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TAp73-induced phosphofructokinase-1
transcription promotes the Warburg effect and
enhances cell proliferation
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Dong Wang3, Bo Li4, Tak W. Mak5, Wenjing Du2, Xiaolu Yang6 & Peng Jiang1

The Warburg effect is a prominent metabolic feature associated with neoplastic diseases;

however, the underlying mechanism remains incompletely understood. TAp73, a structural

homolog of the tumor suppressor p53, is frequently overexpressed in human tumors, indi-

cating a proliferative advantage that it can confer to tumor cells. Here we show that

TAp73 stimulates the expression of phosphofructokinase-1, liver type (PFKL), which catalyzes

the committed step in glycolysis. Through this regulation, TAp73 enhances glucose con-

sumption and lactate excretion, promoting the Warburg effect. By activating PFKL, TAp73

also increases ATP production and bolsters anti-oxidant defense. TAp73 deficiency results in

a pronounced reduction in tumorigenic potential, which can be rescued by forced PFKL

expression. These findings establish TAp73 as a critical regulator of glycolysis and reveal a

mechanism by which tumor cells achieve the Warburg effect to enable oncogenic growth.
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The uncontrolled and continuing proliferation characteristic
of malignancies is intimately linked to the reprogramming
of metabolic pathways, with the most notable feature being

the Warburg effect or aerobic glycolysis1–4. Glycolysis converts
glucose into pyruvate. In normal quiescent cells, pyruvate is
oxidized to CO2 via mitochondrial oxidative phosphorylation,
while it is processed to lactate only under anaerobic conditions,
with a ~18-fold lower efficiency of ATP production5. However, as
Otto Warburg first reported in the 1920s, tumor cells consumed
glucose at a markedly increased rate and excreted a large amount
of lactate, even in the presence of sufficient oxygen6,7. The pre-
valence of the Warburg effect among tumor cells has been con-
firmed in the ensuing decades and exploited clinically with
positron emission tomography (PET) for noninvasive imaging of
a variety of solid tumors8. The Warburg effect is also observed in
normal proliferating cells such as lymphocytes9. Accumulating
evidence suggests that the Warburg effect is enabled by oncogenic
mutations in tumor cells and by regulated growth factor signaling
in normal cells, to facilitate biosynthesis and redox homeostasis
required for cell growth and division2–4,10. However, both the
causes of the Warburg effect and its coordination with the other
major metabolic alterations in proliferating cells are not well
understood.

The committed step in glycolysis is the phosphorylation of
fructose 6-phosphate (F6P) to fructose 1,6-bisphosphate (F-1,6-
BP) (Supplementary Fig. 1a). This reaction is catalyzed by
phosphofructokinase-1 (PFK-1), which in humans exists in three
isoforms: liver (L), muscle (M), and platelet (P)5,11. As the “pace-
setter” of glycolysis, PFK-1 is the most important site of
regulation5,11. PFK-1 activity is stimulated when the substrate
F6P is abundant, due to PFK-2-mediated conversion of F6P to
fructose 2,6-biphosphate (F-2,6-BP), a potent activator of PFK-1.
In contrast, PFK-1 activity is inhibited by high levels of ATP and
citrate, which signify sufficient energy charge and plentiful bio-
synthetic precursors, respectively. These allosteric regulators
permit acute and temporary adjustment of glycolytic flux (Sup-
plementary Fig. 1a). In addition, PFK-1 is regulated by post-
translational modifications including glycosylation12, to achieve a
more long-lasting, yet reversible, alteration. Moreover, PFK-1 is
controlled at the level of expression to attain a persistent change
in glycolytic flux. Especially, the expression of PFK-1 increases in
proliferating cells, but declines upon withdrawal of growth fac-
tors13. In tumor cells, the expression of PFK-1 is often upregu-
lated, and the composition of the isoforms changed, with PFKL
and PFKP being more highly expressed compared PFKM14.
Nevertheless, the mechanisms that control PFK-1 expression in
normal and malignant cells remain unknown.

p73 is a structurally homolog of p53, with cellular functions
that both overlap and contrast with those of the preeminent
tumor suppressor15–18. p73 is expressed in two major isoform
classes (ΔN and TA) that are different in their N-terminal region
due to the use of alternative promoters. ΔNp73 lacks an intact
transactivation domain, while retaining the oligomerization and
DNA-binding domains (Supplementary Fig. 1b). As such, ΔNp73
can act as a dominant negative inhibitor for the functionally
active p53 family proteins by forming hetero-oligomers with
them or by competing with them for binding to target genes.
Hence, ΔNp73 is oncogenic15,19. In contrast, TAp73, like p53,
contains an N-terminal transactivation domain and can activate
p53-responsible genes. Deficiency in TAp73 leads to increased
susceptibility to spontaneous and carcinogen-induced tumor
formation, suggesting a tumor suppressive role of TAp73 (see
ref. 20). Nevertheless, unlike p53 whose mutation is the single
most frequent genetic lesion in human tumors, TAp73 is rarely
mutated15,17,18. Instead, it is frequently upregulated, indicative of
a proliferative advantage that TAp73 can afford to tumor cells.

Consistently, TAp73 promotes mitochondrial respiration21, ser-
ine biosynthesis22, and angiogenesis23. We previously showed
that TAp73 regulates the pentose phosphate pathway (PPP),
which branches off glycolysis at glucose-6-phosphate (Supple-
mentary Fig. 1a)5,24. TAp73 activates the expression of glucose-6-
phosphate dehydrogenase (G6PD), which encodes the rate-
limiting enzyme of the PPP25. Nevertheless, overexpression of
G6PD does not completely rescue the defects of TAp73-deficient
cells25, implying the involvement of an additional TAp73 target
(s) in cell proliferation.

Here we investigate the role of TAp73 in glucose metabolism
and identify a critical role for TAp73 in the activation of the liver
isozyme of PFK-1 (PFKL). By regulating PFKL, TAp73 enhances
glucose consumption and lactate excretion. Ectopic expression of
PFKL, like G6PD, can restore the tumorigenic potential of
TAp73-deficient cells. TAp73 is activated in response to mito-
gens, thereby coupling growth factor signaling with glycolysis.
Moreover, upregulation of TAp73 correlates with higher PFKL
expression in tumor cells. These findings establish TAp73 as a
critical regulator of glucose metabolism, promoting Warburg
effect and coordinating glycolysis with the PPP to enable cell
proliferation.

