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ABSTRACT A deep neural network is constructed to yield in-principle exact exchange-correlation 

potential. It requires merely the electron densities of small molecules and ions, and yet, can 

determine the exchange-correlation potentials of large molecules. We train and validate the neural 

network based on the data for H2 and HeH+, and subsequently determine the ground state electron 

density of stretched HeH+, linear H3
+ and H–He–He–H2+. Moreover, the deep neural network is 

proven to model the van der Waals interaction by being trained and validated on dataset containing 

He2. Comparisons to B3LYP are given to illustrate the accuracy and transferability of the neural 

network. 
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Density-functional theory (DFT)1, 2 has become the most widely used quantum mechanical 

simulation method. Despite its success, DFT suffers from the chronic deficiencies such as the self-

interaction error,3 chemical accuracy issue for thermochemistry,4 poor treatment to van der Waals 

interaction,5, 6 inaccurate reaction barrier,7 hydrogen bond8, charge-transfer,9 delocalization 

error10, 11, static correlation and strong correlation error.12, 13 Medvedev et al. showed that although 

the accuracy in energy of DFT methods had been improving over the past decade or two, the 

calculated electron density distribution had become less accurate.14 Despite the continuing efforts 

to find more accurate exchange-correlation (xc) functional, the improvement in calculated 

accuracy has slowed down. Alternative beyond the traditional approaches15-18 must be sought. 

Efforts have been made to construct high quality xc potentials for given electron densities via 

optimization procedures.19, 20 Modern machine learning techniques have also been incorporated in 

the DFT method aiming at boosting calculations,21-24 calibrating results,4 or improving the xc 

functional.25 In 2003 we proposed a neural network based B3LYP xc functional.26 The three hybrid 

parameters in B3LYP xc functional, a0, ax, and ac, are in principle the functionals of ground state 

electron density function and thus system dependent. Their values were evaluated via a neural 

network which had been trained and tested against the experimental data. The input descriptors of 

the neural network were the number of electrons, dipole moment, quadrupole moment, kinetic 

energy and spin multiplicity of the system, which are the functionals of the ground state electron 

density function of the molecule. In 2012, Burke and coworkers proposed a machine learning 

based density functional for the kinetic energy of one-dimensional electron gas,25 which was later 

extended for real molecules.27-29 All these machine learning based functionals require the 

knowledge of the global electron density function. For small molecules or ions, it is straight 

forward to obtain their electron density functions and the corresponding energies using highly 
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accurate quantum chemistry methods such as the coupled-cluster method, quantum Monte Carlo,30 

and the density matrix renormalization group technique.31 However, electron density functions and 

energies of larger molecules or ions are difficult to determine, if not impossible. As a result, no or 

little data are available for the large molecular systems. This problem is difficult to circumvent, 

and prevents all the existing machine learning based methods for DFT xc functional applicable for 

large molecular systems. 

The xc potential 𝑣xc(𝒓) of the density-functional theory (DFT)2 

𝑣xc(𝒓) =
𝛿𝐸xc[𝜌(𝒓)]

𝛿𝜌(𝒓)
                                                                  (1) 

at any point 𝒓𝑖 is a functional of electron density function 𝜌(𝒓). In principle, the determination the 

potential at any 𝒓𝑖 , 𝑣xc(𝒓𝑖)  requires the knowledge of global electron density function 𝜌(𝒓). 

Indeed, Nagai et al.32 proposed a neural network that maps 𝜌(𝒓) to 𝑣xc(𝒓), and as a proof of 

concept, determined the 𝑣xc(𝒓) of a one-dimensional two-particle spinless fermion model via a 

neural network that one-to-one maps its 𝜌(𝒓) to its 𝑣xc(𝒓). Just as other existing machine-learnt 

xc functional,26, 27 their approach requires the knowledge of the global electron density function 

𝜌(𝒓) to determine the 𝑣xc(𝒓),32 and thus cannot be applicable for large molecules as their electron 

density functions are not accurately known. Handy and co-workers33 attempted to map one-to-one 

the electron density 𝜌(𝒓𝑖) and the corresponding 𝑣xc(𝒓𝑖) at one spatial point 𝒓𝑖 ; however, the 

electron density at single spatial point 𝒓𝑖  does not contain enough information such as the 

environment of the region around this point, and thus yields improved but not very accurate 𝑣xc(𝒓). 

