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Abstract. Clinical trial participants are often heterogeneous, which is a fundamental prob-

lem in the rapidly developing field of precision medicine. Participants heterogeneity causes

considerable difficulty in the current phase III trial designs. Adaptive enrichment designs

provide a flexible and intuitive solution. At the interim analysis, we enrich the subgroup of

trial participants who have a higher likelihood to benefit from the new treatment. However,

it is critical to control the level of the test size and maintain adequate power after enrich-

ment of certain subgroup of participants. We develop two adaptive enrichment strategies

with sample size re-estimation and verify their feasibility and practicability through exten-

sive simulations and sensitivity analyses. The simulation studies show that the proposed

methods can control the overall type I error rate and exhibit competitive improvement in

terms of statistical power and expected sample size. The proposed designs are exemplified

with a real trial application.
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1 Introduction

Clinical development of new therapies involves scientific, ethical and economic considerations,

which is both time and resource consuming. Tremendous advances in our understanding of

cancer biology and new developments in biotechnology provide numerical information and

powerful tools to increase the efficiency of randomized clinical trials (RCTs). The scientific

landscape has been redefined to achieve stratified and personalized medicine for patient

subpopulations, which leads to a broad and exciting category of trial design, termed as

the biomarker-guided adaptive enrichment design (BAED) [1]. Such enrichment designs,

including the adaptive signature design [2], the adaptive threshold sample enrichment design

[3] and the adaptive population enrichment design [4], have attracted an enormous amount of

attention [5, 6, 7, 8, 9]. In the RCT methodology, the BAED prospectively uses biomarkers

with strong credentials to enrich the subpopulation, in which the detection of a treatment

effect is of a higher likelihood than it would be in the overall population. In such a design,

enrollment would initially be open to all participants yet with the option to restrict the

future enrollment in the mid-course of the trial to enrich the promising biomarker-specified

subgroup only. It is widely believed that a suitably developed BAED can reduce the expected

sample size (ESS) or study duration, improve power, enhance the probability of trial success,

and reduce the cost and bias compared with the standard design without enrichment [6, 10,

11, 12, 13, 14].

Nevertheless, several limitations of adaptive enrichment designs have been noted. First,

modification of trial participants during the mid-course may result in high uncertainty of

the treatment effect and may also induce statistical bias. Second, the information borrowed

between the biomarker-specified subgroups and the overall group might inappropriately guide

the application of the investigated treatment. For example, if the treatment effect in one

subgroup (e.g., the biomarker-positive group) is overly strong, the average treatment effect

(ATE) in the overall group might also be statistically significant even if there is no treatment
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effect in the other subgroup (e.g., the biomarker-negative group). In this case, declaring the

effectiveness of the investigated treatment in the overall group is inappropriate. Third, the

heterogeneity of trial participants may result in a dilution of the treatment effect, and thus

cause an inappropriate and unethical application of the investigated treatment. Last, the

initial sample size is computed for the overall group at the beginning of the trial. With the

enrichment triggered at the interim analysis, it is not clear whether the remaining sample

size can maintain adequate power for the enriched subgroup.

We study the two-stage, adaptive enrichment strategies with sample size re-estimation

(SSR) to achieve adequate conditional power (CP), in which the enrichment and SSR proce-

dures are implemented during the mid-course of the trial based on a single interim analysis.

Futility and efficacy stopping boundaries can be pre-specified to guide the enrichment strate-

gies and enrich the promising subgroup proceeding to the second stage. We re-estimate the

sample size required in the second stage based on the interim data of the selected subgroup,

with an aim to achieve adequate CP [15]. Finally, an efficacy test is employed to test the

treatment effect in the enriched subgroup or the overall group. While existing works typi-

cally focus on participants’ enrichment [3, 14, 16, 17, 18] or SSR [15, 19, 20, 21, 22], seldom

are the two procedures combined [23]. We investigate the benefits and limitations of trial

designs combining enrichment and SSR through a real trial example, extensive simulation

studies and sensitivity analyses.

2 Methods

2.1 Trial setting

We consider a two-arm phase III trial to compare an experimental treatment with a standard

treatment based on a continuous outcome. The trial participants are heterogeneous and can

be distinguished by some baseline characteristics or predictive biomarkers. For simplicity,

we assume there are two subgroups, i.e., subgroup 1 (biomarker positive) and subgroup 2
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(biomarker negative). Suppose the proportion of subgroup 1 is ρ. The problem of interest is

to test the treatment effect in the adaptively enriched subgroup and the overall group, given

that subgroups are well defined prior to the start of the trial. One-sided hypothesis testing

procedures are used with the null and alternative hypotheses specified as

H00 : θ0 = 0 versus H10 : θ0 > 0

H01 : θ1 = 0 versus H11 : θ1 > 0

H02 : θ2 = 0 versus H12 : θ2 > 0

where θ0 = ρθ1 + (1 − ρ)θ2 is the treatment effect for the overall group with θ1 and θ2

respectively being the subgroup-specific treatment effects for subgroups 1 and 2. Note that

H00 versus H10 evaluates whether there is a treatment effect in the overall group, while H01

versus H11 and H02 versus H12 test the treatment efficacy in subgroups 1 and 2, respectively.

Traditionally, the ATE is often estimated, which implicitly assumes homogeneous treat-

ment effects (i.e., θ0 = θ1 = θ2) across two subgroups. However, the treatment effects in

subgroups may vary considerably from the ATE, leading to heterogeneous treatment effects

(i.e., θ0 6= θ1 6= θ2). In this case, adaptive enrichment designs are recommended to account

for heterogeneity and enrich the subgroup in which the treatment effect can be more readily

demonstrated. To determine whether the treatment works for patients in the enriched sub-

group or the overall group, we describe the general framework of the adaptive enrichment

strategy with SSR.