Results
TAp73 enhances glycolysis and promotes the Warburg effect.
We previously found that TAp73 enhances the PPP by stimu-
lating the expression of G6PD25. As this regulation did not fully
explain the effect of TAp73 on cell proliferation25, we investigated
whether TAp73 also regulates glycolysis. Using two independent
pairs of E1A/H-RasV12-transformed mouse embryonic fibroblasts
(MEFs) (Supplementary Fig. 2a)20, we observed that cells with
homozygous deletion of TAp73 (TAp73−/−) displayed ~40–60%
reduction in glucose consumption (Fig. 1a) and lactate excretion
(Fig. 1b) compared to the corresponding wild type (TAp73+/+)
cells. To evaluate the effect of TAp73 on glycolytic flux, we cul-
tured TAp73+/+ and TAp73−/− MEFs in medium containing
[1,2–13C2]glucose and measured incorporation of 13C in lactate
using liquid chromatography-mass spectrometry (LC-MS). Defi-
ciency in TAp73 reduced glycolytic flux by ~60% (Fig. 1c, left).
The effect on glycolysis was specific to the TA isoform, as E1A/
RasV12-transformed ΔNp73+/+ and ΔNp73−/− MEFs26 showed
no significant difference in glycolytic flux (Fig. 1c, right).

To determine the effect of TAp73 on glycolysis in human
tumor cells, we knocked down TAp73 in U2OS osteosarcoma
cells using small interfering RNA (siRNA) (Supplementary
Fig. 2b). This led to a significant reduction in glucose
consumption (Fig. 1d), lactate excretion (Fig. 1e), and glycolytic
flux (Fig. 1f). To corroborate these results, we evaluated glycolysis
and glycolysis capacity by measuring extracellular acidification
rate (ECAR), under conditions where cells were supplied
sequentially with glucose to feed glycolysis, the ATP synthase
inhibitor oligomycin to drive glycolysis to the maximal capacity,
and the glucose analog 2-deoxyglucose (2-DG) to block glycolysis
(Fig. 1g). U2OS cells devoid of TAp73 displayed substantially
reduced glycolysis and glycolysis capacity compared to control
cells (Fig. 1g–i). Similarly, knocking down TAp73 in several other
human cell lines including A172 and SF188 glioma cells, as well
as H1299 and A549 lung cancer cells, resulted in a noticeable
reduction in glucose consumption and lactate excretion (Supple-
mentary Fig. 2c–k). These results indicate that TAp73 enhances
glycolysis and promotes the Warburg effect.

TAp73 activates the expression of PFKL. To investigate the
mechanism by which TAp73 regulates glycolysis, we compared
the expression of several major glycolytic enzymes in TAp73−/−
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versus TAp73+/+ MEFs. The mRNA levels of most enzymes
either remained approximately the same (HK2, GPI, ALDO, TPI,
ENO, and PKM2) or increased moderately (GAPDH, PGK, and
PGM) in TAp73−/− MEFs (Fig. 2a). Interestingly, however, the
mRNA levels of PFKL were substantially decreased, as shown by
both quantitative reverse transcription polymerase chain reaction
(qRT-PCR) (Fig. 2a–c) and semi-quantitative RT-PCR (Fig. 2d,
top). Accordingly, PFKL protein levels were found to be much
lower in TAp73−/− than in TAp73+/+ MEFs (Fig. 2d, bottom). In
contrast, ΔNp73+/+ and ΔNp73−/− MEFs had comparable levels
of PFKL (Fig. 2e).

Similarly, knocking down TAp73 in U2OS cells resulted in a
strong decrease in both mRNA and protein levels of PFKL
(Fig. 2f–i). To verify the generality the effect of TAp73 in human
cells, we knocked down TAp73 in H1299 cells and observed a
strong reduction in PFKL expression (Fig. 2i and Supplementary
Fig. 3a, b). Moreover, upon TAp73 knockdown, PFKL protein
and/or mRNA levels declined in cervical cancer HeLa cells
(Fig. 2j, k) and colon cancer HCT116 cells (Fig. 2i and
Supplementary Fig. 3c). Expression of an siRNA-resistant form
of TAp73 not only restored PFKL levels in TAp73-knockdown
cells (Fig. 2l, lanes 4 vs. 2) underscoring the specificity of the
siRNA, but also markedly increased the levels of PFKL in control
cells (Fig. 2l, lanes 3 vs. 1) confirming the stimulatory effect of
TAp73 on PFKL.

In addition to PFKL, PFK-1 exists in two other isoforms, PFKM
(muscle) and PFKP (platelet)11. However, deletion or knockdown
of TAp73 showed minimal or no effect on the expression of

PFKM and PFKP in MEFs (Fig. 2b–d) as well as various human
cancer cell lines (Fig. 2f, h, i). Thus, the stimulatory effect of
TAp73 appears to be specific for the PFKL isoform.

In MEFs and various human cell lines deficient in TAp73,
PFKL was reduced to an extent comparable to G6PD (Fig. 2a, c, d,
g, h, and Supplementary Fig. 3b), further supporting the notion
that PFKL is a physiologically relevant target of TAp73. Of note,
TAp73 deficiency also reduced the expression of 6-
phosphogluconate dehydrogenase (6PGD) (Fig. 2j and Supple-
mentary Fig. 3a), the second NADPH-generating enzyme in the
PPP (Supplementary Fig. 1a)5, indicating coordinated regulation
the two key enzymatic steps of the PPP by TAp73.

