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General Bayesian theories and the emergence of the exclusivity principle
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We address the problem of reconstructing quantum theory from the perspective of an agent who makes bets
about the outcomes of possible experiments. We build a general Bayesian framework that can be used to organize
the agent’s beliefs and update them when new information becomes available. Our framework includes as special
cases classical and quantum probability theory, as well as other forms of probabilistic reasoning that may arise
in future physical theories. Building on this framework, we develop a notion of an ideal experiment, which
in quantum theory coincides with the notion of projective measurement. We then prove that, in every general
Bayesian theory, ideal experiments must satisfy the exclusivity principle, a property of projective measurements
that plays a central role in the characterization of quantum correlations. Our result suggests that the set of
quantum correlations may be completely characterized in terms of Bayesian consistency conditions.
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Introduction. Quantum theory portrays a world where the
outcomes of individual measurements cannot be predicted
with certainty, and yet the quantum predictions are strik-
ingly accurate and explain an astonishingly broad range
of phenomena. The reason for this broad applicability still
remains controversial. Does the quantum formalism de-
scribe how Nature works at the fundamental level? Or it is
just a mathematical tool for guessing the outcomes of our
experiments?

Albeit with a variety of nuances, different interpretations of
quantum theory tend to favor either one or the other view. For
example, Everett’s interpretation [1] holds that the quantum
framework refers to a multitude of universes interfering with
each other. On the other hand of the spectrum, QBism, which
originally stood for quantum Bayesianism [2], views quantum
theory as a set of rules that constrain how agents should make
bets about the outcomes of their experiments.

Different interpretations are reflected into different ways to
understand quantum correlations. Since Bell [3], it has been
known that quantum correlations are incompatible with the
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intuitive worldview known as local realism. But intriguingly,
the quantum violations of Bell’s inequalities are not maximal:
More general theories compatible with relativistic causality
could in principle lead to larger violations [4–6]. Following up
on this observation, various physical principles have been pro-
posed to explain the quantum bounds on correlations [7–11].
Behind this approach lies the idea that the quantum bounds
should be explained in terms of principles constraining how
Nature behaves. However, this is not the only option. Instead,
one could search for principles constraining how agents as-
sign probabilities to the outcomes of their experiments. This
approach has remained mostly unexplored so far, partly due
to the lack of a suitable framework, and partly due to a
widespread belief that quantum correlations require new phys-
ical principles. Even within QBism, the Born rule is regarded
as “an empirical addition to the laws of Bayesian probabil-
ity” [2], rather than a consequence of Bayesian probability
itself.

In this Rapid Communication we demonstrate that a sur-
prisingly large portion of the set of quantum correlations
follows directly from elementary Bayesian conditions. We
first build a general Bayesian framework, describing the ways
in which an agent can update its beliefs when a new piece
of information becomes available. The framework assumes
only basic Bayesian laws, such as the validity of the rule of
conditional probability, and the consistency of beliefs at dif-
ferent moments of time. Surprisingly, we find that these rather
minimalistic assumptions imply the validity of the exclusivity
principle, a feature of quantum theory that characterizes a
large portion of the set of quantum correlations [12–19].
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The exact statement of the exclusivity principle will be
given later in this Rapid Communication. For the moment,
the crucial observation is that the exclusivity principle does
not hold for arbitrary experiments. In quantum theory, it
holds for projective measurements, but it fails to hold for
certain nonprojective measurements [17,20]. This means that,
in order to formulate the exclusivity principle in a general
physical theory, one has first to extend the notion of projective
measurement beyond the quantum framework. Such an exten-
sion is far from straightforward, because there are multiple
inequivalent notions that generalize the notion of projective
measurement in quantum theory [20]. On top of that, once a
choice is made, the exclusivity principle may or may not hold,
depending on the theory under consideration. For example,
Ref. [12] showed that, for a certain generalization of the
notion of projective measurement, the exclusivity principle is
violated by theories that predict superstrong correlations such
as Popescu-Rohrlich boxes [5].

Theories that satisfy the exclusivity principle have a re-
markable property: Under the natural assumption that two
statistically independent experiments can be performed in
parallel, the correlations arising in every Bell and Kochen-
Specker contextuality scenario must be contained in the
quantum set [19]. This means that, under a mild assumption,
the quantum set for these contextuality scenarios can be char-
acterized as the largest set of correlations compatible with the
exclusivity principle.