The proposed methods can accommodate various types of endpoints, including continu-

ous, binary, and survival outcomes, as long as a test statistic can be well defined, e.g., the

log-rank test statistic for the survival endpoints. For illustrative purpose, we focus on the

continuous case. Specifically, in a two-arm trial with a continuous outcome, let Yi denote the

outcome for the ith subject in the experimental group for i = 1, . . . , NY , and let Xi denote

the outcome for the ith subject in the standard group, for i = 1, . . . , NX . The outcomes

in the two groups are assumed to be independent and normally distributed with an equal

and known variance σ2, i.e., Yi ∼ N(µYg , σ
2) and Xi ∼ N(µXg , σ

2), where µYg denotes the
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true mean of subgroup g for g = 1, 2 under the experimental treatment, and µXg denotes

the true mean of subgroup g under the standard treatment. Denote µY0 = ρµY1 + (1− ρ)µY2

and µX0 = ρµX1 + (1 − ρ)µX2 and, as a result, θ0 = µY0 − µX0 = ρθ1 + (1 − ρ)θ2 is the

overall treatment effect, with θ1 = µY1 −µX1 and θ2 = µY2 −µX2 being the subgroup-specific

treatment effects for subgroups 1 and 2, respectively.

2.2 General framework

In a two-stage procedure, the first stage enrolls patients with a pre-defined biomarker indi-

cator characterizing patients’ heterogeneity (i.e., subgroup 1 or subgroup 2). Patients are

equally randomized to the experimental and standard treatment arms. An interim analysis is

conducted after a total of N1 patients are enrolled. We then construct the subgroup-specific

test statistics for subgroups 1 and 2,

t1 =
µ̄Y1 − µ̄X1√
4σ2/(ρN1)

and t2 =
µ̄Y2 − µ̄X2√

4σ2/{(1− ρ)N1}
,

where µ̄Yg and µ̄Xg denote the sample means respectively for the treatment and standard

arms within subgroup g, g = 1, 2. If the prevalence rate ρ is unknown a priori, it can be

estimated by the empirical proportion of subgroup 1 using the data observed in the first

stage. Similarly, the test statistic t0 of the overall group at stage 1 can be written as

t0 =
µ̄Y0 − µ̄X0√

4σ2/N1

=
√
ρt1 +

√
1− ρt2

which is a weighted average of the stage 1 subgroup-specific statistics t1 and t2, with µ̄Y0 and

µ̄X0 being the sample means of the overall group in the experimental and standard arms,

respectively.

The three interim test statistics are used to determine the enriched subgroups and early

termination. Let g† denote the selected subgroup after the interim analysis:

g† =


0, if no subgroup is enriched;

1, if subgroup 1 is enriched;

2, if subgroup 2 is enriched,
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and let t(1) ≡ tg† denote the test statistic for the selected subgroup g† at stage 1. For the

adaptively enriched subgroup or the overall group, we propose to re-estimate the sample size

N2 required in the second stage and the critical value cα used in the final analysis, with an

aim to reach the conditional power (1− β2) while preserving the overall type I error rate at

a pre-specified level of α.

At the end of the second stage, we conduct the final analysis to test the treatment efficacy

in the enriched subgroup or the overall group. Particularly, the test statistic at stage 2 (using

stage 2 data only) is given by

t(2) =
µ̂Y

g†
− µ̂X

g†√
4σ2/N2

,

where µ̂Y
g†

and µ̂X
g†

denote the sample means respectively for the treatment and control

arms within the selected subgroup g†, based on the observed data in the second stage. The

final test statistic based on the complete data combined from stages 1 and 2 can be written

as

T =
√
wt(1) +

√
1− wt(2),

where w = N †1/N is the information fraction at the interim analysis, with N †1 being the

sample size for the selected subgroup g† at stage 1 and N = N †1 +N2 being the total sample

size for the selected subgroup. In particular, if enrichment is triggered at the interim analysis,

N †1 = ρN1 or (1 − ρ)N1, depending on whether subgroup 1 or 2 is selected to stage 2, and

otherwise, N †1 = N1 with no enrichment.

Let δg† be the true standardized treatment effect for subgroup g†, i.e., δg† = (µY †−µX†)/σ.

Under δg† , the stage 2 statistic t(2) follows a normal distribution,

t(2) | δg† ∼ N

(
δg†√
4/N2

, 1

)
.

Let CPδ
g†

(cα, N2|t(1)) be the conditional probability that T exceeds cα given t(1) = tg† under

the true effect size δg† , which is known as the conditional power (CP),

CPδ
g†

(cα, N2|t(1)) ≡ Pr
{
T > cα|t(1), δg†

}
= 1− Φ

{
cα − t(1)

√
w√

1− w
−
√
N2δg†

2

}
(2.1)
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In such a case, N2 can be re-estimated by setting CPδ
g†

(cα, N2|t(1)) = 1− β2.