TAp73 regulates PFKL under stressed conditions. The expres-
sion of both TAp73 and PFKL is dynamically regulated. Espe-
cially, TAp73 is upregulated upon DNA damage27–30, while PFKL
is downregulated in response to serum withdrawal13. When
U2OS cells were treated with the genotoxic agent etoposide
(ETP), levels of TAp73 mRNA and protein increased in an ETP
concentration-dependent manner (Fig. 3a, b). Of note, the
expression of PFKL increased in parallel in a TAp73-dependent
manner (Fig. 3a, b). Moreover, when HCT116 cells were cultured
in serum-deprived medium, levels of PFKL mRNA and protein
declined rapidly initially (0–6 h) and partially recovered later
(~9–12 h) (Fig. 3c, d). These changes were also highly correlative
with the levels of TAp73 mRNA and protein, and depletion of
TAp73 not only reduced the basal levels of PFKL, but also largely
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eliminated the fluctuation in PFKL expression (Fig. 3c, d).
Similarly, levels of PFKL changed in U2OS cells during serum
withdrawal in a TAp73-dependent manner (Fig. 3e). Consistent
with TAp73-mediated transcriptional regulation of PFKL, the
stability of the PFKL protein was not affected by serum depri-
vation or TAp73 depletion, as shown by cycloheximide (CHX)
chase assays (Fig. 3f, g). Together, these results indicate that
TAp73 controls PFKL expression in response to DNA damage
and growth factor withdrawal.

PFKL is a target gene for TAp73. To evaluate whether TAp73 is
a transcriptional activator for PFKL, we analyzed human PFKL
gene sequence for potential response elements (REs) of p53
family proteins, which share the consensus sequence of 5′-
RRRCWWGYYY-(0–13 base pair spacer)-RRRCWWGYYY-3′
(where R is a purine, Y a pyrimidine, and W an A or T)32. We
identified two potential response elements (RE1 and RE2) in the
5′ flanking region, and one (RE3) in the first intron (Fig. 4a). We
cloned the genomic fragment encompassing each response
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element into the promoter region of a firefly luciferase reporter
plasmid, and found that TAp73 induced luciferase expression
driven by RE3, but not RE1 or RE2 (Fig. 4b). Furthermore,
TAp73 failed to induce luciferase expression driven by a mutant
RE3 (RE3mut) (Fig. 4c, d), in which four conserved nucleotides
were altered (Fig. 4a). Chromatin immunoprecipitation (ChIP)
assays showed that both endogenous p73 (Fig. 4e) and Flag-
TAp73α (Fig. 4f) associated with the RE3 region of PFKL in cells.
These results indicate that TAp73 stimulates PFKL expression via
binding to RE3.

Despite the structural similarity between TAp73 and p53,
silencing p53 did not alter PFKL expression (Fig. 4g, h, and

Supplementary Fig. 4a). Moreover, p53 was unable to stimulate
luciferase expression driven by PFKL RE1, RE2, or RE3 (Fig. 4d).
Also, neither endogenous and exogenous p53 could occupy the
RE3 region of PFKL (Fig. 4i, j). To examine whether p53 affects
TAp73-mediated PFKL expression, we used a p53−/− HCT116
cell line containing an inducible (Tet-On) p53. Knockdown of
TAp73 resulted in a decrease in both PFKL abundance (Fig. 4k)
and glycolytic flux (Supplementary Fig. 4b), with or without p53
induction. Moreover, silencing the other p53 family member, p63,
did not affect PFKL expression (Fig. 4h). Collectively, these
results show that TAp73, but not p53 or p63, regulates the
expression of the PFKL gene.

a b

U2OS

5

1

ETP 0

ETP 5

ETP 2.5

ETP 0

ETP 5

ETP 2.5
R

el
at

iv
e 

m
R

N
A

 le
ve

l

siRNA

TAp73 PFKL

*
**

**

**

*

**

e

f

c

d

g

TAp73 PFKL

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
el

at
iv

e 
m

R
N

A
 le

ve
l

siCtrl siTAp73

HCT116*

–Serum (h) 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

siCtrl siTAp73

*
*
*
***

**
*
*

*

**

PFKL

Actin

ODC1

CHX(h)

HCT116

+Serum –Serum

*

70 kDa

55 kDa

40 kDa

–Serum (h)

U2OS

siCtrl siTAp73

Actin

PFKL

TAp73
*

PFKL/Actin: 1 0.5 0.2 0.5 0.8 0.3 0.3 0.2 0.4 0.2

70 kDa

70 kDa

40 kDa

ETP (μM)

TAp73 siRNA

0 2.5 5 0 2.5

– +

Actin

TAp73

G6PD

PFKL

PFKL/Actin: 1 1.7 1.8 0.8 1

40 kDa

70 kDa
70 kDa

70 kDa

0 3 6 9 12 0 3 6 9 12–Serum (h) 0 3 6 9 12 0 3 6 9 12

siCtrl siTAp73

Actin

PFKL

TAp73
*

HCT116

PFKL/Actin: 1 0.5 0.2 0.5 0.5 0.4 0.3 0.2 0.3 0.3

70 kDa

70 kDa

40 kDa

PFKL

Actin

p73

ODC1

CHX(h)

U2OS

siCtrl siTAp73

*

0 1 2 4 6 0 1 2 4 6

PFKL/Actin: 1 0.8 0.9 0.8 0.8 0.3 0.3 0.2 0.3 0.2

0 1 2 4 6 0 1 2 4 6

PFKL/Actin: 1 1.1 0.9 0.8 0.9 0.3 0.3 0.3 0.3 0.3

40 kDa

55 kDa

70 kDa

70 kDa

0.0

Ctrl

TAp7
3

Ctrl

TAp7
3

0.5

1.0

1.5

2.0

Fig. 3 TAp73 regulates PFKL under stressed conditions. a, b U2OS cells transfected with control or TAp73 siRNA were treated with increasing amounts of
etoposide (ETP) for 24 h, and analyzed by qRT-PCR (a, means ± S.D., n= 3) and Western blot (b). Data are representative of three independent
experiments. c–e HCT116 (c, d) and U2OS (e) cells transfected with control siRNA or TAp73 siRNA were cultured in complete medium for 24 h and then in
serum-free medium for different times. Cells were analyzed by qRT-PCR (c, means ± S.D., n= 3) and Western blot (d, e). f HCT116 cells were cultured in
medium containing serum or no serum for 3 h, and then subjected to cycloheximide (CHX) chase in the presence or absence of serum. Whole cell extracts
were collected using a pellet buffer as described previously32. Data are representative of three independent experiments. g U2OS cells transfected with
control siRNA or TAp73 siRNA were subjected to CHX chase. Data are representative of three independent experiments

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07127-8 ARTICLE

NATURE COMMUNICATIONS |          (2018) 9:4683 | DOI: 10.1038/s41467-018-07127-8 |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