The holographic electron density theorem states that the electron density function of any finite 

volume determines in principle the entire electron density function of the real atomic or molecular 

system.34, 35 As the electron density distribution 𝜌(𝒓) of a finite volume contains already the 

knowledge of the global electron density distribution, we do not need the entire electron density 
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function to determine the xc potential. Instead, the local xc potential 𝑣xc(𝒓𝑖) at a point 𝒓𝑖 can be in 

principle determined by the electron density distribution 𝜌(𝒓) over a finite volume around 𝒓𝑖, i.e., 

the quasi-local electron density around 𝒓𝑖. This is useful as any large molecular system is made of 

small fragments whose electron density functions are similar to those of the corresponding small 

molecules, and thus, the neural network that has been trained for the xc potentials of small 

molecules can also be used to determine the xc potential 𝑣xc(𝒓𝑖) of the larger molecule, simply by 

scanning 𝒓𝑖 over its entire spatial region. 

In this work, we propose to use the quasi-local electron density function around a spatial point 

to determine the corresponding xc potential at 𝒓𝑖, 𝑣xc(𝒓𝑖), via a deep-learning based scheme. A 

large amount of highly accurate electron density functions of small molecules and ions and their 

corresponding xc potentials are required to train the neural network. CCSD/aug-cc-pVQZ36 is 

employed to calculate the electron density functions. To determine the corresponding effective xc 

potentials that reproduce the calculated CCSD electron density functions via Kohn-Sham (KS) 

self-consistent-field solution,2 we employ a procedure for the optimized effective potential (OEP) 

developed by Wu and Yang (Wu-Yang method).20 In current study, we chose H2, He2, and HeH+ 

to train and validate the neural network, and in particular, He2 is chosen because few xc functionals 

account properly for van der Waals interaction. 

We employ a deep neural network to map the quasi-local electron density around 𝒓𝑖 onto the 

local xc potential 𝑣xc(𝒓𝑖)  at 𝒓𝑖 . It is important to note that the resulting neural network is 

transferable from smaller molecules to larger molecules. Figure 1a illustrates the mapping from 

the quasi-local electron density onto the local xc potential. The distribution inside the grey cube is 

the quasi-local electron density and the corresponding potential 𝑣xc(𝒓𝑖) is the xc potential at 𝒓𝑖. 

We employ a three-dimensional convolutional neural network (3D-CNN, shown in the middle of 
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Figure 1a) to “learn” the relationship between the quasi-local density and xc potential from the 

exact or high precision data of electron density functions and xc potentials. The CCSD method is 

used to compute highly accurate electron density, and the corresponding xc potential of KS 

equation is obtained via the Wu-Yang method.20 The 3D-CNN uses the discretized quasi-local 

densities and their gradients (along x-, y- and z-directions) centered at a spatial point 𝒓𝑖 as the 

inputs or descriptors, and outputs the value of the xc potential at 𝒓𝑖, 𝑣xc(𝒓𝑖). It is worth mentioning 

that a non-negative penalty term is added in the loss function of the 3D-CNN (see the last term of 

Eq. S3) to ensure the invariance of the density–potential mapping with respect to the reflection 

symmetry. By scanning the grey cube 𝜌Ω(𝒓𝑖) over the molecule, we obtain the xc potential of the 

entire physical space. The details of the Wu-Yang method, 3D-CNN architecture and training 

process are provided in the Supporting Information. 

Self-consistent-field Kohn-Sham/Neural Network scheme (KS-DFT/NN) The 3D-CNN maps the 

CCSD-precision electron density to its effective KS potential. However, accurate electron density 

is unknown prior to the calculation, and thus, a self-consistent-field (SCF) procedure is necessary. 