The overall type I error rate is
∫∞
−∞CP0(cα, N2|t(1))f(t(1))dt(1), where f(·) is the density

function of the test statistic t(1). To control the overall type I error rate, we specify a

conditional error function A(·) [15], which is an increasing function over [0, 1] and satisfies∫ ∞
−∞

A(t(1))f(t(1))dt(1) = α. (2.2)

By equating CP0(cα, N2|t(1)) = A(t(1)) and solving the value for cα, the type I error rate can

be preserved. In this case,

cα = t(1)
√
w + zA(t(1))

√
1− w =

√
N †1 t

(1) +
√
N2zA(t(1))√

N †1 +N2

,

where zA denotes the 100(1 − A)th percentile of the standard normal distribution. Under

the proposed enrichment strategies, f(t(1)) does not hold a standard functional form and

depends on the subgroup-specific statistics t1 and t2. Therefore, the computation of the

overall type I error rate consists of several double integrals.

Furthermore, replacing δg† by its maximum likelihood estimate, δ̂g† = tg†

√
4/N †1 , we can

compute the sample size N2 to achieve the CP of 1− β2,

N2 = N †1

{
zA(t(1)) + zβ2

t(1)

}2

, (2.3)

cα =
(t(1))2 + zA(t(1))

{
zA(t(1)) + zβ2

}√
(t(1))2 +

{
zA(t(1)) + zβ2

}2 , (2.4)

where N †1 and t(1) = tg† are the sample size and test statistic for the selected subgroup g† at

stage 1, respectively. Note that choosing the value of N2 without correcting the final critical

value may inflate the overall type I error rate in the standard SSR [15]. Such an inflation of

the type I error rate also prevails for enrichment designs with SSR.

Based on this general framework, the selection of the conditional error function A(·) and

the determination of the density function f(t(1)) are critical to different enrichment strategies.

We present the technical details of each strategy in the following sections.
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2.3 Enrichment with early stopping for both futility and efficacy
based on SSR (EFE-SSR)

As shown in Figure 1, the enrichment and early stopping strategies in EFE-SSR are solely

guided by the pre-specified futility and efficacy stopping boundaries (0 6 l < u) for the test

statistics. At the interim analysis, we examine the treatment effect in both subgroups 1 and

2 based on the subgroup-specific test statistics t1 and t2 simultaneously. Let g∗ index the

subgroup that has a larger subgroup-specific test statistic, i.e., g∗ = arg maxg{tg; g = 1, 2},

and similarly let g′ = arg ming{tg; g = 1, 2} denote the subgroup that has a smaller subgroup-

specific statistic. The trial can be carried out as follows:

(1) If tg′ > u, terminate the trial and declare treatment efficacy in the overall group.

(2) If tg∗ > u and tg′ 6 l, terminate the trial and declare treatment efficacy in subgroup

g∗ and treatment futility in subgroup g′.

(3) If tg∗ > u and l < tg′ < u, terminate the trial and declare treatment efficacy in

subgroup g∗ and inconclusive treatment effect in subgroup g′.

(4) If l < tg∗ < u and tg′ 6 l, terminate the enrollment of patients in subgroup g′ for

futility, and enrich subgroup g∗ in the second stage; that is, the selected subgroup

g† = g∗.

(5) If tg∗ 6 l, terminate the trial and declare treatment futility in the overall group.

(6) If l < tg′ 6 tg∗ < u, the trial proceeds to the second stage without enrichment; that is,

the selected group is the overall group with g† = 0.

At the end of the second stage, the final test is conducted to evaluate the treatment efficacy

in the enriched subgroup g† = g∗ or the overall group g† = 0.
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Following Proschan and Hunsberger [15], the circular conditional error function is em-

ployed to protect the overall type I error rate at a pre-specified α level, namely,

Acir(t
(1); l, u) =


0, if t(1) 6 l,

1− Φ
(√

u2 − (t(1))2
)
, if l < t(1) < u

1, if t(1) > u

(2.5)

where t(1) is the enriched subgroup-specific test statistic, and l and u are the futility and

efficacy stopping boundaries at the interim analysis respectively.

In general, we can calculate the value of u given l = zα∗ based on the prespecified

enrichment rules and equations (2.2) and (2.5), such that the overall type I error rate can be

preserved at the nominal level α, where zα∗ is the 100(1 − α∗)th percentile of the standard

normal distribution and α < α∗ 6 0.5. In this case, α∗ can be treated as the futility cutoff

of the p-value after enrolling the first N1 patients, and its value can be easily specified by

the investigators. In EFE-SSR, if the p-value of subgroup g∗ with the largest test statistic

in stage 1 exceeds α∗, the trial will be terminated early for futility.

Compared to the standard SSR without enrichment, the calculation of the overall type I

error rate in EFE-SSR, i.e.,
∫∞
−∞Acir(t

(1))f(t(1))dt(1), becomes more complex, because f(t(1))

is a mixture distribution function due to the adaptive enrichment strategies. Generally, the

overall type I error rate can be split into three components,

α =

∫
l

∫ l

−∞
Acir(t1)φ(t1)φ(t2)dt2dt1 +

∫
l

∫ l

−∞
Acir(t2)φ(t1)φ(t2)dt1dt2

+

∫
l

∫
l

Acir(t0)φ(t1)φ(t2)dt1dt2

= 2×
∫ u

zα∗

{(
1− Φ

(√
u2 − t21

))
φ(t1) + 1− Φ(u)

}
(1− α∗) dt1

+

∫
zα∗

∫
zα∗

{(
1− Φ

(√
u2 − t20

))
I(zα∗ 6 t0 < u) + I(t0 > u)

}
φ(t1)φ(t2)dt1dt2,

where I(·) is the indicator function. As a result, the efficacy stopping boundary u can

be solved numerically based on the above equation. For example, when α = 0.05 and

l = zα∗ = 0.84 with α∗ = 0.2, the value of u is 2.234.
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Once the futility and efficacy stopping boundaries l and u are obtained, we construct the

adaptive enrichment strategies based on t1 and t2. For the enriched subgroup or the overall

group proceeding to the second stage, we first calculate the value of Acir(t
(1)) using equation

(2.5) and then determine N2 and cα using (2.3) and (2.4), respectively. To implement

EFE-SSR, the choice of the prespecified design parameters N1 and l can be determined by

extensive simulation studies under various scenarios, so that the resulting design is equipped

with desirable operating characteristics.