TAp73 enhances glycolysis via PFKL. PFK-1 catalyzes the irre-
versible conversion of fructose 6-phosphate to fructose 1,6-
bisphosphate, committing glucose to glycolysis (Supplementary
Fig. 1a). Deletion or knockdown of TAp73 significantly reduced
overall PFK-1 activity in MEF, U2OS, and H1299 cells (Fig. 5a, b,

and Supplementary Fig. 5a–c). The specificity of the assay was
shown by an increase in the detected activity upon forced PFKL
expression (Supplementary Fig. 5d). Forced expression of PFKL
also largely restored PFK-1 activity in TAp73−/− MEFs (Fig. 5a),
as well as PFK-1 activity (Fig. 5b), glycolysis, and glycolytic
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capacity (Fig. 1g, h) in TAp73-knockdown U2OS cells. Consistent
with its role in glycolysis, PFKL was detected along with PFKM
and PFKP in several cell lines including MEF, U2OS, HeLa,
H1299, and HCT116 (Supplementary Fig. 6a). Silencing PFKL
reduced glucose consumption and lactate excretion. Silencing
PFKM and PFKP achieved a similar effect, although in a cell type-
dependent manner (Supplementary Fig. 6c–g). Collectively, these
results show that TAp73 promotes glycolysis by upregulating
PFKL.

Glycolysis is a main source of ATP in tumor cells. The lack of
TAp73 in MEFs resulted in a strong reduction in ATP levels, with
a concomitant increase in the ADP/ATP ratio (Fig. 5c, d). A
similar result was observed when TAp73 was depleted in U2OS
cells (Fig. 5e, f). Ectopic expression of PFKL in TAp73−/− MEFs
and TAp73-depleted U2OS cells restored ATP levels (Fig. 5c, e)
and reduced the ADP/ATP ratio (Fig. 5d, f), despite that its effect
on the corresponding TAp73-proficient cells varied. Therefore, by
activating PFKL and glycolysis, TAp73 enhances ATP
production.

Previous studies showed that TAp73 can reduce NADH in part
by activating oxidative phosphorylation21. Indeed, NADH levels
were increased in TAp73-knockdown U2OS cells (Fig. 5g). Of
note, forced expression of PFKL not only reduced NADH in
control cells but also largely prevented NADH increase in TAp73-

knockdown cells (Fig. 5g). Therefore, TAp73 likely reduces
cellular NADH levels in part by stimulating PFKL and anaerobic
glycolysis. TAp73 enhances NADPH production via the activa-
tion of the PPP25. Consistently, knockdown of TAp73 decreased
NADPH (Supplementary Fig. 7a). However, forced expression of
PFKL did not significantly alter NADPH levels in either control
or TAp73-knockdown cells (Supplementary Fig. 7a). Thus,
TAp73 elicits opposing effects on NADH and NADPH levels
through the activation of glycolysis and the PPP, respectively.

TAp73 counteracts oxidative stresses in part through the
activation of G6PD and the mitochondrial complex IV subunit
Cox4i1 (cytochrome c oxidase subunit 4)21,25. As expected,
depletion of TAp73 in U2OS cells elevated cellular ROS, as
measured by the radical dye dichlorofluorescein diacetate (DCF)
(Fig. 5h, i, and Supplementary Fig. 7b, c). Depletion of PFKL also
increased ROS (Fig. 5h and Supplementary Fig. 7b). Conversely,
forced expression of PFKL, while not affecting ROS in control
cells, significantly reversed the rise of ROS in TAp73-depleted
cells (Fig. 5i and Supplementary Fig. 7c). Thus, the effect of
TAp73 on cellular ROS homeostasis is also mediated in part by
PFKL. Collectively, these results show that TAp73 increases
glycolysis through the activation of PFKL, thereby enhancing
ATP production, reducing NADH levels, and ameliorating
oxidative stress.
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TAp73 supports tumor cell proliferation by activating PFKL.
PFK-1 activity is markedly increased in some tumor cell lines14. A
survey of public gene-expression databases (http://www.
oncomine.org) revealed that the expression of PFKL was also
significantly upregulated in several human cancers (Supplemen-
tary Fig. 8a). Moreover, elevated expression of PFKL or

TAp73 significantly correlated with poor prognosis of lung cancer
patients (Supplementary Fig. 8b, c). To extend these analyses, we
examined 12 pairs of matched human normal and malignant
colon samples. Interestingly, TAp73 expression was highly ele-
vated in eight of the tumor samples compared to the normal
counterparts (Fig. 6a). In almost all eight cases, the expression of
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PFKL was concomitantly increased (Fig. 6a), while the expression
of both TAp73 and PFKL was low in the remaining cases, indi-
cating up-regulation of and positive correlation between TAp73
and PFKL expression in colon cancer.

Homozygous deletion of TAp73 in the E1A/H-RasV12-
transformed MEFs markedly slowed down adherent proliferation
on plate (Supplementary Fig. 9a)25 and anchorage-independent
growth in soft agar (Supplementary Fig. 9b, c)25, an in vitro
measure of tumorigenicity. A similar effect was observed when
TAp73 was stably knocked down in U2OS cells by shRNA
(Fig. 6b)25. Moreover, TAp73 knockdown strongly reduced
proliferation of A172, SF188, H1299, and A549 cells (Supple-
mentary Fig. 9d–f), correlating with reduced glycolysis and PFKL
expression in these cells (Supplementary Fig. 2).

Knocking down PFKL strongly impeded cell proliferation, to
an extent comparable to that caused by TAp73 knockdown
(Fig. 6b), indicating that PFKL also plays a critical role in the
proliferation of tumor cells. To investigate the role of PFKL in
TAp73-mediated cell proliferation, we over-expressed PFKL in
TAp73−/− MEFs and TAp73-knockdown U2OS cells, and the
respective control cells. Overexpression of PFKL had minimal
effect in control cells; however, it significantly restored the
proliferation of MEFs and U2OS cells devoid of TAp73 (Fig. 6c,
d). To examine the role of PFKL in TAp73-mediated oncogenic
growth, we evaluated anchorage-independent growth in soft agar
medium. The ability of TAp73−/− MEFs to form colonies in soft
agar was greatly reduced, to an extent that was only ~25% of that
of TAp73+/+ MEFs (Fig. 6e). Interestingly, overexpression of
PFKL in TAp73−/− MEFs partially restored the anchorage-
independent growth (Fig. 6e). To investigate the role of PFKL in
the growth of tumor cells in animals, we injected TAp73+/+

MEFs expressing control vector, and TAp73−/− MEFs expressing
vector control or PFKL, to immune-compromised mice. As
shown in Fig. 6f, expression of PFKL also significantly restored
the ability of TAp73−/− MEFs to produce tumors.