In this Rapid Communication we derive the exclusivity
principle from Bayesian consistency conditions. We first in-
troduce a general framework for Bayesian theories. We then
formulate a general notion of an ideal experiment, which in
the special case of quantum theory coincides with the notion
of projective measurement. Our first result is that ideal exper-
iments exist in every general Bayesian theory (Theorem 1).
Our second result is that the outcome probabilities arising
from ideal experiments satisfy the exclusivity principle (The-
orem 2). Complemented with the results of Ref. [19], our
results imply that the quantum set of correlations for any Bell
or Kochen-Specker contextuality scenario can be derived just
from elementary consistency conditions on the agent’s proba-
bility assignment. This conclusion surpasses the expectations
of QBism: Rather than being an empirical addition [2], the
Born rule appears as a consequence of Bayesian consistency
conditions alone.

Beliefs and probabilities. Consider the situation of an agent
who makes bets about the outcomes of experiments on a given
physical system. We start from a basic class of experiments,
which we call principal experiments. The outcomes of the
principal experiments form a single sample space X, equipped
with a σ -algebra of events �, namely a collection of subsets
of X satisfying the properties (i) X ∈ �, (ii) E ∈ � implies
(X \ E ) ∈ �, and (iii) (Ei )i ⊂ � implies

⋃
i Ei ∈ �. In typ-

ical cases, X is a finite set and � is the power set of X. A
principal experiment corresponds to a partition E = (Ei )i of
the sample space X into disjoint events. For brevity, we will
identify the experiment and the corresponding partition.

In making a bet, the agent will rely on its beliefs, including
beliefs on the laws of physics, or beliefs on the prior his-
tory of the physical system involved in the bet. We denote
by B the set of all possible beliefs. For a given belief β,

the agent assigns a probability distribution p : E �→ p(E |β )
satisfying the usual conditions (i) p(E |β ) � 0 for all events
E , (ii) p(

⋃
i Ei|β ) = ∑

i p(Ei|β ) whenever all Ei are mutually
disjoint, and (iii) p(X|β ) = 1. Here, we make the standard
assumption that the probability of an event E is independent
of the specific experiment E in which E arises.

We stress that the belief β determines the probability as-
signment p(E |β ), but not vice versa: In general, a belief
contains much more than just the outcome probabilities of
principal experiments. For example, we will see that in quan-
tum theory a belief is described by a density matrix, while
the principal experiments are commuting projective measure-
ments, corresponding to projectors that are diagonal with
respect to a fixed standard basis. The probability assignment
p(E |β ) depends only on the diagonal entries of the density
matrix β, and therefore it is not sufficient to determine the
whole matrix.

Bayesian updates. Suppose that the agent receives a guar-
antee that an event E is the case. As a consequence, the agent
will update its old belief β into a new belief, which we denote
as β ′ = Eβ. Again, we make the standard assumption that the
new belief is independent of the specific experiment in which
E arises.

The point of updating beliefs is to compute conditional
probability distributions. We demand that the probability as-
signment for the updated belief Eβ is given by the rule of
conditional probabilities:

Axiom 1: Rule of conditional probabilities. For every initial
belief β, and for every pair of events E and F with p(E |β ) �=
0, the updated belief Eβ satisfies the rule of conditional
probabilities

p(F |Eβ ) = p(E ∩ F |β )

p(E |β )
. (1)

The rule of conditional probabilities implies several prop-
erties of the update map β �→ Eβ. For example, it implies
that, once the agent updates its belief based on the event E ,
the agent becomes certain of the event E . Indeed, one has
p(E |Eβ ) = 1, which follows from letting E = F in Eq. (1).

We stress that the update map does not represent a physical
process on the observed system, but rather an operation inter-
nal to the agent. In the following, we formulate two conditions
that the update should satisfy in order for the agent to be
consistent with its beliefs.

Forward consistency. Suppose that the agent is certain of
the event E , namely p(E |β ) = 1. In this case, a guarantee that
E is the case does not add any new information, and should
not lead to any update:

Axiom 2: Forward consistency. If the agent is certain of
the event E , then the agent’s belief does not change under
the update for event E . Mathematically: For every β ∈ B and
every E ∈ �, p(E |β ) = 1 implies Eβ = β.

Forward consistency constrains the agent in how it updates
the belief forward in time. A simple consequence of this
constraint is that the total event E = X does not lead to any
update, namely Xβ = β, ∀β ∈ B.

Actions. So far, we considered the situation where an agent
bets directly on the occurrence of a certain event. More gener-
ally, the conditions under which a bet is made can be altered
by some action. We use “action” broadly, including situations
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in which the agent lets the system evolve under its natural
dynamics.