On a side note, it is also possible to adapt EFE-SSR to a strategy that only considers

early stopping for futility. Due to its unique construction, the efficacy stopping boundary

u in (2.5) cannot be infinite, and thus the circular conditional error function cannot be

applied to the situation when early stopping for efficacy is not allowed. For such a special

strategy, we instead propose to use the linear conditional error function Alin(·) to control

the overall type I error; see the supplementary material for more technical details. As

shown by Proschan and Hunsberger [15], the linear and circular error functions have similar

performances through careful calibration. Although the linear error function is also suitable

for EFE-SSR, it involves two parameters that should be determined in advance. To reduce

the burden of parameter specification, we use the circular function Acir(·) for the enrichment

strategies if early terminations for both futility and efficacy are included at the interim

analysis.

2.4 Enrichment with early stopping for both futility and efficacy
based on the ε rule and SSR (EFE-ε-SSR)

Compared to EFE-SSR, EFE-ε-SSR includes both futility and efficacy stopping boundaries

(lε > 0 and uε 6 0) as well as an additional parameter ε > 0, which is the indifference margin,

as shown in Figure 2. Such an indifference margin should be prespecified and it defines the

cutoff of the difference between the subgroup-specific test statistics. In other words, if the

distance in the test statistic between two subgroups is smaller than ε, then the treatment
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effects are deemed indistinguishable between subgroups, corresponding to the homogeneous

case; otherwise, it corresponds to the heterogeneous case and it is more desirable to enrich

the subgroup with a larger treatment effect. At the interim analysis, the trial based on

EFE-ε-SSR proceeds as follows:

(1) If tg∗ 6 lε, then terminate the trial and declare treatment futility in the overall group.

(2) Otherwise, compare the difference between the subgroup-specific test statistics, ∆t =

tg∗ − tg′ , with ε.

(2a) If ∆t > ε, perform an efficacy test in subgroup g∗,

• If tg∗ > uε, then terminate the trial and declare treatment efficacy in subgroup

g∗.

• Otherwise, enrich subgroup g∗ in the second stage; that is, g† = g∗.

(2b) Otherwise, i.e., ∆t < ε, perform an efficacy test in the overall group.

• If t0 > uε, then terminate the trial and declare treatment efficacy in the

overall group.

• Otherwise, the trial proceeds to the second stage without enrichment; that

is, the selected subgroup is the overall group with g† = 0.

(3) Based on the observed data, we calculate the critical value used at the final analysis

and re-estimate the sample size N2 to reach adequate CP while controlling the overall

type I error rate.

Similar to EFE-SSR, the circular conditional error function Acir(t
(1); lε, uε) with futility

and efficacy stopping boundaries (lε, uε) is employed to preserve the overall type I error rate
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at a pre-specified α level; that is,

α =

∫ ∞
−∞

∫ ∞
max{t1+ε,lε}

Acir(t2)φ(t1)φ(t2)dt2dt1 +

∫ ∞
−∞

∫ ∞
max{t2+ε,lε}

Acir(t1)φ(t1)φ(t2)dt1dt2

+

∫ ∞
−∞

∫ t1+ε

max{t1,lε}
Acir(t0)φ(t1)φ(t2)dt2dt1 +

∫ ∞
−∞

∫ t2+ε

max{t2,lε}
Acir(t0)φ(t1)φ(t2)dt1dt2.

Given the futility stopping boundary lε and the prespecified type I error rate α, the efficacy

stopping boundary uε can be solved from the above equation numerically. For example,

when α = 0.05, ε = 0.2, and lε = zα∗ = 0.84 with α∗ = 0.2, the value of uε is 2.189.

For the enriched subgroup or the overall group proceeding to the second stage, the stage 2

sample size N2 and the final cutoff cα can be determined using (2.3) and (2.4), respectively.

In addition, as shown in the supplementary material, the EFE-ε-SSR strategy can also be

adapted, based on the linear conditional error function, to the situation when only futility

stopping is included.

Compared with EFE-SSR, the inclusion of ε in EFE-ε-SSR adds another layer of flexibility

in controlling whether the overall group will be kept in the second stage. In general, the

smaller the value of ε, the higher the likelihood that only one subgroup will be enriched in

stage 2, thus leading to a smaller sample size on average. Therefore, when the experimental

treatment is efficacious in only one subgroup, the EFE-ε-SSR rule is more appealing than

EFE-SSR as the former generally leads to a higher probability of enriching the correct

subgroup. On the other hand, when the experimental treatment works for both subgroups,

the EFE-SSR rule usually has a higher probability to keep the overall group in stage 2. The

simulation study reported in Section 4 also confirms such a statement; for example, see Table

3.