Role of PFKL and G6PD in TAp73-mediated cell proliferation.
To investigate the relative contributions of PFKL and G6PD in
TAp73-mediated proliferation, we generated HCT116 cell line
stably expressing exogenous PFKL and/or G6PD, and then
knocked down TAp73 in these cells (Supplementary Fig. 10a).
While cells overexpressing PFKL or G6PD alone showed no clear
proliferative advantage in soft agar over the control cells, cells
overexpressing both grew noticeably better (Fig. 7a and

Supplementary Fig. 10b). As expected, depleting TAp73 resulted
in a strong reduction in anchorage-independent growth in con-
trol cells, but only a moderate reduction in PFKL or G6PD
overexpression cells (Fig. 7a and Supplementary Fig. 10b). In cells
expressing both PFKL or G6PD, depleting TAp73 still reduced
proliferation compared to TAp73-proficient cells; however, the
TAp73-depleted cells grew as well as TAp73-proficient cells
without PFKL/G6PD overexpression (Fig. 7a and Supplementary
Fig. 10a). Thus, both PFKL and G6PD contribute the proliferative
effect of TAp73, and their simultaneous activation by TAp73
likely affords tumor cells a strong advantage during anchorage-
independent growth.

To investigate the role of PFKL and G6PD in tumor growth
in vivo, we injected control, PFKL-overexpressing, and G6PD-
overexpressing HCT116 cells, each with and without TAp73-
knockdown, into immune compromised mice. Of note, in control
cells, knocking down G6PD led to strong reduction in tumor
growth (Fig. 7b, c). However, in PFKL- or G6PD-overexpressing
cells, knocking down TA73 had a minimal effect on tumor
growth (Fig. 7b, c). Moreover, unlike G6PD, expression of PFKL
alone in control HCT116 cells led to a stronger tumorigenicity
(Fig. 7b, c). Collectively, these findings demonstrate that
upregulation of PFKL is strongly tumorigenic and is likely a
major mechanism underlying the effect of TAp73 in tumor cells.

Discussion
The Warburg effect is the most prominent metabolic feature
associated with malignant transformation, presumably enabling a
large-scale biosynthetic program required for active cell pro-
liferation1–4. Here we show that TAp73, the transactivation-
component isoform of p73, promotes the Warburg effect by sti-
mulating the expression of PFKL. As the “gate-keeper” of gly-
colysis, PFK-1 is subjected to various modes of feed forward
stimulation and feedback inhibition (Supplementary Fig. 1a)5,11.
Notable among them is the inhibition by high levels of ATP. As it
was first demonstrated in 1970s, glucose metabolism in pro-
liferating cells is likely limited by ATP consumption, rather than
ATP production33. Thus, relieving the inhibition of ATP on PFK-
1 is an important mean by which tumor cells achieve the War-
burg effect34. For example, the oncoprotein Akt increases PFK-2
to generate F-2,6-BP, a potent activator for PFK-1 that renders it
less sensitive to ATP inhibition14. Tumor cells, as well as normal
cells, can also increase the expression of PFK-1, although
mechanisms are largely undefined14. The current study reveals
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TAp73 as a critical regulator of PFK-1 and, to our knowledge, the
first transcriptional factor that specifically activates the L isozyme.
Also importantly, TAp73 levels are highly responsive to growth
conditions, engendering similar changes in PFKL levels
(Fig. 3c–e). Thus, the TAp73-PFKL axis may represent an
important way by which growth signals are coupled with glucose
metabolism in proliferating normal and malignant cells. More-
over, the frequent up-regulation of TAp73 likely contributes to
increased basal activity of PFK-1 and preferential up-regulation of
PFKL over the other isoforms in tumor cells.

Although the rationale for the preferential use of glycolysis
over the energetically much more efficient oxidative phosphor-
ylation in proliferating cells remains unclear, it has been proposed
that an enhanced glycolytic flux permits the diversion of glyco-
lytic intermediates into subsidiary pathways for macromolecule
synthesis10,35,36. The PPP, which branches off glycolysis at
glucose-6-phosphate (G6P), provides cells with ribose for the
synthesis of DNAs and RNAs, and the reducing equivalent
NADPH for reductive biosynthesis and ROS detoxification24. In
tumor cells, the PPP flux is often up-regulated in addition to a
higher glycolytic flux24,37. We previously found that TAp73
activates G6PD25, while the current study shows that
TAp73 stimulates the expression of 6PGD (Fig. 2j and Supple-
mentary Fig. 3a), another key PPP enzyme for NADPH pro-
duction. Thus, TAp73 acts as a prominent regulator of the PPP.

Nevertheless, a hyperactive PPP is expected to consume more
G6P, raising an important question as to how proliferating cells
maintain glycolysis in the face of reduced levels of the shared
starting metabolite. The activation of PFKL by TAp73 likely
provides an explanation, and underscores a coordinated regula-
tion of glycolysis and the PPP. This coordination is critical for
oncogenic growth, as overexpression of PFKL and G6PD simul-
taneously, but not separately, near-completely restores the growth
defects of TAp73-deficient cells under both anchorage-dependent
and anchorage-independent conditions. Moreover, upon G6PD
or PFKL overexpression in HCT116 cells, knockdown of TAp73
no longer impairs tumor growth in xenograft mouse models.
Overexpression of PFKL alone also enhances tumorigenic
potential of TAp73-proficient cells. Thus, both G6PD and PFKL
appear to have an profound effect on tumorigenesis.

