreover,

r := O(1)k \cdot q logs log n+O

\biggl( 
k

\epsilon 

\biggr) k

+O

\biggl( 
s

\epsilon 

\biggr) k

\leq O

\biggl( 
sk

\epsilon 

\biggr) O(k)

, m \leq O

\biggl( 
skL

\epsilon 

\biggr) k

.

By definition, s := (log n)
c
k , L := O(logs n) = O( k logn

c log logn ). Therefore, the running
time is at most

O(nO(1)k) \cdot O(k log n)O(s)k \cdot O(\kappa mr)O(sk)O(k)\cdot \rho r2

\leq O(nO(1)k) \cdot O(k log n)O(s)k \cdot O
\biggl( 
ksL

\epsilon 

\biggr) O( sk
\epsilon )O(k)

\leq O(nO(1)k) \cdot exp
\biggl( 
O(s)O(k) \cdot O

\biggl( 
k

\epsilon 

\biggr) O(k)

\cdot log k log n

\epsilon 

\biggr) 
\leq O(nO(1)k) \cdot exp

\biggl( 
O

\biggl( 
k

\epsilon 

\biggr) O(k)

\cdot O(log n)O(c) \cdot log log n
\biggr) 
.

By choosing constant c to be sufficiently small so that O(log n)O(c) \cdot log log n \leq 
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O(
\surd 
log n), we conclude that the running time is at most O(nO(1)k) \cdot exp(

\surd 
log n \cdot 

O(k\epsilon )
O(k)).

Lemma 5.32 (characterizing the value of entries). For any entry E such that
\sansv \sansa \sansl (E) \not = \infty , where E := (C, (R, Y ), (\sansB \sansA \sansS ,\sansN \sansB \sansA \sansS ), (g, P )), \sansv \sansa \sansl (E) is the weight of the
minimum weight graph that is recursively compatible with E and uses points in C \cup R
only.

Proof. For the clusters of height 0, the lemma holds trivially.
Assuming the lemma holds for all entries with the clusters of height i - 1, we prove

the lemma for an entry E with C of height i centered at u \in Ni, where i \geq 1. We
shall first show that \sansv \sansa \sansl (E) is the weight of some graph that is recursively compatible
to the entry and uses points in C \cup R only. Then, we shall show that the value is
minimum.

Feasibility. Suppose (I,G) := argmin(I\prime ,G\prime )\in \scrI E
\{ \sansv \sansa \sansl (I \prime ) + w(G\prime )\} . Define I =

\{ Ej\} j , where Ej := (Cj , (Rj , Yj), (\sansB \sansA \sansS j ,\sansN \sansB \sansA \sansS j), (gj , Pj)). Since \sansv \sansa \sansl (E) \not = \infty , we
have \sansv \sansa \sansl (I \prime ) \not = \infty . For Ej \in I, by assumption, there exists a graph that is recursively
compatible with Ej and uses points in Cj\cup Rj only, and we denote it as Fj . We define a
graph F that is the union of Fj for all j, and we define G. Then w(F ) = \sansv \sansa \sansl (I)+w(G).

We shall show that F is recursively compatible with E. Since (I,G) \in \scrI E , I
and G are consistent with E. Since Fj is recursively compatible to Ej for all j, it
remains to verify that F is compatible with E. When we say ``consistency checking
procedure,"" we refer to Definition 5.27:

\bullet F uses points in C \cap R only. This is by definition.
\bullet A part y is in Y if and only if F connects all the portals in the part y. This
is by the step 2 of the consistency checking procedure.

\bullet \sansB \sansA \sansS covers all components of F that intersect R. This is by step 5 of the
consistency checking procedure.

\bullet For e \in U , the collection of subsets of Y that e is connected to by F is exactly
g(e). We note that steps 3 and 4 of the consistency checking procedure,
together with the internal constraint that e\prime \in \sansB \sansA \sansS j , imply that any sibling
cluster of e\prime is in \sansB \sansA \sansS j\cup \sansN \sansB \sansA \sansS j for all j. This implies that \cup j(\sansB \sansA \sansS j \cup \sansN \sansB \sansA \sansS j)
is a refinement of \sansB \sansA \sansS \cup \sansN \sansB \sansA \sansS . Then, for each j, for each e\prime \in Uj , and for
each e \in U , either e\prime \subset e or e\prime \cap e = \emptyset . Therefore, step 6 is sufficient to ensure
this item. (If e\prime is not a subset of e but e\prime \cap e \not = \emptyset , then the gj mappings in
the subentries do not have sufficient information to determine the portals to
which e\prime \cap e is connected.)

\bullet Every terminal in C \cup R is visited by F . This is by the construction of F ,
and by Fj it is recursively compatible with Ej for all j.

\bullet Every isolated terminal of C is connected to at least one portal in R by F .
This is by step 9 of the consistency checking procedure.

\bullet Every terminal pair that both lie in C is either in the same component of F ,
or they are connected to y1 and y2 in Y by F and \{ y1, y2\} is a subset of a
part in P . This is by steps 7 and 8 of the consistency checking procedure,
and by Fj it is recursively compatible with Ej for all j.