3 Real Trial Example

To illustrate the proposed methods, we apply them to the NeoSphere trial [24], which

was a randomized multicenter, open-label trial comparing the neoadjuvant pertuzumab and
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trastuzumab (experimental treatment) with the combination of pertuzumab and docetaxel

(standard treatment) in women with locally advanced, inflammatory, or early HER2-positive

breast cancer. The primary endpoint was the pathological complete response (pCR). Trial

participants were heterogeneous and classified by the hormone receptor expression. The trial

was designed to explore the efficacy and safety of the treatment. At the end of the trial, 18

of 107 patients (data missing for one patient) receiving the treatment had pCR, including

3 out of 51 patients with ER-positive, PR-positive or both (subgroup 1), and 15 out of 55

patients with ER-negative and PR-negative (subgroup 2), while 23 out of 96 patients re-

ceiving the standard treatment had pCR, including 8 out of 46 in subgroup 1 and 15 out of

50 in subgroup 2. See Gianni et al. [24] for more details. Based on the observed data, it

is reasonable to assume the prevalence ratio ρ = 0.5. To test the treatment efficacy of the

experimental treatment in patients with respect to the standard treatment, we consider a

study extension based on the observed trial data and construct three null hypotheses:

H00: The experimental and standard treatments are equally effective in the overall group.

H01: The experimental and standard treatments are equally effective in subgroup 1.

H02: The experimental and standard treatments are equally effective in subgroup 2.

To cast this example in the context of a normal mean with a known variance, we apply the

variance-stabilizing arcsin transformation for the empirical proportions (see the supplemen-

tary material of statistical techniques for more details). As a result, the interim test statistics

(empirical effect sizes) of subgroup 1, subgroup 2 and the overall group computed using the

NeoSphere trial data are 1.819 (0.370), 0.306 (0.060) and 1.273 (0.179), respectively.

We set the overall type I error rate to be 0.05 and the indifference margin ε to be 0.5.

Suppose the futility stopping boundary at the interim analysis is 1.036, which corresponds

to a p-value of 0.15. In other words, if the p-value at stage 1 for subgroup g∗ is greater

than 0.15, then the trial would be terminated for futility. For comparison, we also include
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the standard SSR procedure [15] without enriching any subgroup in stage 2. Based on

the circular conditional error function, the interim efficacy stopping boundaries in SSR,

EFE-SSR, and EFE-ε-SSR are determined as 1.821, 2.194 and 2.212, respectively. Since

SSR does not include an enrichment strategy, the overall group proceeds to the second stage

because the overall group test statistic lies inside the continuation region of (1.036, 1.821). In

contrast, with the enrichment strategies imposed under the proposed designs, only subgroup

1 is enriched in the second stage as the test statistic in subgroup 1 (i.e., 1.819) is larger than

the futility stopping boundary of 1.036, while that in subgroup 2 (i.e., 0.306) is smaller than

1.036 as well as t1 − ε.

As shown in Table S1 of the supplementary material, the additional sample size N2 and

the critical value can be estimated for each method. Figure 3 panel (a) presents the changes

of CP and the p-value required at the final analysis with respect to a range of values N2. It

shows that for all methods, the higher the CP, the larger the required sample size in stage

2. Although EFE-SSR and EFE-ε-SSR have larger efficacy stopping boundaries as well as

requiring larger critical values at the final analysis, the required sample sizes at stage 2 using

these two methods are much smaller than that of SSR. This is a consequence of enrichment

as only subgroup 1, with a stronger benefit from the treatment and a larger test statistic,

is selected to stage 2 under EFE-SSR and EFE-ε-SSR. On the other side, the SSR method

does not distinguish the treatment effects between subgroups and selects the overall group

to stage 2. Thus, the overall treatment effect is diluted by the small effect of subgroup 2,

which in turn leads to the increase in sample size.

We observe that EFE-SSR and EFE-ε-SSR produce similar values of N2 and cα, which

is due to the value of the indifference margin ε = 0.5 that facilitates similar enrichment

decisions between the two designs. Given the same futility stopping boundary, the efficacy

stopping boundary of EFE-ε-SSR (uε = 2.194) is relatively smaller than that of EFE-SSR

(u = 2.212) and, as a result, EFE-ε-SSR spends more type I error at the interim than EFE-
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SSR. This implies that less type I error would be spent at the final analysis for EFE-ε-SSR,

thus leading to a smaller sample size of EFE-ε-SSR. Such a phenomenon can also be observed

in Figure 3 (b): with different values of the stage 1 test statistic, EFE-ε-SSR (with ε = 0.5)

uniformly yield a smaller value of N2 than EFE-SSR.

In fact, the additional design parameter ε in EFE-ε-SSR offers extra flexibility in con-

trolling the enrichment stringency: the smaller the value of ε, the more restrictive of the

enrichment at the interim. In an extreme situation with ε = 0, only one subgroup having the

maximum test statistic can be selected to stage 2 based on EFE-ε-SSR. On the other side,

with a large value of ε, the likelihood of no enrichment increases. For illustration purpose,

we additionally experiment ε = 1.6 for EFE-ε-SSR. As the difference in the test statistic

between two subgroups is 1.819 − 0.306 = 1.513, which is smaller than ε = 1.6, there is

not enrichment at the interim and patients from both subgroups will be enrolled in stage 2.

As a result, the required sample size in EFE-ε-SSR increases to 868, because of the diluted

overall treatment effect as well as the increased N †1 . Another interesting finding from Figure

3 (b) is that for EFE-ε-SSR, the conditional error curves are close regardless of the changes

in ε. This indicates that as long as the enriched subgroups are the same (for example, when

the treatment is truly efficacious in one subgroup but futile in the other subgroup), different

values of ε may lead to very similar sample sizes at the second stage.