In our work, the electron density computed with B3LYP is used as the initial guess for the density 

and is inputted into the 3D-CNN (see the lower part of Figure 1a). The output along with the fixed 

reference potential is thus the initial effective potential which is further subjected to the zero-force 

condition.37 The corresponding Kohn-Sham equation is then solved self-consistently. The 

convergence is examined at each iteration; and if not converged, the resulting electron density is 

submitted back to the 3D-CNN to yield the updated potential. The above iterative steps are 

repeated until the convergence is reached.  
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Figure 1. Schematic illustration of the KS-DFT/NN procedure and comparison of calculated 

results for H2 and HeH+. (a) The blue color at the left represents the electron density of the 

molecule, and the red at the right the xc potential. The quasi-local density 𝜌Ω(𝒓𝑖) around 𝒓𝑖 is 

represented by a grey cube, and is mapped to the xc potential 𝑣xc(𝒓𝑖) at the center of the cube 𝒓𝑖 

(the grey dot) through a 3D convolutional neural network. Given a trained 3D-CNN model and 

B3LYP density, the potential and electron density can be updated iteratively until converging to a 

more accurate result. The differences between the calculated electron densities and CCSD 

benchmarks for equilibrium structures are shown in (b) for H2 (0.7420 Å) and (c) for HeH+ 

(0.7748 Å). Blue and orange lines are for B3LYP and KS-DFT/NN results, respectively. Atomic 

forces for varieties of structures are plotted in (d) for H2 and (e) for HeH+. The relative energies 

near the equilibrium distances are shown in (f) for H2 and (g) for HeH+. For comparison, the lowest 

energy is shifted to zero.  

H2/HeH+ system We first trained a 3D-CNN based on H2 and HeH+ to demonstrate its capability 

to learn the density-potential mapping. The dataset is constructed using 50 H2 and HeH+ structures 

with interatomic distance evenly distributed from 0.504 Å to 0.896 Å. As both systems have 

cylindrical symmetry, the center of quasi-local density 𝒓𝑖 is placed on the xz plane (parallel to the 
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internuclear axis), and selected according to a level 3 Lebedev-Laikov quadrature38 with the cube 

size a = 0.9 Bohr. Typically, a H2 molecule has 3382 unique grids and a HeH+ ion has 3108 ones. 

In total, the H2/HeH+ dataset contains 324500 data points and is randomly divided into a training 

set of size 243400 (75%) and a validation set of size 81000 (25%). 

After training, the ground state electron densities of H2 and HeH+ are obtained via KS-DFT/NN 

SCF calculation using B3LYP density as the initial electron density function and the 3D-CNN to 

construct effective potential. The use of B3LYP result as initial guess is for the convenience of 

following comparison and we have shown that KS-DFT/NN calculation can converge to a 

consistent density function from different starting points (see Table S1 for details). We use the 

normalized squared difference I to measure the overlap between two densities 𝜌1 and 𝜌2:39 

𝐼1,2 =
∫|𝜌1(𝒓) − 𝜌2(𝒓)|2d𝒓

∫|𝜌1(𝒓)|2d𝒓 + ∫|𝜌2(𝒓)|2d𝒓
                                               (2) 

where the subscripts 1 can be B3LYP, NN (for KS-DFT/NN), and in this work 2 is chosen to be 

CCSD as the benchmark density. The I value lies between 0 and 1, and smaller I1,2 implies better 

agreement between 𝜌1 and 𝜌2. We have calculated the I values for 201 H2 and HeH+ structures 

with the internuclear distances distributed evenly from 0.5 Å to 0.9 Å (per 0.002 Å), among which 

the majority are different from the 50 H2 and HeH+ structures in the training and validation set. 

The average IB3LYP,CCSD values are 5.9 × 10−5  and 4.7 × 10−5  for H2 and HeH+, respectively, 

while the corresponding INN,CCSD are 2.8 × 10−6 and 5.1 × 10−7 for, H2 and HeH+, respectively. 

More detailed IB3LYP,CCSD and INN,CCSD values are summarized in Table S2. It is clear that the 

INN,CCSD are at least one order of magnitude smaller than IB3LYP,CCSD, confirming that the electron 

densities obtained via KS-DFT/NN calculations are closer to the CCSD values than the B3LYP 

densities. Besides, the average IB3LYP,CCSD values for those 50 structures within the dataset is 

2.7 × 10−6 for H2 and 5.1 × 10−7 for HeH+. The similarity between the mean I values for overall 
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201 structures and the minority 50 ones used for training indicates little over-fitting in the trained 

3D-CNN model. To illustrate further, we plot the calculated electron density difference (the CCSD 

density 𝜌CCSD  as the benchmark) in Figure 1b and 1c. For both H2 and HeH+, KS-DFT/NN 

calculation yields significantly less error than B3LYP. Both I values and density differences show 

convincingly that KS-DFT/NN yields highly accurate electron density (compared to the CCSD 

benchmark). This is expected as KS-DFT/NN is designed to reproduce the CCSD electron density. 