This implies that F is recursively compatible with E.
Optimality. Then, we shall show that \sansv \sansa \sansl (E) is minimum. Suppose not. Define

l as the weight of the minimum weight graph that is recursively compatible with E
and uses points in C \cup R only. Define F \prime to be the corresponding graph recursively
compatible with E with weight l. Since F \prime is recursively compatible with E, there
exist I \prime := \{ Et := (Ct, (Rt, Yt), (\sansB \sansA \sansS t,\sansN \sansB \sansA \sansS t), (gt, Pt))\} t and a portal graph G\prime of
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I \prime that are consistent with E. Moreover, there exists a graph Ft that is recursively
compatible with Et for all t.

We note that (I \prime , G\prime ) \subset \scrI E . Therefore,
\sum 

t w(Ft) + w(G\prime ) = l < \sansv \sansa \sansl (E) \leq 
\sansv \sansa \sansl (I \prime ) +w(G\prime ). This implies that

\sum 
t w(Ft) <

\sum 
E\prime \in I\prime \sansv \sansa \sansl (E\prime ), and hence there exists

t such that w(Ft) < \sansv \sansa \sansl (Et). However, we know that Ft is recursively compatible with
Et, and by assumption, \sansv \sansa \sansl (Et) \leq w(Ft). This is a contradiction.

Corollary 5.33. There exists a feasible solution to \sansS \sansF \sansP whose weight is the
value of the final entry.

Lemma 5.34 (good solution is recursively compatible). Suppose for each i \in [L]
and u \in Ni that O(k log n) radii are fixed. Suppose F is an (m, r)-light solution
such that \sansE ff satisfies the cell property in terms of F under one of the hierarchical
decompositions defined by the radii. Then, the value of the final entry is at most w(F ).

Proof. We shall show that F is recursively compatible with the final entry, and
then Lemma 5.32 implies that the value of the final entry is at most w(F ).

Suppose we fix a hierarchical decomposition induced from the given radii such
that F is (m, r)-light and \sansE ff satisfies the cell property in terms of F . For each
cluster C in the decomposition, we define FC := FC\cup R and define an entry EC :=
(C, (RC , YC), (\sansB \sansA \sansS C ,\sansN \sansB \sansA \sansS C), (gC , PC)) as follows, where R is the set of active portals
for C:

\bullet RC := R.
\bullet YC contains a part y if and only if portals in y are connected by FC .
\bullet \sansB \sansA \sansS C := \sansB \sansa \sanss (C), \sansN \sansB \sansA \sansS C := \sansN \sansB \sansa \sanss (C).
\bullet For each e \in UC , let gC(e) := Q, where Q is the collection of parts in YC to

which e is connected by FC .
\bullet Define PC to be any one that satisfies the following:

1. For each e \in UC , gC(e) = Q implies Q is a subset of PC .
2. For each terminal pair (a, b) that both lie in C, if they are not connected

by FC , then the subsets of portals to which a and b are connected by
FC are in a same part of PC .

The internal constraints for an entry are satisfied from the definition of the cells, the
fact that \sansE ff satisfies the cell property, and Lemmas 5.15 and 5.16.

Then we (uniquely) define IC := \{ (Ci, (Ri, Yi), (\sansB \sansA \sansS i,\sansN \sansB \sansA \sansS i), (gi, Pi))\} i as the
child collection of EC and define GC := F | \bigcup 

i Ri
as the portal graph of IC .

We then check that IC and GC are consistent with EC . Steps 1, 2, 7, 8, and
9 are immediate. Steps 3, 4, and 5 follow from the definition of the basic cells and
nonbasic cells. Inside step 6, we observe that g\prime (e) is evaluated by looking at e\prime \subset e
only (instead of considering all e\prime \in Ui) for e

\prime \in Ui, for some i, and e \in U . However,
this is indeed sufficient, since Lemma 5.13 asserts that for any e \in U , e\prime \in Ui, for any
i, either e\prime \subset e\prime or e \cap e\prime = \emptyset .

It remains to check the following for EC , for each cluster C.
\bullet A part y \in YC if and only if FC connects all the portals in the part y. This

is by definition.
\bullet \sansB \sansA \sansS covers all components of FC that intersect RC . This is by definition.
\bullet For e \in UC , the collection of subsets of YC to which e is connected by FC is

exactly gC(e). This is by definition.
\bullet Every terminal in C \cup RC is visited by FC . This is by the feasibility of F .
\bullet Every isolated terminal of C is connected to at least one portal in RC by FC .

This is by the feasibility of F .
\bullet Every terminal pair that both lie in C is either in the same component of FC ,
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or they are connected to y1 and y2 in YC by FC and \{ y1, y2\} is a subset of a
part in PC . This is by definition.

This finishes the proof.

Combining Lemmas 5.19 and 5.34, Corollary 5.33, and Lemma 5.31, we conclude
a PTAS for sparse \sansS \sansF \sansP instances.

Corollary 5.35 (PTAS for sparse \sansS \sansF \sansP instances). For an instance of \sansS \sansF \sansP 
that has a q-sparse optimal net-respecting solution, algorithm \sansD \sansP returns a (1 + \epsilon )

solution with constant probability, running in time O(nO(1)k) \cdot exp(
\surd 
log n \cdot O(k\epsilon )

O(k))

for q \leq O(s)O(k) \cdot q0.
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