We denote the set of all actions as Act, and we assume
that it is a monoid, meaning that (i) actions can be composed
with one another, (ii) the composition is associative, and (iii)
there exists an identity action [21,22]. When an action A is
performed, the agent generally changes its belief to a new
belief β ′ = Aβ. We assume that the belief change satisfies the
conditions (i) (AB)β = A (Bβ ),∀β ∈ B,∀A,B ∈ Act, and
(ii) Iβ = β,∀β ∈ B, where I is the identity action.

Backward consistency. When actions are included in the
picture, a new class of sequential experiments arise. A sequen-
tial experiment consists of a sequence of actions interspersed
by principal experiments. For example, (A,E,B,F ) repre-
sents a sequence consisting of an action A, followed by a
principal experiment E, by another action B, and by another
principal experiment F . Crucially, the belief β supplies the
agent with a joint probability distribution Pβ,A,E,B,F (E , F ) :=
p(F |BEAβ ) p(E |Aβ ) if p(E |Aβ ) �= 0, and zero otherwise.

When the marginal probability Pβ,A,E,B,F (F ) :=∑
E∈E Pβ,A,E,B,F (E , F ) is nonzero, one can de-

fine the conditional probability Pβ,A,E,B,F (E |F ) :=
Pβ,A,E,B,F (E , F )/Pβ,A,E,B,F (F ), which quantifies the agent’s
confidence in retrodicting that the earlier outcome must have
been E , given that the later outcome is F . We say that the
event F is unaffected by the experiment E if the probability of
F in the sequential experiment (A,E,B,F ) coincides with
the probability of F in the sequential experiment (A,B,F ),
where the principal experiment E has been removed. In
formula, Pβ,A,E,B,F (F ) = Pβ,A,B,F (F ) := p(F |BAβ ).

If Pβ,A,E,B,F (E |F ) = 1 and F is unaffected by the exper-
iment E, we say that the event F implies the event E . In this
case, it is natural to require that the update for event E is
already included in the update for event F . This idea motivates
the following axiom:

Axiom 3: Backward consistency. If the event F ∈ F implies
the event E ∈ E in a sequential experiment (A,E,B,F ), then
the update for event E can be omitted in the final belief
updated for event F . Mathematically: If Pβ,A,E,B,F (E |F ) = 1
and Pβ,A,E,B,F (F ) = Pβ,A,B,F (F ), then FBEAβ = FBAβ.

Axioms 1–3 define a set of theories, which we call general
Bayesian theories (GBTs). In the Supplemental Material [23]
we show that quantum theory is an example of a GBT, with
the principal experiments corresponding to projective mea-
surements on a fixed standard basis, and the updates following
Lüders’ rule.

Ideal experiments. We now show that every GBT contains
a special class of ideal experiments that leave the agent with
the option of gathering more refined information in the future.

We say that an experiment (B,F ) with partition F =
(Fi,l )i,l is a refinement of another experiment (A,E) with
partition E = (Ei )i if

∑

l

p(Fi,l |Bβ ) = p(Ei|Aβ ) ∀i,∀β ∈ B. (2)

The experiment (A,E) is sequentially refinable if there
exists an action A′ such that, for every refinement (B,F ) and
for every initial belief β, the probability of the event Fi,l in
the experiment (B,F ) is equal to the joint probability of the
events (Ei, Fi,l ) in the sequential experiment (A,E,A′,B,F ).

a b

f

d

e

c

Experiment 1
Experiment 2

Experiment 3

FIG. 1. Exclusivity principle in an example. Three experiments
have possible outcomes O1 = {a, d, f }, O2 = {d, b, e}, and O3 =
{a, b, c}, respectively. Each outcome x has a probability p(x) as-
signed to it, and the probabilities of the outcomes within each
experiment sum up to 1, corresponding to the normalization con-
dition p(a) + p(d ) + p( f ) = p(d ) + p(b) + p(e) = p(a) + p(b) +
p(c) = 1. The outcomes {a, b, d} satisfy the conditions {a, b} ⊂ O3,
{a, d} ⊂ O1, and {b, d} ⊂ O2, and therefore are called pairwise ex-
clusive. The exclusivity principle demands p(a) + p(b) + p(d ) � 1.