With the highly accurate electron density function, the force on atom can be computed with 

Hellman-Feynman theorem plus the basis set correction.40, 41 The resulting internal forces of H2 

and HeH+ structures are plotted in Figure 1d and 1e, respectively. The relative energy is then 

calculated by integrating the force (Figure 1f and 1g). For H2, three methods, CCSD, B3LYP, and 

KS-DFT/NN, yield consistent values; and for HeH+, KS-DFT/NN yields better result than B3LYP. 

It is important to note that KS-DFT/NN leads high precision electron density and energy 

simultaneously.  

The KS eigenvalues are important properties as in exact DFT calculation, the negative value of 

HOMO energy (𝜖HOMO) represents the ionization potential EIP. We have examined the HOMO 

energy of the equilibrium H2 and HeH+ structure. For H2, −𝜖HOMO obtained via the KS-DFT/NN 

calculation is 0.611 Ha, which is much closer to the CCSD’s EIP = 0.603 Ha. As a comparison, the 

−𝜖HOMO of B3LYP is 0.434 Ha. For HeH+, EIP computed using CCSD is 1.630 Ha. KS-DFT/NN 

leads to a precise −𝜖HOMO of 1.631 Ha, while the B3LYP one is 1.376 Ha. We have also obtained 

the LUMO energy (𝜖LUMO) to see whether the KS-DFT/NN result can be used to predict the 

electron affinity EEA (although DFT is known to produce unreliable EEA from 𝜖LUMO). The 𝜖LUMO 

obtained from KS-DFT/NN for H2 and HeH+ is 0.0472 Ha and -0.2866 Ha, respectively, which is 

quite close to the EEA of 0.0454 Ha (H2) and -0.2864 Ha (HeH+) computed using CCSD. It is clear 
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that KS-DFT/NN yields much better 𝜖HOMO/LUMO that is useful to measure chemical hardness, 

since the 3D-CNN provides accurate xc potentials.  

To investigate whether the 3D-CNN can “learn” the van der Waals (vdW) interaction from 

highly accurate dataset, we applied the model to He2, a vdW system and performed KS-DFT/NN 

calculation. The smaller INN,CCSD values show that the density distribution obtained via the KS-

DFT/NN calculation is more accurate than the B3LYP result (see Table S3 for detailed I values). 

The improvement, however, is not significant, indicating more data and training process is 

necessary for the 3D-CNN to fully capture the vdW interaction.  

Transferability Adoption of quasi-local density (instead of total density function) as the input 

ensures the transferability of the 3D-CNN from small to large molecular systems. We performed 

KS-DFT/NN calculation on another 1050 HeH+ structures with internuclear distance ranging from 

0.9 Å to 3.0 Å. Indeed, the average value of INN,CCSD for the 1050 structures, 8.5 × 10−6 is less 

than IB3LYP,CCSD, 5.7 × 10−5. The typical result of density difference plotted in Figure 2a confirms 

that KS-DFT/NN calculation yields more accurate electron density even for ions that are out of 

the dataset. Figure 2b exhibits the relative energy for HeH+ ions with internuclear distance up to 

3.0 Å. Compared to the B3LYP result, the energy curve obtained through KS-DFT/NN calculation 

is closer to the CCSD benchmark. Note that the results for the internuclear distance RHe–H > 0.9 Å 

are the extrapolation, as the training dataset contains only the structures with RHe–H < 0.9 Å. 