4 Numerical Study

4.1 Simulation configurations

We compare the performances of EFE-SSR and EFE-ε-SSR with the standard design without

enrichment (S\E), the adaptive enrichment design (AED) without early stopping and SSR

(see the supplementary material for more details), and the standard SSR without enrichment

through extensive simulations. Simulation results of the proposed methods without early

stopping for efficacy can be found in the supplementary material. Suppose that a balanced
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two-arm phase III trial with heterogeneous trial participants is conducted. The primary

endpoint is the percentage of change in tumor sizes assessed by diagnostic imaging. One-

sided hypothesis tests are used. Assume the proportion of subgroup 1 is ρ = 0.50, and the

variance is known with σ2 = 1. In the S\E design, we consider the treatment effect for the

overall group is θ0 = 0.20, and thus 620 patients are required to achieve 80% power at the

0.05 significance level. We set the value of the threshold ε = 0.2 and the futility stopping

boundary to be 0.842 (corresponding to a p-value of 0.20) for all methods. The efficacy

stopping boundaries are then determined to be 1.852, 2.234, and 2.189 in SSR, EFE-SSR,

and EFE-ε-SSR, respectively. The sample size required in the second stage and the critical

value used at the final analysis are updated given the data observed at the interim analysis.

A total of 5,000 simulated studies are carried out for each method under each scenario.

4.2 Performance evaluation

To quantify the performances of the proposed designs, several metrics are utilized: (1) Overall

type I error rate (which is defined as the probability of rejecting the null hypothesis when

the treatment is inactive), which should be controlled at a nominal level, i.e., α = 0.05; (2)

power (which is defined as the probability of rejecting at least one null hypothesis), for which

the larger the better; and (3) expected sample size (ESS), which is defined as the average

sample size over all simulated trials, and a smaller value of ESS should be considered more

desirable; and (4) the percentage of enrichment (which is defined as the proportion of the

enriched subgroup proceeding to the second stage among all simulated trials) for subgroups

1 and 2.

4.3 Sensitivity analysis

In practice, the performances of the proposed methods are typically influenced by four fac-

tors: the proportion ρ of subgroup 1, the initial sample size N1 at the first stage, the futility

stopping boundary, and the threshold ε. In general, the larger the value of ρ the larger
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effective sample size, leading to higher statistical power if subgroup 1 is more sensitive to

the experimental treatment. The smaller the value of N1, the higher the uncertainty of the

estimation at the interim analysis, resulting in lower statistical power. The smaller the value

of the futility stopping boundary, the smaller the likelihood of futility stopping, resulting in

a larger sample size as well as higher statistical power. The smaller the value of the thresh-

old ε, the higher the chance of enrichment. Hence, we consider various values of ρ, N1, the

futility stopping boundary, and ε to evaluate the robustness and efficiency of the proposed

methods.

4.4 Results

As shown in Table 1, the overall type I error rates are well controlled for AED, SSR, EFE-

SSR, and EFE-ε-SSR under various settings of the null hypothesis. Under the null hypothesis,

SSR yields the smallest ESS because it has the narrowest continuation region and thus leads

to the highest percentage of early termination. Comparing EFE-ε-SSR with EFE-SSR, the

former approach on average has a smaller ESS than the latter under the null hypothesis.

This is because compared to EFE-SSR, EFE-ε-SSR with ε = 0.20 generally yields a higher

likelihood to enrich only one subgroup in the second stage.

Table 2 summarizes the overall power and ESS under various alternative hypotheses,

and Table 3 presents percentages of enrichment and the probabilities of rejecting H00, H01,

and H02 for the designs under comparison. Table 2 shows that the SSR design performs on

average better than S\E in terms of both ESS and power. Compared to S\E, AED gains

10.0% in power due to enrichment. In most scenarios of Table 2, EFE-SSR and EFE-ε-SSR

yield comparable results, and both outperform SSR in terms of power and ESS, with almost

a 7.0% gain in power and more than 10.0% reduction in ESS. In the case where only one

subgroup can benefit from the treatment, such as scenarios 1, 4, and 7, the advantages of

EFE-SSR and EFE-ε-SSR over SSR are obvious due to the accurate identification of the
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beneficial subgroup at the interim. Table 2 also reveals that when the treatment effect in

one subgroup is promising and that in the other subgroup is futile or marginal, such as

scenarios 1 and 2, EFE-ε-SSR has a larger chance to identify the correct subgroup due to its

more restrictive enrichment criterion (as shown in Table 3), and thus leads to a smaller ESS

than EFE-SSR without deterioration in power. Such a reduction in ESS with EFE-ε-SSR

is more prominent with a smaller futility stopping boundary (as shown in Figure ?? of the

supplementary material particularly when the futility stopping boundary is smaller than

0.7). Furthermore, according to Table 3, EFE-SSR has a higher chance to reject the null

hypothesis for the overall group H00 compared with other competitive methods, which may

also lead to a higher chance of making erroneous conclusions in scenarios 1, 2, 4, 5 and 7,

where heterogeneous treatment effect is present across subgroups.

Supplementary Figure ?? presents the power and ESS under a range of values of ρ using all

designs under consideration. The power of AED, SSR, EFE-SSR, and EFE-ε-SSR increases

substantially when the proportion ρ becomes large if subgroup 1 is more sensitive to the

experimental treatment and vice versa. Moreover, the proposed EFE-SSR and EFE-ε-SSR

outperform SSR in terms of both power and ESS, especially when the proportion ρ is small,

i.e., ρ < 0.8.