Although the TAp73 are highly similar to p53 and p63 in its
DNA-binding domain, TAp73—but not p53 or p63—is capable
of inducing PFKL expression. p73 (and p63) is considered to be
an ancestral member of the p53 family38,39. Unlike p53 whose
deficiency resulted in no major developmental defects, deficiency
in TAp73 leads to death of a significant fraction of newborn mice
and severe development defects, especially in the central nervous
system, in the remaining ones20. As glucose is the only fuel that
the brain uses under non-starvation conditions, the defective
glucose metabolism due to reduced PFKL and G6PD activities
likely contributes to the developmental defects caused by TAp73
deficiency. p53 can suppress the PPP through a direct inactivation
of G6PD37, and inhibit glycolysis by inducing the expression of
TIGAR (TP53-inducible glycolysis and apoptosis regulator), a
fructose-2,6-bisphosphatase that hydrolyzes the PFK-1 activator
F-2,6-BP40. The opposing effects of TAp73 and p53 on both
glycolysis and the PPP are remarkable, suggesting that the reg-
ulation of glucose metabolism might be a primordial activity of
this important protein family. p73 and p53, as well as p63, reg-
ulate additional metabolic pathways41,42. Moreover, the intricate
connection between the evolutionarily ancient p53 family and
metabolic enzymes is consistent with the notion that the muta-
tions in oncogenes and tumor suppressors are clonally selected
during tumorigenesis, at least in part, due to their benefit in
conferring metabolic adaptation4,43.

In summary, our findings identify a previously unanticipated
mode of control for the committed step in glycolysis, define a
critical role of TAp73 in the Warburg effect, and, along with our
previous studies25, reveal a mechanism by which the two major
glucose metabolic pathways, glycolysis and the PPP, are coordi-
nated to support cell proliferation. They also underline metabo-
lism as a main effector mechanism for the p53 family proteins in
regulating cell proliferation and tumorigenesis. Given that PFK-1,
especially PFKL, has a strong effect on glycolysis and may serve as
a critical regulatory point during oncogenic transformation,
reducing the activity of PFKL may provide therapeutic benefits.

Methods
Antibodies and reagents. Antibodies against the following proteins/epitopes were
used for immunoblot with the sources, catalog numbers, and dilutions indicated:
Actin (Sigma-Aldrich, St Louis, MO; A2066, 1:5000), Flag (Sigma-Aldrich, F3165,
1:10,000), p73 (Bethyl Laboratories, Montgomery, TX; A300–126A, 1:1000), G6PD
(Sigma-Aldrich, HPA000834, 1:1000), p21 (BD Bioscience, San Jose, CA; 556431,
1:1000), PFKL (Santa Cruz Biotechnology, Dallas, TX; sc-292523, 1:1000) (Abcam,
Cambridge, UK; ab181064, 1:2000), p53 (Santa Cruz sc-126HRP, 1:2000), PFKM
(R&D Systems, Minneapolis, MN; MAB7687, 1:1000), PFKP (Cell Signaling
Technology, Danvers, MA; 8164S, 1:1000), 6PGD (Abgent, San Diego, CA;
AP5448c, 1:1000) (Santa Cruz, sc-39877, 1:500), and V5 (EASYBIO, BE2033,
1:2000).

Etoposide (ETO) was purchased from Selleck. The following reagents were
purchased from Sigma-Aldrich: ATP, AMP, NAD+, NADH, NADP+, NADPH,
doxorubicin (DOX), crystal violet (CV), 2′,7′-Dichlorofluorescin diacetate (DCF),
citrate, fructose 6-phosphate (F6P), triose phosphate isomerase (TPI), aldolase
(ALDO), and α-glycerophosphate dehydrogenase (GAPDH).

Cell culture. Cells were maintained in standard culture medium without any
antibiotic. TAp73−/−, ΔNp73−/−, and the corresponding wild-type MEFs have
been previously described20,26. Genotypes were confirmed by PCR analysis20. Sense
and antisense primers used for the wild-type Trp73 were 5′-CTGGTCCAG
GAGGTGAGACTGAGGC-3′ and 5′-CTGGCCCTCTCAGCTTGTGCCACT
TC-3′, respectively. Sense and antisense primers for TAp73-/- allele were 5′-
GTGGGGGTGGGATTAGATAAATGCCTG-3′ and 5′-
CTGGCCCTCTCAGCTTGTGCCACTTC-3′, respectively. Predicted PCR product
sizes were 1.0 and 1.2 kb for the wild-type Trp73 and TAp73−/− alleles,
respectively.

HeLa, 293T, HCT116, A549, A172 and H1299 cells were from ATCC
(Manassas, VA). SF188 cells were kindly provided by Dr. Craig. B Thompson
(Memorial Sloan Kettering Cancer Center, New York, USA). All cells were cultured
in a 5% CO2 humidified incubator (ThermoFisher Scientific, USA) at 37 °C. 293T,
HCT116, HeLa, A549, A172, and MEF cell lines were maintained in standard
Dulbecco’s modified Eagle’s medium (DMEM) (ThermoFisher Scientific,
C11995500BT) with 10% fetal bovine serum (FBS) (GEMINI, 100–106). U2OS cells
were cultured in McCoy’s 5 A Medium, and SF188 cells in DMEM supplemented
with 2 mM additional L-glutamine. H1299 cells were cultured in standard RPMI-
1640 medium (ThermoFisher Scientific, 11875093) with 10% FBS, unless indicated
otherwise. All cells were cultured without the addition of penicillin-streptomycin
and for no more than 2 consecutive months, and were routinely examined for
mycoplasma contamination. Additionally, short tandem repeat (STR) profiling
method were used to authenticate cell lines as described previously44.