To demonstrate the transferability of the 3D-CNN to larger molecule, we choose H3
+, a system 

containing three nuclei and two electrons, and He–H–H–He2+, a system containing four nuclei and 

four electrons, while H2 and HeH+ that were used to constructed the 3D-CNN have two nuclei and 

two electrons. We compute the ground state electron densities and forces of 441 linear H3
+ and 

He–H–H–He2+ structures with He–H and H–H distances varying equally between 0.60 Å and 
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0.80 Å (0.01 Å per bond length variation) using CCSD, B3LYP and KS-DFT/NN. In Figure 2c 

and 2d, we examine the accuracy of B3LYP and KS-DFT/NN densities of typical H3
+ and He–H–

H–He2+ structure by plotting their differences compared to the CCSD results along the internuclear 

axis (more results are provided in Figure S2 and S4). As anticipated, the KS-DFT/NN density 

exhibits smaller and narrower error distribution than B3LYP. IB3LYP,CCSD and INN,CCSD values 

further show that the KS-DFT/NN leads to the electron densities that are much closer to CCSD 

densities than B3LYP for the 441 structures (see Figure S3 and S5). All these show that KS-

DFT/NN yields much better results than B3LYP for H3
+ and He–H–H–He2+, and thus confirm that 

the 3D-CNN which is trained and verified on H2/HeH+ dataset is indeed transferable to the larger 

molecules. 

 

Figure 2. Comparison of B3LYP and KS-DFT/NN results on out-of-dataset HeH+ and He–H–H–

He2+. (a) Density difference of HeH+ along the internuclear axis with RHe–H = 1.50 Å. (b) Relative 

energy of HeH+. The lowest energy is shifted to zero for comparison. The vertical dashed line at 

RHe–H = 0.9 Å indicates that the training dataset contains only the data for RHe–H < 0.9 Å. (c) Density 

difference of linear H3
+ with RH–H = 0.7 Å. (d) Density difference of linear He–H–H–He2+ along 

the internuclear axis with RHe–H = RH–H = 0.70 Å. 

Van der Waals interaction: He2 We choose He2 to examine the ability of the 3D-CNN to model 

van der Waals (vdW) systems. Since the distance between two He atoms is much larger than the 
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typical bonding length, a larger cube with size of a = 3.0 Bohr is used. Similar to the H2 and HeH+, 

a level 3 quadrature is employed to select the grids for He2, and the centers of cubes are placed at 

the xz-plane. We compute 61 He2 structures with internuclear distance varying from 2.00 Å to 

3.20 Å. In total, the dataset consisting of 86437 data points is divided into the training and 

validation set according to the ratio of 4:1.  

Employing KS-DFT/NN, we compute the ground state electron densities of 121 He2 structures 

with internuclear distance evenly distributed between 2.00 Å and 3.20 Å; and B3LYP density is 

taken as the initial guess. The average value is 4.5 × 10−5  for IB3LYP,CCSD and 8.3 × 10−9  for 

INN,CCSD. Other representative values are available in Table S4. Compared to B3LYP density, KS-

DFT/NN density is about 4 order closer to the CCSD values. This confirms that the slight density 

perturbation can be captured by the 3D-CNN which yields the correct xc potential that accounts 

for vdW interaction. In Figure 3a, we plot the density deviations (compared to CCSD density) for 

B3LYP and KS-DFT/NN in xz-plane for the equilibrium He2 structure, respectively. KS-DFT/NN 

density is far closer to CCSD values. The relative energy of He2 versus the internuclear distance 

obtained by integrating the force is shown in Figure 3b and 3c. The KS-DFT/NN potential energy 

curve is closer to CCSD values, leading to far better equilibrium geometry than B3LYP.  

 

Figure 3. Comparison among CCSD, B3LYP and KS-DFT/NN results for He2. (a) Absolute 

density deviations compared to the CCSD benchmark for B3LYP (left) and KS-DFT/NN (right) 
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result in xz-plane (logarithmic scale). The He–He distance is 3.00 Å. (b) and (c) Relative energy 

versus the internuclear distance ranging from (b) 2.00 Å to 3.20 Å and (c) 2.80 Å to 3.20 Å. 

H2/HeH+/He2 system Now we combine the datasets of H2, HeH+, and He2 as the H2/HeH+/He2 

dataset, and train/validate the 3D-CNN again with a = 3.0 Bohr. The resulting model is then used 

to calculate various properties of H2, HeH+, He2, and He–H–H–He2+. As shown in Figure 4a to 

4c, KS-DFT/NN densities of H2, HeH+, and He2 coincide far better with CCSD benchmark than 

B3LYP results, confirming again the accuracy and reliability of our KS-DFT/NN method. KS-

DFT/NN calculation is also carried out on the 441 He–H–H–He2+ structures. Compared to CCSD 

benchmarks, the density deviations of KS-DFT/NN are much less than that of B3LYP, as shown 

in Figure 4d and 4e, implying that the new 3D-CNN constructed on the H2/HeH+/He2 dataset 

yields the accurate xc potential for He–H–H–He2+, and thus, confirming again its transferability. 