Supplementary Figure ?? presents the power and ESS under a range of values of N1. The

power and ESS of SSR, EFE-SSR, and EFE-ε-SSR increase as the value of N1 becomes large.

In particular, the larger value of N1, the higher power and ESS required for the trial. The

performance of the AED is less sensitive to the value of N1 as the ESS is fixed. From our

experience, the value of N1 is recommended to be one-half of the initial sample size based

on the standard design without enrichment.

Supplementary Figure ?? presents the power and ESS under a range of futility stopping

boundaries. Under the null hypothesis, all the considered methods can preserve the overall

type I error rate under different values of the futility stopping boundary. The AED does not
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allow any early termination, hence its power and ESS are invariant to the futility stopping

boundary. Under the alternative hypothesis, the power and ESS of SSR, EFE-SSR, and

EFE-ε-SSR increase as the futility stopping boundary decreases. This is because with a

smaller futility stopping boundary, more trials would proceed to stage 2, leading to increase

in both sample size and power. However, when the treatment is truly effective in at least

one subgroup (as shown in the last panel of Figure ??), the performances of EFE-SSR and

EFE-ε-SSR are insensitive to the futility stopping boundary, because they can identify the

correct subgroup with high probability. Based on the sensitivity analysis, we recommend

choosing the futility stopping boundary from [0.7, 1.1] to guarantee high overall power and

low ESS.

Furthermore, we consider three different values of ε for EFE-ε-SSR: ε = 0, 0.5, and 0.8.

In particular, with ε = 0, the EFE-ε-SSR strategy only enriches one subgroup at the interim

analysis. As shown in the Supplementary Tables ?? and ??, the power of EFE-ε-SSR is

relatively invariant to values of ε. On the other side, the ESS generally decreases as the

value of ε decreasesm because a small value of ε facilitates a more stringent enrichment

strategy. The ESS of EFE-ε-SSR under ε = 0.8 is much larger than that under ε 6 0.5

without a significant gain in power. This is because the larger the value of ε, the less

probability the enrichment would be triggered, and thus EFE-ε-SSR shrinks towards the

standard SSR without enrichment. On the other side, when ε = 0, only one subgroup can be

enrolled. As shown in Supplementary Table ??, if the experimental treatment works in both

subgroups, setting ε = 0 may yield undesirable performance with a high subgroup-specific

type II error rate in the unselected subgroup. As a result, a relatively small but positive

value is recommended for the threshold ε, i.e., 0.1 6 ε 6 0.5.
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5 Software

To facilitate the use of the proposed designs, we have developed an R package “esDesign”

that allows users to calculate the futility and/or efficacy stopping boundaries, calibrate the

value of the threshold, estimate the sample size required at the second stage, compute the

critical value used at the final analysis and conduct simulation studies. The software is freely

available on CRAN (https://cran.r-project.org/web/packages/esDesign/index.html).

6 Discussion

Adaptive enrichment design with sample size re-estimation inherits the advantages of both

strategies of enriching the subgroup for which the treatment effect appears to be strong and

re-estimating the required sample size in the second stage to ensure adequate conditional

power. We have verified the feasibility and practicability of the combination of enrichment

and SSR through a real trial example and extensive simulation studies. Compared with the

traditional adaptive designs, such as SSR or AED, not only can the adaptive enrichment

strategies with SSR increase the power substantially, but they also reduce the ESS, while

preserving the overall type I error rate at a nominal level. It may be due to the fact that

the trials declaring early stopping for futility by SSR are transformed to enrich a proportion

of trial participants, who have a higher likelihood to benefit from the investigated treat-

ment. This is very attractive as it enhances the probability of trial success, facilitates the

advancement of drug development, and provides easy-to-implement approaches. The pro-

posed methods may be extended to trials with survival endpoints, for which the log-rank test

is often used for hypothesis testing. It is also warranted to explore the cases with multiple

endpoints or a primary endpoint and a secondary endpoint.
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Table 1: Comparison of the overall type I error rate α (%), expected sample size (ESS)
and the probabilities of rejecting null hypotheses H00, H01 and H02 (%) using the standard
sample size re-estimation (SSR) procedure without enrichment, adaptive enrichment design
(AED) without early stopping, and the proposed enrichment strategies with SSR (EFE-SSR
and EFE-ε-SSR) under the null scenario with (θ1, θ2) = (0, 0) and ε = 0.2.

SSR AED EFE-SSR EFE-ε-SSR

N1 ρ α ESS α ESS H00 H01 H02 α ESS H00 H01 H02 α ESS H00 H01 H02

156 0.3 5.4 257 4.7 620 0.3 2.1 2.3 5.4 288 1.4 1.9 2.1 4.9 283 0.3 2.2 2.4

156 0.5 5.4 257 4.6 620 0.2 2.3 2.1 4.9 285 1.3 1.9 1.7 4.9 282 0.3 2.7 1.9

156 0.7 5.4 257 4.7 620 0.2 2.3 2.1 5.0 282 1.5 1.7 1.8 4.9 285 0.2 2.3 2.4

310 0.3 5.2 504 4.6 620 0.2 2.1 2.3 4.8 558 1.3 2.0 1.6 4.5 555 0.1 2.6 1.8

310 0.5 5.2 504 4.4 620 0.3 2.2 2.0 4.6 576 1.4 1.4 1.8 4.8 561 0.2 2.3 2.3

310 0.7 5.2 504 4.4 620 0.2 2.2 2.0 5.5 568 1.5 2.1 1.9 4.6 568 0.2 2.4 2.0

Note: N1 is the total sample size in stage 1, and ρ is the true prevalence rate of subgroup 1. The nominal

type I error rate of 5% and conditional power 80% are specified for the two-stage adaptive designs.