shRNA and siRNA. Expression plasmids for shRNAs were made in a pLKO.1-puro
vector. The sequences were: p73 #1, 5′-ATCCGCGTGGAAGGCAATAAT-3′
(sense) and 5′-ATTATTGCCTTCCACGCGGAT-3′ (antisense); p73 #2, 5′-CTG
TCATGGCCCAGTTCAATC-3′ (sense) and 5′-GATTGAACTGGGCCAT
GACAG-3′ (antisense); p73 #3, 5′-CCAAGGGTTACAGAGCATTTA-3′ (sense)
and 5′-TAAATGCTCTGTAACCCTTGG-3′ (antisense); PFKL #1, 5′-
GCTCCATCGATAACGACTTCT-3′ (sense) and 5′-AGAAGTCGTTATCGATG
GAGCT-3′ (antisense); PFKL #2, 5′-CCTAGTGGGCTCCATCGATAA-3′ (sense)
and 5′-TTATCGATGGAGCCCACTAGGT-3′ (antisense); PFKL #3, 5′-CTGAA
GATGCTGGCACAATAC-3′ (sense) and 5′-GTATTGTGCCAGCATCTTCAG
T-3′ (antisense). The following siRNAs were purchased from Life Technologies:
p73, 5′-GAGCUCGGGAGGGACUUCAACGAAG-3′; TAp73, 5′- CGGAUUC
CAGCAUGGACGU-3′; PFKL, 5′-GCACAAUACCGCAUCAGUATT-3′; p53, 5′-
CCGCCUGAGGUUGGCUCUGACUGUA-3′; G6PD, 5′-ACGAGCUGAUGAA
GAGAGUGGGUUU-3′, HK2, 5′- CCUGGGUGAGAUUGUCCGUAA-3′, GLUT1
5′-CGAACUAUGAACUACAAAGCUUCUA-3′. siRNAs were transfected into
cells using Lipofectamine RNAiMAX transfection Agent (Invitrogen, Carlsbad,
CA) following the manufacturer’s instruction. Stable shRNA transfectants were
selected in medium containing 1 µg/ml puromycin (Calbiochem, San Diego, CA,
catalog No: 540222) as previously described45.
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Semi-quantitative RT–PCR and quantitative RT–PCR. Total RNA was isolated
from cells by Trizol and 2 µg RNA of each sample was reversed transcribed to
cDNA by First-strand cDNA Synthesis System (Thermo scientific, catalog No.
K1622). 0.2 µg cDNA of each sample was used as a template to perform PCR/
quantitative PCR. Quantitative PCR were performed on CFX96 Real-Time PCR
System (Bio-Rad, USA) and the amplifications were done using the SYBR Green
PCR Master Mix (Gene star, China). The primer pairs for human genes were:
G6PD, 5′-AGGCTGCAGTTCCATGATGT-3′ and 5′-ATCTGTTGCCGTAGGT
CAGG-3′; β-actin, 5′-GACCTGACTGACTACCTCATGAAGAT-3′ and 5′-GTC
ACACTTCATGATGGAGTTGAAGG-3′; p53, 5′-CACGAGCTGCCCCCAGG-3′
and 5′-TCAGTCGACGTCTGAGT-3′; TAp73, 5′-GCACCTACTTCGACCTT
CCC-3′ and 5′-GTAGTCATGCCCTCCAGGTG-3′. PFKL, 5′-GTGGTT
GTCGGAGAAGCTGCGC-3′ and 5′-CGGTGCTCGAAATCAGTGTCT-3′;
PFKM, 5′-TGAGGAGGCTACGAAGTCCA-3′ and 5′-TCTGGGCAGTGGTA
GTGATG-3′; PFKP, 5′-CGCCTACCTCAACGTGGTG-3′ and 5′-ACCTCCA
GAACGAAGGTCCTC-3′; p21, 5′-CCGGCGAGGCCGGGATGAG-3′ and 5′- C
TTCCTCTTGGAGAAGATC-3′; HK2 5′-CCTGAGGACATCATGCGAGG-3′ and
5′-TGGACTTGAATCCCTTGGTCC-3′; GLUT1 5′-CAGCAAGAAGCTGACG
GGT-3′ and 5′-CAGGATGCTCTCCCCATAGC-3′. Primers for mouse genes
were: G6PD, 5′- GCCACTCCAGAAGAAAGACCT-3′ and 5′-GGCAAGGCCA
GGTAGAATAG-3′; β-actin, 5′-ACTACATTCAATTCCATC-3′ and 5′-CTAGA
AGCACTTGCGGTG-3′; PFKL, 5′-TTGTGATCGCATCAAGCAGT-3′ and 5′-G
GATGTTGAAAGGGTCCTCA-3′; PFKM, 5′-TGGCACAGTGATTGGAAGTG-3′
and 5′-GCTCCACTCTGAACGGAAAG-3′. PFKP, 5′-GGGACCATCATCGGT
AGTGC-3′ and 5′-GTCCGCTCCACTCCTTTCG-3′.

Constructs. The coding sequences corresponding to the full-length human TAp73
and PFKL genes were amplified by polymerase chain reaction (PCR) from cDNA
library of 293T cells and then cloned into PCDH-puro-v5 empty vector as indi-
cated. The cloning sequences are as follows: Human TAp73, 5′-CGCGGATC
CATGGCCCAGTCCACCG-3′ (forward), and 5′-ATAAGAATGCGGCCGCT
CAGTGGATCTCGGCCTCC-3′ (reverse). Human PFKL, 5′-CTAGCTAGCAT
GGGAGACTACAAGGACGATGATG-3′ (forward), and 5′-ATTTGCGGCC
GCTCAGAAGCCCTTGTCCATGC-3′ (reverse). All constructs were confirmed by
DNA sequencing.

Chromatin immunoprecipitation (ChIP) and reporter assays. To identify
potential p53 family protein response elements, we scanned the PFKL gene using
the Genomatix Promoter Inspector Program (Genomatix Inc, Munich, Germany,
software, http://www.genomatix.de). For ChIP assays, cells were cross-linked with
1% formaldehyde for 15 min at room temperature. Cross-linking was stopped by
the addition of 100 mM Tris-HCl, pH 9.4. Cell lysates were sonicated to generate
DNA fragments with an average size below 1000 bp and immunoprecipitated with
indicated antibodies. Bound DNA fragments were eluted and amplified by PCR.
Primer pairs were: RE1, 5′-CGCCTCGAGTTCCCCTCTCAGAGTGGGACTC-3′
and 5′-CGCAAGCTTGTACAGAGGCCGCAGGGCCTAG-3′; RE2, 5′-CGCC
TCGAGACCCTCCACTCTACTTTCTGT-3′ and 5′-CGCAAGCTTGCCAA
AAGGTGGAAGCACCCAG-3′; RE3, 5′-CGCCTCGAGCTGCCAGTGTTG
CCCAGTCC-3′ and 5′-CGCAAGCTTGGCCTGTTTCAAGTCTT
CTAG-3′.