More comparison of electron density of individual structures and I values are provided in 

Figure S6 and S7. 

 

Figure 4. Comparison of B3LYP and KS-DFT/NN densities against CCSD benchmarks. Upper 

panel: density deviations for (a) H2 with the internuclear distance at 0.7420 Å and (b) HeH+ at 
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0.7748 Å. The nuclear positions are marked with the vertical dashed lines. (c) Density deviation 

for equilibrium He2 structures with the internuclear distance at 3.00 Å in xz-plane calculated using 

B3LYP and KS-DFT/NN (logarithmic scale). Lower panel: density deviation for He–H–H–He2+ 

structures with RHe–H and RH–H equal to (d) 0.60 Å and (e) 0.80 Å, respectively.  

With precision KS-DFT/NN densities we further calculate the forces for H2, HeH+ and He2, and 

determine their equilibrium structures and the corresponding vibrational frequencies numerically. 

Results are summarized and compared to CCSD and B3LYP in Table 1. KS-DFT/NN results are 

very close to CCSD values, and overall more precise than B3LYP ones. In particular, KS-DFT/NN 

results on He2 are far better than B3LYP: KS-DFT/NN equilibrium distance is 3.02 Å, comparable 

with 3.01 Å of CCSD, and the vibrational frequency is 32.7 cm-1, comparable with 31.4 cm-1 of 

CCSD. In contrast, B3LYP yields an equilibrium distance of 4.04 Å and a vibrational frequency 

of 18.2 cm-1. 

Table 1. Summary of calculated equilibrium properties of H2, HeH+, and He2 

Mol. Method* Eq. dis. (Å) Freq. (cm-1) 

 CCSD 0.742 4398 

H2 B3LYP 0.742 4414 

 KS-DFT/NN 0.744 4377 

 CCSD 0.775 3219 

HeH+ B3LYP 0.788 3072 

 KS-DFT/NN 0.774 3195 

 CCSD 3.01 31.4† 

He2 B3LYP 4.04 18.2† 

 KS-DFT/NN 3.02 32.7† 

*CCSD and B3LYP results are obtained via analytical 

geometry optimization 
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†vdW potential of He2 is anharmonic, and thus, the 

calculated vibration frequency is theoretical and for the 

assessment of calculation accuracy only. 

 

Our 3D-CNN aims to yield the xc potential that reproduces high precision electron density, and 

as a result, the corresponding KS-DFT/NN scheme results in highly accurate electron density; with 

the accurate electron density, precision force is obtained, and further the relative energy and other 

properties such as the vibrational frequency. Our KS-DFT/NN scheme results in both precision 

electron density and also accurate energetics. One stone two birds! 

We have addressed a chronic problem of DFT: van der Waals interaction, and demonstrated 

convincingly that the 3D-CNN for xc potential is sensitive enough to capture the slight variance 

of electron density caused by weak vdW interaction and thus model the vdW systems such as He2. 

Machine learning requires data, and yet unfortunately, data for large molecular systems are rarely 

available. This poses a serious obstacle for constructing machine learning based xc functional for 

large molecules. We circumvent the problem by mapping quasi-local electron density to local xc 

potential, and thus, the neural network trained with data of small molecules can yield the xc 

potentials for larger systems. In this work, the 3D-CNN constructed on the data sets of H2 and 

HeH+ can be used to yield accurately the xc potential of H3
+ and He–H–H–He2+, and the KS-

DFT/NN calculation yields much better electron density of H3
+ and He–H–H–He2+ than B3LYP. 

Transferability from small to larger systems is another essential step for developing the universal 

machine learning based xc potential. Going forward, our approach can be extended to more 

complex systems like organic molecules using molecular fragments containing several atoms as 

quasi-local density inputs for neural networks. Of course, more comprehensive investigation will 

be necessary to construct better dataset and neural network architectures. 



 16 

 

ASSOCIATED CONTENT 

Supporting Information Available: Details of methodology and comparison of electron densities 

for more structures (PDF). 