Table 2: Comparison of power (%) and expected sample size (ESS) using the standard
design without enrichment (S\E), adaptive enrichment design (AED) without early stopping,
sample size re-estimation (SSR) design, and the proposed enrichment strategies with SSR
(EFE-SSR and EFE-ε-SSR) under alternative scenarios with ε = 0.2.

S\E AED SSR EFE-SSR EFE-ε-SSR

Scenario (θ1, θ2) θ0 Power ESS Power ESS Power ESS Power ESS Power ESS

1 (0.2, 0.0) 0.10 33.5 620 52.6 620 37.7 672 50.5 619 50.5 608

2 (0.2, 0.1) 0.15 57.5 620 57.0 620 60.4 671 58.8 632 57.5 609

3 (0.2, 0.2) 0.20 79.5 620 73.3 620 78.3 620 75.2 573 71.0 561

4 (0.3, 0.0) 0.15 57.5 620 81.7 620 60.4 671 78.1 548 78.4 553

5 (0.3, 0.1) 0.20 79.5 620 83.1 620 78.3 620 81.1 531 79.6 523

6 (0.3, 0.2) 0.25 93.1 620 88.8 620 89.5 526 88.0 491 86.5 489

7 (0.4, 0.0) 0.20 79.5 620 93.9 620 78.3 620 92.3 456 92.7 440

8 (0.4, 0.2) 0.30 98.1 620 96.8 620 96.0 445 95.6 406 94.4 408

Note: θ1, θ2 and θ0 are the treatment effects of subgroups 1, 2, and the overall group, respectively. The

sample size in stage 1 is N1 = 310, and the prevalence rate of subgroup 1 is ρ = 0.5. The nominal type I

error rate of 5% and conditional power 80% are specified for the two-stage adaptive designs.

25



Table 3: Comparison of the percentage of enrichment in subgroup 1 (ES1) or 2 (ES2) and the
probabilities of rejecting null hypotheses H00, H01 and H02 (%) using the adaptive enrichment
design (AED) without early stopping and the proposed enrichment strategies with SSR
(EFE-SSR and EFE-ε-SSR) under alternative scenarios with ε = 0.2.

AED EFE-SSR EFE-ε-SSR

Scenario (θ1, θ2) θ0 ES1 ES2 H00 H01 H02 ES1 ES2 H00 H01 H02 ES1 ES2 H00 H01 H02

1 (0.2, 0.0) 0.10 76.6 16.1 1.8 49.6 1.2 75.4 12.5 8.4 41.1 1.1 80.2 16.2 1.7 47.1 1.7

2 (0.2, 0.1) 0.15 60.5 29.8 4.7 41.6 10.8 53.6 22.6 22.2 30.5 6.2 62.2 29.8 5.2 41.7 10.6

3 (0.2, 0.2) 0.20 45.4 43.3 7.9 33.6 31.8 32.2 36.7 39.3 17.1 18.8 46.5 45.8 7.5 32.1 31.4

4 (0.3, 0.0) 0.15 88.1 7.4 2.1 81.7 0.7 82.6 5.9 14.0 63.7 0.5 86.6 9.1 2.4 74.4 1.6

5 (0.3, 0.1) 0.20 76.8 15.9 4.9 71.7 6.5 64.3 12.5 32.3 45.8 3.0 73.2 20.7 4.8 67.2 7.7

6 (0.3, 0.2) 0.25 61.0 28.9 8.8 57.6 22.3 44.6 20.7 52.5 27.8 7.7 58.6 32.7 8.7 55.3 22.5

7 (0.4, 0.0) 0.20 93.9 3.0 2.2 93.1 0.4 83.6 2.9 17.8 74.4 0.1 93.1 4.8 1.6 90.4 0.7

8 (0.4, 0.2) 0.30 76.8 15.9 7.1 76.5 13.2 52.5 10.0 60.6 32.5 2.5 71.2 22.2 6.7 74.5 13.2

Note: θ1, θ2 and θ0 are the treatment effects of subgroups 1, 2, and the overall group, respectively. The

sample size in stage 1 is N1 = 310, and the prevalence rate of subgroup 1 is ρ = 0.5. The nominal type I

error rate of 5% and conditional power 80% are specified for the two-stage adaptive designs.
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Figure 1: Schema of the enrichment strategy with early stopping for both futility and efficacy
based on sample size re-estimation (EFE-SSR), with “E” representing the experimental
treatment and “S” representing the standard treatment.
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Figure 3: (a): Changes of conditional power (solid lines) and p-value (dashed lines) required
at the second stage with respect to N2 in the hypothetical example using SSR, EFE-SSR,
and EFE-ε-SSR; the dotted lines correspond to the conditional power of 80%. (b): Required
sample size (solid lines) and conditional error (dashed lines) at the second stage with respect
to the stage 1 statistic for the selected subgroup in the hypothetical example using EFE-
SSR and EFE-ε-SSR. Two different values of ε (ε = 0.5 and ε = 1.6) are considered for
EFE-ε-SSR. The vertical dotted lines in panel (b) exhibit the test statistics for subgroup 1
(EFE-SSR and EFE-ε-EER with ε = 0.5) and the overall group (EFE-ε-EER with ε = 1.6).
The horizontal lines denote the respective sample sizes at the second stage.
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