In formula,

p(Fi,l |Bβ ) = p(Fi,l |BA′EiAβ ) p(Ei|Aβ ) (3)

for every refinement (B,F ), for every event Fi,l ∈ F , and for
every belief β ∈ B with p(Ei|Aβ ) �= 0. In other words, the
coarse-grained experiment (A,E) does not alter the prob-
ability assignment for the fine-grained experiment (B,F ),
provided that the agent performs the action A′ between them.
Intuitively, if an experiment does not disturb any of its re-
finements then this experiment alters the belief as little as
possible, this being a central property of projective measure-
ments in quantum theory [20,24,25].

Consider now the family of experiments of the form (A,E)
where the action A is fixed and the partition E is variable. If
there exists an action A′ such that condition (3) holds for all
partitions E, then we call each experiment (A,E) ideal. Such
experiments exist in every theory:

Theorem 1. Ideal experiments exist in every GBT. In par-
ticular, every principal experiment E is ideal.

The theorem is proved in the Supplemental Material [23],
where we also prove that the set of ideal experiments in quan-
tum theory coincides with the set of projective measurements.

The emergence of the exclusivity principle. The exclusivity
principle, as originally introduced in the literature [12–18],
refers to scenarios where multiple alternative experiments
share some of their outcomes, as in the example of Fig. 1.
Let S be the set of experiments under consideration, and,
for each experiment E ∈ S , let OE be the set of its possi-
ble outcomes. The outcomes of all experiments are assigned
probabilities, with the constraint that the probabilities should
sum up to 1 for every experiment, namely

∑
x∈OE

p(x) = 1,
∀E ∈ S . A set of outcomes O, possibly belonging to different
experiments, is called pairwise exclusive if, for every pair of
outcomes {x1, x2} ⊆ O, there exists an experiment E ∈ S such
that both x1 and x2 belong to OE . A set of experiments S sat-
isfies the exclusivity principle if the condition

∑
x∈O p(x) � 1

holds for every set O of pairwise exclusive outcomes. This
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is a nontrivial property, and is not satisfied by all probabil-
ity assignments. In the example of Fig. 1, the assignment
p(a) = 1/2, p(b) = p(d ) = 3/8, p(c) = p( f ) = 1/8, p(e) =
1/4 satisfies the condition p(a) + p(d ) + p( f ) = p(d ) +
p(b) + p(e) = p(a) + p(b) + p(c) = 1 but violates the exclu-
sivity principle.

We now show how to translate the exclusivity principle
in the language of GBTs. The principle applies to outcomes
of ideal experiments. By an outcome of an ideal experiment
E = (A,E) we mean a pair x = (A, E ) with E ∈ E. The
set of outcomes of the experiment E is then OE := {(A, E ) |
E ∈ E}.

To say that two experiments share an outcome, as in Fig. 1,
we need a criterion to identify outcomes of different exper-
iments. For two experiments E = (A,E) and E ′ = (A′,E′),
we say that two outcomes (A, E ) ∈ OE and (A′, E ′) ∈ OE ′ are
equivalent, denoted (A, E ) � (A′, E ′), if they have the same
probability for every possible belief, namely p(E |Aβ ) =
p(E ′|A′β ), ∀β ∈ B. Diagrams such as the one in Fig. 1 arise
when equivalent outcomes are identified.

Two outcomes (A, E ) ∈ OE and (A′, E ′) ∈ OE ′ , possibly
arising from different experiments E �= E ′, are mutually ex-
clusive if (A, E ) and (A′, E ′) are equivalent to two distinct
outcomes of a single experiment F , namely (A, E ) � x and
(A′, E ′) � x′ for {x, x′} ⊆ OF and x �= x′. A set of outcomes
O (of generally different experiments) is pairwise exclusive if,
for every pair of outcomes {x, x′} ⊂ O, x and x′ are mutually
exclusive.

We are now ready to translate the exclusivity principle in
the framework of general Bayesian theories. The principle
states that for every set O = {(An, En)} of pairwise exclusive
outcomes of ideal experiments, the condition

∑

n

p(En|Anβ ) � 1 (4)

must be satisfied for every belief β ∈ B.
The central result of our paper is that the bound (4) holds

in every GBT:
Theorem 2. In every GBT, the outcomes of ideal experi-

ments satisfy the exclusivity principle.
The proof is based on the refinability property of ideal ex-

periments, which allows us to construct a sequence of binary
experiments with the property that a subset of outcomes is
equivalent to the original set of pairwise exclusive outcomes.
Since all the outcomes in the pairwise exclusive set can be
turned into outcomes of a single measurement, the bound (4)
then follows from the normalization of the probability dis-
tribution for that measurement. The details of the proof are
provided in the Supplemental Material [23].