 

AUTHOR INFORMATION 

Notes 

The authors declare no competing financial interests. 

 

ACKNOWLEDGMENT 

We thank Prof. Eberhard K. U. Gross (Max Planck Institute of Microstructure Physics) and Prof. 

Garnet K. Chan (California Institute of Technology) for the helpful discussion. The financial 

support from Research Grant Council of HKSAR (AoE/P-04/08 and 17316016) is acknowledged. 

 

REFERENCE 

(1) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864-B871. 

(2) Kohn, W.; Sham, L. J. Self-consistent Equations Including Exchange and Correlation 

Effects. Phys. Rev. 1965, 140, A1133-A1138. 

(3) Zhang, Y.; Yang, W. A Challenge for Density Functionals: Self-interaction Error Increases 

for Systems with a Noninteger Number of Electrons. J. Chem. Phys. 1998, 109, 2604-2608. 

(4) Hu, L.; Wang, X.; Wong, L.; Chen, G. Combined First-Principles Calculation and Neural-

Network Correction Approach for Heat of Formation. J. Chem. Phys. 2003, 119, 11501-

11507. 



 17 

(5) Kristyán, S.; Pulay, P. Can (Semi)Local Density Functional Theory Account for the 

London Dispersion Forces? Chem. Phys. Lett. 1994, 229, 175-180. 

(6) Pérez-Jordá, J.; Becke, A. D. A Density-Functional Study of van der Waals Forces: Rare 

Gas Diatomics. Chem. Phys. Lett. 1995, 233, 134-137. 

(7) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. Development and Assessment of a New Hybrid 

Density Functional Model for Thermochemical Kinetics. J. Phys. Chem. A 2004, 108, 

2715-2719. 

(8) Zhao, Y.; Truhlar, D. G. Benchmark Databases for Nonbonded Interactions and Their Use 

to Test Density Functional Theory. J. Chem. Theory Comput. 2005, 1, 415-432. 

(9) Cai, Z.-L.; Sendt, K.; Reimers, J. R. Failure of Density-Functional Theory and Time-

Dependent Density-Functional Theory for Large Extended π-Systems. J. Chem. Phys. 

2002, 117, 5543-5549. 

(10) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Fractional Charge Perspective on the Band Gap 

in Density-Functional Theory. Phys. Rev. B 2008, 77, 115123. 

(11) Mori-Sánchez, P.; Cohen, A. J.; Yang, W. Localization and Delocalization Errors in 

Density Functional Theory and Implications for Band-Gap Prediction. Phys. Rev. Lett. 

2008, 100, 146401. 

(12) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Fractional Spins and Static Correlation Error in 

Density Functional Theory. J. Chem. Phys. 2008, 129, 121104. 

(13) Cohen, A. J.; Mori-Sánchez, P.; Yang, W. Challenges for Density Functional Theory. 

Chem. Rev. 2012, 112, 289-320. 



 18 

(14) Medvedev, M. G.; Bushmarinov, I. S.; Sun, J.; Perdew, J. P.; Lyssenko, K. A. Density 

Functional Theory is Straying from the Path toward the Exact Functional. Science 2017, 

355, 49-52. 

(15) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made 

Simple. Phys. Rev. Lett. 1996, 77, 3865-3868. 

(16) Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Climbing the Density Functional 

Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for 

Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. 

(17) Becke, A. D. Density-Functional Thermochemistry. V. Systematic Optimization of 

Exchange-Correlation Functionals. J. Chem. Phys. 1997, 107, 8554-8560. 

(18) Perdew, J. P.; Schmidt, K. Jacob’s Ladder of Density Functional Approximations for the 

Exchange–Correlation Energy. AIP Conf. Proc. 2001, 577, 1-20. 

(19) Kanungo, B.; Zimmerman, P. M.; Gavini, V. Exact Exchange-Correlation Potentials from 

Ground-State Electron Densities. Nat. Commun. 2019, 10, 4497. 

(20) Wu, Q.; Yang, W. A Direct Optimization Method for Calculating Density Functionals and 

Exchange–Correlation Potentials from Electron Densities. J. Chem. Phys. 2003, 118, 2498-

2509. 

(21) Rupp, M.; Tkatchenko, A.; Müller, K.-R.; von Lilienfeld, O. A. Fast and Accurate 

Modelling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 

2012, 108, 058301. 