For reporter assay, the PFKL genomic fragment (−3962 to −3712) containing
RE1 (GCCCCAGCCCCATCATGCCC), fragment (−1725 to −1475) containing
RE2 (ATCCATGTTGTAGCATGTGC), and fragment (+2599 to +2849)
containing either the wild-type (CCACAAGTCCTGTCCTGTGT) or mutant
(CCATAATTCCTGTTCTTTGT, with mutated nucleotides underlined) p73-
binding region (RE3) were cloned into pGL3-basic vector (Promega, Madison, WI,
USA, catalog No: E1751). Luciferase reporter assays were performed as described
previously25,42. Briefly, the reporter plasmids were transfected into 293T cells
together with a Renilla luciferase plasmid and increasing amounts of plasmids
expressing TAp73 protein. Twenty-four hours after transfection, the luciferase
activity was determined using a dual Luciferase Assay System (Promega, catalog
No: E1910). Transfection efficiency was normalized on the basis of the Renilla
luciferase activity.

Measurements of NADH, NADPH, and ROS levels. NADH and NADPH levels
were determined using the NAD+/NADH Quantification kit (BioVision, Mountain
View, CA, USA, catalog No: K337) and NADP+/NADPH Quantification kit
(BioVision, Mountain View, CA, USA, catalog No: K347), respectively. ROS levels
were analyzed as described46. Briefly, cells were incubated at 37 °C for 30 min in
medium containing 10 µM 2′,7′-dichlorodihydrofluorescein diacetate (DCF). Cells
were then washed twice with PBS, trypsinized and re-suspended in PBS. Fluores-
cence was immediately measured using a FACScan Flow Cytometer (Becton
Dickinson, San Jose, CA).

Cell proliferation assay and crystal violet (CV) staining of cells. Cell pro-
liferation assay were performed as described42. Briefly, cells were transfected with
siRNAs for 24 h and seeded in 6-well cell culture dishes in triplicates at a density of

5000 or 20,000 cells per well in 2 ml of medium supplemented with 10% FBS. The
medium was changed every other day. Cell number at the indicated time points
was determined by counting using a hemocytometer. For CV staining, cells were
fixed with 10% formalin for 5 min and stained with 0.05% CV for 30 min. After
washed with distilled water, cells were photographed.

Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR).
ECAR and OCR were analyzed on a XF96 Extracellular Flux Analyzer (Seahorse
Bioscience) as previously described47,48. Cells were plated in non-buffered DMEM
media with 10 mM glucose. Measurements were obtained under basal conditions
and after the addition of 2 μM oligomycin and 100 mM 2-DG.

Western blotting. Whole-cell lysates were made in modified RIPA lysis buffer (10
mM Tris-HCl at pH 7.5, 5 mM EDTA, 150 mM NaCl, 1% NP-40, 1% Sodium
deoxycholate, 0.025% SDS, and complete protease cocktail) for 15 min on ice, and
boiled in 2x loading buffer. Protein samples were resolved by SDS-PAGE and
transferred onto nitrocellulose membrane, which was blocked in 5% skim milk in
TBST and probed with the indicated antibodies. Uncropped scans of the blots are
provided in the Supplementary Figs. 11–13.

Glycolytic flux measurements. The flux of glycolysis was measured based on the
rate of glucose consumption and the ratio of 13C incorporated into lactate deter-
mined by LC-MS. Briefly, cells were cultured in medium with or without [1,2–
13C2]glucose. After 12 h, medium was collected and cells were treated with cold
80% methanol. Metabolites were extracted and analyzed by LC-MS. Flux analysis
was performed on TSQ Quantiva Triple Quadrupole mass spectrometer (Thermo
Fisher Scientific, San Jose, CA) with positive/negative ion switching. MRM mode
was used for data acquisition. Mobile phase A was prepared by adding 2.376 ml
tributylamine and 0.858 ml acetic acid to HPLC-grade water, then adding HPLC-
grade water to 1 l volume. Mobile phase B was HPLC-grade methanol. Synergi
Hydro-RP 100 A column was used for polar metabolites separation with column
temperature at 35 °C. The measured mass isotopomer distributions were corrected
by natural abundances.

Xenograft tumor models. Xenograft study was performed as described25. Briefly,
cells were injected subcutaneously into the flanks of 3-to 4-week-old athymic Balb-
c nu/nu male mice. Tumor growth was evaluated at 2 or 3 weeks post-injection as
indicated. All animal experiments were performed in accordance with relevant
guidelines and regulations and were approved by the Animal Care and Use
Committee at Tsinghua University.

PFK-1 enzyme activity. PFK-1 enzyme activity was determined as described49.
Briefly, fresh cell lysates were added into to a reaction mixture containing 50 mM
Tris-HCl pH 7.5, 100 mM KCl, 5 mM MgCl2, 1 mM ATP, 0.2 mM NADH, 5 mM
Na2HPO4, 0.1 mM AMP, 1 mM NH4Cl, 5 mM fructose-6-phosphate, 5 units triose
phosphate isomerase, 1 unit aldolase., and 1 unit α-glycerophosphate dehy-
drogenase. The decrease in absorbance at 340 nm as a result of NADH oxidation
was measured every 10 s for 15 min on a SpectraMax® M2e Microplate Reader
(Molecular Devices, CA, USA).

Human colon cancer samples assessment. Human colon cancer tissues and their
adjacent tissues were obtained with the patients informed consent from Peking
Union Medical College Hospital (Beijing, China). All the procedures were per-
formed under the permission of the Peking Union Medical College Hospital Ethics
Board. Tissue samples were analyzed by quantitative RT-PCR. Total RNA was
isolated from ~30 mg of each tissue sample using Trizol reagent (Invitrogen),
following the manufacturer’s instructions. GAPDH was used as internal quality
control. The primer pairs for human GAPDH gene are: 5′-GGAGCGAGATC
CCTCCAAAAT-3′ and 5′-GGCTGTTGTCATACTTCTCATGG-3′.

Statistical analysis. A two-tailed Student’s t-test was performed and expressed as
a P value. GraphPad Prism 7 (for windows) and Excel were used to perform
statistical analysis. Animal experiments were randomized, and no exclusion were
performed from the experiments.

Data availability
All relevant data are available from the corresponding authors upon reasonable
request. The source data underlying Figs. 1a–i, 2a–c, f, g, j, 3a, c, 4b–d, k, 5a–i, 6a–c,
e, f, 7a, b, and Supplementary Figs. 12b, 2d-k, 3a, 4a, 4b, 5a-d, 6b-g, 7a, 9b, 9d–g,
and 10a are provided as Source Data files (Supplementary Data 1, 2).
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