Combining our derivation of the exclusivity principle with
the result of Ref. [19], we obtain that the set of quantum corre-
lations can be characterized completely in terms of Bayesian
consistency conditions:

Corollary 1. In every GBT where every two statistically
independent ideal experiments can be performed in parallel,
the largest set of correlations arising from ideal experiments
coincides with the quantum set for every Bell or Kochen-
Specker contextuality scenario.

The proof of Corollary 1 follows from a proof in Ref. [19],
by replacing Lemma 1 in Ref. [19] with our Theorem 2 and
Assumption 2 in Ref. [19] with the assumption that any two
experiments can be performed in parallel with a statistically
independent joint distribution.

Conclusion. No interpretation of quantum theory can be
considered satisfactory unless one can derive the formalism
of the theory from the key elements of the interpretation [26].
This problem is especially pressing for QBism, which views
quantum theory as a set of rules that constrain how agents
make bets about the outcomes of their experiments. Can the
quantum formalism be obtained from Bayesian consistency
conditions alone?

To address this question, we have introduced a framework
for general Bayesian theories. The core of our framework are
three consistency conditions on how the agent updates its be-
liefs: the law of conditional probabilities, forward consistency,
and backward consistency. These conditions are sufficient to
prove the existence of a set of ideal experiments, which in
quantum theory coincide with the projective measurements.
We showed that the correlations arising from ideal experi-
ments must satisfy the exclusivity principle, which implies
that the set of correlations for every Bell or Kochen-Specker
contextuality scenario is equal to the corresponding set in
quantum theory, provided that any two statistically indepen-
dent ideal experiments admit a joint realization.

Our result shows that the set of quantum correlations in
Bell and Kochen-Specker contextuality scenarios can be de-
rived from elementary consistency rules on how an agent
should bet on the outcomes of future experiments. The
problem of whether the whole quantum formalism can be
recovered solely from Bayesian consistency conditions is
still open. Unlike earlier reconstructions of quantum the-
ory [27–33] that adopted an interpretation agnostic approach,
a fully Bayesian reconstruction would have the potential to
shed new light on the interpretation of quantum theory.
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[29] B. Dakić and Č. Brukner, Quantum theory and beyond: Is
entanglement special? in Deep Beauty. Understanding the
Quantum World through Mathematical Innovation, edited by
H. Halvorson (Cambridge University Press, New York, 2011),
p. 365.

[30] L. Masanes and M. P. Müller, A derivation of quantum the-
ory from physical requirements, New J. Phys. 13, 063001
(2011).

[31] L. Hardy, Reformulating and reconstructing quantum theory,
arXiv:1104.2066.

[32] A. Wilce, A royal road to quantum theory (or thereabouts),
Entropy 20, 227 (2018).

[33] P. A. Höhn and C. S. P. Wever, Quantum theory from questions,
Phys. Rev. A 95, 012102 (2017).

042001-5

https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/RevModPhys.85.1693
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1007/BF01889686
https://doi.org/10.1007/BF02058098
https://doi.org/10.1007/BF00739036
https://doi.org/10.1103/PhysRevLett.96.250401
https://doi.org/10.1103/PhysRevLett.99.180502
https://doi.org/10.1038/nature08400
https://doi.org/10.1098/rspa.2009.0453
https://doi.org/10.1038/ncomms3263
https://doi.org/10.1103/PhysRevLett.110.060402
https://doi.org/10.1103/PhysRevLett.110.260406
https://doi.org/10.1103/PhysRevA.89.030101
https://doi.org/10.1103/PhysRevLett.114.220403
https://doi.org/10.1007/s00220-014-2260-1
https://doi.org/10.1103/PhysRevLett.114.220402
https://doi.org/10.1103/PhysRevA.100.032120
https://doi.org/10.1016/j.ic.2016.02.006
https://doi.org/10.1098/rsta.2017.0321
https://doi.org/10.3390/e20050358
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.042001
http://arxiv.org/abs/arXiv:1404.3348
https://doi.org/10.1088/1751-8113/47/45/455304
https://doi.org/10.1080/09500340308234548
http://arxiv.org/abs/arXiv:quant-ph/0101012
https://doi.org/10.1103/PhysRevA.84.012311
https://doi.org/10.1088/1367-2630/13/6/063001
http://arxiv.org/abs/arXiv:1104.2066
https://doi.org/10.3390/e20040227
https://doi.org/10.1103/PhysRevA.95.012102