(22) Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M. E.; Burke, K.; Müller, K.-R. Bypassing 

the Kohn-Sham Equations with Machine Learning. Nat. Commun. 2017, 8, 872. 



 19 

(23) Chandrasekaran, A.; Kamal, D.; Batra, R.; Kim, C.; Chen, L.; Ramprasad, R. Solving the 

Electronic Structure Problem with Machine Learning. npj Comput. Mater. 2019, 5, 22. 

(24) Ryczko, K.; Strubbe, D. A.; Tamblyn, I. Deep Learning and Density-Functional Theory. 

Phys. Rev. A 2019, 100, 022512. 

(25) Snyder, J. C.; Rupp, M.; Hansen, K.; Müller, K.-R.; Burke, K. Finding Density Functionals 

with Machine Learning. Phys. Rev. Lett. 2012, 108, 253002. 

(26) Zheng, X.; Hu, L.; Wang, X.; Chen, G. A Generalized Exchange-Correlation Functional: 

The Neural-Networks Approach. Chem. Phys. Lett. 2004, 390, 186-192. 

(27) Snyder, J. C.; Rupp, M.; Hansen, K.; Blooston, L.; Müller, K.-R.; Burke, K. Orbital-Free 

Bond Breaking via Machine Learning. J. Chem. Phys. 2013, 139, 224104. 

(28) Yao, K.; Parkhill, J. Kinetic Energy of Hydrocarbons as a Function of Electron Density 

and Convolutional Neural Networks. J. Chem. Theory Comput. 2016, 12, 1139-1147. 

(29) Seino, J.; Kageyama, R.; Fujinami, M.; Ikabata, Y.; Nakai, H. Semi-Local Machine-

Learned Kinetic Energy Density Functional with Third-Order Gradients of Electron 

Density. J. Chem. Phys. 2018, 148, 241705. 

(30) Ceperley, D.; Alder, B. Quantum Monte Carlo. Science 1986, 231, 555-560. 

(31) Chan, G. K.-L.; Head-Gordon, M. Highly Correlated Calculations with a Polynomial Cost 

Algorithm: A Study of the Density Matrix Renormalization Group. J. Chem. Phys. 2002, 

116, 4462-4476. 

(32) Nagai, R.; Akashi, R.; Sasaki, S.; Tsuneyuki, S. Neural-Network Kohn-Sham Exchange-

Correlation Potential and Its Out-Of-Training Transferability. J. Chem. Phys. 2018, 148, 

241737. 



 20 

(33) Tozer, D. J.; Victoria, I. E.; Handy, N. C. Exchange‐Correlation Potentials. J. Chem. Phys. 

1996, 105, 9200-9213. 

(34) Riess, J.; Münch, W. The Theorem of Hohenberg and Kohn for Subdomains of a Quantum 

System. Theor. Chim. Acta 1981, 58, 295-300. 

(35) Zheng, X.; Wang, F.; Yam, C. Y.; Mo, Y.; Chen, G. Time-Dependent Density-Functional 

Theory for Open Systems. Phys. Rev. B 2007, 75, 195127. 

(36) Woon, D. E.; Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular 

Calculations. IV. Calculation of Static Electrical Response Properties. J. Chem. Phys. 

1994, 100, 2975-2988. 

(37) Kurzweil, Y.; Head-Gordon, M. Improving Approximate-Optimized Effective Potentials 

by Imposing Exact Conditions: Theory and Applications to Electronic Statics and 

Dynamics. Phys. Rev. A 2009, 80, 012509. 

(38) Lebedev, V. I.; Laikov, D. N. A Quadrature Formula for the Sphere of the 131st Algebraic 

Order of Accuracy, Dokl. Math. 1999, 59, 477-481. 

(39) Bochevarov, A. D.; Friesner, R. A. The Densities Produced by the Density Functional 

Theory: Comparison to Full Configuration Interaction. J. Chem. Phys. 2008, 128, 034102. 

(40) Feynman, R. P. Forces in Molecules. Phys. Rev. 1939, 56, 340-343. 

(41) Pulay, P. Ab Initio Calculation of Force Constants and Equilibrium Geometries in 

Polyatomic Molecules. Mol. Phys. 1969, 17, 197-204. 

 


